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Abstract

While the non-optimizing variant of multi-agent pathfinding on undi-
rected graphs is known to be a polynomial-time problem since almost forty
years, a similar result has not been established for directed graphs. In this
paper, it will be shown that this problem is NP-complete. For strongly
connected directed graphs, however, the problem is polynomial. And both
of these results hold even if one allows for synchronous rotations on fully
occupied cycles. Interestingly, the results apply also to the so-called graph
motion planning feasibility problem on directed graphs.

1 Introduction

Multi-agent pathfinding (MAPF), also called pebble motion on graphs or coop-
erative pathfinding, is the problem of deciding the existence of or generating
a collision-free movement plan for a set of agents moving on a graph [16, 29].
Because of its relevance to topics such as warehouse logistics [38], air traffic co-
ordination [27], and video games [26], this problem has received much interest
in recent years. An example is provided in Figure 1.
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Figure 1: Multi-agent pathfinding example. Agents are signified by numbered
disks occupying nodes in a graph. At each time-point a single agent can move
to an adjacent unoccupied node.
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Is it possible to transform the left configuration into the right one? It turns
out that in the example above, this is not possible.

Kornhauser et al. [14] had shown already almost 40 years ago that deciding
MAPF is a polynomial-time problem and movement plans have cubic length
in the size of the graph, provided only one agent can move at each time step
to an adjacent node. However, what happens if we consider directed graphs?
Interestingly, for this problem, which we will call diMAPF, the computational
complexity was unknown for a long time, although it is a very plausible and
relevant variation of the original problem.

Only recently, NP-completeness of the problem has been established. In two
conference publications, which form the basis of this journal article, NP-hardness
[19] and membership in NP [20] were proved, even if one allows for synchronous
rotations on fully occupied cycles in addition to simple movements. One can
explain these results as follows. The possibility of ending up in dead ends in
directed acyclic graphs leads to a combinatorial nature of the problem, giving
rise to NP-hardness. On strongly connected directed graphs, on the other hand,
diMAPF is very similar to MAPF on undirected graphs allowing for polynomial
sized solutions. Combining these two results leads more or less directly to the
NP-completeness result.

In addition to the above stated results, we will also show that strongly con-
nected directed graphs admit a polynomial decision procedure, regardless of
what kind of movements we allow. Further, we will have a look at how the
results can help to settle some open questions concerning the motion planning
problem on directed graphs [37].

The rest of the paper is structured as follows. In the next section, related
work will be surveyed. In Section 3, we will introduce the necessary notation
and terminology that is needed for proving the results of the paper. In Section 4,
a lower bound for diMAPF will be proven and an NP-completeness result for
diMAPF an DAGs will be derived (Theorem 2). The following two sections ana-
lyze diMAPF on strongly connected graphs, first for simple moves, and then for
synchronous rotations. Based on the results in these two sections, we will show
in Section 7 that diMAPF on strongly connected digraphs is a polynomial-time
problem (Theorem 19), while diMAPF is NP-complete in general (Theorem 21),
regardless of whether synchronous rotations are allowed or not. The connection
to a related problem, the motion planning feasibility problem on directed graphs,
is then analyzed in Section 8. Finally, in Section 9, we conclude and discuss the
results.

2 Related Work

A special case of the MAPF problem is the 15-puzzle, a sliding puzzle on a 4×4
grid graph with 15 markers. Johnson and Story [11] showed already in the 19th
century that solvability of such a puzzle, even generalized to the n × m-case,
can be reduced to the question of whether the corresponding permutation is
even, which is a polynomial-time problem. Wilson [35] generalized this result to
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arbitrary biconnected graphs and proved that solvability is still a polynomial-
time problem, the condition is slightly more involved than in the above case,
though. In particular, he showed that problem instances on bipartite graphs
have a solution if, and only if, the corresponding permutation is even. Applying
this to our initial example in Figure 1 gives immediately a negative result.

The seminal paper by Kornhauser et al. [14] generalized the above results
to arbitrary graphs and provided a polynomial-time algorithm for generating
movement plans and a polynomial upper bound for such plans. However, it
took quite a while until this result was recognized in the community [24]. The
optimizing variant of this problem had been shown to be NP-complete soon
after the initial result [10, 23].

Later on, variations of the problem have been studied [29]. It is obvious that
all agents that move to different empty nodes in one time step could move in
parallel, which may lead to shorter plans. Assuming tight coordination between
the agents, one can also consider train-like movements, where only the first agent
moves to an empty node and the others follow in a chain, all in one time step
[25, 30, 31]. Taking this one step further, synchronous rotations of agents on a
cycle without any empty nodes have been considered [28, 40, 41].

Concerning plan existence and polynomial plan length, parallel and train-like
movements do not make a difference to the case when only simple moves are per-
mitted. Synchronous rotations are a different story altogether, however. There
are problem instances which cannot be solved using only simple moves, but
which are solvable when synchronous rotations are allowed. The additional de-
gree of freedom does not add to the computational complexity, however. MAPF
with synchronous rotations is still a polynomial-time problem [41].

Optimizing wrt. different criteria turned out to be NP-complete [31, 40] for
all kinds of movements, and this holds even for planar and grid graphs [39, 3, 9].
Additionally, it was shown that there are limits to the approximability of the
optimal solution for makespan optimizations [17].

The mentioned results all apply to undirected graphs only. However, a couple
of years ago, researchers also started to look into the case of directed graphs
[33, 15], and it has been proved that diMAPF can be decided in polynomial
time, provided the directed graph is strongly biconnected and there are at least
two unoccupied vertices [6, 5]. Similar to the undirected case [14], plan length
is bounded by O(n3). Recently, Ardizzoni at al. [1] generalized this result and
presented an algorithm that can check the solvability of instances on strongly
connected graphs with two unoccupied nodes. However, they did not provide a
bound for the plans the algorithm generates.

Wu and Grumbach [37] generalized the robot movement problem on an undi-
rected graph as introduced by Papadimitriou et al. [22] to directed graphs. The
robot movement problem is the problem of finding a plan to move one robot
from a vertex s to a vertex t, whereby anonymous mobile obstacles on vertices
can be moved around but are not allowed to collide. In the conclusion of their
paper [37], they suggested to study the more difficult problem when there is
more than one robot, which is a problem slightly more general than diMAPF.
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3 Notation and Terminology

In this section, we will introduce basic concepts from graph theory and per-
mutation groups, and will formally define MAPF and diMAPF. It is assumed
that the reader is familiar with basic notions from computational complexity
theory, as e.g. presented in the book by Garey and Johnson [8] or any textbook
on theoretical computer science.

3.1 Graph Theory

A graph G is a tuple (V,E) with E ⊆ {{u, v} | u, v ∈ V }. The elements of V
are called nodes or vertices and the elements of E are called edges. A directed
graph or digraph D is a tuple (V,A) with A ⊆ V 2. The elements of A are
called arcs. Graphs and digraphs with |V | = 1 are called trivial. We assume
all graphs and digraphs to be simple, i.e., not containing any self-loops of the
form {u}, resp. (u, u). Given a digraph D = (V,A), the underlying graph of D,
in symbols G(D), is the graph resulting from ignoring the direction of the arcs,
i.e., G(D) = (V, {{u, v} | (u, v) ∈ A}).

Given graphs G = (V,E) and G′ = (V ′, E′), G′ is called sub-graph of G if
V ⊇ V ′ and E ⊇ E′. Similarly, for digraphs D = (V,A) and D′ = (V ′, A′),
D′ is a sub-digraph if V ⊇ V ′ and A ⊇ A′. D − v denotes a sub-digraph of
D where the node v and all its incident arcs have been removed, i.e., D − v =
(V −{v}, A−{(v, x), (x, v)|x ∈ V }). Similarly, G−v = (V −{v}, E−{{v, x}|x ∈
V }). Set union and intersection on graphs and digraphs are defined by taking
the component-wise union or intersection, e.g., for digraphs D = (V,A) and
D′ = (V ′, A′) we have D ∪D′ = (V ∪ V ′, A ∪A′).

A path in a graph G = (V,E) is a non-empty sequence of vertices of the form
v0, v1, . . . , vk such that vi ∈ V for all 0 ≤ i ≤ k, vi ̸= vj for all 0 ≤ i < j ≤ k, and
{vi, vi+1} ∈ E for all 0 ≤ i < k. A cycle in a graph G = (V,E) is a non-empty
sequence of vertices v0, v1, . . . , vk with k ≥ 3 such that v0 = vk, {vi, vi+1} ∈ E
for all 0 ≤ i < k and vi ̸= vj for all 0 ≤ i < j < k. Sometimes, we view cycles
and paths not as sequences of nodes, but as the sub-graphs formed by the nodes
in the sequence and the respective edges.

In a digraph D = (V,A), path and cycle are similarly defined, except that
the direction of the arcs has to be respected. This means that (vi, vi+1) ∈ A
for all 0 ≤ i < k. Further, the smallest cycle in a digraph has 2 nodes instead
of 3. A digraph that does not contain any cycle is called directed acyclic graph
(DAG). A digraph that consists solely of a cycle is called cycle digraph.

A graph G = (V,E) is connected if there is a path between each pair of
vertices. A connected graph that does not contain a cycle is called tree. Node v
in a connected graph G is called articulation if G−v is not connected. A digraph
D = (V,A) is weakly connected, if the underlying graph G(D) is connected. It
is strongly connected, if for every pair of vertices u, v ∈ V , there is a path in D
from u to v. A strong articulation in a strongly connected digraph D is a node
such that D−v is not strongly connected. An articulation of a weakly connected
digraph D is a node v, such that D − v is not weakly connected, i.e., it is an
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articulation of the underlying undirected graph G(D). Note that it is well known
that a graph with n nodes cannot have more than n− 2 articulations, because
the leaves of a maximal sub-tree of the graph cannot separate the graph. A
strongly connected digraph that does not have any articulation is also called
strongly biconnected digraph [37]. The smallest strongly connected digraph is
the trivial digraph. The strongly connected components of a digraph D = (V,A)
are the maximal sub-digraphs Di = (Vi, Ai) that are strongly connected.

3.2 Permutation Groups

In order to be able to establish a polynomial bound for diMAPF movement
plans containing synchronous rotations, we introduce some background on per-
mutation groups.1

A permutation is a bijective function σ over a set X. In what follows, we
assume X to be finite.

A permutation has degree d if it exchanges d elements and fixes the rest of the
elements in X. We say that a permutation is an m-cycle if it exchanges elements
x1, . . . , xm in a cyclic fashion, i.e., σ(xi) = xi+1 for 1 ≤ i < m, σ(xm) = x1

and σ(y) = y for all y /∈ {xi}mi=1. Such a cyclic permutation is written as a
list of elements, i.e., (x1 x2 · · · xm). A 2-cycle is also called transposition. A
permutation can also consist of different disjoint cycles. These are then written
in sequence, e.g., (x1 x2)(x3 x4).

The composition of two permutations σ and τ , written as σ ◦ τ or simply
στ , is the function mapping x to τ(σ(x)).2 This operation is associative because
function composition is. The special permutation ϵ, called identity, maps every
element to itself. Further, σ−1 is the inverse of σ, i.e., σ−1(y) = x if and only if
σ(x) = y. The k-fold composition of σ with itself is written as σk, with σ0 := ϵ.
Similarly, σ−k := (σ−1)k. We also consider the conjugate of σ by τ , written as
στ , which is defined to be τ−1στ . Such conjugations are helpful in creating new
permutations out of existing ones. We use exponential notation as in the book
by Mulholland [18]: σα+β := σασβ and σαβ := (σα)β .

A set of permutations closed under composition and inverse forms a permu-
tation group with ◦ as the product operation (which is associative), ·−1 being the
inverse operation, and ϵ being the identity element. Given a set of permutations
{g1, . . . , gi}, we say that G = ⟨g1, . . . , gi⟩ is the permutation group generated by
{g1, . . . , gi} if G is the group of permutations that results from product oper-
ations over the elements of {g1, . . . , gi}. We say that σ ∈ G = ⟨g1, . . . , gi⟩ is
k-expressible if it can be written as a product over the generators using < k
product operations. The diameter of a group G = ⟨g1, . . . , gi⟩ is the least num-
ber k such that every element of G is k-expressible. Note that this number
depends on the generator set.

A group F is a subgroup of another group G, written F ≤ G, if the elements
of F are a subset of the elements of G. In our context, two permutation groups

1A gentle introduction to the topic is the book by Mulholland [18].
2Note that this order of function applications, which is used in the context of permutation

groups, is different from ordinary function composition.
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are of particular interest. One is Sn, the symmetric group over n elements,
which consists of all permutations over n elements. A permutation in Sn is even
if it can be represented as a product of an even number of transpositions, odd
otherwise. Note that no permutation can be odd and even at the same time
[18, Theorem 7.1.1]. The set of even permutations forms another group, the
alternating group An ≤ Sn. Since any m-cycle can be equivalently expressed as
the product of m− 1 transpositions, m-cycles with even m are not elements of
An.

A permutation group G is k-transitive if for all pairs of k-tuples (x1, . . . , xk),
(y1, . . . , yk), there exists a permutation σ ∈ G such that σ(xi) = yi, 1 ≤ i ≤ k.
In case of 1-transitivity we simply say that G is transitive.

A block is a non-empty subset B ⊆ X such that for each permutation σ of a
given permutation group over X, either σ(B) = B or σ(B) ∩ B = ∅. Singleton
sets and the entire set X are trivial blocks. Permutation groups that contain
only trivial blocks are primitive.

3.3 Multi-Agent Pathfinding

Given a graph G = (V,E) and a set of agents R such that |R| ≤ |V |, we say that
the injective function S : R → V is a multi-agent pathfinding (MAPF) state (or
simply state) over R and G. Any node not occupied by an agent, i.e., a node
v ∈ V − S(R), is called blank.

A multi-agent pathfinding (MAPF) instance is then a tuple ⟨G,R, I, T ⟩ with
G and R as above and I and T MAPF states. A simple move of agent r from
node u to node v, in symbols m = ⟨r, u, v⟩, transforms a given state S, where
we need to have {u, v} ∈ E, S(r) = u and v is a blank, into the successor state
S[m], which is identical to S except at the point r, where S[m](r) = v.

If there exists a (perhaps empty) sequence of simple moves, a movement
plan, that transforms S into S′, we say that S′ is reachable from S. The MAPF
problem is then to decide whether T is reachable from I.

The MAPF problem is often defined in terms of parallel or train-like move-
ments [25, 31], where one step consists of parallel non-interfering moves of many
agents. However, as long as we are interested only in solution existence and poly-
nomial bounds, there is no difference between the MAPF problems with parallel
and sequential movements. If we allow for synchronous rotations [28, 40, 41],
where one assumes that all agents in a fully occupied cycle can move syn-
chronously, things are a bit different. In this case, even if there are no blanks,
agents can move.

A synchronous rotation on a cycle v0, . . . vk−1, vk = v0 is a set of simple
moves M = {⟨r0, u0, v0⟩, . . ., ⟨rk−1, uk−1, vk−1⟩}, with vi = ui+1 for 0 ≤ i <
k − 1, and vk−1 = u0. Such a rotation M is executable in S if S(ri) = ui for
0 ≤ i < k. The successor state S[M ] of a given state S is identical to S except
at the points r0, . . . , rk−1, where we have S[M ](ri) = vi.

Multi-agent pathfinding on directed graphs is similar to MAPF, except that
we have a directed graph and the moves have to follow the direction of an arc,
i.e., if there is an arc (u, v) ∈ A but (v, u) ̸∈ A, then an agent can move from
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u to v but not vice versa. In other words, multi-agent pathfinding on directed
graphs (diMAPF) is the following decision problem:

Instance: A directed graph D = (V,A), a set of agents R, and two states
I : R → V and T : R → V : ⟨D,R, I, T ⟩.

Question: Is T reachable from I using only agent movements that respect the
directions of the arcs in the directed graph?

And this problem will be analyzed in the remaining part of the paper.

4 Deciding diMAPF on DAGs

As mentioned in the Introduction, deciding MAPF (on undirected graphs) is a
polynomial-time problem and movement plans have cubic length [14]. And this
holds also for diMAPF on strongly biconnected digraphs if there are at least
two empty vertices [5]. One intuitive reason for these positive results is that on
undirected graphs and strongly biconnected digraphs one can usually restore
earlier sub-configurations. This means that agents can move out of the way and
then back to where they were earlier. In particular, there do not exist dead
ends in the state space, i.e., if the instance has a solution, then no move can
ever lead to unsolvability. All this means that these problems have the flavor
of permutation puzzles (as discussed, e.g., by Mulholland [18]), which are often
solvable with polynomially many moves.

In a digraph without strong connectivity, moves are not necessarily reversible
and an agent might paint itself easily into a corner. Given that in every state
there are different possible moves for one agent, it might be hard to decide which
is the one that in the end will not block another agent in the future. As a matter
of fact, this property will be used in the NP-hardness proof below.

Lemma 1 Deciding diMAPF is NP-hard, regardless of whether synchronous
rotations are allowed or not. And this holds even for DAGs.

Proof: We prove NP-hardness by a reduction from 3SAT, the problem of de-
ciding satisfiability for a formula in conjunctive normal form with 3 literals in
each clause, which is one of the first problems that have been proved to be NP-
complete [12]. Let us assume a 3SAT instance, consisting of n variables xi and
k clauses cj with 3 literals each.

Now we construct a diMAPF instance as follows.3 The set of agents is:

R = {x1, . . . , xn, x
′
1, . . . , x

′
n, c1, . . . , ck, f1, . . . , fnk}.

The xi’s are called variable agents, the x′
i’s are named shadow agents, the cj ’s

are called clause agents, and the fℓ’s are called filler agents. The set of vertices

3This reduction uses inspirations from a reduction that has been used to show PSPACE-
hardness for a generalized version of MAPF [21].
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of the digraph is constructed as follows:

V = {v1, . . . , vnk+n+k} ∪
n⋃

i=1

{vTi , vFi , vxi
, vx′

i
} ∪

k⋃
j=1

{vcj}.

We proceed by constructing three gadgets, which we call sequencer, clause evalu-
ator, and collector, respectively. We illustrate the construction using the example
in Figure 2. In this visualization, vertices occupied by an agent are filled with
a smaller colored circle containing the name of the agent. The color depicts the
group the agents belongs to. Blue for variable agents, violet for shadow agents,
red for clause agents, and brown for filler agents. Empty circles symbolize empty
vertices. Each vertex is labelled by its identifier, perhaps followed by a colon and
the name of an agent, which symbolizes the destination for this agent. For ex-
ample, the leftmost node in the sequencer gadget is named v1, it is initially
occupied by agent x1, and it is the destination of agent f1.

v1:f1

x1

v2:f2

x2

v3:f3

x3

v4

f1

v5:f4

f2

v6:f5

f3

v7:f6

c1

v8

f4

v9

f5

v10

f6

v11

c2

vF1

vT1

vx1 :x1

x′
1

vF2

vT2

vx2 :x2x′
2

vF3

vT3

vx3 :x3

x′
3

vx′
1
:x′

1

vx′
2
:x′

2

vx′
3
:x′

3

vc1 :c1

vc2 :c2

sequencer

clause evaluatorcollector

Figure 2: Example for (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3)

The task of the sequencer is to enforce the sequence of truth-value choices
of the variable agents xi. Each of the variable agents xi has to go to one of the
vertices vTi or vFi —and these are the only vertices xi can go to. After that the
filler and clause agents can move to the left and the clause agents can start to go
through the clause evaluator. The clause evaluator is created in a way so that a
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clause agent cj can move through it from right to left, provided one of the literals
of the corresponding clause is true according to the truth-value choices made by
the variable agents. Finally, the collector contains the destination vertices for all
clause agents cj and for the shadow agents x′

i. First the clause agents cj need
to get to their destinations, then the shadow agents x′

i can arrive at their goals,
making room for the variable agents xi to move to their final destinations.

The sequencer consists of a sub-graph with nk + n + k vertices, which are
named v1 to vnk+n+k. These vertices are connected linearly, i.e., there is an arc
from vi+1 to vi. The vertices v1 to vn are occupied by variable agents named x1

to xn. In addition we have clause agents cj , 1 ≤ j ≤ m on the vertices vn+j(n+1),
respectively. The rest of the vertices are filled with filler agents fp for all the
not yet occupied vertices. The destination for each filler agent fp is the vertex
with an index n lower than the one fp is starting from. These filler agents are
necessary to enforce that the clause agents enter the clause evaluator only after
the variable agents have made their choices.

The clause evaluator contains for each variable xi one pair of vertices: vFi
and vTi . These vertices represent the truth assignment choices false and true,
respectively, for xi. In addition, there exists an additional vertex vxi , which can
be reached from both vFi and vTi and which is the destination for agent xi and
initially occupied by the shadow agent x′

i. This setup enforces the variable agent
xi to move to vFi or vTi once it has reached v1 waiting for the shadow agent x′

i

to move towards its destination.
Once all the xi agents have reached their vertices vTi or vFi , the remaining

agents in the sequencer can move n vertices to the left, i.e., from vp to vp−n

bringing all the filler agents fp to their respective destinations. Further, all clause
agents cj have to go from vn+j(n+1) to vj(n+1), whereby these latter vertices are
connected to the clause evaluator in the following way. The vertex vj(n+1), which
will hold clause agent cj after all agents moved n steps to the left, is connected
to vFi iff the clause cj contains xi positively and it is connected to vTi iff cj
contains xi negated. This means that the clause agent cj can pass to vx′

1
if and

only if one of the variable agents xi participating in the clause cj made the
“right” choice.

Finally, the collector gadget provides the destinations for all the clause agents
cj and the shadow agents x′

i. The vertices vTi , v
F
i , and vxi all lead to the vertex

vx′
1
, which is the destination of the shadow agent x′

1. Starting at this node, we
have a linearly connected path up to vertex vx′

n
from which vc1 can be reached,

which in turn is a linear path to vck . This implies that first all clause agents cj
have to reach their destination vertices, after which the shadow agents x′

i can
move to their destinations. Only after all this has happened, the variable agents
can move to their destinations vxi .

By the construction, a successful movement plan will contain the following
phases:

1. In the first phase the variable agents xi will move to the vertices vTi or
vFi . Which vertex xi moves to can be interpreted as making a choice on
the truth value of the variable. Note that no other vertices are possible,
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because then the final destination would not be reachable any more for
xi.

2. In the second phase, all filler and clause agents move n vertices to the left
in the sequencer widget. Note that no other vertices are possible for filler
agents because then their goal would not be reachable any more.

3. After phase 2 has finished, all clause agents cj occupy vertices vj(n+1), from
which they can pass through the clause evaluator widget. By construction,
they can pass through it if and only if for one of the variables occurring in
clause cj , the variable agent has made a choice in phase 1 corresponding
to making the clause true. Note that no other group of agents can move,
or otherwise they will no longer be able to reach their destination or block
the clause agents. The phase ends when all clause agents have reached
their destinations.

4. After the end of phase 3, the shadow agents x′
i move to their respective

destinations, enabling the variable agents xi to go to their destinations.

5. Finally all variable agents can move to their destinations, finalizing the
movement plan.

Note that in a successful plan some of the phases could overlap. However, one
could easily disentangle them. The critical phases are apparently phase 1 and
phase 3. Phase 3 is only successful if in phase 1 the variable agents made the
choices in a way, so that all clauses are satisfied. In other words, the existence
of a successful movement plan implies that there is a satisfying truth value as-
signment to the CNF formula. Conversely, if there exists a satisfying truth value
assignment, then this could be used to generate a successful movement plan by
using it to make the choices in phase 1. Since the construction is clearly poly-
nomial in the size of the 3SAT instance, it is a polynomial many-one reduction,
proving that diMAPF is NP-hard.

Finally note that the constructed graph is a DAG. This implies that the
result applies already to DAGs and that it holds even if synchronous rotations
are allowed, because on DAGs these are impossible.

While this result demonstrates that diMAPF is more difficult than MAPF
(provided NP ̸= P ), it leaves open how much more difficulty is introduced by
moving from undirected to directed graphs. Although one might suspect that
diMAPF is just NP-complete, this is by no means obvious. The main obstacle
in proving that diMAPF is NP-complete is the fact that the state space of the
diMAPF problem has size O(n!), n being the number of nodes. However, in
cases similar to the one used in the proof of Lemma 1, namely if the digraph is
acyclic, it is obvious that the number of moves is bounded polynomially.

Theorem 2 The diMAPF problem on DAGs is NP-complete.

Proof: In a DAG, each agent can make at most |V | moves, since the agent can
never visit a vertex twice. This means that overall no more than |V |2 moves are

10



possible. This implies that all solutions have a length bounded by a polynomial
in the input size, implying that the problem is in NP. Together with Lemma 1,
this implies the claim.

When looking for the reason that stops us from proving a general NP-
completeness result, one notices that strongly connected components are the cul-
prits. They allow agents to reach the same location twice with the other agents
in a perhaps slightly different configuration. This may imply that a particular
configuration can only be reached when agents walk through super-polynomially
many distinct configurations.

On the other hand there are positive results for undirected graphs (wrt.
simple moves and synchronous rotations) and for strongly connected directed
graphs with two blanks (wrt. simple moves). For this reason, it looks very un-
likely that for general strongly connected digraphs plan-length will become all
of the sudden super-polynomial. And this is precisely what will be proved in the
next three sections.

5 Deciding diMAPF on Strongly Connected Di-
graphs When Synchronous Rotations are Pro-
hibited

One crucial property for proving NP-hardness in the previous section was the
presence of dead ends in the state space. So, the absence of such dead ends
makes live probably much easier. Here, the observation that each simple move
on a strongly connected component can be undone is very helpful. As we will
see, this is indeed the key observation for proving our results.

When considering cycle graphs, it is obvious that it is always possible to
restore a previous state.

Proposition 3 Let S be a diMAPF state over the set of agents R and the cycle
digraph D = (V,A), and let S′ be a state reachable from S with simple moves,
then one can reach S from S′ in at most O(|V |2) simple moves.

Proof: Since the relative order of agents on a cycle cannot be changed by
movements, one can always reach the initial state, regardless of what movements
have been made in order to deviate from the initial state. Further, the maximal
distance of an agent from its position in S is |V | − 1, which is the maximal
number of moves the agent has to make to reach S. Since there are at most |V |
agents, the stated upper bound follows.

If we now consider a simple move on a strongly connected digraph, then it
is obvious that we can restore the original state, because all movements in such
a graph take place on cycles.

Proposition 4 Let S be a diMAPF state over R and a strongly connected di-
graph D = (V,A) and let m = ⟨r, u, v⟩ be a simple move to transform S into
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S[m]. Then there exists a plan consisting of simple moves of length O(|V |2) to
reach S from S[m].

Proof: Each move m in a strongly connected digraph is a move on a cycle in
the digraph. Hence, we can apply Proposition 3 and restore the original state
S using O(k2) simple moves, provided k is the number of nodes in the cycle.
Note that by restoring the configuration on the cycle, we restore the entire state.
Further, since k ≤ |V |, the claim about the plan length follows.

The plan of restoring the state before movem is executed can actually be seen
as the “inverse move”m−1, which moves an agent against the direction of an arc!
Although such a “synthesized” move against the arc direction is costly—it may
involve O(|V |2) simple moves—this opens up the possibility to view a diMAPF
instance on the digraph D as a MAPF instance on the underlying undirected
graph G(D).4 Because of the existence of inverse moves for each possible simple
move with only polynomial overhead, the next corollary is immediate.

Corollary 5 Let ⟨D,R, I, T ⟩ be a diMAPF instance with D a strongly con-
nected digraph. Then the MAPF instance ⟨G(D), R, I, T ⟩ has a polynomial move-
ment plan consisting of simple moves if and only if ⟨D,R, I, T ⟩ has a polynomial
movement plan consisting of simple moves.

Using Corollary 5 together with the result about polynomial decidability
and the upper bound for the plan length on undirected graphs from the paper
by Kornhauser et al. [14, Theorem 1 and 2] gives us the first partial result for
diMAPF on strongly connected digraphs.

Lemma 6 Provided that only simple moves are allowed, diMAPF on strongly
connected digraphs can be decided in polynomial time, and plans are polynomially
bounded.

Note that because of the O(|V |2) overhead for inverse moves and the cubic
length for plans on undirected graphs, we have an O(|V |5) upper bound for plan
length, and one certainly would hope to do better than that. However, we are
satisfied since it is a polynomial.

Using Lemma 6, we could now prove NP-completeness of diMAPF when
only simple moves are allowed. However, we will defer that to Section 7, when
we are in a position to prove a more general result.

6 Deciding diMAPF on Strongly Connected Di-
graphsWith Only Synchronous Rotations Per-
mitted

As a next step, we consider the case that the only kind of movements are syn-
chronous rotations. In this context, we assume w.l.g. that all nodes are occu-

4This had already been noted by Ardizzoni et al. [1, Theorem 4.3]. However, the proof
appears to be incomplete, and the implication for plan length had not been stated.
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pied by agents. Unfortunately, it is not possible to reduce the reachability on a
strongly connected digraph to reachability on the underlying undirected graph.
In order to see the problem, consider the example in Figure 3.

c1

c2

c4

c3

1

2

3

4

c1

c2

c4

c3

1

2

3

4

?⇒

Figure 3: An unsolvable diMAPF example

The cycle in the underlying undirected graph formed by the nodes c1, c2, c3,
c4, c1 could be used for a rotation on the underlying undirected graph, but there
is no obvious way to emulate such a rotation on the directed graph. In fact, the
diMAPF instance in this example is unsolvable while the corresponding MAPF
instance on the underlying undirected graph is solvable, as we will show later
on. For this reason, we will employ permutation group theory in order to derive
a polynomial upper bound for plan length in this case. For this purpose, we will
first have a look at the structure of the digraph.

6.1 Cycle Pairs

It is well known that for every non-trivial strongly connected digraph, there
exists an ear decomposition [4, Theorem 5.3.2] (see Figure 4 for an example of
such a decomposition).

a

f

b

e

g

c

h

d

i

j

Figure 4: Example of an ear decomposition: The basic cycle is solid, the first
ear is dash-dotted, the second ear is dashed and the third ear is dotted.

This is a decomposition of the digraph into a basic cycle P0 and a sequence
of so-called ears or handles, which are cycles or paths P1, . . . , Pn, where each
ear Pj is attached at one node (if the ear is a cycle) or at two nodes (if the ear

is a path) to the the union over the Pi’s with an index less than j:
⋃i=j−1

i=0 Pi.
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Furthermore, each cycle of the digraph can be the basic cycle of such an ear
decomposition.

As one can see in this example, one could also start with a different basic
cycle, e.g., with P0 = c, d, i, c. Then it is possible to add the (cycle) ear P1 =
c, h, g, f, a, b, c, then the (path) ear P2 = b, e, g, and finally the ear P3 = i, j, f .
If we talk about the size of an ear, we mean the number of nodes that are
belonging exclusively to the ear. For example, the size of P3 is 1.

Based on the fact that each digraph can be decomposed into a basic cycle
and ears, each strongly connected digraph that is not a cycle digraph contains
at least a sub-digraph consisting of a directed cycle (such as, e.g., c1, c2, c3, c4,
c5, c1 in Figure 5, which is drawn solidly), and an ear (such as, e.g., c2, e1, e2, c4
drawn in a dotted way). The ear could either be oriented in the same direction
as the basic cycle, providing a detour or short-cut as in Figure 5(a), or it points
back, as in Figure 5(b).

c1

c5

c2

c3

c4

e1

e2
(a)

c1

c5

c2

c3

c4

e1

e2
(b)

Figure 5: Strongly connected digraphs consisting of a cycle and an ear

In order to be able to deal with only one kind of cycle pair, it is always
possible to view a graph as in Figure 5(a) as one in Figure 5(b). This can be
accomplished by considering the outer, larger cycle as the basic cycle and the
path with c2, c3, c4 as an ear, as illustrated in Figure 6. Note that in the extreme

c1

c5

c2

c3

c4

e1

e2

Figure 6: Different perspective on graph from Figure 5(a)

one may have an ear with no additional nodes.
This means that in a strongly connected digraph which is not a cycle di-

graph, one can always find cycle pairs of a particular form as stated in the
following proposition.
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Proposition 7 Any strongly connected non-trivial digraph that is not a cy-
cle digraph contains two directed cycles that share at least one node, where at
least one cycle contains more nodes than the shared ones. Further, if one cycle
contains only shared nodes, then there are at least two shared nodes.

Proof: An ear decomposition leads to a basic cycle and an ear, which are, in
fact, two connected cycles. One of these cycles needs to contain more than the
shared nodes because otherwise we would not have two cycles. Finally, if one
cycle contains only the shared nodes, then there needs to be at least two shared
nodes, because otherwise the structure would be a non-simple digraph, which
we excluded above.

6.2 Synchronous Rotations as Permutations

Synchronous rotations on cycles in the digraph will now be viewed as permuta-
tions. Note that such permutations are cyclic permutations. If we refer to such
a cyclic permutation of degree m, we call them m-cycle (as introduced in Sec-
tion 3.2). If we refer to a graph cycle consisting of n nodes, we will write cycle
of size n.

Given a diMAPF instance ⟨D,R, I, T ⟩ on a strongly connected digraph D
with no blanks, we will view the sequence of rotations that transforms I into
T as a sequence of permutations on V that when composed permutes I into
T . The permutation group rotation-induced by such an instance will also often
be called permutation group rotation-induced by D, since the concrete sets R,
I, and T are not essential for our purposes. By the one-to-one relationship
between rotations and permutations, it is obvious that a polynomial diameter
of the rotation-induced group implies that the length of movement plans can be
polynomially bounded. In the following, we will also often use arguments about
possible movements of agents in order to prove that a particular permutation
exists.

One obvious property of such rotation-induced permutation groups is their
transitivity.

Proposition 8 Every permutation group that is rotation-induced by a strongly
connected digraph is 1-transitive.

Proof: This property is equivalent to the fact that each agent in such a digraph
can reach each node in the digraph (perhaps moving other agents around). This
can be accomplished by rotating agents on the appropriate cycles for moving
the agent from the source to its target node.

In order to show that the rotation-induced permutation groups have polyno-
mial diameter, we will use the following result by Driscoll and Furst [7, Theorem
3.2].

Theorem 9 (Driscoll & Furst) If G is a primitive group containing a poly-
nomially expressible 3-cycle, then the diameter of G is polynomially bounded.
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Incidentally, if the conditions of the Theorem are satisfied, then G = An or
G = Sn, as follows from a Lemma that is used in Driscoll and Furst’s paper [7,
Lemma 3.4], which is cited from Wielandt’s book on finite permutation groups
[34, Theorem 13.3] and attributed to Camille Jordan.

Lemma 10 (Jordan) A primitive group that contains a 3-cycle is either al-
ternating or symmetric.

It should be noted that primitiveness is implied by 2-transitivity. Assuming
otherwise, i.e., that a group is 2-transitive but not primitive, leads to a con-
tradiction, because for a non-trivial block Y there would exist one permutation
that fixes one element (staying in the block) and moves another element out of
the block, which contradicts that Y is a block.

Proposition 11 Every 2-transitive permutation group is primitive.

In other words, it is enough to show 2-transitivity and the polynomial ex-
pressibility of a 3-cycle in order to be able to apply Theorem 9, which enables
us to derive a polynomial bound for the diameter.

Further, for demonstrating that a rotation-induced group is the symmetric
group, given 2-transitivity and a 3-cycle, it suffices to show that the rotation-
induced group contains an odd permutation. This follows from the fact that
An contains only even permutations and Lemma 10. Note that in case the
permutation group is the symmetric group, it means that the corresponding
diMAPF instance is always solvable, a fact we will use later on.

6.3 2-Transitivity

Almost all permutation groups rotation-induced by diMAPF instances on strongly
connected digraphs are 2-transitive, as shown next. Intuitively, it means that
we can move any two agents to any two places in the digraph—moving perhaps
other agents around as well.

Lemma 12 Permutation groups rotation-induced by strongly connected non-
trivial digraphs that are not cycle digraphs are 2-transitive.

Proof: In order to prove this lemma, we will show that for two fixed nodes x
and y, it is possible to move any pair of agents au and av from the node pair
(u, v) to the node pair (x, y). This implies that we also could move any pair
(au′ , av′) from (u′, v′) to (x, y). Composing the first plan with the inverse of the
second plan means that we can move agents from any pair of nodes (u, v) to
any other pair of nodes (u′, v′), as illustrated in Figure 7. This means that the
group is 2-transitive.

We proceed now by showing how to construct a plan moving agents au and
av from the node pair (u, v) to the node pair (x, y). For this purpose, we first
fix two nodes x and y. By Proposition 7, the digraph must contain at least two
cycles, both containing at least two nodes, where the left cycle may consist of
only shared nodes, as depicted in Figure 8.
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u

v

x

y

u′

v′

Figure 7: Constructing a plan demonstrating 2-transitivity. The dotted move-
ment plan moves the agents from (u, v) to (x, y), the dashed movement plan
from (u′, v′) to (x, y). The dash-dotted plan is the composition of the first and
the inverse of the second plan.

x

y

Figure 8: Strongly connected component containing two cycles with the two
target nodes x and y. The dashed nodes signify possible additional nodes. The
dotted arcs exemplify potential connections to other nodes in the digraph.

By transitivity (Proposition 8), we can move any agent au from node u to
node x in Figure 8. After that, we can move any agent av from node v to node
y in Figure 8. This may lead to rotating the agent au out of the left cycle. In
order to prohibit that, we modify the movement plan as follows. As long as av
has not entered one of the two cycles yet, every time au is threatened to be
rotated out of the left cycle in the next move, we rotate the entire left cycle so
that au is moved to a node that will not lead to rotating au out of the left cycle.

If av arrives in the right cycle (including the shared nodes) in Figure 8, we
rotate the right cycle iteratively. Whenever au is placed on x and av has not yet
arrived at y, we rotate on the left cycle in Figure 8. Otherwise, we stop and are
done. When av is placed on x, then in the next move, we rotate the right cycle
and av is placed on y. After that, we can rotate the left cycle in Figure 8 until
au arrives at x. This is possible, because au never leaves the left cycle.

If av arrives on nodes not belonging to the right cycle, we rotate the left
cycle. When av arrives at x, we rotate on the right cycle and then we rotate on
the left cycle until au arrives again at x.

17



This means that we can always generate a plan to move two agents from
arbitrary positions in the graph to (x, y). Using the idea of composing two plans
as described in the beginning, we can move the two agents to any pair of nodes,
demonstrating 2-transitivity.

6.4 3-Cycles

The construction of 3-cycles will be shown by a case analysis over the possible
forms of two connected cycles. By Proposition 7, we know that every strongly
connected non-trivial digraph that is not a cycle digraph contains a subgraph
as shown in Figure 9.

a1

ar

b1

bs

α

c1

ct

β

Figure 9: Strongly connected component consisting of at least two cycles induc-
ing two permutations

We characterize such connected cycles by the three parameters (r, s, t) and
will talk about cycle pairs of type (r, s, t), assuming w.l.g. r ≤ t. Below, we will
show that for almost all cycle pairs one can construct a 3-cycle, save for cycle
pairs of type (2, 2, 2) and (1, 3, 2). These are the counterparts to Kornhauser et
al.’s [14] T0- and Wilson’s [35] θ0-graph (see Figure 10), which are the outliers
in the case of simple moves on undirected graphs. We will therefore call such
cycle pairs T0-pairs.

The natural question coming up is: Why does the T0-graph has seven nodes,
while the T0-pairs have only six? The reason is that Kornhauser et al. and
Wilson considered simple moves, where you need a blank in order to rotate the
agents on a cycle. If this blank is on any of the bi nodes, then the resulting
permutations correspond to the permutations induced by the T0-pair of type
(2, 2, 2). If the blank is one of the ai nodes, then the resulting permutations
correspond to those induced by the T0-pair of type (1, 3, 2).

Lemma 13 Each permutation group rotation-induced by a cycle pair that is not
a T0-pair contains a polynomially expressible 3-cycle.

Proof: The 3-cycles will be constructed from α = (a1 . . . arbs . . . b1) and β =
(c1 . . . ctbs . . . b1). We prove the claim by case analysis over the parameters
(r, s, t) (see Fig. 9). We visit all cases by ordering the values (r, s, t) lexicograph-
ically. If a construction also applies to cases with a higher component value, we
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a1

a2

b1

b2

b3

c1

c2

(a)

a1

b1

b2

b3

c1

c2

(b)

a1

a2

b1

b2

c1

c2

(c)

Figure 10: (a) T0/θ0-graph, (b) T0-pair of type (1, 3, 2), and (c) T0-pair of type
(2, 2, 2)

use the ≥ symbol. For example, (0, 1,≥ 2) covers the case r = 0, s = 1, and
t = 2 as well as all cases with r = 0, s = 1 and t > 2.5

(0,≥ 2,≥ 1): By Proposition 7, we know that r = 0 implies s ≥ 2 and t ≥ 1,
and we have β α−1 β−1 α = (bs ct b1) as a 3-cycle.

(≥ 1, 1,≥ 1): In this case, the same expression delivers a slightly different 3-
cycle: β α−1 β−1 α = (b1 a1 ct).

(1, 2,≥ 1): α is a 3-cycle.

(1,≥ 3, 1): α−1β = (bs a1 c1) is the desired 3-cycle.

(1, 3, 2): This is a T0-pair, so there is nothing to prove here. It can be shown
by exhaustive enumeration that the rotation-induced permutation group
does not contain 3-cycles.

(1, 3,≥ 3): β α−1 β−1 α = (bs ct)(b1 a1). Consider now χ = β2 (α−1 β)2 β−2.
This permutation fixes bs and ct and moves ct−2 to a1 and a1 to b1 while

5The case analysis and the construction of the 3-cycles can be manually checked. As an
alternative, one could use the SageMath script lemma13-case-analysis.sage in the GitHub
repository https://github.com/BernhardNebel/diMAPF.
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also moving other things around. This means:

(β α−1 β−1 α)χ
−1

= χ β α−1 β−1 α χ−1

= χ(bs ct)(b1 a1)χ
−1

= (bs ct)(a1 ct−2).

Composing the result with the original permutation is now what results
in a 3-cycle.6 That is, λ = (β α−1 β−1 α)ϵ+χ−1

is the permutation, we
looked for:

λ = (β α−1 β−1 α)ϵ+χ−1

= ((bs ct)(b1 a1)) ◦ ((bs ct)(b1 a1))
χ−1

= ((bs ct)(b1 a1)) ◦ ((bs ct)(a1 ct−2))

= (b1 ct−2 a1).

(1,≥ 4, 1): This case is already covered under (1,≥ 3, 1) above.

(1,≥ 4,≥ 2): In this case, ξ = (α β−1 α−1 β)β(ϵ+α−2) is the claimed 3-cycle:7

ξ = (α β−1 α−1 β)β(ϵ+α−2)

= ((bs ar)(b1 c1))
β(ϵ+α−2)

= ((bs−1 ar)(c1 c2))
ϵ+α−2

= ((bs−1 ar)(c1 c2)) ◦ ((bs−1 ar)(c1 c2))
α−2

= ((bs−1 ar)(c1 c2)) ◦ ((b2 ar)(c1 c2))

= (bs−1 b2 ar).

(2, 1,≥ 2): This case is already covered by (≥ 1, 1,≥ 1) above.

(2, 2, 2): This is the other case that is excluded in the claim and the same
comment as in case (1, 3, 2) applies.

(≥ 2,≥ 2,≥ 3): This case is the one for all cycle pairs that are large enough:

ζ = (β α−1 β−1 α)α(ϵ+β−2)

= ((bs ct)(a1 b1))
α(ϵ+β−2)

= ((bs−1 ct)(a1 a2))
ϵ+β−2

= ((bs−1 ct)(a1 a2)) ◦ ((bs−1 ct)(a1 a2))
β−2

= ((bs−1 ct)(a1 a2)) ◦ (ct−2 ct)(a1 a2))

= (bs−1 ct−2 ct).
6This construction is similar to one used by Kornhauser [13] in the proof of Theorem 1 for

T2-graphs. Note that ϵ denotes the identity permutation as introduced in Section 3.2.
7This construction of a permutation as well as the ones for the cases further down are

similar to one that has been used in a similar context by Bachor et al. [2].
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(2,≥ 3, 2): For this case, the same construction as for the previous case can be
used. However, one gets a slightly different result because the structure of
the cycle pair is different (the difference is underlined):

ζ = (β α−1 β−1 α)α(ϵ+β−2)

= ((bs ct)(a1 b1))
α(ϵ+β−2)

= ((bs−1 ct)(a1 a2))
ϵ+β−2

= ((bs−1 ct)(a1 a2)) ◦ ((bs−1 ct)(a1 a2))
β−2

= ((bs−1 ct)(a1 a2)) ◦ ((b1 ct)(a1 a2))

= (bs−1 b1 ct).

(≥ 2,≥ 3,≥ 3): This general case is covered already under (≥ 2,≥ 2,≥ 3)
above.

This covers all possible cases. Note that when taking α and β as generators,
then the inverses α−1 and β−1 can be expressed by linearly many products.
Since the expressions for all cases have constant length, in all cases the 3-cycles
are linearly expressible. So, the claim holds.

In order to be able to do away with T0-pairs, we will assume that our di-
graphs contain at least seven nodes. For all smaller digraphs, the diameter of the
rotation-induced permutation group is constant. One only has then to show that
strongly connected digraphs with seven or more nodes admit for the generation
of a 3-cycle.

Lemma 14 Each permutation group rotation-induced by a strongly connected
digraph with at least 7 nodes that is not a cycle digraph contains a polynomially
expressible 3-cycle.

Proof: By Lemma 13, it is enough to prove the claim for digraphs that con-
tain a T0-pair. In order to do so, all possible extensions of T0-pairs have to be
analyzed. It is sufficient to consider all extensions with one additional ear. For
each extension, we first check whether a new cycle pair is created that is not a
T0-pair, in which case Lemma 13 is applicable. If the newly created cycle pairs
are all T0-pairs, one has to demonstrate that by the addition of the ear a new
permutation is added that can be used to create a 3-cycle.

Because the longest ear in T0-pairs has a length of 2, we consider ears up
to length 2. Adding a longer ear would result in a pair of type ( , ,≥ 3), which
admits a 3-cycle according to Lemma 13. Since the T0-pairs contain six nodes
each, there are two different T0 pairs, and we consider ears of length one and
two, we need to analyze 62 × 2 × 2 = 144 cases. This has been done using
a SageMath [32] script, which is listed in the appendix. This script identified
three non-isomorphic extensions of the (1, 3, 2)- and (2, 2, 2)-type cycle pairs
that contain only T0-pairs as cycle pairs. These are shown in Figure 11.

It is now an easy exercise to identify 3-cycles for these cases:
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Figure 11: Extensions of T0-pairs containing only T0-pairs

(a): β α β−1 γ−1,

(b): β−1 δ−1 α−1 β2 δ−1 α−1 δ−1,

(c): α β η α−1 β−1 η−1.

So, the claim holds for all cases.

With these results, we are now in a position to easily verify the claim from
the beginning of the section: The diMAPF instance in Figure 3 is unsolvable,
but the instance on the underlying undirected graph is solvable.

The permutation group rotation-induced by the diMAPF instance, which
we call D, must be either A4 or S4 (by Lemma 12, Lemma 13, Proposition 11,
and Lemma 10). Since D is generated by two 3-cycles, which are even permu-
tations, all elements of D are even permutations, so D = A4. The permutation
required by the diMAPF instance is, however, a simple transposition, i.e., an
odd permutation. In other words, the permutation is not an element of D, i.e.,
the diMAPF instance is unsolvable.

The MAPF instance on the underlying undirected graph contains, however,
also the permutation corresponding to the outer cycle in the graph, which is a
4-cycle, i.e., an odd permutation. For this reason, the resulting group must be
S4, i.e., the instance is solvable.
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6.5 Polynomial diameter of rotation-induced permutation
groups

The above results enable us now to prove the claim that the rotation-induced
permutation groups have a polynomial diameter.

Lemma 15 Each permutation group rotation-induced by a strongly connected
digraph has a polynomial diameter.

Proof: We prove the claim by case analysis. Let n be the number of nodes.

1. n < 7: There exist only finitely many permutation groups rotation-induced
by such graphs. The diameter is therefore O(1) in this case.

2. n ≥ 7:

(a) The digraph is a cycle of n nodes: Each possible permutation can
be expressed by at most O(n) compositions of the permutation cor-
responding to the rotation of all agents by one place.

(b) The digraph is a strongly connected digraph that is not a cycle: For
this case, we use Theorem 9, i.e., it is enough to show that a permu-
tation group is 2-transitive and contains a polynomially expressible
3-cycle. By Proposition 7, we know that the digraph contains a cycle
pair. Now, 2-transitivity follows from Lemma 12. The existence of a
polynomially expressible 3-cycle follows from Lemma 14. So, in this
case, the claim holds as well.

This covers all possible cases, so the claim holds.

With that, we can establish that diMAPF on strongly connected digraphs
with synchronous rotations is a polynomial problem and admits polynomial
plans, parallel to Lemma 6.

Lemma 16 Provided that only synchronous rotations are allowed, diMAPF on
strongly connected digraphs can be decided in polynomial time, and plans are
polynomially bounded.

Proof: The upper bound for the plan length follows immediately from Lemma 15.
For the cases that the digraph is a cycle or it contains less than 7 nodes,

polynomial decidability is immediate. Otherwise, note that by Lemmas 12, 13,
and 10, it follows that the induced group is either An or Sn. If the digraph
contains only cycles of odd size, the generating set of permutations are all even
permutations, i.e., the induced group is An, and the instance is only solvable
if the permutation induced by the initial and goal configuration is also even,
which can be checked in polynomial time. Otherwise the group must be Sn, in
which case all instances are solvable. This means, it is a polynomial problem in
all cases.
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7 The General Case: Simple Moves and Syn-
chronous Rotations Combined

Finally, we will consider the case that simple moves as well as rotations are
permitted. In order to be able to apply permutation group theory, we will ini-
tially restrict ourselves to diMAPF instances on strongly connected digraphs
⟨D,R, I, T ⟩ such that the set of occupied nodes is identical in the initial and the
goal state, i.e., I(R) = T (R), which can be viewed as permutations on the set
of occupied nodes. This restriction is non-essential since one can polynomially
transform a general diMAPF instance to such a restricted instance, as shown in
Corollary 18 below.

Lemma 17 Given a diMAPF instance ⟨D,R, I, T ⟩, with D a strongly connected
digraph, an instance ⟨D,R, I, T ′⟩ can be computed in polynomial time such that
I(R) = T ′(R), and ⟨D,R, T, T ′⟩ and ⟨D,R, T ′, T ⟩ are both solvable using plans
of polynomial length.

Proof: In order to construct ⟨D,R, I, T ′⟩, generate a mapping from unoccupied
nodes in T , the source nodes, to nodes that are unoccupied in I, the target
nodes. In the example in Figure 12, c and e are source nodes, and b and f are
target nodes. Let (s, t) be such a pair of source and target nodes. We will now
construct a movement plan consisting of simple moves that will transfer the
blank from node s to node t.

a

b c

d e

f

I

1

2 3 4

a

b c

d e

f

1

2 3

4

T

⇒

Figure 12: Example for the construction of a plan to transform T into T ′

Since D is strongly connected, there must exist a path from t to s. Now
move each agent that occupies a node on the path towards s, starting with the
agent closest to s. Move this first agent to s. Continuing with the remaining
agents on the path, move them one by one to the place the previously moved
agent had occupied. This will lead to a configuration where the blank has been
transfered to the target node, and all nodes that were unoccupied previously
are still unoccupied.

Using the example from Figure 12 again, let as transfer the blank from
the source node e to the target node b. The path between b and e is marked
by thick arrows. First, we move agent 3 to e, then agent 1 via c to d, which
has transferred the blank from e to b. Finally, we can move 4 to c and have
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reached a configuration which has the same set of occupied nodes as the initial
configuration.

The new configuration is the sought T ′ and clearly T ′(R) = I(R). Further,
T ′ is obviously reachable from T in at most O(n2) simple moves, n being the
number of nodes.

Reaching T from T ′ is possible by undoing each transfer of a blank in the
opposite order. Undoing such a transfer can be done by applying Proposition 4
iteratively resulting in O(n4) simple moves.

Since T is reachable from T ′ and vice versa using only polynomial many
steps, the next corollary follows immediately.

Corollary 18 Let ⟨D,R, I, T ⟩ and ⟨D,R, I, T ′⟩ be as in Lemma 17. Then
⟨D,R, I, T ⟩ is solvable with a polynomial plan if and only if ⟨D,R, I, T ′⟩ is
solvable with a polynomial plan.

As in the previous section, when only rotations were permitted, we will
again talk about induced permutation groups, however, now they are induced by
simple moves as well as rotations. Combining the results from the previous two
sections, we can now state one of the main results of this paper.

Theorem 19 Regardless of whether simple moves or synchronous rotations are
allowed, diMAPF on strongly connected digraphs can be decided in polynomial
time, and plans are polynomially bounded.

Proof: If only simple moves are allowed, Lemma 6 applies. If only synchronous
rotations are allowed or are possible because there is no blank, the claim follows
from Lemma 16.

In case, simple moves and rotations are possible, we proceed by case analysis
over the number of nodes n:

1. n < 8: The instance can be decided in constant time and the plans have
O(1) length.

2. n ≥ 8: We proceed by case analysis over the structure of the digraph:

(a) Cycle digraph: Similar to the proof of Lemma 15, the upper bound
for plan length is polynomial and solvability is obviously polynomial-
time.

(b) The case of digraphs with at least 8 nodes that are not cycle digraphs
will be reduced to the case where only rotations are allowed.

If all cycles have odd length, then using Lemma 17, move one blank
to a node that is a non-articulation node. Such a node must exist.
Make sure that this blank will always be blank after emulating rota-
tions on not fully occupied cycles. This will not destroy transitivity,
and it effectively introduces at least one rotation of even length (cor-
responding to an odd permutation). Consider all remaining blanks as
“virtual agents.” Now each possible synchronous rotation on a cycle
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containing such virtual agents or the fixed blank can be emulated by
a sequence of simple moves on this cycle. Applying Lemmas 14 and 12
gives us together with Theorem 9 a polynomial diameter. With the
presence of an odd permutation and Lemma 10, the induced group
must be symmetric, i.e., the instance is solvable for all ⟨I, T ⟩ pairs.
This means, it does not matter how the goal configuration for the
“virtual agents” looks like and all instances are solvable.

This means the claim follows in all possible cases.

It is now straight-forward to generalize the result that diMAPF plans have
polynomial length on strongly connected components to digraphs in general.

Lemma 20 Regardless of whether simple moves or rotations are allowed,
diMAPF plans can be polynomially bounded.

Proof: Consider all strongly connected components of the digraphD of the solv-
able instance ⟨D,R, I, T ⟩. For a given plan, focus on the events when an agent
enters the strongly connected component, leaves the component, or moves to its
final destination in the component without moving afterwards. In each strongly
connected component there can only be 2|R| ≤ 2|V | such events, because each
agent can only enter and leave a component once. Between two such events,
arbitrarily many movements of agents in this component may occur. As stated
in Theorem19, if there is a plan on a strongly connected graph, then there exist
also one of polynomial length p(|V |), regardless of what kind of movements are
allowed. Since there are at most |V | strongly connected components, there must
a plan with no more than 2|V |2×p(|V |) moves, i.e., a plan of polynomial length.

This result enables us to finally settle the question for the computational
complexity of diMAPF in general.

Theorem 21 The diMAPF problem is NP-complete, even when synchronous
rotations are possible.

Proof: As established earlier, diMAPF is NP-hard, regardless of whether syn-
chronous rotations are allowed or not (Lemma 1). NP membership follows from
Lemma 20.

8 The Graph Motion Planning Problem

The graph motion planning problem with one robot (GMP1R) as introduced
by Papadimitriou et al. [22] is very similar to the MAPF problem with simple
moves, but only one agent needs to reach a goal, while the other agents (called
movable obstacles) can move, but do not have a goal. Figure 13 provides an
example, where the gray unnumbered disks are movable obstacles.

Wu and Grumbach [37] studied solvability for this problem on directed
graphs and proved that the problem can be solved in polynomial time for
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Figure 13: A motion planning example

strongly connected digraphs and DAGs. Combining the two results, they showed
that the problem is polynomial on digraphs in general [36]. In the conclusion of
their journal paper [37], they suggested to study the more difficult problem when
k robots are allowed, called GMPkR. Wu and Grumbach [37] and Papadimitriou
et al. [22] state that Kornhauser et al. [14] have already solved a special case of
this problem, namely, GMPkR without any obstacles for k ≤ n − 1. Since n is
not constant, k is neither. So, this appears to be the problem with arbitrarily
many robots and GMPR might be the better abbreviation for it, which I will
use in the following.

With the results achieved in this paper, we can give a complete character-
ization of the computational complexity of GMPR. The main observation is
that the additional anonymous movable objects neither help nor hinder. The
key for solving the problem is to “de-anonymize” the obstacles in an arbitrary
way. Although the original formulation of the problem allows only for simple
movements, we will cover also the cases when rotations are allowed.

Theorem 22 GMPR on digraphs is NP-complete, even on DAGs. And this
holds regardless of whether synchronous rotations are permitted or not.

Proof: Since diMAPF is the special case of GMPR with no obstacles, NP-
hardness follows from Lemma 1 for DAGs, and therefore also for the general
case.

NP membership follows because GMPR plans can be polynomially bounded.
If there exists a successful GMPR plan, then there exists obviously also a suc-
cessful diMAPF plan where the movable obstacles have been assigned names
and goals. Because of Lemma 20, we know that such a plan can be polynomially
bounded, which obviously applies also to the original GMPR plan.

So, for one robot, the problem is polynomial, for arbitrarily many, it is NP-
complete. It is not obvious, what the complexity of GMPkR for any fixed k > 1
is, however.

In parallel to Theorem 19, one would expect that the decision problem
GMPR on strongly connected digraphs is a polynomial-time problem. However,
the non-deterministic assignment of names and goals to anonymous obstacles
as used in the proof of the previous theorem is obviously not enough. It is
nevertheless possible to show polynomiality also in this case.

Theorem 23 GMPR on strongly connected digraphs can be decided in poly-
nomial time. And this holds regardless of whether synchronous rotations are
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permitted or not.

Proof: The claim holds obviously for small digraphs with less than 8 nodes. It
also holds trivially for cycle digraphs. For the remaining digraphs we proceed
by case analysis over the allowed movements.

If synchronous rotations are allowed, there is no blank and there is at most
one obstacle, then the problem reduces to diMAPF, and is by Theorem 19
polynomial. If there is no blank, but more than one obstacle, then the instance
is always solvable. In order to see that assume that each obstacle has a unique
name and has as its goal any position that is not a goal position for any other
agent. If there exists a cycle of even length, then the instance is clearly solvable. If
all cycles are of odd size, then the induced group is An with the same arguments
as in the proof of Lemma 16. If the permutation induced by the initial and goal
configuration is even, then the diMAPF instance and, hence, the original GMPR
instance is solvable. Otherwise, exchange the goal positions of two obstacles,
which is an odd permutation. This implies that this modified instance is solvable
if the original one was not. Finally, if there is at least blank, then we can assume
arbitrary names and goal positions for the obstacles. Using the same arguments
as in the proof of Theorem 19 it follows that the induced group is symmetric,
i.e., all instances are solvable.

For the case that only simple moves are allowed, we will make use of the
reduction to the original MAPF problem on the underlying undirected graph
(Corollary 5). We will again assume that each obstacle has a unique name.
As in the paper by Kornhauser et al. [14], we assume a decomposition of the
graph into transitive components. Since no agent can move from one transitive
component to another one, these can be solved in isolation. The goal position
of each obstacle is any position inside its transitive components no other agent
wants to go to. Applying Theorem 1 from Kornhauser et al.’s [14] paper, we know
that if the (sub-)graph is either separable or biconnected with two blanks, then
it is solvable. If it is biconnected with only one blank, then it is unconditionally
solvable, if it is not bipartite. If it is bipartite and the permutation induced
by the initial and goal configuration is even, then it is solvable. If the GMPR
instance contains at least two obstacles, then it is also always solvable, using
the same arguments as above.

So, in all cases, there exist polynomial-time criteria for deciding the solvabil-
ity of the GMPR instance.

An upper bound for the general problem is clearly also an upper bound for
the problem with a fixed k, regardless of how large k is.

Corollary 24 GMPkR for any fixed k on strongly connected digraphs can be
decided in polynomial time. And this holds regardless of whether synchronous
rotations are permitted or not.
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9 Conclusion and Discussion

This paper provides an answer to a long-standing open question about the
computational complexity of diMAPF, the multi-agent pathfinding problem on
directed graphs. Kornhauser et al. [14] had shown already almost 40 years ago
that deciding MAPF on undirected graphs is a polynomial-time problem. How-
ever, the problem for directed graphs had been ignored. Only in recent years
[6, 5, 15, 1] MAPF on directed was considered, but a result parallel to the one
by Kornhauser et al. [14] was missing.

We showed that diMAPF is NP-complete in the general case. For the impor-
tant special case of strongly connected digraphs it was shown that the problem
can be decided in polynomial time. And these results hold regardless of whether
one allows synchronous rotations in addition to simple moves.

At the same time, this answers a question about the generalization of the
graph robot movement problem with one robot (GMP1R) [22] to directed graphs
with arbitrarily many robots [37], where one has to deal with movable obstacles
in addition to agents. Interestingly, though, one achieves exactly the same results
as in the case without obstacles. However, the computational complexity of this
problem for k robots, called GMPkR, is still open for all k > 1.

The results might have only a limited impact for the development of practical
algorithms. They nevertheless demonstrate that DAGs are harmful and that
even on strongly connected graphs things can get hairy when a partial state
should be recovered.

From a theoretical point of view, there are also a number of points worth to
mention. First of all, it shows that group theory is applicable for the analysis
of diMAPF, something that was not obvious previously [5]. Second, in proving
the result, some unforeseen obstacles popped up, such as that Lemma 1 from
the paper by Kornhauser et al. [14] is not applicable to directed graphs and
that there are two different directed counterparts to the T0-graph. Third, the
result could be taken as a suggestion to extend the diBOX algorithm [5] or the
algorithm for solving diMAPF on strongly connected digraphs [1] in order to deal
with the one-blank case and/or perhaps with synchronous rotation. Although
the proofs are all constructive, for the sake of simplicity in the presentation, no
effort was invested in coming up with tight bounds or optimal algorithms. So,
at this point some work appears to be necessary.
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A SageMath Script for the Proof of Lemma 14

You find this SageMath script and others related to this paper at https://

github.com/BernhardNebel/diMAPF.

def shared(c1, c2):

return len(set(c1) & set(c2))

def ptype(c1, c2):

if len(c1) > len(c2): c1,c2 = c2,c1

if c1 != c2 and shared(c1,c2) > 0:

return (len(c1)-shared(c1,c2)-1,

shared(c1,c2),

len(c2)-shared(c1,c2)-1)

def t0pairs(dig):

for c1 in dig.all_simple_cycles():

for c2 in dig.all_simple_cycles():

if ptype(c1,c2) not in \

[(2,2,2),(1,3,2),None]: return

return True

t0a={"a1":["b3"],"b3":["b2"],"b2":["b1"],

"b1":["a1","c1"],"c1":["c2"],"c2":["b3"]}

t0b={"a1":["a2"],"a2":["b2" ],"b2":[ "b1"],

"b1":["a1","c1"],"c1":["c2"],"c2":["b2"]}

ears = [["e1"],["e1","e2"]]

tested = []

for g, p in ((t0a, (1,3,2)), (t0b,(2,2,2))):

for h in g.keys():

for t in g.keys():

for e in ears:

t0 = DiGraph(g)

t0.add_path([h]+e+[t])

if all([not t0.is_isomorphic(d) for d in tested]):

tested += [t0]

if t0pairs(t0): print(p,[h]+e+[t])
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