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Abstract

One kind of temporal reasoning is temporal projection|the computation of

the consequences of a set of events. This problem is related to a number of

other temporal reasoning tasks such as plan validation and planning. We

show that one particular, simple case of temporal projection on partially

ordered events turns out to be harder than previously conjectured, while

planning is easy under the same restrictions. Additionally, we show that

plan validation is tractable for an even larger class of plans|the uncon-

ditional plans|for which temporal projection is NP-hard, thus indicating

that temporal projection may not be a necessary ingredient in planning and

plan validation. Analyzing the partial decision procedure for the temporal

projection problem that has been proposed by other authors, we notice

that it fails to be complete for unconditional plans, a case where we have

shown plan validation tractable.
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1 Introduction

The problem of temporal projection is to compute the consequences of a set of

events. Dean and Boddy [15] formalize and analyze this problem for sets of par-

tially ordered events assuming a propositional strips-like [19] representation of

events. They investigate the computational complexity of a number of restric-

ted problems and conclude that even for severely restricted cases the problem is

NP-hard, which motivated them to develop a partial decision procedure for the

temporal projection problem.

It turns out that the temporal projection problem is even harder than it was

originally believed. Among the restricted problems Dean and Boddy analyzed,

there is a particular \simple" one they conjectured to be solvable in polynomial

time. However, even in this case temporal projection is NP-hard, as is shown

below.

The main motivation for the isolation and analysis of the temporal projection

problem [15] is the hypothesis that \a signi�cant part of this process [nonlinear

planning] involves some means for predicting the consequences of actions and

using these consequences to verify whether or not a given partially constructed

plan is likely to succeed" [14, p. 196].

1

To verify this hypothesis, we have taken a

closer look at the complexity of nonlinear planning in relation to that of temporal

projection. Our analysis shows that temporal projection is not necessarily a useful

subproblem for solving the nonlinear planning problem. In particular, we identify

cases were nonlinear planning is computationally easy, whereas the corresponding

temporal projection task is intractable (assuming P 6= NP).

The planning problem is de�ned as follows: Given an initial world state, a

desired world state, and a set of possible actions, �nd a (partially or totally

ordered) set of of actions that, if executed in the initial world state, will bring

about the desired world state [33].

2

Planning is a very di�cult problem [9, 11,

12, 18, 17, 22]. However, the planning problem turns out to be trivial if we

apply the restrictions of the \simple" temporal projection problem to it. Plans of

minimal length are derivable in polynomial time in this case. Thus, under these

restrictions, planning is strictly easier than temporal projection.

We also considered the plan validation problem. This is the problem of verify-

ing that given a plan, an initial state, and a desired state, all actions mentioned

in the plan can be successfully executed, i.e., their preconditions are satis�ed,

and the actions of the plan lead to the desired state [33, p. 29]. Since planning

1

One of the main motivations for our analysis is the development of e�cient methods for

solving a generalized plan validation problem that comes up in the context of representing and

managing plans in a terminological representation system [23], which is used in the multi-media

presentation system WIP [35].

2

This means, we adopt the \classical" perspective on planning, i.e., we assume that there

is complete knowledge and the world is only changed by the actions of the agent executing the

plan.
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proceeds incrementally, one is usually not only interested in deciding the validity

of a plan, but also in �nding the reason for a failure if the plan is not yet valid.

These \diagnoses of failure" can then be used to further develop the plan. In our

paper, we abstract from these more practical considerations, however.

In the general case, plan validation and temporal projection of necessary

consequences in the form as de�ned by Dean and Boddy belong to the same

complexity class, but there does not seem to exist a natural decomposition of

validation problems into projection problems. In the special case where only

context-independent e�ects of actions are allowed, there exists a straightforward

decomposition of plan validation into temporal projection problems. However,

from a complexity point of view, this decomposition does not make much sense.

Plan validation is a polynomial-time problem in this case, as can be shown using

the techniques developed by Chapman [11], while solving the temporal projection

problems is NP-hard.

The key idea in proving tractability of plan validation for context-indepen-

dent actions is that any valid plan must be coherent, i.e., all preconditions must

be necessarily satis�ed. Based on the tentative assumption that a plan is cohe-

rent, it is easy to decide whether it is indeed coherent. This notion can be quite

naturally applied to prove a modi�ed form of temporal projection for context-

independent actions to be tractable, provided we are only interested in necessary

consequences. Further, the notion of coherence can also be applied to plan valida-

tion for more expressive action languages, which leads to tractable but incomplete

plan validation criteria.

The remainder of the paper is structured as follows. Section 2 contains the

de�nition of the general temporal projection problem for partially ordered events

as formalized by Dean and Boddy [15]. In Section 3, a simple form of temporal

projection that was conjectured to be tractable by Dean and Boddy [15] is shown

to be NP-hard. The corresponding planning problem permits a polynomial-time

planning algorithm, however, as is shown in Section 4. In Section 5, we show

that plan validation is tractable if all events are unconditional and analyze the

relationship between this result and Chapman's [11]. In order to put this result

into perspective, we analyze in Section 6 why plan validation appears to be easier

than projection in this special case and de�ne an alternative form of temporal

projection that is tractable for necessary consequences. In addition, we discuss in

how far the tractability results could be exploited in more general causal struc-

tures. Finally, in Section 7, we examine the partial decision algorithm proposed

by Dean and Boddy [15].

2 Temporal Projection

Given a description of the state of the world and a description of which events will

occur, we are usually able to predict what the world will look like. This kind of
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reasoning is called temporal projection. It seems to be the easiest and most basic

kind of temporal reasoning. Depending on the representation, however, there are

subtle di�culties hidden in this reasoning task.

The formalization of the temporal projection problem for partially ordered

events given below is equivalent to the formalization given by Dean and Boddy

[15, Sect. 2] but more tailored to meet our needs for proving di�erent properties

about temporal projection. We start with the de�nition of what a causal structure

is, which �xes our vocabulary to talk about states, event types, and rules of

change. We con�ne ourselves to a particular simple form of causal structures,

where world states are represented by sets of propositional atoms and rules of

change are described as propositional strips-like operators. As a second step,

we introduce sets of partially ordered events over causal structures that denote

all event sequences that satisfy the partial order over the event set. Finally, the

notion of event systems will be introduced that consist of an initial state and

a partially ordered event set. The problem of temporal projection is to decide

whether a given propositional atom holds, possibly or necessarily, after or before

a given event in an event system.

De�nition 1 A causal structure is given by a tuple � = hP; E;Ri, where

� P = fp

1

; : : : ; p

n

g is a set of propositional atoms, the conditions,

� E = f�

1

; : : : ; �

m

g is a set of event types,

� R = fr

1

; : : : ; r

o

g is a set of causal rules of the form r

i

= h�

i

; '

i

; �

i

; �

i

i,

where

{ �

i

2 E is the triggering event type,

{ '

i

� P is a set of preconditions,

{ �

i

� P is the add list,

{ and �

i

� P is the delete list.

In order to illustrate this de�nition, assume a toy scenario as depicted in

Figure 1. There is a hall, a room A, and another room B. Room A contains a

public phone, and room B contains an electric outlet. The robot Robby can be

in the hall (denoted by the atom h), in room A (a), or in room B (b). Robby can

have a phone card (p) or coins (c). Additionally, when Robby uses the phone,

he can inform his master on the phone that he was �nally successful in proving

the di�cult theorem (i). Robby's batteries can be fully charged (f), almost

empty (e), or, in unlucky circumstances, be damaged (d). Summarizing, the set

of conditions for our tiny causal structure is the following:

P = fa; b; h; p; c; i;d; e;fg:
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bb

Room A

Room BHall

Figure 1: A toy scenario

Robby can do the following. He can move from the hall to either room (�

h!a

,

�

h!b

) and vice versa (�

a!h

, �

b!h

). Provided he is in room A and he has a phone

card or coins, he can call his master (�

call

). Additionally, if Robby is in room

B, he can recharge himself (�

charge

). However, if Robby is already fully charged,

this results in damaging his batteries. Summarizing, we have the following set of

event types:

E = f�

h!a

; �

h!b

; �

a!h

; �

b!h

; �

call

; �

charge

g;

and the following set of causal rules:

R =

n

h�

h!a

; fhg; fag; fhgi; h�

h!b

; fhg; fbg; fhgi;

h�

a!h

; fag; fhg; fagi; h�

b!h

; fbg; fhg; fbgi;

h�

call

; fa; pg; fig; ;i; h�

call

; fa; cg; fig; fcgi;

h�

charge

; fb; eg; ffg; fegi; h�

charge

; fb; fg; fdg; ffgi

o

:

In order to talk about sets of concrete events and temporal constraints over

them, the notion of a partially ordered event set is introduced.

3

De�nition 2 Assuming a causal structure � = hP; E;Ri, a partially ordered

event set (POE) over � is a pair �

�

= hA

�

;�i consisting of

1. a set of actual events A

�

= fe

1

; : : : ; e

p

g with an associated function

type:A

�

! E, and

2. a strict partial order

4

� over A

�

.

In the following, we will often drop the subscript � in �

�

and A

�

if it is clear

from the context which causal structure we mean. Continuing our example, we

3

This notion is similar to the notion of a nonlinear plan.

4

A strict partial order is a transitive and irreexive relation.
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assume a set of six actual events A = fA; B; C; D; E; Fg, such that

type(A) = �

h!a

type(D) = �

h!b

type(B) = �

call

type(E) = �

charge

type(C) = �

a!h

type(F) = �

b!h

;

with the following temporal constraints

A � B � C and D � E � F:

POEs denote sets of possible sequences of events satisfying the partial order.

A partial event sequence of length m over such a POE hA;�i is a sequence

f = hf

1

; : : : ; f

m

i such that (1) ff

1

; : : : ; f

m

g � A, (2) f

i

6= f

j

if i 6= j, and

(3) for each pair f

i

; f

j

of events appearing in f , if f

i

� f

j

then i < j. For

instance, hA; B; Ci is a partial event sequence of length three over the POE given

above, while hA; C; Bi is not. If the event sequence is of length jAj, it is called

a complete event sequence over the POE. The sequences hA; B; C; D; E; Fi and

hA; D; B; E; C; Fi are complete event sequences, for instance. The set of all complete

event sequences over a POE � is denoted by CS (�).

We say that a partial event sequence f can be extended to an event sequence

g if jf j < jgj and for all f

i

; f

j

with i < j there exists g

k

= f

i

and g

l

= f

j

such

that k < l. If f = hf

1

; : : : ; f

k

; : : : ; f

m

i is an event sequence, then hf

1

; : : : ; f

k

i is

the initial sequence of f up to f

k

, written f=f

k

. Similarly, fnf

k

denotes the initial

sequence hf

1

; : : : ; f

k�1

i consisting of all events before f

k

. Further, we write f ; g

to denote hf

1

; : : : ; f

m

; gi.

Each event maps states (subsets of P) to states. Let S � P denote a state

and let e be an event. Then we say that the causal rule r is applicable in state

S i� r = htype(e); '; �; �i and ' � S. Given e and S, app(S; e) denotes the set of

all applicable rules for e in state S. An event e is said to be admissible in a

state S i� app(S; e) 6= ;. In order to simplify notation, we write '(r), �(r), �(r)

to denote the sets ', �, and �, respectively, appearing in the rule r = h�; '; �; �i.

If there is only one causal rule associated with the event type type(e), we will also

use the notation '(e), �(e), and �(e). Based on this notation, we de�ne what we

mean by the result of a sequence of events relative to a state S.

De�nition 3 The function \Result" from states and event sequences to states is

de�ned recursively by:

Result

�

S; hi

�

= S

Result

�

S; (f ; g)

�

= Result(S; f) �

f�(r)j r 2 app(Result(S; f); g)g [

f�(r)j r 2 app(Result(S; f); g)g:
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It is easy to verify that the following equation holds for our example scenario:

Result(fh; e; cg; hA; B; C; D; E; Fi) = fh; f; ig:

There are some points in De�nition 3 that may appear to be problematical

to the attentive reader. First, it is possible that two rules are applicable where

one rules adds an atom and the other one deletes it. Although undesirable, this

is permitted. In this case, we adopted in De�nition 3 the (admittedly arbitrary)

convention that the atom will be added (following Dean and Boddy [15]). A

second arguable point is that the de�nition of the function Result permits se-

quences of events where events occur that are not admissible. For instance, it is

possible to ask what the result of hA; D; B; E; C; Fi in state fh; e; cg will be:

Result(fh; e; cg; hA; D; B; E; C; Fi) = fh; e; ig:

Although perfectly well-de�ned, this result seems to be strange because the events

D, E, and F occurred without being admissible in the states they occur in. In

fact, it seems to be quite unintuitive that event D, i.e., a movement of Robby

from the hall to room B, can occur in a world state where Robby is in room

A. In a natural language understanding context, one would take such a state

of a�airs as an incoherency, and perhaps attempt to �ll in the missing event of

Robby returning to the hall. In a planning context, the occurrence of D could be

interpreted as a failed action attempt.

De�nition 4 An event sequence f = hf

1

; : : : f

m

i is called admissible in state

S i� each event f

i

, 1 � i � m, is admissible in Result(S; fnf

i

).

Depending on one's intuition, it may be preferable to de�ne the function

\Result" as a partial instead of a total function. The domain of \Result" would

then be de�ned only over states and event sequences that are admissible in this

state, a point we will return to in Section 6. The set of all complete event

sequences over � that are admissible in S is denoted by ACS (�; S). If CS (�) =

ACS (�; S), we will say that � is coherent relative to S.

In the following, we will often talk about which consequences a POE will

have on some initial state. For this purpose, the notion of an event system is

introduced.

De�nition 5 An event system � is a pair h�

�

; Ii, where �

�

is a POE over

the causal structure � = hP; E;Ri, and I � P is the initial state.

In order to simplify notation, the functions CS and ACS are extended to event

systems with the obvious meaning, i.e., CS (h�; Si) = CS (�) and ACS (h�; Si) =

ACS (�; S). Further, if CS (�) = ACS (�), � is called coherent.

The problem of temporal projection as formulated by Dean and Boddy [15]

is to determine whether some condition p holds, possibly or necessarily, after
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a particular event e of an event system �, written p 2 Poss

+

(e;�) and p 2

Nec

+

(e;�), respectively. We will also consider the problems of determining the

sets of conditions that hold, possibly or necessarily, before a given event, written

Poss

�

(e;�) and Nec

�

(e;�).

De�nition 6 Given an event system �, an event e 2 A, and a condition p 2 P:

p 2 Poss

+

(e;�) i� 9f 2 CS (�): p 2 Result(I; f=e)

p 2 Nec

+

(e;�) i� 8f 2 CS (�): p 2 Result(I; f=e)

p 2 Poss

�

(e;�) i� 9f 2 CS (�): p 2 Result(I; fne)

p 2 Nec

�

(e;�) i� 8f 2 CS (�): p 2 Result(I; fne):

Hence, we have in fact four instead of one temporal projection problem. From

a computational point of view, however, Nec

+

and Nec

�

are equivalent (under

polynomial transformations), a property that also holds for Poss

+

and Poss

�

.

Further, this property seems to extend to all restrictions on event systems.

Continuing our example, let us assume the initial state I = fh; e; cg. Then

the following can be easily veri�ed:

i 2 Poss

+

(B;�) i 62 Nec

+

(B;�)

d 62 Poss

+

(E;�) d 62 Nec

+

(E;�):

In plain words, Robby is only possibly but not necessarily successful in informing

his master about his success. On the positive side, however, we know that Robby's

batteries will not be damaged, regardless of in which order the events happen.

3 A \Simple" Temporal Projection Problem

Given a set of conditions S and a sequence f , Result(S; f) can be computed in

polynomial time by interpreting the de�nition of Result procedurally. Since the

set CS (�) may contain exponentially many sequences, however, it is not obvious

whether p 2 Poss

+

(e;�) and p 2 Nec

+

(e;�) can be decided in polynomial time.

In the general case, temporal projection as de�ned above is quite di�cult.

Dean and Boddy [15] show that the decision problems p 2 Poss

+

(e;�) and

p 2 Nec

+

(e;�) are NP-complete and co-NP-complete, respectively, even under

some severe restrictions, such as restricting � or � to be empty for all rules,

or requiring that there is only one causal rule associated with each event type.

Considering the proofs of these results [15], they hold, quite obviously, also for

the corresponding problems of deciding p 2 Poss

�

(e;�) and p 2 Nec

�

(e;�).

De�nition 7 A causal structure � is called unconditional i� for each � 2 E ,

there exists only one causal rule with the triggering event type �. An event system

h�

�

; Ii is called unconditional i� � is unconditional. An event system is called
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almost simple i� it is unconditional and for each causal rule r = h�; '; �; �i,

the sets � and � are singletons and � � '. An event system is called simple i�

it is unconditional, I is a singleton, and for each causal rule r = h�; '; �; �i, the

sets ', �, and � are singletons and ' = �.

Dean and Boddy [15, Theorem 2.4] prove that the decision problem

p 2 Poss

+

(e;�) is NP-complete for almost simple event systems and conjecture

that it is a polynomial-time problem for simple event systems [15, p. 379]. As it

turns out, however, also this problem is computationally di�cult since the pro-

blem of path with forbidden pairs can be polynomially transformed to the simple

temporal projection problem.

De�nition 8 An instance of the path with forbidden pairs (PWFP) problem

is given by a directed directed graph G = (V;A), two vertices s; t 2 V , and a

collection C =

n

fa

1

; b

1

g; : : : ; fa

n

; b

n

g

o

of pairs of arcs from A. The question is:

Does there exist a directed path from s to t in G that contains at most one arc

from each pair in C?

This problem is NP-complete as shown by Gabow et al [20], even if the graph

is acyclic and all pairs are disjoint (see also [21, p. 203]).

Theorem 1 Deciding p 2 Poss

+

(e;�) for simple event systems � is NP-complete.

Proof Sketch. Membership in NP is obvious. Assume an acyclic directed graph

with forbidden pairs of arcs such that all forbidden pairs are pairwise disjoint,

and two nodes s and t. Assume without loss of generality that the �nal node

t has no outgoing and only one incoming arc. In order to generate a tem-

poral projection problem, nodes v

i

are transformed to propositional atoms v

i

,

arcs a

i;j

= (v

i

; v

j

) are transformed to events a

i;j

with the associated causal rule

htype(a

i;j

); fv

i

g; fv

j

g; fv

i

gi, and the source node s is transformed to the initial

state fsg. A forbidden pair fa; bg, where we assume without loss of generality

that there is path from a to b, is interpreted as the temporal restriction b � a.

Based on this transformation, it can be shown that there exists a path without

forbidden pairs from s to t i� t is a possible consequence of the generated event

system.

5

In order to demonstrate the above sketched transformation, let us consider

the graph with forbidden pairs in Figure 2. The temporal constraints in the

generated event system would be

(x; y) � (v; x); (w; y) � (v; w):

5

Full proofs are given in the appendix.
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forbidden pair

Figure 2: A graph with forbidden pairs

The only path from the source node v to the terminal node z that does

not contain a forbidden pair is the path v,w,x,y,z. It is easy to see that this

path could be used to generate a complete event sequence with z as its �nal

consequence. As a �rst step, we use the partial event sequence consisting of all

events corresponding to the arcs on this path:

D

(v; w); (w; x); (x; y); (y; z)

E

:

This sequence can be extended by the remaining events in a way such that they

meet the temporal constraints and are not admissible in this sequence. These

conditions can be easily satis�ed because the temporal constraints involve only

pairwise disjoint pairs of events. In our case the following complete sequence

leads to the desired result:

D

(w; y); (v; w); (w; x); (x; y); (v; x); (y; z)

E

:

Conversely, it is easy to see that a complete event sequence leading to the atom

corresponding to the terminal node implies the existence of a path without for-

bidden pairs. The subsequence consisting of all admissible events corresponds

to a path from the source node to the terminal node (in our case, from v to z).

Since this subsequence satis�es all temporal constraints, the corresponding path

cannot contain forbidden paths.

Using a slight modi�cation of the above sketched transformation, it can be ea-

sily shown that p 2 Nec

+

(e;�) is computationally equivalent to p 62 Poss

+

(e;�),

i.e., it is co-NP-complete.

Corollary 2 Deciding p 2 Nec

+

(e;�) for simple event systems � is co-NP-

complete.
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From the above, it follows that the corresponding problems of deciding p 2

Poss

�

(e;�) and p 2 Nec

�

(e;�) are also complete for NP and co-NP, respectively.

An interesting observation in this context is that the sources of complexity

identi�ed by Dean and Boddy [15, p. 380], namely, conjunction by means of

multiple preconditions (j'j > 1) and disjunction in the form of multiple causal

rules for one event, are not responsible for the intractability of the temporal

projection problem. These sources of complexity are not present in our case.

The sole source of complexity seems to be the partial ordering of events.

These results are somewhat surprising because one might suspect that plan-

ning and plan validation are easy under the restrictions imposed on the structure

of event systems. We will analyze this point more thoroughly in the following

sections.

4 Restricted Planning Problems

One reason for analyzing the temporal projection problem is that it seems to

constitute the heart of nonlinear planning [14, p. 196]. If we now consider the

restrictions placed on the simple temporal projection problem, it turns out that

planning itself is quite easy under the same restrictions.

In the context of planning, events as introduced above are usually called ac-

tions and POEs are called nonlinear plans, or simply plans. In the following,

we use these terms interchangeably.

De�nition 9 A planning task � is given by h�; I;Gi, where � = hP; E;Ri is

a causal structure as de�ned above, and I � P and G � P are the initial state

and goal state, respectively. A plan �

�

solves � i�

1. the plan necessarily achieves the goal, i.e., G � Result(I; f) for all f 2

CS (�

�

), and

2. the plan is coherent, i.e., ACS (�

�

; I) = CS (�

�

).

Note that we only allow plans where all actions are admissible (i.e. are gua-

ranteed to have their preconditions satis�ed), which coincides with the tradi-

tional de�nition [11, 33, 13]. Dean and Boddy [15], on the other hand, do not

require valid plans to be coherent and de�ne that non-admissible actions have

no e�ect. Such a de�nition, however, makes very strong (implicit) assumptions

about the underlying execution model, namely, that a failed action attempt does

not lead to any unintended e�ects. Requiring coherence for validity is thus a

safe approach since non-admissible actions are avoided in valid plans, making

assumptions about the underlying execution model unnecessary.
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The problem of planning is to decide whether there exists a solution for a

planning task

6

(or, ultimately, to �nd a solution). If one is interested in plans of

minimal length, the corresponding decision problem is to ask for the existence of

a plan with a given length.

De�nition 10 An instance of the plan existence problem is a planning task

�. The question is: Does there exists a plan that solves �?

An instance of the plan optimization problem is given by an integer k and

a planning task �. The question is: Does there exists a plan � = hA;�i such

that � solves � and jAj � k?

The computational complexity of planning has been investigated only recently.

Bylander [9] analyzed the general problem of deciding the existence of a solution

for a planning task in the context of propositional strips-like representations

7

and showed that the general problem is PSPACE-complete. A number of restricted

problems turn out to be tractable, however. For instance, plan existence for

unconditional causal structures and causal rules restricted by j(�(r) [ �(r))j = 1

is tractable [9, Theorem 7]. Similarly, planning with causal rules such that the

preconditions are always empty [9, Theorem 9] and planning with unconditional

causal structures such that the goal state is restricted in size and all rules contain

only one precondition [9, Theorem 8] are tractable. It should be noted, however,

that Bylander [9] considers only the existence problem and not the associated

optimization problem, which is often harder. For example, his Theorem 9 does

not apply to the corresponding optimization problem because theminimum cover

problem [21, p. 222] can be reduced to this planning problem [16, 10].

Proposition 3 The plan optimization problem for planning tasks such that the

preconditions of all causal rules are empty is NP-complete.

Returning to the problem we analyzed in the previous section, similarly to

simple event systems we de�ne simple planning tasks to be planning tasks that

meet the following restrictions: (1) there is only one causal rule associated with

each event type, (2) for all causal rules j'j = j�j = j�j = 1 and ' = �, and (3)

jIj = 1. Using Bylander's [9] Theorem 8, the tractability of the plan existence

problem follows immediately. In this case, also plan optimization is tractable,

however, since in this case planning can be reduced to a graph searching problem

with a graph that is linearly bounded by the instance size.

6

Note that we use the complexity-theoretic terminology here, where problems are sets of

instances. In the terminology of planning research, instances of the planning problem are often

called \planning problems." In order to avoid confusion, we called the latter planning tasks.

7

Bylander allows incoherent plans and assumes that non-admissible actions have no e�ect.

Since he considers only the existence of linear plans that solve a given task, such non-admissible

actions can be safely removed from his solutions, however. Hence, Bylander's complexity results

carry over also to the case where plans are required to be coherent.
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Proposition 4 For simple planning tasks, it can be decided in polynomial time

whether there exists a solution. Further, plan optimization for simple planning

tasks is also a polynomial-time problem.

This result leads to the question why temporal projection, which is supposed

to be the underlying problem in plan validation, is more di�cult than planning

itself in some cases. One explanation could be that a planner could create the

complicated structure we used in the proof of Theorem 1, but it never would

do so. Hence, the theoretical complexity never shows up in reality. In fact, all

solutions of simple planning tasks are linear plans, i.e., event sequences, for which

temporal projection is tractable.

The natural question coming up is whether there are tractable planning pro-

blems that have truly nonlinear plans as solutions. Examples for such problems

are the SAS-PUBS and SAS-PUS problems analyzed by B�ackstr�om and Klein

[6, 7].

The interesting point about these problems is that they are not de�ned by local

restrictions on the causal rules, that the restrictions do not come up naturally

in the formalism for specifying causal structures we use here, and that they

are supposedly of more practical interest than the restricted classes of planning

problems we have considered above. The SAS-PUBS and SAS-PUS planning

problems are aimed at capturing planning tasks that come up in the domain of

sequential control

8

, where the action representation may be relatively simple, but

the problem size makes computational complexity an important issue.

The SAS-PUS planning problem was originally formulated in the simpli�ed

action structures (SAS) formalism [6, 7], which is based on earlier work on action

structures [3, 32]. In the following, we re-express the SAS-PUS restrictions in the

formalism from Section 2 in order to facilitate a comparison with the planning

problems we have considered so far.

De�nition 11 A planning task � = hhP; E;Ri; I;Gi is SAS-PUS equivalent

i� it satis�es the following restrictions:

1. hP; E;Ri is unconditional;

2. P can be partitioned into m disjoint subsets P

1

; : : : ; P

m

s.t. jP

i

j > 1 for

1 � i � m and for all causal rules h�; '; �; �i 2 R

(a) � � ',

(b) j�j = 1;

(c) j' \ P

i

j � 1 for all i,

(d) j� \ P

i

j = j� \ P

i

j � 1 for all i, and

8

Sequential control is a subdiscipline of discrete event dynamical systems within automatic

control.
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(e) � \ � = ;.

3. jI \ P

i

j = jG \ P

i

j = 1 for all i.

4. for all pairs of causal rules

h�; '; �; �i; h�

0

; '

0

; �

0

; �

0

i 2 R

(a) if ' = '

0

, � = �

0

, and � = �

0

, then � = �

0

;

(b) if � 6= �

0

, then � \ �

0

= ;; and

(c) for all 1 � i � m, if (' � �) \ P

i

6= ; and ('

0

� �

0

) \ P

i

6= ; then

('� �) \ P

i

= ('

0

� �

0

) \ P

i

.

The restrictions can be understood as follows. Each partition P

i

can be viewed

as the value domain of a state variable x

i

, an action can change the value of a state

variable only if it already has a de�ned value, an action can only change the value

of one state variable, there must be no two di�erent action types changing the

same state variable to the same value (4b), and the initial state and the goal state

are fully speci�ed. Finally, restriction (4c) captures the notion of single-valued-

ness [6, 7]. Comparing these restrictions with the corresponding, but simpler

restrictions in the SAS formalism [6, 7] it is easy to see why the SAS formalism

was originally preferred for de�ning the SAS-PUS problem.

Theorem 5 The plan optimization problem for SAS-PUS equivalent planning

tasks is a polynomial-time problem.

The SAS-PUS problem is not comparable with either Bylander's restricted

problems or our simple planning problem, i.e., the SAS-PUS problem is neither

subsumed by nor does it subsume any of the those problems. In order to get an

idea about the expressiveness of SAS-PUS planning tasks, it may be worthwhile

to note that it permits formulating the restricted primitive blocks world planning

problem [29], a problem Bylander used as an example for one of his restricted

planning problems

9

[9, Theorem 10].

Although the SAS-PUS problem is incomparable to the other restricted plan-

ning problems mentioned in this section with respect to expressivity, we know

that it presents an (almost) optimal tradeo� between expressivity and e�ciency.

Except for the conditions that the initial and goal states must be completely spe-

ci�ed (condition (3)) and the requirement that an action may not change a state

variable from the unde�ned (i.e. an arbitrary) value to a de�ned value (conditi-

ons (2a), (2b), and (2d)), which can be relaxed without endangering tractability

9

To be precise, the blocks-world problem Bylander studied is slightly more expressive than

the restricted primitive blocks-world problem. However, a blocks-world problem subsuming

both these problems can be solved in polynomial time by encoding it as a SAS

+

-PUS problem

[4, 5].
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[4, 5], all other conditions are necessary to guarantee tractability [8], provided we

are interested in optimal plans.

While it is not obvious whether temporal projection as de�ned in Section 2

is NP-hard or not for SAS-PUS event systems, it is NP-hard for a slightly more

general class of event systems. The SAS-US class of event systems/planning

tasks, which may violate condition (4b), subsumes the class of simple event sy-

stems/planning tasks. Hence, SAS-US temporal projection is NP-hard, while

SAS-US planning is solvable in polynomial time [8].

The restricted planning problems we have discussed here may appear to be

expressively quite restricted. However, the research in identifying tractable plan-

ning problems is nevertheless one important aspect in \understanding the ex-

pressive and computational requirements for e�ective temporal reasoning" [14],

we believe. Apart from the obvious advantage of identifying e�cient algorithms

for special cases, it also contributes to our understanding of where sources of

complexity arise in planning. Interestingly, however, temporal projection in the

general form as de�ned in Section 2 is not at all needed in these cases.

5 Temporal Projection and Plan Validation

As mentioned in the Introduction, the interest in the temporal projection problem

stems from its assumed relevance to the plan validation problem. For this reason,

it seems worthwhile to explore the relationships between temporal projection and

plan validation.

De�nition 12 An instance of the plan validation problem is given by a plan-

ning task � and a plan �. The question is: Does � solve �?

In the general case, i.e., for unrestricted causal structures, it is well-known

that plan validation is NP-hard [11, Intractability Theorem]. However, it is also

not harder than the temporal projection of necessary consequences.

Proposition 6 The plan validation problem for general causal structures is co-

NP-complete.

So, from a complexity-theoretic point of view, the two problems are simply

equivalent. It may be the case, however, that from a conceptual point of view

projection appears to be a subproblem of validation, i.e., there exists a natural

and elegant decomposition of the plan validation problem into subproblems that

involve temporal projection.

Deciding whether a plan achieves the desired goals can be straightforwardly

reduced to temporal projection. Given a planning task � = h�; I;Gi, and a plan

�

�

, we extend the plan by an event e

�

that is not associated with any causal rule
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and occurs after all other events. The resulting plan is called �

0

�

. Now it is easy

to see that �

�

achieves G if, and only if, G � Nec

�

(e

�

; h�

0

�

; Ii).

The second condition on a solution of a planning task (cf. De�nition 9), na-

mely, that all actions are executable in all linearizations of the nonlinear plan|

that the plan is coherent|cannot be easily decomposed into temporal projection

problems. Testing whether an action is executable amounts to testing whether

necessarily at least one of the causal rules associated with the action can be ap-

plied. This cannot be expressed as a temporal projection problem as de�ned in

Section 2 because it involves a disjunction over the preconditions of the rules

associated with one event. In order to express this problem, we would have to

extend the de�nition of temporal projection in a way such that one can test whe-

ther some (strictly positive) formula in disjunctive normal form holds necessarily

before a given event.

10

If we restrict ourselves to unconditional causal structures, coherence of a nonli-

near plan can be easily reduced to a conjunction of temporal projection problems.

Proposition 7 An unconditional event system � is coherent i�

8e 2 A: '(e) � Nec

�

(e;�):

Although this looks like an elegant divide and conquer strategy, it turns out

to be just the opposite from a computational point of view. While it is NP-hard

to solve the temporal projection problems for all events in the event system, the

original problem of deciding coherence of a plan can be solved in polynomial time,

as we show below. Further, since plan validation can easily be reduced to the

coherence problem, the entire plan validation problem turns out to be solvable

in polynomial time.

In order to simplify the following discussion, we will restrict ourselves to

consistent unconditional event systems, which have to meet the restrictions

that �(e) \ �(e) = ;, for all e 2 A. Note that any unconditional event system �

can be transformed into a consistent unconditional event system �

0

in polynomial

time by setting

'

0

(e) = '(e)

�

0

(e) = �(e)

�

0

(e) = �(e)� �(e);

for all e 2 A. Consulting the de�nition of Result, it is obvious that this modi�-

cation does not change the outcome of Result(S; f) for all S � P and all partial

event sequences f over �.

10

Of course, there exists a polynomial transformation from plan validation to temporal pro-

jection as de�ned in Section 2 because both problems belong to the same complexity class. Ho-

wever, this reduction is probably not a \natural" decomposition of the plan validation problem.
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As a �rst step to specifying a polynomial-time algorithm that decides co-

herence for unconditional event systems, we de�ne a simple syntactic criterion,

written Maybe

�

(e;�), that approximates Nec

�

(e;�).

De�nition 13 Given a consistent, unconditional event system �, an atom p 2

P, and an event e 2 A, Maybe

�

(e;�) is de�ned as follows:

p 2 Maybe

�

(e;�) i� (1) p 2 I _ 9e

0

2 A: (e

0

� e ^ p 2 �(e

0

))^

(2) :9e

0

2 A� feg: (e

0

6� e ^ e 6� e

0

^ p 2 �(e

0

))^

(3) 8e

0

2 A:

�

(e

0

� e ^ p 2 �(e

0

))!

9e

00

2 A: (e

0

� e

00

� e ^ p 2 �(e

00

))

�

:

This de�nition resembles Chapman's [11] modal truth criterion. The �rst

condition states that p has to be established before e. The second condition

makes sure that there is no event unordered w.r.t. e that could delete p, and the

third condition enforces that for all events that could delete p and that occur

before e, some other event will reestablish p. It is obvious that this criterion can

be checked in low-order polynomial time.

Proposition 8 p 2 Maybe

�

(e;�) can be decided in polynomial time.

Note that Maybe

�

is neither sound nor complete w.r.t. Nec

�

in the general

case because we do not know whether the events referred to in the de�nition

are admissible in all linearizations. However,Maybe

�

coincides with Nec

�

in the

important special case that the event system is consistent and coherent.

Lemma 9 Let � be an consistent unconditional event system. If � is coherent,

then

8e 2 A:Nec

�

(e;�) =Maybe

�

(e;�):

Proof Sketch. \�": Suppose p 62 Maybe

�

(e;�). Then one of the conditions in

the De�nition of Maybe

�

is not satis�ed. Exploiting the fact that � is coherent,

it is possible to show by case analysis that there exists always a sequence f such

that p 62 Result(I; fne), hence p 62 Nec

�

(e;�).

\�": Suppose p 2 Maybe

�

(e;�). Then by condition (1) it follows that for all

event sequences f , there is an event e

0

before e or identical to it such that p holds

before e

0

. There must be a latest such event. By condition (2) and (3) it follows

that the latest such event is identical to e. Hence, p 2 Nec

�

(e;�).

Now we can give a necessary and su�cient condition for coherence of consi-

stent unconditional event systems.

Theorem 10 A consistent unconditional event system � is coherent i�

8e 2 A: '(e) �Maybe

�

(e;�):
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Proof Sketch. \)": Follows from Lemma 9.

\(": This is the tricky part. We want to derive that � is coherent without

relying on the fact that � is already coherent. Using induction over the number

of preconditions appearing in event systems solves the problem.

By Proposition 7, Theorem 10, the fact that p 2 Maybe

�

(e;�) can be decided

in polynomial time, and the fact that any unconditional event system can be

transformed into a consistent one in polynomial time, it follows straightforwardly

that coherence can be decided in polynomial time.

Corollary 11 Coherence of unconditional event systems can be decided in poly-

nomial time.

Plan validation can easily be reduced to coherence, so it is a polynomial-time

problem if the causal structure is unconditional.

Theorem 12 Deciding whether a plan �

�

is a solution for a planning task �

with an unconditional causal structure is a polynomial-time problem.

The surprising point about this result is that it appears to be easier to solve

a problem in its entirety than to decompose it into subproblems (temporal pro-

jection problems) and to solve these problems in isolation. There seems to be a

certain synergy at work provided by the required coherence of an event system

that allows us to solve the problem by deciding some simple syntactic conditions,

which when taken together provide the solution.

Although maybe surprising, the essence of our result is not new. Chapman [11]

used a similar technique to prove that deciding necessary truth in unconditional

plans generated by the tweak planning system is a polynomial-time problem

for a slightly di�erent formalism. It should be noted, however, that Chapman's

proof of the completeness and correctness of his modal truth criterion relies on the

assumption that all events he refers to in his criterion are already (or will become

eventually) necessarily admissible. Hence, Chapman's notion of necessary truth

is not identical with Nec

�

, but coincides with Maybe

�

.

Since the planning strategy of tweak is aimed at satisfying all preconditi-

ons, this assumption seems to be reasonable. However, it sounds like a circular

argument to base the decision of whether a plan is coherent on the property that

it is already coherent. So, it seems to be the case that Chapman missed to prove

something similar to our Theorem 10.

6 The Role of Coherence

There are at least two points which seem to deserve further analysis. First,

the notions of validation and projection seem to be very closely related and the
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complexity results for unconditional causal structures may appear to be somehow

surprising. In particular, it would be interesting to �nd out the reason why

projection seems to be so much harder than validation. Second, the notion of

coherence played an important rule in all proofs of the previous section and it

seems to be interesting to explore whether and how this notion could be applied

to more general causal structures.

Comparing the notions of validation and projection, the �rst di�erence one

notes is that projection makes more �ne grained distinctions than plan validation.

While plan validation considers all event structures that contain just one event

that is not admissible in one possible complete event sequence as invalid, temporal

projection as de�ned in Section 2 gives results even in the presence of events that

are not admissible. Consider, for instance, the following event system �:

P = fp; qg

E = f�

1

; �

2

; �

�

g

R = fh�

1

; fqg; fpg; ;i; h�

2

; fpg; ;; fqgi; h�

�

; ;; ;; ;ig

A = fE

1

; E

2

; E

�

g

I = fqg

The types of the events and the partial order over the events is speci�ed by

Figure 3.

��

��

��

��

��

��

�

1

�

2

�

�

E

1

E

�

E

2

�

�

�

�

�3

Q

Q

Q

Q

Qs

Figure 3: An incoherent structure

While plan validation would simply fail on � regardless of whether p or q is

the desired goal, temporal projection yields p 2 Nec

+

(e

�

;�) and q 62 Nec

+

(e

�

;�).

Since there does not seem to be any obvious bene�t in making these distinctions,

one might look for an alternative de�nition of temporal projection that is more

in line with the intuition that unadmissible event sequences lead to unde�ned

states as spelled in Section 2.

When studying the NP-hardness proofs for projection problems over uncon-

ditional causal structures by Dean and Boddy [15] and our proof of Theorem 1,
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it turns out that all these proofs rely on event sequences that are not admissi-

ble. Hence, an alternative de�nition of temporal projection could perhaps be also

more attractive from a computational point of view.

The answer we will give is quite interesting. Assuming a modi�ed de�nition

of temporal projection along the lines sketched above, necessary consequences

can be easily computed by making again use of the synergy provided by the

coherence of an event system. Possible consequences are, however, still di�cult

to compute. Hence, in this case the duality for the complexity of the temporal

projection problems (NP-completeness for possible and co-NP-completeness for

necessary consequences) does not hold any longer.

Instead of rede�ning the function Result as a partial function, we will rede�ne

the projection problems to be based on admissible execution sequences. For this

purpose, let us de�ne a predicate Adm that is true just in case the �rst argument

is a state and the second argument is an event sequence admissible in the �rst

argument. Temporal projection can then be de�ned relative to admissible event

sequences.

De�nition 14 Given an event system �, an event e 2 A, and a condition p 2 P:

p 2 Poss

+

A

(e;�) i� 9f 2 CS (�) : Adm(I; f=e) ^ p 2 Result(I; f=e)

p 2 Nec

+

A

(e;�) i� 8f 2 CS (�) : Adm(I; f=e) ^ p 2 Result(I; f=e)

p 2 Poss

�

A

(e;�) i� 9f 2 CS (�) : Adm(I; fne) ^ p 2 Result(I; fne)

p 2 Nec

�

A

(e;�) i� 8f 2 CS (�) : Adm(I; fne) ^ p 2 Result(I; fne):

This de�nition captures the intuition spelled out above, namely, that an event

sequence should only have a result if all its events are admissible.

11

Consequently,

a condition holds necessarily after or before a particular event e i� all possible

event sequences up to this event e are in fact admissible and lead to the desi-

red result. Similarly, possible consequences have to be based on possible event

sequences that are admissible.

In order to show tractability of Nec

+

A

and Nec

�

A

, let us �rst consider a special

case, namely, the projection of necessary consequences before an event which is

always admissible and does not add or delete anything and which is a maximal

element w.r.t. �.

Lemma 13 Let � be an unconditional event system and let e

�

2 A be an event

such that e

�

6� e for all e 2 A and '(e

�

) = �(e

�

) = �(e

�

) = ;. Then

p 2 Nec

�

A

(e

�

;�) i� p 2 Maybe

�

(e

�

;�) and CS (�) = ACS (�):

11

Interestingly, this modi�ed de�nition of temporal projection seems also to be more in line

with the informal de�nition of temporal projection given in a survey paper by Tate et al [33].
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Proof Sketch. \(": Follows by Lemma 9.

\)": Since e

�

is always admissible, does not change anything, and is a ma-

ximal element w.r.t. �, every complete sequence must be admissible, i.e., � is

coherent. By Lemma 9 it follows that p 2 Maybe

�

(e;�).

This special case can quite obviously be used to solve the general problem.

Since events that appear necessarily after the event e

�

cannot inuence the state

before e

�

, it su�ces to consider a sub-event system that contains only events that

are not constrained to happen after the particular event e

�

. Further, because

deciding the coherence of an unconditional event system and deciding Maybe

�

are polynomial-time problems, the entire problem can be decided in polynomial

time.

Theorem 14 Deciding p 2 Nec

�

A

(e;�) and p 2 Nec

+

A

(e;�) are polynomial-time

problems.

As mentioned above, all the NP-hardness proofs of temporal projection for

possible consequences in unconditional event systems make use of event sequences

that are not admissible. Hence, one may hope to carry over the positive result

for Nec

+

A

to Poss

+

A

. However, for possible consequences the modi�cation of the

de�nition of temporal projection does not result in a tractable problem. The

main reason for the di�culty seems to be that it is already a di�cult problem to

decide whether an event system permits some admissible sequence.

Theorem 15 The problem of deciding ACS (�) 6= ; is NP-complete, even if �

is an unconditional event system.

From that it follows straightforwardly that the computation of possible con-

sequences under the modi�ed de�nition of temporal projection is NP-complete.

Corollary 16 Deciding p 2 Poss

�

A

(e;�) or p 2 Poss

+

A

(e;�) is NP-complete.

12

Another interpretation of this result is that although it is easy to determine the

validity of an unconditional plan, it is hard to check whether a plan is satis�able,

i.e., whether it has an admissible and successful execution sequence, even if the

goal is a singleton set.

As mentioned in the beginning of this section and emphasized by the theo-

rems above, coherence of event structures does seem to play a very prominent

role for the tractability of temporal reasoning tasks. It is obvious, however, that

in the context of more general causal structure the coherence of event structu-

res is not su�cient for tractability. Every event system over conditional causal

12

Note that this does not contradict Chapman's claim that his modal truth criterion is also

tractable in its dual form (for possibility). Since he makes the assumption that the plan is al-

ready (or will become eventually) coherent, his criterion for possibility di�ers from Poss

�

A

(e;�).
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structures could be made coherent simply by adding vacuous causal rules (see

also Proposition 6).

However, it seems to be possible to formulate validation criteria that are

su�cient but not necessary for the success of a plan that are based on the key

idea of the tractability proofs in this and the previous section. This key idea

is apparently to verify some simple condition for an action that guarantees the

\correct behavior" of this action|provided this condition holds also for all other

actions.

Such a criterion might, for instance, require that in all linearizations the

same causal rules for each event get applied, a requirement one could call strong

coherence. As a matter of fact, Pednault's [31] approach to nonlinear planning

could be understood in this way.

This means, of course, that some correct plans may not be recognized as valid

plans. However, as pointed out by McAllester and Rosenblitt [25], in order to

drive the planning process it may be undesirable to use a plan validation criterion

that is complete|even in the case where plan validation is tractable|because a

complete criterion may not lead to a systematic exploration of the search space.

In fact, using a complete criterion may be considerably less e�cient than using

an incomplete but (almost) systematic one [26].

When investigating this problem in the formal framework of our paper, one

will note that the above described notion of strong coherence|the same set of

causal rules for each event gets applied in every linearization|is again an NP-

hard problem. The main problem is that deciding whether a set of atoms could

hold possibly simultaneously before an event is NP-hard, even if the event system

is unconditional and coherent.

13

Hence, in order to achieve tractability an even

stronger (and less complete) validation criterion has to be used. One way could be

to add a \safeness" condition that requires that for each rule that is not applied,

there exists one atom in its precondition that never even possibly holds before

the event.

14

As a �nal remark, it should be noted that neither the complete plan vali-

dation method for unconditional plans described in the previous section nor the

incomplete methods we have sketched here rely on temporal projection as de�ned

in Section 2. Rather, computationally they are based on simple syntactic checks.

Assuming that all events satisfy these checks, a global property of the plan can

be derived. This is, of course, also a way of predicting the consequences of ac-

tions, but it may be incorrect as long as there are actions that do not satisfy the

syntactic criterion. Nevertheless, it can be employed to incrementally generate a

nonlinear plan.

13

The proof of this claim is left as a not completely trivial exercise to the reader.

14

As can be shown, this leads indeed to a polynomial-time and sound plan validation criterion.

Further, this criterion is more general than that sketched in [27] because in our case the e�ects

of rules that are not applied are ignored.
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7 Approximate Temporal Projection

Based on the observation that temporal projection is di�cult even for severely

restricted cases, Dean and Boddy [15] developed an incomplete decision proce-

dure that computes its results in polynomial time. Reconsidering the reections

from the previous sections, a natural question is whether the assumptions behind

the design of the incomplete decision procedure led to a procedure that gives

reasonable results. Such a judgement is, of course, quite di�cult and depends

heavily on the application setting.

In the area of reasoning about temporal relations between events [2], it was

possible to identify tractable special cases that are natural for uncertain observa-

tions and text understanding [30, 34]. Further, the incomplete decision procedure

for the full problem turned out to be complete for the tractable special case. Thus,

we have a good justi�cation for using the incomplete algorithm in this case.

If we consider the incomplete decision procedure for temporal projection, there

is the question what the interesting special cases are where we want the procedure

to be complete. Dean and Boddy [15, Theorem 3.4] prove their procedure to be

complete if the events are totally ordered, which gives us one characterization of

the behavior of the procedure.

It is, of course, interesting to characterize the procedure by additional cases for

which it is complete. Such a characterization of an incomplete decision procedure

gives the user of such a procedure some feeling of what he can expect. Under

the assumption that the validation of nonlinear planning is the main application,

the case of nonlinear plans containing only unconditional actions seems to be a

nontrivial special case that deserves some attention.

From the discussions in the previous sections one is probably inclined to con-

jecture that the incomplete decision procedure by Dean and Boddy is not able to

deal with this case in a complete manner. All in all, the procedure is based on the

formalization of Section 2, which leads to computational problems in this case.

Indeed, when tracing the procedure speci�ed by Dean and Boddy, it turns out

that the procedure does not lead to the projection of propositions that necessarily

hold. The main reason for this failure is that the procedure considers all events

unordered with respect to a given event as equally likely to appear. Condition

(3) in the de�nition of Maybe

�

, however, tells us that sometimes the deletion of

an atom can be ignored.

Since we cannot reproduce the entire procedure because of space limitations,

the reader is referred to the presentation in the original article [15, p. 380-392].

Here we will only sketch the ideas of the procedure. For every event e, two sets

are computed, namely, Strong(e;�) and Weak(e;�), such that

Strong(e;�) � Nec

+

(e;�) � Poss

+

(e;�) �Weak(e;�);

where Strong(e;�) is intended to contain only conditions that hold after e in all

complete event sequences, while Weak (e;�) is meant to contain all conditions
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that might hold after e in some complete event sequence.

In addition, the sets S-Strong(e;�) and S-Weak(e;�) are computed. The �rst

set contains all of Strong(e;�) except those conditions that could be deleted by

an event unordered with respect to e. Similarly, S-Weak(e;�) contains all of

Weak(e;�) plus those conditions that could be added by events unordered with

respect to e.

Consider now the following unconditional event system:

P = fp; q; rg

E = f�

a

; �

b

; �

c

g

R = fh�

a

; fqg; fg; frgi;

h�

b

; fqg; frg; fgi;

h�

c

; fq; rg; fpg; fgig

A = fA; B; C; D; Eg

I = fqg

The types of the events and the partial order is given in Figure 4.
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��

��

��

��

��

�
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�
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�
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�
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- �

�
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�
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-

Q

Q

Q

Q

Qs

Figure 4: A valid nonlinear plan

It is easy to see that this unconditional event system is coherent and achieves

fp; q; rg. Using Theorem 12, this could be easily checked. However, the incom-

plete decision procedure is too conservative. It misses to report that r and p are

among the necessary consequences, as can be seen from Table 1.

15

In the computation of S-Strong(B) and S-Strong(D), the procedure is overly

pessimistic with respect to the occurrence of the events A and C. Since these

could delete the condition r, it may be the case that r does not hold before the

occurrence of the event E. However, it is easy to see that r is necessarily added

before occurrence of E.

15

As the attentive reader will notice, there are some unmentioned assumptions in the speci-

�cation of the partial decision procedure [15], e.g., that there exists an initial event before all

other events|symbolized by the �rst row in our table. Besides that, we have to admit that the

procedure is highly nontrivial and that we were unable to understand the procedure in all its

details.
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Event Type S-Strong Strong Nec

+

Poss

+

Weak S-Weak

fqg fqg fqg fqg fqg fqg

A �

a

fqg fqg fqg fqg fqg fq; rg

B �

b

fqg fq; rg fq; rg fq; rg fq; rg fq; rg

C �

a

fqg fqg fqg fqg fqg fq; rg

D �

b

fqg fq; rg fq; rg fq; rg fq; rg fq; rg

E �

c

fqg fqg fp; q; rg fp; q; rg fp; q; rg fp; q; rg

Table 1: Results of the incomplete decision procedure

Summarizing, we note that the procedure is not designed to handle some spe-

cial case where plan validation is tractable. Although this is not surprising given

our observations in the previous sections, it nevertheless provides a characteriza-

tion of this procedure. In the case that only unconditional actions are of interest,

the procedure is incomplete. One of the open problems we see here|as with

other incomplete decision procedures|is to give an easy to understand charac-

terization of when the procedure is complete and when and why incompleteness

arises.

8 Conclusions

Reconsidering the problem of temporal projection for sets of partially ordered

events as de�ned by Dean and Boddy [15], we noted that this problem is harder

than originally believed. A particular, simple special case conjectured to be tract-

able turns out to be NP-complete. This result demonstrates that the only source

of complexity for the temporal projection problem is the partial ordering of events

and not, as conjectured by Dean and Boddy [15], multiple causal rules or multiple

preconditions.

Since the original interest in the analysis of the computational properties of

temporal projection originates from the hypothesis that temporal projection is

a signi�cant part of planning and plan validation [14, p. 196], we took a closer

look at these problems. It turned out that planning is tractable under some

restrictions on the representation of causal structures where we have shown tem-

poral projection to be intractable. Turning to plan validation, we noted that

in the general case (w.r.t. the framework set up by Dean and Boddy [14, 15])

temporal projection is not of much help. Its complexity is identical to the com-

plexity of plan validation and there does not appear to be an elegant and natural

decomposition of the plan validation problem that involves temporal projection

problems.

Considering the special case of plans over unconditional structures, plan vali-

dation turns out to be decomposable into temporal projection problems. Howe-

ver, what looks like a divide and conquer strategy at a �rst glance is rather the
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opposite. Plan validation is a polynomial-time problem in this case, as we have

shown, while the corresponding temporal projection problems are NP-hard.

Since temporal projection and plan validation seem to be very closely related,

this result may appear to be counter-intuitive because it implies that it is impos-

sible to reduce temporal projection to plan validation in case of unconditional

causal structures. Analyzing the reasons for this result, it turns out that one

particular assumption can be blamed for the di�erence in complexity, as long as

we consider only the computation of necessary consequences. The original for-

mulation of the temporal projection problem by Dean and Boddy permits event

systems that are not coherent, i.e., systems containing events that are not exe-

cutable in some linearizations of the partial ordering. If we regard the result

in such cases as unde�ned, temporal projection becomes tractable for necessary

consequences. Computing possible consequences is still NP-hard, however.

Although the tractability results described above apply only to unconditional

causal structures, the techniques used in the proofs might be used for designing

tractable plan validation criteria for more general causal structures that are cor-

rect but incomplete. In exploring this issue we note again that temporal projec-

tion as de�ned in Section 2 is not essential for verifying that such a criterion is

satis�ed.

These observations lead to the question in how far the formalization of the

temporal projection problem inuenced the design of the partial decision proce-

dure for temporal projection developed by Dean and Boddy [15]. As we demon-

strate, the procedure fails to be complete on cases where we have shown plan

validation to be tractable.

Summarizing, in the context of classical planning the hypothesis that temporal

projection over partially ordered events as de�ned in Section 2 is a signi�cant part

of nonlinear planning and plan validation turns out to be invalid in some special

cases. It is an interesting open problem, however, to determine whether the

hypothesis holds under a modi�ed de�nition of the temporal projection problem

or for other forms of planning.
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Appendix: Proofs

Theorem 1 Deciding p 2 Poss

+

(e;�) for simple event systems � is NP-complete.

Proof. Membership in NP is obvious. Guess an event sequence f and verify in

polynomial time that f 2 CS (�) and p 2 Result(I; f=e).



Temporal Projection and Related Problems 26

In order to prove NP-hardness, we give a polynomial transformation from path

with forbidden pairs (see De�nition 8), where we assume that the graph is acyclic

and all forbidden pairs are disjoint.

First of all, we specify a transformation from directed acyclic graphs (DAG)

to simple event systems. Let G = (V;A) be a DAG, where V = fv

1

; : : : ; v

k

g.

Then de�ne

P = fv

1

; : : : ; v

k

g [ f�g

E = f�

i;j

j (v

i

; v

j

) 2 Ag [ f�

�

g

R = fh�

i;j

; fv

i

g; fv

j

g; fv

i

gij (v

i

; v

j

) 2 Ag [

fh�

�

; f�g; f�g; f�gig

A = fe

i;j

j (v

i

; v

j

) 2 Ag [ fe

�

g

type(e

i;j

) = �

i;j

for all e

i;j

2 A� fe

�

g

type(e

�

) = �

�

e � e

�

for all e 2 A� fe

�

g:

Note that such event systems, which we will call DAG event systems, are simple,

provided jIj = 1.

Let G = (V;A) be a DAG, let C =

n

fa

1

; b

1

g; : : : ; fa

n

; b

n

g

o

be a collection of

\forbidden pairs" of arcs from A such that each pair consists of di�erent arcs and

the pairs are pairwise disjoint. Further, let s and t be two nodes from V and

assume without loss of generality that there is no arc (t; v

i

) 2 A.

Let � be the corresponding DAG event system with I = fsg. For each pair

of arcs f(v

i

; v

j

); (v

k

; v

l

)g 2 C,

1. if there is a (possibly empty) path from v

j

to v

k

in G add e

k;l

� e

i;j

as a

temporal constraint to �,

2. if there is a (possibly empty) path from v

l

to v

i

in G, add e

i;j

� e

k;l

as a

temporal constraint to �.

Since the graph is acyclic, it is impossible that (1) and (2) apply simultaneously

to a pair of arcs. Further, since the forbidden pairs are pairwise disjoint, there

is no set of events ff

1

; f

2

; f

3

g � A� fe

�

g such that f

1

� f

2

� f

3

. Note that the

entire transformation can obviously be computed in polynomial time.

For the resulting event system, we claim that there is a path from s to t in G

that contains at most one arc from each pair in C i� t 2 Poss

+

(e

�

;�).

\)": Let v

1

; : : : ; v

m

, 1 � m � jV j, be a path in G, where v

1

= s and

v

m

= t, without forbidden pairs from C. Then by construction of �, there exists a

sequence of events g = hg

1

; : : : ; g

m�1

i such that htype(g

i

); fv

i

g; fv

i+1

g; fv

i

gi 2 R.

Note that this sequence is indeed a partial event sequence over � because the path

does not contain forbidden pairs, and, hence there are no temporal constraints
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for the events appearing in g. Furthermore, we have for �(g

m�1

) = ftg. By the

construction of �, it holds that

Result(I; (g; e

�

)=e

�

) = ftg:

The sequence g; e

�

can be extended to a complete event sequence h over � in the

following way:

1. add all events f that are not temporally constrained and do not appear in

g immediately before e

�

,

2. add all pairs of events f; f

0

such that f � f

0

and such that f and f

0

do not

appear in g immediately before e

�

respecting �,

3. add all events f that do not appear in g and f � g

i

for some g

i

appearing

in g immediately before g

i

,

4. add all events f that do not appear in g and g

i

� f for some g

i

appearing

in g immediately after g

i

.

Note that for extensions of the forms (1) and (2) it holds trivially that

Result(I;h=e

�

) = ftg i� Result(I; (g; e

�

)=e

�

) = ftg

since no precondition of any rule contains t by assumption. For extensions of

the form (3) it holds that e

i;j

� e

k;l

only if there is path from v

l

to v

i

in G.

Hence, if e

i;j

is placed immediately before e

k;l

, the precondition of the causal rule

associated with e

i;j

cannot be satis�ed. Thus, the above equivalence also holds

for case (3). Since (4) is the converse case, the equivalence also holds.

Summarizing, we have for the complete event sequence h

Result(I;h=e

�

) = ftg:

Thus, t 2 Poss

+

(e

�

;�).

\(": Assume t 2 Poss

+

(e

�

;�). Then there exists a complete event sequence

g such that

Result(I;g=e

�

) = ftg:

Consider the subsequence h containing only admissible events:

h = hh

1

; h

2

; : : : ; h

m�1

i:

By the construction of the causal rules in � and the form of the initial state it

is evident that each event in the subsequence h has an add list that is identical

to the precondition of the immediately following event. Since the initial state is

I = fsg and Result(I;h) = ftg; there must be a path v

1

; v

2

; : : : ; v

m

in G, where

s = v

1

and t = v

m

.
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Finally, this path cannot contain any forbidden pair. Suppose the contrary,

i.e., the path is of the form s; : : : ; v

i

; v

j

; : : : ; v

k

; v

l

; : : : ; t and f(v

i

; v

j

); (v

k

; v

l

)g 2 C.

Thus, there is a path from v

j

to v

k

. In this case, however, we have e

k;l

� e

i;j

by

the construction of � in �. This means, however, that h cannot be a possible

event sequence over �. Hence, there cannot be any event sequences leading to t

that contain forbidden pairs.

Corollary 2 Deciding p 2 Nec

+

(e;�) for simple event systems � is co-NP-

complete.

Proof. We show that p 62 Nec

+

(e;�) is NP-complete. Membership in NP is

obvious. For the NP-hardness part, we start with the same transformation as in

the proof of Theorem 1. We add to � a new condition p and a number of events

f

v

with associated causal rules of the form:

htype(f

v

); fvg; fpg; fvgi;

for all v 2 V � ftg. These events are constrained to happen before e

�

and after

all other events constructed in the above reduction.

Now, it follows by the same arguments as in the proof of Theorem 1 that

p 62 Nec

+

(e

�

;�) i� there is a path from s to t without forbidden pairs.

Theorem 5 The plan optimization problem for SAS-PUS equivalent planning

tasks is a polynomial-time problem.

Proof Sketch. De�ne a transformation between sets of propositions and partial

states in the SAS formalism and also map action conditions in the obvious way.

Prove that a SAS-PUS-equivalent planning task � can be transformed into a

SAS-PUS planning task �

0

in this way s.t. the solutions for �

0

are exactly the

solutions for �. Since the plan optimization problem for SAS-PUS tasks is a

polynomial-time problem [6, Theorem 4.2], the theorem follows.

Lemma 9 Let � be an consistent unconditional event system. If � is coherent,

then

8e 2 A:Nec

�

(e;�) =Maybe

�

(e;�):

Proof. \�": We will show that all three conditions of p 2 Maybe

�

(e;�) in

De�nition 13 are true for all e 2 A and all p 2 Nec

�

(e;�).

Suppose that the �rst condition does not hold for some event e and atom

p 2 Nec

�

(e;�), i.e., p 62 I and :9e

0

: e

0

� e ^ p 2 �(e

0

). Since � is coherent, we

can construct an admissible complete event sequence f = hf

1

; : : : ; e; : : :i such that

g = fne contains only events g

i

such that g

i

� e. By induction over the length

of the length of fne, we get p 62 Result(I; fne), hence p 62 Nec

�

(e;�), which is a

contradiction.
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Suppose that the second condition does not hold for some event e and atom

p 2 Nec

�

(e;�), i.e., there exists an event e

0

unordered with respect to e such

that p 2 �(e

0

). Since e

0

is unordered with respect to e, there exists a complete

event sequence f = hf

1

; : : : ; e

0

; e; : : :i. Since � is coherent, and thus e

0

necessarily

admissible, it is obvious that p 62 Result(I; f=e

0

) = Result(I; fne) � Nec

�

(e;�),

which is a contradiction.

Suppose the third condition is not satis�ed, i.e., there exists p 2 Nec

�

(e;�)

and an event e

0

� e such that p 2 �(e

0

), but there is no e

00

such that e

0

� e

00

� e

and p 2 �(e

00

). Consider a complete event sequence f = hf

1

; : : : ; e

0

; : : : ; e; : : :i such

that there are only events f

i

between e

0

and e that have to occur between them.

Because p 62 Result(I; f=e

0

) and there are no events after e

0

that have p in the

add list, using induction on the length of fne, we can infer p 62 Result(I; fne) �

Nec

�

(e;�), which is again a contradiction.

\�": Assume p 2 Maybe

�

(e;�). We will show that also p 2 Nec

�

(e;�).

Consider any complete event sequence g 2 CS (�). We want to show that p 2

Result(I;gne). By condition (1) of the de�nition of Maybe

�

and the fact that

all complete event sequences are admissible, we know that there exists g

i

2 A

such that jgng

i

j � jgnej and p 2 Result(I;gng

i

). Consider the latest such event,

i.e., g

i

with a maximal i. Since all event sequences are �nite, such an event must

exist. If g

i

= e, we are ready. Otherwise, we will show that i cannot be maximal.

Since g

i

is the latest event in g such that p 2 Result(I; (gne)ng

i

), it must

be the case that p 2 �(g

i

). By condition (2) in the de�nition of Maybe

�

, we

know that g

i

cannot be unordered with respect to e. By condition (3), we know

that there exists an event g

j

such that g

i

� g

j

� e and p 2 �(g

j

). Since

g is admissible by assumption, it must be the case that p 2 Result(I;g=g

j

) and

jgng

i

j < jg=g

j

j � jgnej. Hence, g

i

cannot be the latest event before e and di�erent

from e such that p holds before the occurrence of g

i

. Hence, p 2 Result(I;gne).

Since g was an arbitrary element of CS (�), this holds for all complete event

sequences. Hence, p 2 Nec

�

(e;�).

Theorem 10 A consistent unconditional event system � is coherent i�

8e 2 A: '(e) �Maybe

�

(e;�):

Proof. \)": Since � is coherent, we know that 8e 2 A: '(e) � Nec

�

(e;�).

Further, by Lemma 9, Maybe

�

(e;�) = Nec

�

(e;�), for all e 2 A. Hence, 8e 2

A: '(e) � Maybe

�

(e;�).

\(": For the converse direction, we use induction on the number of conditions

appearing in the preconditions of events over the entire event system:

P

e2A

j'(e)j.

As the base step, we assume, that for all events e 2 A, '(e) = ;. Clearly,

'(e) � Maybe

�

(e;�) and '(e) � Nec

�

(e;�), for all e 2 A. Hence, the hypothesis

holds for k = 0.

Now assume that our claim holds for all event systems with k or less precondi-

tions. We will show that it also holds for event systems with k+1 preconditions.
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Consider an event system � with k + 1 preconditions such that '(e) �

Maybe

�

(e;�) for all e 2 A. Choose one event f that has a nonempty set of

preconditions and replace the associated causal rule htype(f); '; �; �i by the rule

htype(f); ;; �; �i. This new event system is called �

0

. We will write '

0

(e), �

0

(e),

and �

0

(e) in order to refer to the preconditions, add lists, and delete lists in �

0

,

respectively. Note that for all e 2 A it holds that Maybe

�

(e;�

0

) = Maybe

�

(e;�)

because the Maybe

�

conditions do not refer to the preconditions. Since the only

change from � to �

0

was the removal of the preconditions of f , we clearly have

'

0

(e) � Maybe

�

(e;�

0

) for all e 2 A. Because k �

P

e2A

0
j'

0

(e)j, we can ap-

ply our induction hypothesis and know that �

0

is coherent. Finally note that

by Lemma 9, we have Maybe

�

(f;�

0

) = Nec

�

(f;�

0

) for our special event f .

Hence, any sequence g 2 CS (�

0

) that contains f would be an admissible se-

quence even if we assume that the causal rule associated with f has the origi-

nal precondition '(f) because we assumed that '(f) � Maybe

�

(f;�), where

Maybe

�

(f;�) = Maybe

�

(f;�

0

). Since we have CS (�) = CS (�

0

), it follows that

all sequences h 2 CS (�) are admissible. Hence, � is coherent, whence, the

induction hypothesis holds for k + 1 preconditions.

Theorem 12 Deciding whether a plan �

�

is a solution for a planning task �

with an unconditional causal structure is a polynomial-time problem.

Proof. Follows immediately from Corollary 11 and the fact that plan validation

can be reduced to coherence in linear time as follows: Add an extra event e

�

s.t.

'(e

�

) is the intended e�ects of the plan and e

�

is constrained to occur after all

other events.

Lemma 13 Let � be an unconditional event system and let e

�

2 A be an event

such that e

�

6� e for all e 2 A and '(e

�

) = �(e

�

) = �(e

�

) = ;. Then

p 2 Nec

�

A

(e

�

;�) i� p 2 Maybe

�

(e

�

;�) and CS (�) = ACS (�):

Proof. \(": Suppose p 2 Maybe

�

(e

�

;�) and CS (�) = ACS (�). By Lemma 9

it follows that p 2 Nec

�

(e

�

;�), hence, for all complete event sequences f over

�, we have p 2 Result(I; fne

�

). Further, since all sequences f 2 CS (�) are

admissible, all sequences fne

�

must be admissible. Hence, p 2 Nec

�

A

(e

�

;�).

\)": Suppose p 2 Nec

�

A

(e

�

;�), i.e., for all complete sequences f 2 CS (�),

the event sequences fne

�

are admissible. Now suppose that � is not coherent, i.e.,

there exists a sequence g = hg

1

; : : : ; g

i

; e

�

; g

i+2

; : : : ; g

m

i such that g is not admissi-

ble, but gne

�

is. Hence, he

�

; g

i+2

; : : : g

m

i is not admissible in Result(I;gne

�

). Since

by assumption e

�

is always admissible and does not add or delete anything, and

since he

�

; g

i+2

; : : : g

m

i is not admissible in Result(I; hg

1

; : : : g

i

i), hg

1

; : : : g

i

; g

i+2

; : : : g

m

i

cannot be admissible in I. Further, since e

�

is a maximal element with re-

spect to �, g

i+2

; : : : ; g

m

must be unordered with respect to e

�

. For this reason

h = hg

1

; : : : ; g

i

; g

i+2

; : : : ; g

m

; e

�

i must also be an element of CS (�). However, that
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hg

1

; : : : ; g

i

; g

i+2

; : : : ; g

m

i = gne

�

is not admissible in I contradicts the assumption

that all complete sequences up to e

�

are admissible. Hence, � must be coherent,

and for this reason we have Nec

�

A

(e

�

;�) = Nec

�

(e

�

;�). Because of Lemma 9, it

follows then that we must have p 2 Maybe

�

(e

�

;�).

Theorem 14 Deciding p 2 Nec

�

A

(e;�) and p 2 Nec

+

A

(e;�) are polynomial-time

problems.

Proof. In the following we consider only Nec

�

A

. The proof for Nec

+

A

is similar.

Consider the event system �

0

that is identical to � except that the set of

actual event A

0

is a subset of the original set A de�ned in the following way:

A

0

= ff 2 Aj e 6� fg. Now we claim that

p 2 Nec

�

A

(e;�) i� p 2 Nec

�

A

(e;�

0

):

\)": Suppose p 62 Nec

�

A

(e;�

0

), i.e., there exists a sequence g 2 CS (�

0

) such

that gne is not admissible or p 62 Result(I;gne). Since it is possible to extend g

to a complete event sequence f over � by adding the events from A�A

0

to the

end of g without violating temporal constraints, it must be the case that fne is

not admissible or p 62 Result(I; fne), hence p 62 Nec

�

A

(e;�).

\(": Suppose p 62 Nec

�

A

(e;�), i.e., there is a sequence f 2 CS (�) such

that fne is not admissible or p 62 Result(I; fne). Consider the sequence g that is

identical to f except that all events fromA�A

0

have been removed. This sequence

is obviously a member of CS (�

0

). Now it is easy to see that fne = gne because

all events of A�A

0

have to appear after e. Hence, gne is either unadmissible or

does not lead to p, i.e., p 62 Nec

�

A

(e;�

0

).

Hence, we can apply Lemma 13 to solve the problem stated in the Theorem,

and as an immediate consequence of Proposition 8 and Corollary 11, we get that

p 2 Nec

�

A

(e;�) can be decided in polynomial time.

Theorem 15 The problem of deciding ACS (�) 6= ; is NP-complete, even if �

is an unconditional event system.

Proof. Membership in NP is obvious. For the hardness part we use a straightfor-

ward reduction from SAT [21, p. 259]. Let X = fx

1

; : : : ; x

n

g be a set of boolean

variables and let C = fc

1

; : : : ; c

m

g be a set of clauses over X. De�ne an event

system � as follows:

P = X [ C

E = f�

�n

; : : : ; �

n

g

R = fh�

0

; C;X; ;ig [

fh�

i

; fx

i

g; fc

j

2 Cjx

i

2 c

j

g; fx

i

gij x

i

2 Xg [

fh�

�i

; fx

i

g; fc

j

2 Cj:x

i

2 c

j

g; fx

i

gij x

i

2 Xg

A = fe

�n

; : : : ; e

n

g

type(e

k

) = �

k

for all e

k

2 A; �

k

2 E

I = X
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It is obvious that the set of clauses C is satis�able i� there exists a complete

event sequence over � that is admissible.
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