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Abstract. Having a robot that carriesout a task for you is certainly of some
help. Having a groupof robotsseemso be even betterbecauseén this casethe
taskmay befinishedfasterandmorereliably. However, dealingwith a groupof
robotscanmake someproblemsmoredifficult. In this paperwe sketchsomeof
the advantagesand someproblemsthat comeup when dealingwith groupsof
robots.In particular we describetechniquesasthey have beendevelopedand
testedn the areaof roboticsoccer

1 Intr oduction

Having arobotthatcarriesoutataskfor you, e.g.,cleaninghefloor or fetchingthemail,
is certainlyof somehelp.Having a groupof robotsseemdo be evenbetterbecausén
this casethe taskmay be finishedfasterandmorereliably. Sometime®oneevenneeds
a groupto getthe taskdone.For instance playing robotic soccerrequiresa teamof
robots.

In general, someproblemscanbe more easily morereliably, or fastersolved by
a group of robots.For example,distributing mail or messageso mary targetscanbe
donefastemwith agroupof robots,ashasbeendemonstratetly theteamof SRIrobots
winning oneof therobotcompetitionsat AAAI'96 [13]. Also basictaskssuchasself-
localizationcanbe morereliably solvedby a groupof robots.On the otherhand,deal-
ing with a groupof robotscanmake someproblemsmoredifficult. For instance path
planningis easieffor onerobotthanfor agroupof robots.

While this soundsall very plausible,it alsoraisesthe questionwhy a scenaricof a
cooperatingeamof robotsis interestingirom a scientificpoint of view. A cooperating
groupof robotsappearssimply to be a specialcaseof a cooperatinggroupof agents.
Thisis certainlytruein thesameway asis thestatementhatrobotsare“simply” special
case®f agentsMobile robotsarespecialin a numberof ways.For thisreasonpnehas
to dealwith problemsthatdo not arisewith otheragentsge.g.,softwareagentsFirstly,
thereis theproblemthatarobothasto perceve andto actin aphysicalworld. Secondly
sensingandactingis uncertainThirdly, connecteavith thetwo formerpoints,commu-
nicationbetweerthe robotsmight not be possible be restrictedto low bandwidth,or
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possibleonly over restricteddistancesApart from that, however, groupsof robotscan
beviewedasmulti-agentsystems.

Oneshouldnote,however, thata groupof robotsmay alsobe viewed asonecen-
trally controlledmulti-bodiedrobot. While sucha viewpointis indeedpossible there
area numberof agumentsagainstsucha perspectie. Firstly, this multi-bodiedrobot
hasa very large numberof degreesof freedonmmakingit computationallyinfeasibleto
controlit. Secondlywe mightbe unableto communicatdetweerthedifferentpartsof
therobotor the communicatiorbandwidthis very low. Thirdly, we might be unableto
estimatea global systemstatebecausdor somepartsof therobotwe do notknow the
state Fourthly, failuresof partsof the multi-bodiedrobotaremuchmorenaturallydealt
with whenonetakesa multi-agentperspectie.

In therestof the paperwe will presensomecasestudiesof techniquesieveloped
in thecontet of multi-robotsystemsln thenext sectionwe have alook atcoopeative
sensingln Section3, wethenturnto aparticularform of coodinatedbehavior namely
coopeativemationplanning In orderto supportcooperatre behaior in agroup,often
rolesareassignedo the groupmembersHow this canbe donefor a group of robots
in ahighly dynamicernvironmentwill be studiedin Section4. Finally, in Section5, we
will discusswhatis neededo build a successfutoboticsocceiteamandin how farthe
techniquesiescribedn this papercanhelp.

2 Cooperative Sensing

If thereis agroupof robotsthatcancommunicatevith eachother, it seemsaturalthat
therobotssharetheir obsenationswith eachother In this mannerthey cancompensate
for sensorimitations that, for instancerestrictthe rangein which an objectcanbe
sensedFurthermoreby combiningestimates;obotsmaybe ableto narrav down their
hypothesesr to correcttheir estimates.

As mentionedn the Introduction,all sensomeasurementareuncertain.Thereis
alwayssome(normally distributed)noiseandin additiontheremight be somesystem-
atic error one cannotanticipate For example,when usingthe odometry— measuring
how oftena wheelhasturned- thereis a normally distributedmeasuremergrrorand
dependingon the floor, theremay be an additionalsystematicerror. In particularcar
petscancanleadto systematialiversionghatcannotbeanticipatedFinally, theremay
alsobealargedisplacemenfrom time to time whentherobotcollideswith anobstacle
or with anothemrobot. Worseyet, theseerrorsaccumulatdeadingto high uncertainty
abouttherobot's positionafteravery shorttime.

For thesereasonspthermeansareusedto solve theso-calledself-localizatiorprob-
lem. Measurementfom othersensorsare usedto correctthe estimatesierived from
the odometry The mathematicatool thatis usedto dealwith this problemis oftenthe
Kalmanfilter [17], a methodof fusing all measurementis orderto arrive at optimal
estimatesintuitively, it involvescomputinga weightedaverageover sensormeasure-
ments,wheresensoravhich aremoreaccuratenave a higherweightthanthosewhich
areknown to belessaccurate.

Often, known positionsof recognizedandmarksare usedin the self-localization
procesdor correctingthe positionestimatesHowever, whenonewantsto explore an



unknawn territory, thereare no known landmarks.With a group of robotsthat have
initially known positionsit is possibleto do somethingsimilar to landmark-basedav-
igation,though.Someof therobotscanbe usedaslandmarks.

2.1 Cooperative Self-Localization

Rekleitis et al. [20] proposeda schemefor multi-robot exploration with a group of
robots.In this approactit is assumedhatthe robotscantrack eachotherwith reason-
ablereliability andaccurag aslong theline of sightbetweerthemis free of obstacles.
Underthis assumptionpne or more robotscanmove usingone or more (temporary)
immobile robotsas landmarks After a while the roles of the moving and immobile
robots can be exchangedUsing sucha method,the odometryerror can be reduced
dramatically{20].

In mostapplicationshowever, we alreadyknow the ervironmentand“only” have
to solwe the self-localizationproblem.In this caseit often happenghatonerobotcan
comeup with multiple positionhypothesedf we now have a groupof robotsthatare
ableto recognizeothergroupmembersvhenthey arecloseenoughit is possiblethat
therobotsnarrav down the setof positionhypothesesvhenthey meet[8].

2.2 Cooperative Object Localization

Yet anotherscenaricfor multi-robot cooperatie sensings whenwe canassumehat
positionandorientationof all robotsarealmostalwaysaccurateandreliably, butthereis
significantuncertaintyandunreliability in sensingotherobjects.This situationoccurs,
for instancejn theroboticsoccercontext.

Theplayersof the CSFreiburg team[11,18,23] uselaserrangefindersin orderto
solwve the self-localizationproblem[12], andfor this reasoncanbe assumedo know
their own positionvery reliably. However, they arenot very goodin recognizingthe
ball andestimatingits positionon the field — which is doneusinga monocularvision
camera.

Thereis a significantmeasuremergrror for estimatingthe distanceto the ball, an
errorwhichincreasesvith thedistancebetweercameraandball. Theangularerror, on
the otherhand,is smalleranddoesnot dependon the distance Additionally, thereis
arestrictionto the maximumdistanceover which the ball canbe recognizedwhich is
approximatelyd—5 meters Finally, the robotsoften enoughrecognizefalse positives
i.e., phantomballs. Ignoring the latter problem,one canagainusea Kalmanfilter to
fuseobsenations(with time stampsfrom differentrobotsin orderto getestimateshat
a more accuratethanary single measurementn fact, this gives us a sort of stereo
visionwith agroupof robots.Assumingthattheangularerroris muchsmallerthanthe
distanceerrorgivesatriangulationeffectasshovnin Figurel.

As alreadypointedout, sometimeghe robotsobsene phantomballs. An example
of suchasituationis displayedn Figure2. Two playersseea ball closeto thegoaland
anothemplayerseesaball onthecenterine.

If we would now take the weightedaverageof the sensedall positions,we would
geta completelywrong estimate For this reasonjt seemsreferableto excludeobvi-
ouslywrongmeasurement®newayto dosowouldbeto ignoremeasurementbatare
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Fig. 1. TheKalmanfilter for integratingball obserationsleadsto triangulation Grey discsdenote
positionestimatesor singlerobots theellipsesaroundthegrey discsdenotemeasuremerdrrors,
andthewhite discdenoteghefusedestimate.

Fig. 2. Player2 obseres a phantomball, which may lead to an incorrectestimateof the ball
position.

implausiblegiventhe currentestimateThis, however, couldleadto a situationwherea
robottracksa phantomball andthe otherrobotsareall divertedfrom sensinghe right
ball becausehey believe thehallucinatingrobot.

The best(and mostdemocratiovay) to dealwith sucha situationis to believe in
whatthe majority of robotssenseln the exampledepictedn Figure2 we wouldrather
believetheplayersl and3thanplayer2. Onewayto putsuchavotingschemento effect
is to usethe so-calledMarkov localizationapproach?9] for the ball. In this approach
onebasicallymaintainga discrete)probability distribution for the positionprobability
of the objectof interest.Usually, this is the robotitself. In our case however, it is the
ball. Eachobsenationupdateghe positionprobability by increasinghe probability at
thelocationwherethe ball hasbeenobseredandlowersthe probabilitywhereno ob-
senationhasbeenmade(usingconditionalobsenation probabilitiesandBayes'rule).
In addition,the positionprobabilityis flattenedout for eachtime stepto modeltheloss



of certaintyover time. Using suchan approachit appearsnoreprobablethatthe ball
is aroundthe locationswhereit hasbeenobsenedby two robotsthanat the location
whereit hasbeenobsered only by onerobot. CombiningMarkov localizationasa
plausibility filter with a Kalmanfilter, onegetsa quitereliableandaccurateglobalball
estimatiormechanisni6].

While all thesemethodsmight not appearo be overly sophisticatedthe realvalue
of theseapproacheis thatthey arebasedon a solid theoreticabasisandwork in prac-
tice. AlImost all of of theseapproachediowever, arestill passie in the sensdhatthey
donotinvolvetheinterplaybetweersensingandacting,i.e., active sensing3].

3 Cooperative Path and Motion Planning

Latombestartshis book[16] with thefollowing remark:

“This capability[motion planning]is eminentlynecessargince by definition,
arobotaccomplishesasksby moving in therealworld”

And whatis truefor singlerobotsis, of coursealsotruefor teamsof robots.

The basicmotionplanningproblemis usually stated[16] asthe problemof mov-
ing a singlerigid object— the robot— in an Euclidian (2- or 3-dimensional)space,
the so-calledwork spacefrom aninitial position(andorientation)to a target position
(andorientation).Of coursetherecanbeobstaclesn theworkspacewhich have to be
avoided. The problemis usuallysolved by mappingthe problemto the so-calledcon-
figuration space This spaceis generatedy the deggreesof freedomthe robot has.In
the 2-dimensionatasethesedegreesof freedomare(z, y, 6), i.e.,thexz andy coordi-
natesof therobotpositionaswell asits headingd. In this 3-dimensionatonfiguration
spacethe robotis just a point andwe have to find a pathfrom the startto the target
configurationavoiding obstacleslIn the specialcasethatwe have disk-shapedobots,
the configurationspacecanbe describedy the z andy coordinatesloneandsothe
configuratiorspaces only 2-dimensional.

In the previoussectionwe have seerhow sensingcanleadto moreaccurateandre-
liable estimatesf we have agroupof robots.Furthermoretheadditionalcomputational
costsarereasonableln contrastto that, pathand motion planningis computationally
muchmoredifficult if a groupof robotsis involved. This becomesbviouswhenone
generalizeshe configurationspaceplanningmethoddescribedabove to a multi-robot
systemln this casefor eachrobot3 dimensionave to be addedo the configuration
space Of course this might be anindicationthat the configurationspaceapproachs
not appropriate However, the multi-robot pathplanningproblemis indeedinherently
difficult. It is PSRACE-hardin thenumberof robots asfollowsfrom resultsby Hopcroft
etal. [14].

3.1 Cooperative Path Planning with Global Communication

If we assumehat all robotscan communicatewnith eachother the multi-robot path
planningproblemcan be solved centrally e.g., by usingthe configurationspaceap-
proachsketchedaborve. While this guaranteesptimalityandcompletenes# is usually
not efficientenoughfor evenonly a moderatenumberof robots.



Insteadof a centrlized approachpne can usedecoupledolanning [16]. In this
approachoneplansfirstindependentrajectoriedor all robotsandthencombineghem,
resolvingconflictswhenthey arise.This reduceghe compleity, but it alsosacrifices
optimalityandcompleteness.

Therearetwo decoupledplanningmethodghat have beenconsideredn the liter-
ature.First, thereis the prioritized planningapproacH7], which considerghe multi-
robotpathplanningproblemasa sequencef pathplanningproblems.Onestartswith
thefirst robotandall theimmobile obstaclesThenoneaddsanotherobotandplansa
pathavoiding all immobilerobotandthe moving robotfrom thefirst phaseandsoon.
Thecritical decisionis whatorderoneshoulduse.Dependingon this order it is quite
possiblethatno solutionis foundalthoughthereexistsone.

The other decoupledapproachis the so-calledpath coodination method[19],
wherethe robotsplan their pathsindependentlyseeFigure 3), and afterwardscoor

Fig. 3. Pathsplannedn adecoupledpproach

dinatetheir movementswithout leaving their plannedpaths.As is obvious from this
example thereis achancehatthetwo robotscollideif they follow their plannedpaths
without coordination.What we needhereis a collision-free schedulethe robotscan
follow. For two robots,this problemcan be solved using so-calledcoorination dia-
grams astheoneshown in Figure4. While this coordinationdiagramshaows thatwith
two robotsthe problemcanbe easilysolved, it alsogivesa hint thatthe problemmight
becomecomputationallydifficult whenthe numberof robotsincreaseThegeneralized
coordinationdiagramwould containasmary dimensionsastherearerobots.For this
reasonpftenprioritizationschemesireused[1].

Path coordinationis, of coursegven morerestrictive thanthe prioritized planning
approactandfor thisreasomayfind fewersolutionswhichmaybelesscost-efective.
This is indeedthe caseevenin naturalenvironmentsashasbeenshovn by Bennavitz
andBurgard[2].



Fig. 4. Coordinationdiagram.The s; ands» axesrepresenthelengthrobotl or robot2, respec-
tively, hasalreadytraveledon the respectie plannedpath.Black cellsrepresentollisions.The
bold line shawvs a collision-freeschedule.

3.2 Cooperative Path Planning with only Local Communication

Althoughthe decoupledathplanningmethodsdo not attemptto control the group of
robotsasoneentity— andreducehealgorithmiccompleity by that—theseapproaches
still presupposthatthereis acentral coodinatorandaglobalcommunicatiometwork
If oneassumeshatonly local communicatiorbetweerpairsof physicallycloserobots
is possiblethenthedecoupledpproachedo notwork.

Similar to the decoupledapproacheswe will assumehat the pathsare planned
independenthpy eachrobot. However, insteadof relying on a centralcomponenthat
dealswith conflicts,we will now assumehatonly local coordinatioris possiblg15].

If two robotsarecloseto eachother, they establistacoordinatiorink, whichmeans
thatthey createa coordinationdiagram,which determinegheir schedulelt now can
happenthat onerobot (4) hasto wait for the otherone (B). Unfortunately it might
happenthat alsorobot B may have to wait for anotherrobot C', which in turn waits
for A, i.e., we have a deadlo&. Thesedeadlockshave, of course,to be detectedand
resohed. Resolutionof a deadlockcanheremeanthat onetriesto find an alternatve
pathin thecoordinatiordiagramor thata new path(segment)is planned15]. Theright
tool to useherearedistributedalgorithmsfor deadlockdetectionandresolution[5].

4 Role Assignmentin Dynamic Environments

Theprevioustwo sectiondhave focusedon problemssuchassensingandpathplanning.
In thesecasesthe solutionsappearedo be very roboticsspecificandthe overlapwith
multi-agentsystemseemso be minimal. However, thereare, of course,other multi-
robotproblemshathave a true multi-agentflavor.

Onesuchproblemis the assignmenbf rolesto membersof a group[21]. Suchan
assignmengenesthepurposeof associating setof behaioral patternsvith theagents
in orderto supportthe coordinationbetweenthe agents.For instance,n soccer we
distinguishat leastbetweertherolesgoalie, defenderandforward player. Theremay
be additionalrolessuchasmidfielderandsupporter In generalwe wantto determine
a one-to-onefunction from the setof agentsA to the setof roles R. Sometimeswe



may want alsoto considerdifferentsetsof roles,i.e., differentformations In soccey
for instancewe may want to dealwith a 4-3-3 and a 3-3-4 formationandto switch
betweertheseformations.

A very simpleway of dealingwith this problemis to usea fixedassignmentasfor
examplethe CSFreiburg teamdid in 1998[11]. Eachroboticsoccerplayerhasafixed
role, which hasan associatedhomepositionandan area of competenceas shovn in
Figureb.
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Fig. 5. Roleassignmenandareasof competence

Whentheball movesinto suchanareaof competenceherespectierobotbecomes
activeandtriesto movetheball into thedirectionof theopponengoal—withoutleaving
its areaof competenceéWhile this strateyy doesnot appeaio be optimal, it avoidsthe
problemthata swarmof robotapproachegheball. In fact,only onerobotof theteam
canbeattheball.

However, it is alsoclearthatthis deleggationof dutieshasa numberof severeprob-
lems.Firstof all, adefendingobotscanneverrunwith the ball overtheentirefield and
scoreagoal. They alwayshaveto passheball to aforwardplayer For thisreasonyery
early on a “shouting” protocolwasimplementedhat permitsa robot with the ball to
make arunto the opponengoal without beingstoppedoy its own teammembergsee
Figure6).

A seconddisadwantageof the schemedescribedabove is the disjoint decomposi-
tion of thefield. It happenedhatthe ball wasin oneof the competencareasput the
respectie playerwasunableto go for the ball for somereason.Thenno otherplayer
would cometo helpthis player This problemcanbe (andhasbeen)solved by allow-
ing overlapsof the competencareasandusingthe “shouting” protocolto avoid that
two playersblock eachotherat the ball. Finally, thereis the problemthatoncea robot
breaksdown, its role will notbefilled by anotherroboton thefield, evenif therole is
veryimportant.

Although the CS Freiburg teambecameRoboCupworld championof the F2000
leaguein 1998, this was certainly not becausets role assignmenand coordination
methodweresuperiorto that of the otherteams.Indeed therearea numberof issues
onehasto addressn orderto build aflexible androbustteam:
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Fig. 6. Shoutingin orderto getafreerunto theopponengoal

— role assignmentshouldbe changeddynamicallyto accountfor the currentposi-
tioning andto supportteamreconfigurationsfter the breakdown or removal of
individualteammembersand

— flexible positioningthattakesinto accountheentiresituationon thefield.

The latter point hasbeenaddressethy CMUnited's SFAR method[22], a method
that tries to find the optimal position by using a linear programmingmethodgiven
the valuesfor a numberof importantparametersuch as ball position, position of
teammembersgtc. Stoneand Veloso[21] also addressedhe issueof dynamicrole
re-assignmentslowever, this wasapproactwasbuilt on so-calledocker roomagree-
mentsi.e., pre-tuilt plans,andonfilling morepreferablaolesif they arevacant.

A moreflexible schemdor the dynamicassignmenof roleshasbeenproposedind
usedby the ARTItaly teamin 1999[4]. They considerolessuchas

— activeplayer, the playerwhich possessetheball or goesto the ball;
— supporter the playerthatmovesparallelwith the active player;
— defenderthe playerstayingbehinddefendingthegoal.

Eachagentcan contritute someutility whenfilling a role. For instancejf arobotis
alreadycloseto the defendingposition, it can contribtute a high utility value whenit
fills thedefenderrole. If it is closeto theball, it cancontributea high utility valueif it
fills theactiveplayerrole. Eachrobotdeterminesgheseutility valuesfor eachrole and
transmitsthe computedvaluesto all otherrobots.

Therolesfor thefield playersareorderedby importanceandassignedlynamically
(in theimportanceorder)to the playerthat cancontritute mostby filling the role ac-
cordingto thecomputedraluesin fact,thisassignmenits donein a distributedmanney
i.e. eachrobotsdecideson the basisof the recevved utility valueswhich role to take.
This canleadto situationswherearole is temporarilyfilled by two players.However,
this doesnot happenvery oftenandis resohedafterafractionof a second4].

While this schemeappeardo work very well, its efficiency seemdo rely on order
ing the rolesby importance A more generalschemewould view the role assignment
problemasan optimizationproblem,wherewe wantto maximizethe socialwelfareof



the entiregroup. While this sounddik e a combinatorial,j.e., a computationallydiffi-
cult, problemiit is simply the problemof findingamaximalweightedmatd [10], which
canbesolvedin polynomialtime. In the CSFreiburg team,this moregeneralscheme
togetherwith a communicatiorprotocolfor changingrolesin a consistenmanneris
used[23]. Thisis complementedy avariantof the SFAR method[22] to find theright
positionfor eachrole.

5 Conclusionsand Discussion:Playing Robotic Soccer

As shouldhave becomepbviousfrom whathasbeensaidsofar, roboticsoccelis arich
sourceof inspirationfor multi-robotandmulti-agentresearchlt hasalreadyled to the
developmenbf anumberof interestingnew methodsandit is anattractve testbedor
comparingdifferentmethods.

Oneof theinterestingguestionss in how farthe multi-robotandmulti-agentmeth-
odssketchedn the previoussectionscould contributeto creatinga competitive robotic
soccerteam.An answerdependspf course,on whatleague onehasin mind. In the
simulationleague multi-agentconsiderationaremostprobablyof utmostimportance.
In the real robotleagueshaowever, the single agentcapabilitesare mostimportant. If
thesecapabilities(suchassensoiinterpretatioror ball skills) areflawed, theneventhe
bestcooperationtechniquewill nothelp.However, asmentionedn Section2.2,cooper
ative sensingcancompensatér the shortcoming®f sensorsln fact,anumberof goal
scoringattemptsby otherteamscould be stoppedbecausef the global ball position
estimationtechniquausedby the CSFreiburg team.

Furthermorewith theincreasef thesingle-agentapabilitiesovertheyears,coop-
erative behaior becomesnoreandmoreimportant.This developmenis alsomirrored
in the evolution of the CSFreiburg team.While in 1998a robustandaccuratesensor
self-localizationmethodtogetherwith simpleball skills anda very basiccooperation
mechanisn{seeSection4) wasenoughto win, teamplay provedto be oneof theim-
portantskills in winning the RoboCupcompetitionagainin 2000[23].
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