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Abstract
Temporally extended goals (TEGs) expressed as formulae of Linear-time Temporal Logic (LTL) can
be used to express trajectory constraints. We present a satisfiability based encoding of planning for
TEGs which allows for parallel plans, thus significantly increasing planning efficiency compared to
purely sequential SAT planning. The results extend the practical applicability of satisfiability based
planning to a wider class of planning problems.

1 Introduction

Motivation
In Classical Planning: reachability goals.
Higher Expressiveness: temporally extended goals

(maintenance goals, successive subgoals, safety goals, . . . )
Representation: Linear-time Temporal Logic (LTL).

Example: Rovers Problem

w0 w1 w2 w3

obj 1

lander

soil rover

rock soil

rock soil

rock

The rover is equipped for soil and rock analysis and can take images in any mode.
All waypoints and objectives are mutually visible.

Reachability Goal:

(:goal (and (communicated_rock_data w1)

(communicated_soil_data w3)

(communicated_image_data obj1 high_res))

Additional Trajectory Constraints:

(:constraints (and (at-most-once (at rover w1))

(sometime-before (have_image rover obj1 high_res)

(full store))

(at-most-once (empty store))))

Translation of Constraints to LTL−X:
G(a → (aUG¬a)) ∧ (((¬h ∧ ¬f )U(¬h ∧ f )) ∨ G(¬h ∧ ¬f )) ∧ G(e → (eUG¬e))

Solving the Problem
Basic Idea: Use bounded LTL model checking for trajectory constraints.
Technique: Planning and LTL model checking as satisfiablity testing.
Contribution: Efficient parallel encoding.

2 Reduction to Satisfiability

Base Encoding
For all operators o with precondition p and effect e, state variables a and time points t:

Precondition axioms: ot → pt

Effect axioms: ot →
∧

et+1
Frame axioms: (at ∧ ¬at+1) →

∨
{ot | ¬a ∈ e} and

(¬at ∧ at+1) →
∨
{ot | a ∈ e}

See [Kautz and Selman, 1992].

LTL Formulae
Example: Translation of FGa for bound 2. Possible infinite execution paths:

π0 =
q0 = q2 q1 ≈

q0 q1 q0 q1 q0 . . .

|= FGa iff q0 |= a and q1 |= a

π1 =
q0

q1 = q2

≈
q0 q1 q1 q1 q1 . . .

|= FGa iff q1 |= a

Thus FGa translates to (loopto0 ∧ a0 ∧ a1) ∨ (loopto1 ∧ a1).

For details see [Latvala et al., 2004].

Parallelism
Higher Efficiency through Parallel Plans: For n operators there are n! possible orderings.
Orderings may be equivalent or completely irrelevant. Therefore ignore ordering if possible. Leads
to shorter plans, faster planning.

Problem: incompatible operators. Example: operator o1 flips variable A, o2 flips B.

¬A ∧ B A ∧ ¬B 6|= F(A ↔ B)

¬A ∧ B ¬A ∧ ¬B A ∧ ¬B |= F(A ↔ B)

¬A ∧ B A ∧ B A ∧ ¬B |= F(A ↔ B)

{o1, o2}

o2 o1

o1 o2

If only parallel execution is considered, a plan for F(A ↔ B) is overlooked.

Therefore: Make sure that parallel execution |= φ iff at least one serialized execution |= φ.

Reduction to Satisfiability (continued)

Stuttering Equivalence
Definition: Two sequences π and π̃ of labeled states are stuttering equivalent (π ∼ π̃) if they
can be split into corresponding blocks of states with equal labels.

Example: Two stuttering equivalent paths

p, q p,¬q p,¬q p,¬q ¬p,¬q

p, q p, q p,¬q p,¬q ¬p,¬q

Theorem: [Lamport, 1983]
Let φ be an LTL−X formula and π, π̃ two state sequences labelled with the variables from φ.
Then π ∼ π̃ implies that π |= φ iff π̃ |= φ.

Consequence: It is sufficient to make sure that there is at least one serialized plan execution
such that serialized execution ∼ parallel execution wrt the variables in φ.

Restriction of Parallelism
Make sure that there is a serialization such that for all time points t . . .

. . . the first operator at time point t . . .

. . . causes all effects relevant to φ at t.

Restrictions on Operators: Operator o may only precede operator o′ at time point t if
o causes all effects relevant to φ caused by o′ at time point t. Thus o disables o′ if o′ might
have some effect relevant to φ which o does not have. (Additionally, o disables o′ if o falsifies a
precondition of o′ or affects the set of active effects of o′.)

Encoding via Disabling Graph
Definition: A Disabling Graph is a graph on set of operators with an edge from o to o′ 6= o if
o and o′ are simultaneously applicable in a reachable state and o disables o′.

Encoding: Encode acyclicity of subgraph of Disabling Graph induced by applied operators. If
encoding is satisfied, there must be a serialization whose execution is stuttering equivalent to
the parallel execution. Encoding has linear size.

For details see [Rintanen et al., 2006].

3 Experiments and Results

Experiments
Comparison: parallel vs. purely sequential encoding
Benchmarks problems: qualitative preferences Rovers tasks from IPC 2006 with soft con-
straints turned into hard constraints, no metric function, randomly dropped constraints to keep
problems solvable (retained three constraints per problem)
System: planner implementation in SML, SAT solver Siege V4 [Ryan, 2004],
1.8 GHz AMD Athlon 64, 768 MB RAM, Linux.

Results

Plan lengths/Time steps:
Sequential: lower bound.

Problems 3, 5, and 15:
unsolvable.
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4 Conclusion
Combining existing techniques for SAT planning, bounded LTL model-checking, and partial order
reduction results in a reasonably efficient method of planning for TEGs. The experimental results
show that, like in classical SAT based planning and in Graphplan, admitting parallelism can noticeably
speed up SAT based planning for TEGs.
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