
On the Relationship Between State-Dependent Action Costs and Conditional
Effects in Planning

Robert Mattmüller and Florian Geißer
University of Freiburg, Germany

{mattmuel, geisserf}@informatik.uni-freiburg.de

Benedict Wright and Bernhard Nebel
BrainLinks-BrainTools, University of Freiburg, Germany

{bwright, nebel}@informatik.uni-freiburg.de

Abstract

When planning for tasks that feature both state-dependent
action costs and conditional effects using relaxation heuris-
tics, the following problem appears: handling costs and ef-
fects separately leads to worse-than-necessary heuristic val-
ues, since we may get the more useful effect at the lower cost
by choosing different values of a relaxed variable when de-
termining relaxed costs and relaxed active effects. In this pa-
per, we show how this issue can be avoided by representing
state-dependent costs and conditional effects uniformly, both
as edge-valued multi-valued decision diagrams (EVMDDs)
over different sets of edge values, and then working with
their product diagram. We develop a theory of EVMDDs
that is general enough to encompass state-dependent ac-
tion costs, conditional effects, and even their combination.
We define relaxed effect semantics in the presence of state-
dependent action costs and conditional effects, and describe
how this semantics can be efficiently computed using prod-
uct EVMDDs. This will form the foundation for informative
relaxation heuristics in the setting with state-dependent costs
and conditional effects combined.

Introduction
Both from the modeling and from the computational per-
spective, it makes sense to allow planning tasks with state-
dependent action costs, which can be more natural, elegant,
compact, and structured than tasks with state-independent
costs only. Recent work (Geißer, Keller, and Mattmüller
2015; 2016) has shown that state-dependent action costs
(SDAC) can be handled efficiently by representing cost
functions as edge-valued multi-valued decision diagrams
(EVMDDs) (Ciardo and Siminiceanu 2002; Lai, Pedram,
and Vrudhula 1996). Such decision diagrams exhibit ad-
ditive structure in the cost functions. This structure can
then be exploited in various ways, such as in compilations
of SDAC to constant-cost tasks, or within the relaxed plan-
ning graph (RPG) when computing relaxation heuristics, or
to efficiently obtain abstraction heuristics (Geißer, Keller,
and Mattmüller 2015; 2016).

However, it turns out that one needs to be very careful
when dealing with SDAC and conditional effects (CE) si-
multaneously, in particular in a delete-relaxed setting based

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

x = 0 x = 1 x = 2 x = 3 x = 4 x = 5

S G

Figure 1: Corridor example. Initial position left, goal po-
sition right. Darker shades indicate higher costs to move.

on the accumulation semantics (Hoffmann 2005), and if
there is an action whose cost and effect share dependencies
on common variables. If this is the case, and if SDAC and
CE are handled separately, one may obtain a useful but ex-
pensive effect at an unrealistically low cost by choosing dif-
ferent values of a relaxed variable when determining relaxed
costs and relaxed active effects. This can lead to unnecessar-
ily low and thus uninformative heuristic values, which hurts
the search that uses this heuristic. Let us illustrate the prob-
lem with a concrete example (see Fig. 1). Assume that there
is a corridor in which we can only move one cell to the left
or to the right in each step. The position in the corridor is de-
noted by the state variable x with possible values 0, . . . , 5.
Initially, x = 0, and in the goal, x = 5. The move-right
action is always applicable, and it has the conditional ef-
fect x′ := x + 11, which we read as an abbreviation for
(x = 0 B x′ := 1) ∧ · · · ∧ (x = 4 B x′ := 5). More-
over, the further to the right one gets, the more costly the
movements become, which is reflected by the cost function
cost(move-right) = x+ 1. The move-left action works simi-
larly, with the same cost function as move-right. An optimal
unrelaxed plan is to move to the right five times in a row, at
an overall cost of 1 + 2 + 3 + 4 + 5 = 15.

Assume that we want to obtain a relaxation heuristic value
for the initial state s0, say h+(s0), and assume that we ig-
nore the interaction of SDAC and CE in the relaxation. This
means that in a relaxed state s+ with s+(x) ⊆ {0, . . . , 5},
where x takes several values simultaneously, the cost of
move-right is the minimal cost the action has for any value of
x in s+, and that the effect is the union of the effects it has for
any value of x in s+. For example, for s+(x) = {0, 1, 2},
we get cost(move-right)(s+) = 1 from 0 ∈ s+(x), never-

1Notice that we call the variable x after the update x′. For clar-
ity, we will follow this pattern of using primed copies of variables
to refer to their value after an update throughout the paper.

theless the next relaxed state will include the value 3, be-
cause 2 ∈ s+(x), meaning that we moved one cell to the
right at cost 1, although it should have cost us 3. This can
lead to severe underestimations of the actual goal distances.
E. g., we get h+(s0) = 5 instead of h∗(s0) = 15. Even
worse, instead of decreasing when moving closer to the goal,
the heuristic values first increase. For instance, if s1 is the
state with x = 1, then h+(s1) = 6 > 5 = h+(s0), although
we are closer to the goal. The reason is that we first have
to pay two units for moving to the left, just to get an excuse
for assuming unit cost values of the subsequent four actions
of moving to the right from the initial position x = 1. In
general, the resulting heuristic values can become arbitrarily
inaccurate.

Fortunately, there is a way out of this problem. We must
not handle SDAC and CE separately by minimizing over
the costs and taking unions of effects separately, but rather
take the interaction between them into account. In the ex-
ample, this means that we still have to take the union over
all possible effects in s+, but that we have to assign differ-
ent costs to different effects. Then, in state s+ from above,
we still get the effects x′ := 1, x′ := 2, and x′ := 3, but
at separate costs of 1, 2, and 3, respectively, which leads to
the perfect heuristic value h+(s0) = 15. The question is
how to connect SDAC and CE in the right way. Following
a naı̈ve approach, we might simply work with an exponen-
tially large tabular representation mapping partial states over
the relevant state variables to cost-effect pairs. This would
essentially trade memory for heuristic accuracy. However,
we can do better: The key observation behind our proposed
solution is that both conditional costs and effects can be
thought of as functions from states to elements of certain
monoids: to cost values from N = (N,+, 0) for SDAC2,
and to sets of active effects from F = (2F ,∪, ∅) for CE,
where F is the set of facts of the planning task. Having
monoid structures with addition and union, respectively, al-
lows us to assign partial costs that are already unavoidable
and partial effects that are already guaranteed to happen to
partial variable assignments, and to incrementally derive to-
tal costs (via addition) and total effects (via set union) by
systematically evaluating the current state fact by fact. This
observation, together with the observation that EVMDDs al-
ready proved useful for state-dependent costs, suggests rep-
resenting conditional effects as EVMDDs over F , just as
state-dependent costs can be represented as EVMDDs over
N , and then combining these representations, provided that
both use the same variable ordering. The reader who is curi-
ous about what those diagrams look like for the motivating
example may already have a quick glance at Figs. 2, 3, and 4,
which we will discuss in more detail below. The product
diagram in Fig. 4 solves our problem with the running ex-
ample. Recall the relaxed state s+ with s+(x) = {0, 1, 2}.
Before, we had cost(move-right)(s+) = 1 for all effects that
move-right produced in s+, i. e., for x′ := 1, x′ := 2, and
for x′ := 3 alike. Now, cost(move-right)(s+) is no longer a
single value, but rather it associates different costs to differ-

2We use N instead of Z or Q, because having a well-founded
set with a minimal element makes some discussions a bit easier.

ent effects, specifically cost i to effect x′ := i for i = 1, 2, 3,
i. e., cost 3 to x′ := 3. The combined decision diagrams
for SDAC and CE can then be used similarly as EVMDDs
for SDAC alone (Geißer, Keller, and Mattmüller 2015;
2016). The rest of the paper is concerned with formalizing
this idea and generalizing it to arbitrary SDAC and CE.

Preliminaries
Planning with State-Dependent Action Costs and
Conditional Effects
We consider planning tasks with SDAC and CE, and base
our work on the formalism of Geißer et al. (2015).

A planning task with SDAC and CE is a tuple Π =
(V, A, s0, s?, (ca)a∈A) consisting of the following compo-
nents: V = {v1, . . . , vn} is a finite set of state variables,
each with an associated finite domain Dv = {0, . . . , |Dv| −
1}. A fact f is a pair (v, d), where v ∈ V and d ∈ Dv . We re-
fer to the set of all facts as F . A partial variable assignment
s over V is a consistent set of facts. If s assigns a value to
each v ∈ V , s is called a state. Let S denote the set of states
of Π. A is a set of actions. An action is a pair a = 〈p, e〉,
where p is a partial variable assignment called the precondi-
tion, and e is a conditional effect. We assume, without loss
of generality, that conditional effects are given in effect nor-
mal form (ENF), which is a special case of Rintanen’s unary
conditionality (UC) normal form (Rintanen 2003). An ef-
fect in ENF is a conjunction e =

∧
i=1,...,k ei of sub-effects

ei of the form ϕi B (w′ := d′), where ϕi is a propositional
formula over F , and where w′ := d′ is an atomic effect (a
primed fact) with a variable w ∈ V and value d′ ∈ Dw.
In ENF, every atomic effect may occur at most once in e.
We furthermore assume that there is no state s in which two
contradicting atomic effects are enabled, i. e., whenever e in-
cludes two conjuncts ϕi B (w′ := d′) and ϕj B (w′ := d′′)
for d′ 6= d′′, then ϕi ∧ ϕj is unsatisfiable. If some ϕi = >,
then the corresponding sub-effect is unconditional. The state
s0 ∈ S is called the initial state, and the partial state s? spec-
ifies the goal condition. Each action a ∈ A has an associated
cost function ca : S → N that assigns the application cost of
a to all states where a is applicable.

Each cost function ca depends on a certain subset of the
state variables. Throughout the paper, we assume without
loss of generality that for all variables v that are mentioned
in the precondition p of an action a, neither ca nor any effect
condition ϕi of its effect depends on v. Otherwise, one could
substitute the precondition value of v in the cost function or
the effect condition, respectively, and simplify. The seman-
tics of planning tasks are as usual: an action a is applicable
in state s iff p ⊆ s. To define the result of an action applica-
tion, we need the change set of e in s (Rintanen 2003).
Definition 1. Let s ∈ S be a state and e an effect in ENF
over the state variables of s. Then the change set of e in s,
symbolically [e]s, is defined as follows:
(1) [e1 ∧ · · · ∧ en]s = [e1]s ∪ · · · ∪ [en]s , and
(2) [ϕB f]s = {f} if s |= ϕ, and [ϕB f]s = ∅, otherwise.

A change set will never contain two contradicting effects
w′ := d′ and w′ := d′′ for d′ 6= d′′ because we as-

sume that contradicting effects have inconsistent conditions.
Therefore, removing primes from primed variables, we can
view change sets as partial variable assignments. Then, ap-
plying an applicable action a to s yields the state s′ with
s′(v) = [e]s(v) where [e]s(v) is defined, and s′(v) = s(v)
otherwise. We write s[a] for s′.

A state s is a goal state iff s? ⊆ s. Let π = 〈a0, . . . , an−1〉
be a sequence of actions from A. We call π applicable in s0
if there exist states s1, . . . , sn such that ai is applicable in si
and si+1 = si[ai] for all i = 0, . . . , n− 1. We call π a plan
for Π if it is applicable in s0 and if sn is a goal state. The
cost of plan π is the sum of action costs along the induced
state sequence, i.e., cost(π) =

∑n−1
i=0 cai

(si).

Edge-Valued Decision Diagrams
Both action cost functions and conditional effects can be
represented as EVMDDs, though over different monoids.
Recall that a monoid is a structure M = (M,+, 0) con-
sisting of a carrier set M , a binary operation + on M , and
an element 0 ∈ M such that + is associative, and that 0 is
the neutral element. In our scenario, + will be used to aggre-
gate partial costs or effects, and the neutral element will be
the cost value zero or the empty set of effects, respectively.
We only consider commutative monoids to avoid issues with
different variable orderings.

To define when a (reduced ordered) EVMDD is canonical,
we need to ensure that edge labels are not arbitrarily shifted
up and down along the edges. This is achieved by requiring
that there is nothing that sibling edge labels originating in
the same parent node still have in common that could not be
taken care of earlier in the decision diagram. For N , this
means that the minimum edge label of any edge leaving the
same parent node is zero (and hence, any excess cost has
been pulled upward into the incoming edge label). Simi-
larly, for F , it means that the intersection of the labels of the
edges leaving the same parent node is empty (and hence, all
partial effects that happen for all possible values of the cur-
rent decision variable are pulled upward into the incoming
edge label).

To accomplish this in general, we require that M has a
monus operator .− (Amer 1984). For that, we need the re-
lation ≤ on M defined as a ≤ b iff there is a c ∈ M with
a + c = b, for a, b ∈ M . This relation is reflexive and
transitive by definition, and we additionally assume it to be
antisymmetric, giving us a partial order. Next, we assume
that for all a, b ∈ M , there is a unique smallest element
c ∈ M such that a ≤ b + c. ThenM is called a commuta-
tive monoid with monus (CMM) (Amer 1984) and the monus
a .− b of a and b is this unique c. Finally, we require that the
partial order ≤ is a meet-semilattice order, i. e., that (M,≤)
has a greatest lower bound for any nonempty finite subset
M ′ ⊆M , denoted by

∧
M ′, as well as that the operation +

on M can be distributed over the greatest lower bound op-
erator

∧
, and that

∧
M = 0. If all these requirements are

met, we call M a meet-semilattice ordered CMM. We will
often assume a meet-semilattice ordering implicitly without
always mentioning it.

Notice that N with the natural order ≤ as partial order,
truncated subtraction as monus, and minimum operator min

as greatest lower bound is a meet-semilattice ordered CMM,
and that the same holds for F with subset relationship ⊆
as partial order, set difference as monus, and the intersec-
tion operation ∩ as greatest lower bound. Since we will
consider product EVMDDs that combine costs and effects,
we also require that Cartesian products of meet-semilattice
ordered CMMs are again meet-semilattice ordered CMMs.
With component-wise partial orders, monuses, and greatest
lower bounds, this is indeed the case. During EVMDD con-
struction, the greatest lower bound operator

∧
will be used

to determine what the common part of sibling edge labels
is, whereas the monus operator .− will be used to determine
which partial cost or effect is left at each EVMDD edge af-
ter the common part of sibling edge labels has been “sub-
tracted” and pulled upward into the incoming edge label.
Definition 2. Let M = (M,+, 0) be a meet-semilattice
ordered CMM. An EVMDD over M and over V is a tu-
ple E = 〈κ, f〉, where κ ∈ M and f is a directed acyclic
graph consisting of two types of nodes: (i) there is a sin-
gle terminal node denoted by 0. (ii) A nonterminal node
v is a tuple (v, χ0, . . . , χk, w0, . . . , wk) where v ∈ V is a
variable, k = |Dv| − 1, children χ0, . . . , χk are terminal
or nonterminal nodes of E , labels w0, . . . , wk ∈ M , and∧

i=0,...,k wi = 0.
By f we also refer to the root node of E . Edges of E be-

tween parent and child nodes are implicit in the definition
of the nonterminal nodes of E . The label of an edge from v
to child χi is wi. An EVMDD over a commutative monoid
M with carrier M and variables V denotes a function from
the set of states S over V to M . Intuitively, to determine the
function value for a given state s ∈ S, one has to follow the
unique path in the EVMDD determined by s by always fol-
lowing the unique edges consistent with s, collect the edge
labels along the way, and combine them with +. E. g., if the
edge labels are numbers and + is addition, then one has to
add up all the encountered edge labels.
Definition 3. An EVMDD E = 〈κ, f〉 over meet-semilattice
ordered CMMM = (M,+, 0) and variables V denotes the
function κ + f from the states over V to M , where f is the
function denoted by f . The terminal node 0 denotes the con-
stant function 0, and a node (v, χ0, . . . , χk, w0, . . . , wk) de-
notes the function given by f(s) = ws(v) + fs(v)(s), where
fs(v) is the function denoted by child χs(v). We write E(s)
for κ+ f(s).

In the graphical representation of an EVMDD, f is repre-
sented by a rooted DAG and κ by a dangling incoming edge
to the root node of f . The terminal node is depicted by a
solid black circle. Edge constraints d, corresponding to the
valuation of the decision node, are written next to the edges,
edge labels wd in boxes on the edges.

Let us return to our example. The action cost function
cost(move-right) = x+1 can be represented by the EVMDD
over N depicted in Fig. 2. Similarly, the conditional effect
x′ := x+1 of move-right can be represented by the EVMDD
over F depicted in Fig. 3. Notice that in the latter, the edge
labels are generally sets of effects that fire, not just single
effects. They only happen to be singleton sets in this exam-
ple for x = 0, . . . , 4. For x = 5, when the right end of the

x

1

0

0

1

1

2

2

3

3

4

4

5

5

Figure 2: EVMDD over N for cost function x+ 1.

x

∅

{x′ := 1}

0

{x′ := 2}

1
{x′ := 3}

2

{x′ := 4}
3

{x′ := 5}

4

∅

5

Figure 3: EVMDD overF for conditional effect x′ := x+1.

corridor has been reached, the conditional effect is empty, as
witnessed by the corresponding edge label ∅. Similarly, the
empty set at the dangling incoming edge represents the fact
that there are no unconditional effects in this example. Oth-
erwise, they would be found there. The product of those two
EVMDDs (Fig. 4) is obtained by combining decision nodes
of (the quasi-reduced form of) one diagram with nodes of
(the quasi-reduced form of) the other diagram on the same
level, i. e., with the same associated decision variable, with
corresponding paths leading there, and combining edges and
edge labels accordingly. It is, by construction, an EVMDD
over the Cartesian product N ×F . In this example, there is
only one decision node with associated decision variable x
in both diagrams, and therefore just one product node.

Notice that for general meet-semilattice ordered CMMs,
being reduced and ordered, and satisfying

∧
i=0,...,k wi = 0

at each decision node is not sufficient for uniqueness, since

x

1

∅

0

{x′ := 1}

0
1

{x′ := 2}

1
2

{x′ := 3}

2

3

{x′ := 4}

3

4

{x′ := 5}

4

5

∅

5

Figure 4: EVMDD over N ×F for cost function x+ 1 and
conditional effect x′ := x + 1 combined. Edge labels have
their N -part on top, and their F-part at the bottom.

there can be redundant edge labels along a path that are
not ruled by any of these conditions. We conjecture that
an additional redundancy freedom condition of the form
(a + b) .− b = a for labels a and b on the same EVMDD
path may restore uniqueness. ForN andF , the apply proce-
dure described below, which we use to construct EVMDDs,
guarantees this condition, which is sufficient for the purpose
of this paper. We conjecture that the same holds for other
meet-semilattice ordered CMMs.

EVMDD Construction
In this section, we will discuss how EVMDDs over N × F
can be constructed that encode SDAC and CE for unrelaxed
states in one diagram. In the subsequent section, we will
show how the same diagrams can also be used to determine
SDAC and CE for relaxed states.

Before we discuss the individual constructions for state-
dependent action costs, conditional effects and the combi-
nation of both, we want to revisit the apply procedure (Lai,
Pedram, and Vrudhula 1996). The original algorithm only
considered EVMDDs over the same monoid; we consider
a more general definition which allows us to combine
EVMDDs over different monoids. For that we assume that
a state space S and a variable ordering are fixed. Let L =
(L,+L, 0L), R = (R,+R, 0R) and T = (T,+T , 0T) be
three meet-semilattice ordered CMMs and let ◦ : L×R→ T
be an operator. Assume further that f : S → L and
g : S → R are two functions and that, by slight abuse of
notation, we view ◦ also as an operator on such functions in
the obvious way via (f ◦ g)(s) = f(s) ◦ g(s). Furthermore,
let E(·) be the construction that turns a function f into the re-
duced ordered EVMDD Ef representing it. We would like to
have an operator ◦E on EVMDDs that mimics the behavior
of ◦ on EVMDDs, i.e., such that E(f◦g) = Ef ◦E Eg . The ap-
ply procedure does exactly that. In the literature, the applica-
tion of ◦ on the EVMDD level, Ef ◦E Eg , is usually written as
apply(◦, Ef , Eg). Algorithmically, the apply procedure tra-
verses both input EVMDDs Ef and Eg from top to bottom in
a synchronized manner, propagating edge labels downward,
recursively applying ◦ to pairs of corresponding subgraphs
with the same edge constraint, and pulling up excess edge
weights (labels) again when the recursive computation has
terminated. In the base case, when both EVMDDs represent
constant functions encoded in their bottom-most edge labels
wL (in Ef) and wR (in Eg), those get combined into the new
edge label wL ◦ wR. If, due to one of the EVMDDs being
Shannon-reduced at some point where the other is not, the
decision variables on both sides do not match, then the Shan-
non reduction on one side has to be conceptually undone by
virtually introducing a new decision node with all outgoing
edges carrying the “empty” label 0L (0R) before proceeding.

In the following, we will assume that cost functions and
conditional effects are given as syntactic terms (e. g., costs
as multivariate polynomials), and can thus be represented
by abstract syntax trees (ASTs). To construct correspond-
ing EVMDDs, we will then traverse the ASTs bottom-up,
and perform the operations represented by inner nodes of
the AST on the EVMDDs already constructed for the sub-
trees of the AST, using the apply procedure. For an alter-

x

y

1

0

0

1

1

0

0

2

1

(a) x+ 2y + 1.

x

y

{w′}

{¬v′}

0

{u′,¬z′}

1

∅

0

{¬z′}

1

(b) (¬xB¬v′)∧(xBu′)∧
((x ∨ y)B ¬z′) ∧ w′.

Figure 5: EVMDDs for costs and conditional effects.

native construction using repeated Shannon expansions into
cofactors we refer to a previous workshop version of this
paper (Mattmüller et al. 2017).

Construction for State-Dependent Action Costs
Let c : S → N be the function we want to represent,
given as a multivariate polynomial. We first generate the
abstract syntax tree of c where leaf nodes represent vari-
ables and constants, and inner nodes represent arithmetic
operators. For each leaf node, we create an EVMDD E ;
if the node represents a constant n, then we set κ = n
and get E = 〈n,0〉, i. e., E represents the constant function
n. If the leaf node represents a variable v, then we create
the EVMDD E = 〈0, f〉 representing the function v, where
f = (v,0, . . . ,0, 0, 1, . . . , k) with k = |Dv|−1. Intuitively,
E consists of a single non-terminal node representing vari-
able v, with an edge of cost d to the terminal node for each
domain value d of v. For inner nodes representing operators
◦, we recursively construct the EVMDDs EL and ER for the
left and right child and call the apply procedure to generate
EL ◦E ER.
Proposition 1. Let c : S → N be an arithmetic function
and let Ec be the reduced ordered EVMDD for c constructed
as described above, for an arbitrary variable ordering. Let
s ∈ S be a state. Then c(s) = Ec(s).
Example 1. Fig. 5a depicts an EVMDD over N with vari-
able ordering x, y representing the function c(x, y) = x +
2y + 1, where the domains of all variables are binary.
The left hand side of Fig. 6 illustrates the construction of
this EVMDD, showing the required apply calls in the in-
ner nodes, and the EVMDDs corresponding to the base
cases in the leaf nodes. Following the unique path through
the EVMDD corresponding to a given state s, say with
s(x) = s(y) = 1, summing up the edge labels along the
way, results in the correct function value c(x, y) = 4.

Construction for Conditional Effects
For CE, using the monoid F = (2F ,∪, ∅), the construction
works in a two-fold manner. Let e = (ϕ1B f1)∧· · ·∧ (ϕnB
fn) be an effect in ENF. For each ϕi, we generate the expres-
sion tree where leaf nodes represent either constants > or

⊥, or facts v = d. Similar to above, we generate EVMDDs,
now over the monoidB = ({>,⊥},∨,⊥): for constants, the
corresponding EVMDD is either E = 〈>,0〉 or E = 〈⊥,0〉.
For a fact v = d, the resulting EVMDD is E = 〈⊥, f〉 where
f = (v,0, . . . ,0, w0, . . . , wk) with k = |Dv| − 1, wd = >,
and wi = ⊥ for i 6= d, i.e. for v = d the EVMDD evalu-
ates to true, and otherwise to false. Inner nodes, represent-
ing Boolean connectives, are, once again, processed via the
apply procedure. We call the resulting EVMDD Eϕi . For
each fact fi, we generate the corresponding EVMDD (over
F) representing that effect, Efi = 〈{f ′i},0〉. Finally, we gen-
erate the EVMDD representing conditional effect ϕi B fi by
applying the operator D : {>,⊥} × 2F → 2F to Eϕi

and
Efi , where > D F ′ = F ′ and ⊥ D F ′ = ∅ for F ′ ⊆ F . In-
tuitively, this EVMDD evaluates a state s to [ϕi B fi]s, i. e.,
to fi, if s |= ϕi, and to ∅, otherwise. Finally, we represent e
as a single EVMDD Ee, by applying the union operator ∪ to
the sub-EVMDDs.
Example 2. Consider the conditional effect in ENF e =
(¬x B ¬v′) ∧ (x B u′) ∧ ((x ∨ y) B ¬z′) ∧ w′. We have
binary domains for all variables and consequently use the
abbreviations ¬v and v for v = 0 and v = 1 (and ¬v′
and v′ for v′ := 0 and v′ := 1 in effects). The right hand
side of Fig. 6 illustrates the construction of this EVMDD,
showing the required apply calls in the inner nodes and
the EVMDDs corresponding to the base cases in the leaf
nodes. Fig. 5b depicts an EVMDD over F with variable
ordering x, y, z, u, v, w representing the effect e. Follow-
ing the unique path through the EVMDD corresponding to
a given state s, say with s(x) = s(y) = 1, and taking the
union of the edge labels along the way, results in the effect
{w′, u′,¬z′}.

For CE, the semantics of an effect ` applied to a state s
is its change set [e]s. Therefore, the analogue to Prop. 1 for
CE, which follows inductively from the correctness of the
apply procedure, reads as follows.
Proposition 2. Let e be a conditional effect in ENF, and
let Ee be the reduced ordered EVMDD for e constructed as
described above, for an arbitrary variable ordering. Let s ∈
S be a state. Then [e]s = Ee(s).

Product EVMDDs
The more general definition of the apply procedure al-
lows for a compact and succinct definition of product
EVMDDs. Given two meet-semilattice ordered CMMs L =
(L,+L, 0L) and R = (R,+R, 0R), and two EVMDDs Ef ,
Eg representing functions f : S → L, g : S → R,
the product of Ef and Eg is Ef,g = Ef ⊗E Eg with ⊗ :
L×R→ L×R being the identity function ⊗(l, r) = (l, r)
for (l, r) ∈ L×R. A schematic view of this construction is
depicted in Figure 6. The left half of the tree describes the
cost function, and the right half describes the conditional ef-
fects. The leaf nodes are constants, variables, or facts, and
can directly be represented as EVMDDs (some examples for
such EVMDDs are shown in red). Inner nodes correspond
to operations on their underlying monoids, annotated by the
corresponding apply call.

combineapply(⊗)

+apply(+) ∧ apply(∪)

+apply(+) 1 . . . Bapply(D) . . .

x ×apply(×) ∨apply(∨) z′ := 0

2 y ==
apply(==)

== apply(==)

x 1 y 1

1

y

0

0

0

1

1
x

⊥

⊥

0

>

1

{z′ := 0}

Figure 5bFigure 5a
Example 3

Figure 6: Combined AST for cost function x+ 2y + 1 and conditional effect (¬xB ¬v′) ∧ (xB u′) ∧ ((x ∨ y) B ¬z′) ∧w′ is
depicted in gray. Exemplary EVMDDs corresponding to the nodes of the AST are depicted in red.

Example 3. Consider the
two EVMDDs from Ex. 1
and 2. Their product is de-
picted to the right. The di-
agram contains a full bi-
nary tree over x and y,
which means that there
is no potential of exploit-
ing shared structure due to
the involved combination
of costs and conditional
effects. This is, however,
specific to this example. In
general, product diagrams
can be much smaller.

x

y y

1

{w′}

0

{¬v′}

0

1

{u′,¬z′}

1

0

∅

0

2

{¬z′}

1

0

∅

0

2

∅

1

By evaluating the product EVMDD for a state s, we still
get the correct cost values and change sets back via pro-
jection. This holds in general for EVMDDs over arbitrary
meet-semilattice ordered CMMs.

Proposition 3. Given f ,g as above, assume a fixed variable
ordering and let s ∈ S. Then Ef,g(s) = (f(s), g(s)).

Proof. Follows immediately from the fact that
apply(◦, Ef , Eg) = Ef◦g , instantiated with ◦ = ⊗. More
precisely, Ef,g = Ef ⊗E Eg = apply(⊗, Ef , Eg) = Ef⊗g ,
by definition of product EVMDDs, and definition and
correctness of the apply procedure, respectively. Therefore,
Ef,g(s) = Ef⊗g(s) = (f, g)(s) = (f(s), g(s)).

Corollary 1. Assume a fixed variable ordering. Let c : S →
N be an arithmetic function and e be a conditional effect in
ENF. Let Ec and Ee be the EVMDDs for c and e constructed
as described. Let Ec,e = Ec ⊗ Ee, and let s ∈ S be a state.
Then Ec,e(s) = (Ec(s), Ee(s)) = (c(s), [e]s).

The size of a product EVMDD Ef ⊗E Eg is always
bounded by the product of the sizes of the factors Ef and

Eg . Moreover, there are two special cases where the con-
struction incurs no blowup whatsoever. First, if Ef and Eg
share an identical graph topology and only differ in their
edge labels (as in Figs. 2 and 3), i. e., their evaluation pro-
ceeds “in lockstep”, then the product also shares the same
topology. This happens whenever there is a one-to-one cor-
respondence between sub-effects and partial costs associ-
ated with them. Second, if the set of variables Vf on which
Ef depends is disjoint from the set of variables Vg on which
Eg depends, and if Vf and Vg are not interleaved in the vari-
able ordering, then Ef ⊗E Eg will essentially be Ef and Eg
sequentially “glued together”, with the label of the disap-
pearing second dangling incoming edge moved to the first
dangling incoming edge instead. This is the case whenever
there is no relation between costs and effects at all.

Relaxed Semantics for SDAC and CE
In this section, we first declaratively define a relaxed seman-
tics in the presence of SDAC and CE, and then show how
this semantics can be efficiently computed using the previ-
ously constructed product EVMDDs over N × F . When-
ever we mention relaxed states, the reader should keep in
mind that the same discussion works for arbitrary Carte-
sian states (Ball, Podelski, and Rajamani 2001; Seipp and
Helmert 2013), of which relaxed states are merely a special
case, in particular also for states of a Cartesian abstraction.

Declarative Definition
A relaxed state s+ assigns to each variable v ∈ V a non-
empty subset s+(v) ⊆ Dv of its domain. A state s ∈ S is
consistent with s+, in symbols s |= s+, iff for all variables
v, s(v) ∈ s+(v). An action a = 〈p, e〉 is relaxed applicable
in s+ iff p(v) ∈ s+(v) for all v for which p is defined. Gen-
eralizing Def. 1, we define the change set of an effect e of an
action a with precondition p in a relaxed state s+. However,
instead of a set of facts, this will now be a set of pairs of
facts and associated cost values.

Definition 4. Let s+ be a relaxed state and a = 〈p, e〉 be
an action with effect e in ENF and cost function c : S →
N. Then the change set of e in s+ is defined as [e]cs+ =⊔

s∈S:s|=s+JeKcs, where

(1) Je1 ∧ · · · ∧ enKcs = Je1Kcs ∪ · · · ∪ JenKcs ,
(2) JϕB fKcs = {(f, c(s))} if s |= ϕ, and

JϕB fKcs = ∅, otherwise, and
(3)

⊔
j Ej = {(f, n) ∈

⋃
j Ej | ∀(f, `) ∈

⋃
j Ej : ` ≥ n}.

The change set [e]cs+ consists of all those facts f that can
be achieved using e in any state s with s |= s+. With each
such fact f, the change set associates the minimal cost at
which f can be achieved among all s with s |= s+. When
defining [e]cs+ by referring to all states s with s |= s+,
we do not have to distinguish between states where a is
applicable and states where it is not. Since the precondi-
tion variables affect neither the costs nor the effect condi-
tions, whenever we get a minimal cost value from a state
where a is inapplicable, there must also be another state
also consistent with s+ where a is applicable and where
it costs the same. In clause (1), we still use the regular
union operation, which is justified since we assume that
no fact occurs on two different right-hand sides of sub-
effects. We might use the minimizing union

⊔
just as well,

leading to the equivalent phrasing [ϕ1 B f1 ∧ · · · ∧ ϕn B
fn]cs+ =

⊔
s∈S:s|=s+

⊔
i=1,...,nJϕiBfiKcs. For illustration, re-

call the introductory example and the relaxed state s+ with
s+(x) = {0, 1, 2}. Let c = cost(move-right). Then we get
[x′ := x+ 1]cs+ = {(x′ := 1, 1), (x′ := 2, 2), (x′ := 3, 3)}.

EVMDD-Based Computation
Next, we show how we can compute change sets in relaxed
states efficiently. The problem is that in Def. 4, we take
the union over all unrelaxed states s with s |= s+, in the
worst case exponentially many in the number of state vari-
ables.3 To avoid this exponentiality whenever possible, we
use the product EVMDDs constructed above. We will de-
scribe a polynomial evaluation procedure for such EVMDDs
Ec,e over costs and effects for relaxed states s+ as input that
returns [e]cs+ . Before describing the procedure, we want to
point out that it does not simply consist of taking sums of
costs and unions of effects independently (essentially the
standard EVMDD evaluation from Def. 3), which would de-
feat the purpose of the construction.

Rather, our proposed evaluation procedure traverses Ec,e,
restricted to edges consistent with s+, along a topological
ordering from top to bottom. At each node v, it keeps track
of two pieces of information: (a) the set F of fact-cost pairs
(f, n) for all achieved facts f at v along any incoming path,
together with cheapest achievement costs n of f, and (b) the
cost n of a cheapest path leading to v. I. e., Ec,e(s+)(v)
will have the form (F, n). To formalize this procedure, let
v1, . . . ,vn be a topological ordering of Ec,e, where vn = 0.

3Computing change sets from Def. 4 is an NP-hard problem,
even for unit-cost tasks, as a simple reduction from SAT shows: a
propositional formula ϕ is satisfiable iff (f, 1) ∈ [ϕ B f]cs+ , where
c(s) = 1 for all s, and s+(v) = Dv for all v ∈ V .

Base case for i = 1: Node v1 only has the dangling in-
coming edge with label κ = (n, F ′). We let Ec,e(s+)(v) =
(F, n) with F = {(f, n) | f ∈ F ′} and n = n.

Inductive case for i > 1: Let v = vi be an interior
node of Ec,e. To determine F for v, we collect all facts Fold

inherited from parent nodes of incoming edges (consistent
with s+), with their costs increased by the incoming edge
cost. To those, we add all facts Fnew achieved on incom-
ing edges, with cost of achieving them there; the resulting
set of fact-cost pairs is filtered so that we only associate
the cheapest cost with each fact. Formally, let us denote
incoming edges of v as tuples consisting of a parent node
vj with associated decision variable vj and edge constraint
vj = dj , and edge label (nj , Fj), consisting of partial costs
nj and partial effects Fj . Index the incoming edges with
j = 1, . . . ,M . Let (Fj , nj) = Ec,e(s+)(vj) be the evalua-
tion result associated with parent node vj . Then we define
Fold
j = {(f, n+nj) | (f, n) ∈ Fj}, Fnew

j = {(f, nj +nj) | f ∈
Fj}, Fold =

⊔
j=1,...,M Fold

j , Fnew =
⊔

j=1,...,M Fnew
j , and

F = Fold t Fnew. Notice that for old facts, we still need to
take the respective edge costs into account, even after the
facts have already been achieved. To determine n for v, we
set n = minj=1,...,M (nj+nj). Then, Ec,e(s+)(vi) = (F, n).

Finally, we let Ec,e(s+) denote the first component of the
value Ec,e(s+)(0), discarding the reachability cost of 0, and
only keeping the reached facts with their associated costs.

Proposition 4. Let s+ be a relaxed state and a = 〈p, e〉 an
action with effect e in ENF and cost function c : S → N. Let
Ec,e be the product of an Ec encoding c and Ee encoding e.
Let the evaluation procedure of Ec,e for relaxed states be as
described above. Then [e]cs+ = Ec,e(s+).

Proof sketch. Both sides of the equality are by definition
functional sets of fact-cost pairs (f, n) where each fact f oc-
curs at most once. Functionality follows from the use of
the minimizing union operator t in both cases. We first ar-
gue that the sets of facts occurring in [e]cs+ and Ec,e(s+) are
identical. This is easy to see: by definition, a fact f occurs in
[e]cs+ iff there is an unrelaxed state s with s |= s+ such that
the effect condition for f is satisfied in s. This is the same
as saying that f ∈ [e]s for some such s. This is equivalent
to f ∈ Ee(s) for such an s according to Prop. 2, which, ac-
cording to the EVMDD product construction, is equivalent
to f appearing as part of some edge label in Ec,e for an edge
on a path corresponding to s. This, finally, is equivalent to f
occurring in Ec,e(s+), since during the evaluation procedure
of Ec,e, exactly the edges on paths corresponding to some s
with s |= s+ are traversed, and all visited effect edge labels
are collected along the way and no fact is ever discarded.

Now that we know that the same facts are mentioned in
[e]cs+ and Ec,e(s+), we still have to show that they are as-
sociated with the same costs in both. In [e]cs+ , for fact f,
by definition this is the minimal cost c(s) at which f can be
achieved in any state s with s |= s+. Let s be such a min-
imizer. We have to show that f is associated with the same
cost in Ec,e(s+). We know that c(s) is the sum of edge labels
in the cost EVMDD Ec for the path corresponding to s. By
definition of the product construction, the same labels (and

therefore the same sum of labels) is also present for s in the
product EVMDD Ec,e.

Moreover, in the evaluation of Ec,e, that path will also be
traversed. The point at which f appears as an edge label may
be anywhere on the path, not just on the last edge before
the terminal node. The cost associated with f in Ec,e along
that path is first determined after the edge where f appears
as a label, and there it is the cost of the prefix of the path
corresponding to s ending in the node after f has been set.
By construction, for the prefix, the sum of costs is the same
as the partial sum of costs in c(s). From there, when f gets
propagated further along the path suffix corresponding to s,
the associated cost is always incremented accordingly, by
adding nj in the definition of Fold

j . Also, the cost coming
from s never disappears in a minimizing union operation,
since s itself is a minimizer. This shows that Ec,e(s+)(f) ≤
[e]cs+(f). For the opposite direction, it suffices to note that if
Ec,e(s+)(f) were strictly smaller, then there would have to
be a state s responsible for this, which would also have to be
taken into account in [e]cs+(f), a contradiction.

Since we never associate more fact-cost pairs to a node
than there are facts, the evaluation procedure is clearly
polynomial in the size of the planning task and the prod-
uct EVMDD. To illustrate the evaluation, notice that the
EVMDD from Fig. 4 is such a product EVMDD. Evaluat-
ing it for relaxed state s+ with s+(x) = {0, 1, 2} means
removing all arcs with a constraint on x inconsistent with
s+, i. e., the arcs for x = 3, x = 4, and x = 5. Then, at the
decision node for x, we get the intermediate result (∅, 1).
At the terminal node, we get (∅ t {(x′ := 1, 1)} t {(x′ :=
2, 2)}t{(x′ := 3, 3)}, 1). Its first component is the same as
{(x′ := 1, 1), (x′ := 2, 2), (x′ := 3, 3)} = [x′ := x+ 1]cs+ .

Notice that, for a definition of optimal relaxed plans, we
will have to associate costs to facts in relaxed states as well,
and adapt Def. 4 accordingly.

Empirical Evaluation
While a complete analysis of h+ and its approximations in
the SDAC/CE setting is beyond the scope of this paper, we
will discuss how the current state of the art for delete relax-
ation heuristics in this setting compares to our approach on a
conceptual level, and give a few insights about their relation
for some domains.

Currently, planning with delete-relaxation heuristics for
domains incorporating state-dependent action costs and con-
ditional effects in a planning system such as Fast Down-
ward (Helmert 2006) consists of two steps: first, com-
pile SDAC away (either with exponential overhead, or with
a compilation based on EVMDDs (Geißer, Keller, and
Mattmüller 2015)). Second, solve the resulting task (with
constant costs and conditional effects) with forward search
and delete-relaxation heuristics. Note that in order to com-
pute delete relaxation heuristics for tasks with CE, Fast
Downward internally performs another compilation (only
used to compute the heuristic, not for the actual search): For
each conditional effect ϕiB fi, there is an action 〈p∧ϕi, fi〉,
where p is the action precondition. We can therefore un-
derstand the overall process, where costs and conditional ef-

ASTERIX Ec Ee Ec,e
|E| 18.78 41.44 57.89
|VE | 2.67 1.78 3.11
|T | 1380.98 124.00 1380.98

PSR Ec Ee Ec,e
22 22 44
11 11 22

2048 2048 4194304

Table 1: Average EVMDD sizes for two exemplary in-
stances of Asterix and Power Supply Restoration.

fects are considered separately (which leads to inaccurate
heuristic values), as a two-step compilation; SDAC compi-
lation is linear in the size of Ec, and effect compilation is
linear in the number of conditional effects. On the other
hand, an approach which incorporates SDAC and CE based
on their product EVMDD is bounded by the product of the
sizes of Ec and Ee. Thus, we want to analyze the size of
effect EVMDDs compared to the number of conditional ef-
fects for practical planning domains. We have developed
a tool to generate EVMDDs over arbitrary meet-semilattice
ordered CMMs and analyzed the benchmark set of the Inter-
national Planning Competition 2014. However, most condi-
tional effects are removed by Fast Downward during prepro-
cessing. Only the Cave Diving and Citycar domains have
remaining conditional effects, but even for these there are
less than 5 effects for each instance. Therefore, we consider
two domains which incorporate not only conditional effects,
but also state-dependent action costs.

The Asterix domain is a toy example, similar to our cor-
ridor example. Asterix has to gather the Edelweiss from a
mountain; climbing the mountain depends on Asterix’ cur-
rent location. If Asterix does not have the magic potion,
climbing gets harder at the peak, therefore the climb ac-
tion has conditional effects as well as state-dependent action
costs. In the second domain, Power Supply Restoration, the
goal is to resupply a number of lines in a faulty electricity
network (Thiébaux and Cordier 2001). The PDDL version
of this domain only considers conditional effects, we aug-
ment the actions with state-dependent action costs, where an
action costs less, if more lines are supplied with power. This
corresponds to minimizing breakdown costs, as described in
the original problem description.

We first compare the number of conditional effects to the
size (number of nodes) of the largest effect EVMDD. For
the Asterix domain, EVMDD size grows linearly to the num-
ber of conditional effects. For Power Supply Restoration we
consider the wait action which has one conditional effect for
each device. In this case the EVMDD size is equal to the
number of conditional effects. Additionally, Tab. 1 reports
the average size of the EVMDDs for c, e and their product,
as well as the number of variables the functions depend on.
We also provide a comparison if one would use a naı̈ve rep-
resentation instead of EVMDDs, i.e. the size of a simple
lookup table storing the results, denoted as |T | (which is ex-
ponential in |VE |, as there is an entry for each state). For
Asterix, we consider the hardest instance, results are of sim-
ilar fashion for the other instances. While the largest effect
EVMDD has nearly 800 nodes, the average size is still rel-
atively small, despite variables having a domain size of 15.
In PSR, costs and conditional effects depend on many more

(binary) variables. However, the structure of their functions
results in linearly growing EVMDDs, which in turn results
in a small and compact representation. This holds for all
instances of PSR.

Discussion
In the literature, SDAC and CE were only discussed sepa-
rately so far. In this paper, we demonstrated that they are,
in fact, just two sides of the same coin. Whereas using
EVMDDs to encode conditional effects works well for us,
since besides often being compact, EVMDDs appear to be
“heuristic-friendly”, too, we have to point out, though, that
EVMDDs are not the magic bullet for dealing with condi-
tional effects. E. g., an EVMDD-based compilation of con-
ditional effects can, in the worst case, become exponentially
larger than Nebel’s compilation (Nebel 2000). To see this,
consider a conditional effect of the form ϕ B f, where ϕ is
a propositional formula with an exponentially large decision
diagram representation. Then, an EVMDD-based compila-
tion will be exponential, whereas Nebel’s compilation will
be of constant size, since it only branches on the entire for-
mula ϕ once, whereas EVMDDs may only branch on single
variables in each step.

EVMDDs defined over structures other than N are not
completely novel; EVMDDs defined over groups, instead of
over CMMs, were already applied to model checking (Roux
and Siminiceanu 2010). The attentive reader familiar with
the successor generator (SG) in the Fast Downward planner
will have noticed that EVMDDs over F are basically edge-
valued SGs without don’t-care branches.

Finally, when combining the decision diagrams for SDAC
and CE, one has to carefully choose a common variable or-
dering. In particular, one should avoid interleaving variables
that only occur in the cost function with variables that only
occur in the effect conditions.

Conclusion
We defined a relaxed operator semantics in the presence
of SDAC and CE that is closer to the unrelaxed seman-
tics than an alternative naı̈ve semantics where costs and ef-
fects are handled separately. Whereas the new semantics
refers to exponentially many unrelaxed states, we proposed
an EVMDD-based way of computing it that avoids this ex-
ponentiality in many practical cases.

We intend to build upon this work to derive informative
relaxation heuristics, such as generalizations of the addi-
tive (Bonet, Loerincs, and Geffner 1997) or the FF (Hoff-
mann and Nebel 2001) heuristic. We believe that our en-
coding will also prove useful in the definition of abstrac-
tion heuristics, similarly as in previous work (Geißer, Keller,
and Mattmüller 2016). Moreover, we will define and an-
alyze action compilations based on product EVMDDs in a
way similar to previous work on SDAC (Geißer, Keller, and
Mattmüller 2015). Finally, we will also investigate admis-
sible ways of keeping our EVMDDs small, possibly at the
cost of some precision.

Acknowledgments. This work was partly supported by
BrainLinks-BrainTools, Cluster of Excellence funded by the
German Research Foundation (DFG, grant number EXC
1086). We thank the the anonymous reviewers for their in-
sightful comments. We thank Malte Helmert and Florian
Pommerening for answering our questions regarding Fast
Downward.

References
Amer, K. 1984. Equationally complete classes of commuta-
tive monoids with monus. Algebra Univers. 18(1):129–131.
Ball, T.; Podelski, A.; and Rajamani, S. K. 2001. Boolean
and cartesian abstraction for model checking C programs. In
Proc. TACAS 2001, 268–283.
Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A robust and
fast action selection mechanism for planning. In Proc. AAAI
1997, 714–719.
Ciardo, G., and Siminiceanu, R. 2002. Using edge-valued
decision diagrams for symbolic generation of shortest paths.
In Proc. FMCAD 2002, 256–273.
Geißer, F.; Keller, T.; and Mattmüller, R. 2015. Delete
relaxations for planning with state-dependent action costs.
In Proc. IJCAI 2015, 1573–1579.
Geißer, F.; Keller, T.; and Mattmüller, R. 2016. Abstrac-
tions for planning with state-dependent action costs. In Proc.
ICAPS 2016, 140–148.
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. JAIR 14:253–
302.
Hoffmann, J. 2005. Where “ignoring delete lists” works:
Local search topology in planning benchmarks. (JAIR)
24:685–758.
Lai, Y.; Pedram, M.; and Vrudhula, S. B. K. 1996. Formal
verification using edge-valued binary decision diagrams.
IEEE Transactions on Computers 45(2):247–255.
Mattmüller, R.; Geißer, F.; Wright, B.; and Nebel, B. 2017.
On the relationship between state-dependent action costs
and conditional effects in planning. In Proc. HSDIP 2017.
Nebel, B. 2000. On the compilability and expressive power
of propositional planning formalisms. JAIR 12:271–315.
Rintanen, J. 2003. Expressive equivalence of formalisms for
planning with sensing. In Proc. ICAPS 2003, 185–194.
Roux, P., and Siminiceanu, R. I. 2010. Model checking
with Edge-valued Decision Diagrams. In Proc. NFM 2010,
222–226.
Seipp, J., and Helmert, M. 2013. Counterexample-guided
Cartesian abstraction refinement. In Proc. ICAPS 2013,
347–351.
Thiébaux, S., and Cordier, M.-O. 2001. Supply restoration
in power distribution systems — a benchmark for planning
under uncertainty. In Proc. ECP 2001, 196–202.

