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Anatomy of the BACK System -1~ Introduction

1 ITmnmtroduction

The BACK system? is being developed at the Technical
University of Berlin, Computer Science Department, by the KIT-
BACK group?. BACK is an integrated hybrid knowledge
representation system based on the ideas of KL-ONE (s. [Brachman

& Schmolze 85}) with well-defined and operationalized semantics.

The major topics in developing the BACK system were the close
integration of two different knowledge representation formalisms
and the careful selection of representation constructs with

respect to tractable interpretation slgorithms.

The close integration approach arises from the experiences
taken from loosely coupled system like KL-TWO ({[Vilain 85] or
NISRL [Emde et al 84]. Thus BACK is motivated as an integrated
hybrid system with balanced expressiveness of the different

knowledge representation formalisms.

Arguments will be made to motivate the specific selection of
language constructs done for the BACK system especially under
considerations of the tractability of interpreter algorithms as
pointed out in e.g. {Brachman & Levesque 84] and ({Patel-
Schneider 86].

Additional efforts were undertaken in developing user-friendly
interfaces for inspecting, modifying and maintaining models of a
selected domain. This line of research was motivated by the user
experiences of KL-ONE-based system. For example, a number of
concrete demands arose from using BACK as a system for modeling a

larger domain in a consistent manner (cf. [Schmiedel et al 86}).

1 Berlin Advanced Computational Knowledge Representation System
2 A former, in various aspects different version of BACK was

described in [Luck et al 85].
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In order to provide the reader with a self-contained document,
this report gives an introduction to the overall philosophy of
KL-ONE and hybrid systems based on KL-ONE. That means no deeper
knowledge about these topics is presupposed, although this may be
helpful.

A more theoretical view on the formalisms for representation
of knowledge offered by the BACK system is taken in chapter 3.
This includes the definition of the formal syntax and semantics
of these formalisms and critical discussions of this approach

including comparisons with other current work.

In chapter 4 the different aspects of the BACK system as a
knowledge management system are described and the specific design

decisions made in BACK are presented and discussed.

The BACK system user interface 1is briefly presented and

motivated in chapter 5.

Additional to this report, The User’s Guide to the BACK System
[Peltason et al B7] isa available for an introduction to the

practical use of the system.

The BACK system is fully operational running under different

Prologs on Symbolics 36xx and IBM 438B1. It was tested up to the
present with several small and one more realistic domain. First
results are alseo reported in [Schmiedel et al B6]. But the BACK

system is still anm experimental system and by no means a final

product.
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2 Representationmn Philosophy

Knowledge representation and the development of suitable
formalisms has always been & major concern in the history of
Artificial Intelligence. In the last years, the focus on this
subject has increased even more, since efficient utilization of
large quantities of world knowledge is regarded as the key to
building intelligent systems. Knowledge—based system has almost

become a synonym for Al system.

The BACK system described in this report is a close relative
of KL-ONE, a knowledge representation language }ntroduced by
Brachman in 1979 (Brachman 79]. KL-ONE was motivated by the
problems encountered in the semantic network tradition of
kuswledge representation, so a short discussion of these seems to

be a suitable starting point.

2.1 Semantic Nets

One of the most common paradigms of knowledge representation
in Al are semantic networks. Originally introduced by
psychologists ({Quillian 68], [Norman & Rumelhart 751}, [Anderson
& Bower 73]) as models of human memory, they gquickly became
popular in AI for a number of reasons:

- Representing concepts, objects, and situations as nodes and
relations between these as arcs (or links) seems to be a
natural way of capturing the essence of every-day knowledge.
Nets are easily visualized graphically, and lend themselves to
computer implementation via well-known node-—and-pointer data
structures.

_ Class/subclass/element relationships are easily expressed in
semantic nets by a special type of link, mostly called IS-4

link; property inheritance from classes to subclasses and
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instances can thus be performed simply by following these
links.

- Extracting knowledge and drawing inferences on the basis of
nets may be performed by a set of special-purpose procedures

tuned to the different kinds of nodes and links in the net.

Various systems were able to demonstrate the utility of the
semantic network paradigm ([Raphael 68], (Simmons 73], [Carbonell
& Collins 74], {Woods et al 76], [Hendrix 79]). But as part of a
more general discussion concerning the foundations of knowledge
representation in AI which set in around the mid-seventies (cf.
eg. [Woods 75}, [McDermott 76], [Hayes 77]) severe shortcomings
of the semantic network approach in vogue until then were

identified.

These problems =all more or less revolved round one central

issue: What do nodes or links in a semantic network mean
exactly? Or, put in other words, the semantics of semantic nets
themselves were at stake. In the end, these questions boil down

to what semantic networks offer to a user. Is it more than just a
clever data strucure and a set of more or less useful routines

for accessing them?

The problem of giving semantic nets = precise semantics is
discussed for example 1in [Woods 757, {Brachman 77], and
[Brachman 83]. Their work demonstrates that there are
potentially many different interpretations of links and nodes in
a network. Unfortunately, some of these were confused even in the
design of a single network formalism3. In order to perform
deductions on the knowledge encoded in a semantic network, there
must be a fixed meaning of the nodes and links in the network
independent of the procedures accessing the network. In case the

intended meaning is not made precise, there is no other way but

3 It should be notel that this is unfortupate only from the
viewpoint of research interested in computational knowledge
representation schemes that are of practical use in larger Al
systems. From a cognitive modeling point of view (where
semantic nets originated in the first place), things may appear
quite different.
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to look at ‘the code of these procedures. We end up with semantics
in terms of specific set of procedures. This may be sufficient
for solving a particular problem, but certainly will not do for

knowledge representation formalism with some claim of generality.

Possible meanings of links depend on what the nodes stand for.

Nodes in semantic nets have been taken to represent a variety of

things: concepts, sets, predicates, prototypes, natural kinds,
individuals, abstractions, and propositions, just to name the
most important ones. An obvious distinction is the one between

nodes representing individuals and generic nodes standing for or
describing many individuals or classes. In early semantic nets,
even this distinction was blurred; for example, an IS-A link was
nsed both for linking a generic to another generic as well as an
individual to a generic. This amounts to the confusion of the
subset and member relationship, or, if nodes are viewed as
predicates, the confusion of a quantified formula (forall x: p(x)

-=> q(x)) and the application of a predicate to an individual

{p(a)).

A very important categorization of the possible meanings of
links concerns their assertional impact: does the presence of a
link automatically imply the truth of an associated fact in the
world? If generic nodes are construed as atomic predicates or
sets and links between them as universally quantified formulas
(or subset relationships) this seems to be the case, An IS-A
link between canaries and birds simply asserts that the set of
canaries is a subset of the set of birds. This seems to be a
straight-forward fact about the world, but consider another
example: a four-legged canary IS-A canary. Although this is
probably a correct assertion, this example suggests another
possible interpretation of the IS-A link, e.g. a non-assertional
one. In this case, no information whatsocever is conveyed about
the world; the link merely expresses the conceptual containment
relation between four-legged canary and canary vhich holds

utterly independent of anything true or false in the world. Or,
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in other words, the IS-A link is justified purely on the basis of
the structure of the descriptions involved, not on any way the
world happens to be. We will elaborate on this approach later, as
this is the route pursued in KL-ONE, and, following KL--ONE, in
BACK.

By far the most common use of 1IS-A links is to realize some
kind of property inheritance. Properties shared by a set of
individuals are linked to a node representing the set; all nodes
connected via IS-A links (and thus introduced as subsets) inherit
them. When links and nodes in a network are given a clean first
order logical interpretation, there is no real problem: the
network is simply a notational wvariant. But, unfortunately,
usually there is no such clean interpretation. Instead, the

typical use of IS-A in inheritance networks is tied to the notion

of inheritance with exceptions: properties connected to a node
at one level may be cancelled at a node below. This is certainly
not compatible with interpreting IS-A links as univefally
quantified conditionals and at the same time interpreting
property links as universally quantified as well. In fact,
Brachman {Brachman 83] has conclusively demonstrated that
networks admitting inheritance with exceptions cannot be

meaningfully interpreted as representing generic concepts at all.

This is not to say that these kinds of inheritance schemes are
useless or even fundamentally wrong. In fact, inheritance with
exceptions has received much attention in research and formalisms
and calculi have been designed to provide a formal semantic
foundation [(Touretzky 86]. Also, there is no doubt that
knowledge about prototypical properties is an important part of
representing conceptual structures. But, taken as the backbone

of a representation system claiming to deal with knowledge on a

conceptual level, there are fundamental drawbacks.
Representation of prototypical properties, possibly using some
kind of formalism for inheritance with exceptions, should be

clearly separated from representing the concepts themselves.
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In addition, even when inheritance with exceptions is not
admitted, major problems remain with all formalisms which adher
to the assertional interpretation of generic nodes and links.
This is due to the fact that in these formalisms there is no way
to treat the intensional character of conceptual knowledge. Thus,
it is impossible to give a proper account of composite
descriptions: wusing concepts to form new, more complex concepts
the meaning of which is canonically derived from the structure of

the complex description.

2.2 Levels of Representation

A major breakthrough concerning the semantic foundation of
semantic nets was due to R. Brachman, who introduced what he
called the epistemological level [Brachman 791. Maybe the term
is not very well chosen because there is no obvious connection to
what is usually referred to as epistemology, but Brachman
introduces it to characterize a distinct level of knowledge
representation which had not received enough attention of
researchers in the field until then. His objective was to clarify
some of the confusions that had arisen from mixing various levels
of representation, and to propose a new, more promising
approach. Based on the different approaches taken until then, he
distinguishes four levels of representation each of which suggest
a set of primitives for semantic net languages. He stresses the
need for identifying these primitives because only if they are

fixed and understood in advance a fixed interpreter can be built.

The primitives are the elements that the interpreter
'understands’® and that are not explicitly represented in the
network itself. They determine together with a set of rules that

are realized by the interpreter which non-primitive elements may

be formed. These levels are:
- implementational level: When semantic nets are defined at the
level of pointers and nodes, then they are obviously merely a

kind of data structure with no claims about possibly useful
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ways of structuring knowledge. Also, there are no inherent
constraints for interpreters for these kinds of nets.

~ logical level: Network primitives are regarded as a set of
logical primitives such as AND, OR, and THERE-EXISTS. In this
case, an interpreter would be required to conform to the
logical meanings of these primitives. A semantic network in
this perspective boils down to a particular implementation of
logic enriched with some kind of indexing mechanism.

- conceptual level: This seems to be the classical view of
semantic networks. Primitives for these nets are a small set
of primitive concepts (object- and action-types) and primitive
conceptual relations (deep cases) thought to be language-
independent building-blocks out of which all other concepts
should be constructable. Schank’s conceptual dependency nets
using primitives such as PTRANS, MTRANS, GRASP, INGEST,
INSTRUMENT, RECIPIENT, AGENT, etc. are a typical example.

— the linguistic 1level: Network primitives are taken to be
language-specific words and expressions, but this appfoach

seems very rarely to have been adopted.

How are these levels related? Obviously, given a knowledge-
based system as a whole, it can be analysed on any of these
levels at the same time. The problem is not one of choosing the
correct level: rather, it is the way the levels are related. The

problem with earlier semantic nets was that the levels were not
clearly kept apart, freely intermingling primitives from
different levels in one formalism. If a formalism 1is to be
useful as a tool, it should be clear at what level its primitives
are located, and it should be neutral with respect to what can be
built on top of them. For instance, a formalism at the logical
level can (and indeed should be) independent of a particular set

of conceptual primitives.

But back to Brachman’s proposal concerning the missing
epistemological level. He suggests a set of primitives

constituting an intermediate layer between logical and conceptual

e
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level. This level is concerned with using concepts as
intensional descriptions. Brachman stipulates the existence of a
small set of relations relating parts of an intensional

description to a whole which are not accounted for as primitives
at the logical level. Furthermore, they are definitely below the
level of conceptual primitives insofar they are not committed to
any particular set of these. Intensional descriptions can be
related solely by virtue of their internal structure. In
addition, a rigorous treatment of inheritance can be given on
this level. Inheritance of some sort or another is common to all
semantic networks, although it is neither a logical primitive,
nor is it properly accounted for by a 'semantic’ relation on the
ievel of conceptual primitives. Giving concepts internal
structure and relating concepts in terms of these allows for a
notion of structural inheritance on the basis of conceptual
containment, but rules out inheritance of default properties,

which are more properly dealt with elsewhere.

Another important effect of treating concepts as intensional
descriptions is the ability of forming composite descriptions in
a syntactically and semantically well-defined manner, something

former semantic nets were unable to do.

2.3 The Hybrid Approach to Enowledge Representation

Brachman’s analysis of the different levels of
represent&tional primitives and his proposal of an distinct
epistemological level concerned with intensional descriptions was
the starting point of KL-ONE, which soon became a kind of
paradigm sparking off substantial research efforts. Several
workshops bringing together people working on this paradigm were
held (e.g [Schmolze & Brachman 82], [Moore B86]). A number of
experimental systems were built, each focussing on different

aspects of KL-ONE, but all relying on a core of basic ideas.

Anatomy of the BACK System ~-10- Representation Philosophy

Maybe the most important of these 1is the commitment to a
radical distinction of terminological and assertional knowledge,

a distinction which gave rise to the term hybrid knowledge

representation systems. These kinds of systems provide two
distinct sets of representational primitives, each of which are
associated with a well-defined syntax and semantics, and a class

of inferences which are at least sound and more or less complete?
with respect to their semantics. The terminological level is
concerned solely with a set of intensional descriptions formed by
a small set of concept-forming operators (the actual
representational primitives of this level) and their taxonomic
relationships which are determined only by their structural
properties. These taxonomic relationships have no assertional
import on their own; but descriptions can subsequently be used to
make assertions about the world, and, by virtue of their
structure, additional inferences may be drawn. Complex
descriptions can be associated with names, but these are pure
definitions and carry no additional meaning beyond " the
descriptions they abbreviate. The sasystlem component responsible
for maintaining descriptions and their taxonomic relationships is
usually referred to as TBox, wheras the component dealing with
the facts of the world (assertional kunowledge, contingent facts)

is called ABox.

Another common feature which is a consequence of the
representational primitives chosen for the terminological level
is the neutrality with respect to semanctic or conceptual
primitives. The primitives provided for structuring concepts and
descriptions do not in any way determine the domain- or language-
specific primitives. These can freely be chosen and implemented
in terms of the epistemological primitives. In other words, no
ontological assumptions (beyond the distinction of terminological

and assertional knowledge) are made.

4 Completeness and tractability is usually very difficult to
achieve simultaneously, at least for formalisms with
reasonable expressive power. We will repeatedly recur to this
problem within this report.
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2.3.1 The Choice of Primitives for the Terminological Level

During the development of KL-ONE, various proposals for
particular sets of epistemological primitives have been made. The
early ones, including Brachman’s own, relied heavily on a
graphic, node-and-1ink type of notation revealing the heredity of
the semantic network tradition. Later on, beginning with
{Schmolze & Israel 83], a linear syntax was introduced, which,

although maybe less illustrative, faciliates formal analysis.

For all of these, the basic entities all structured
descriptions are composed from are concepts and roles. Concepts
and roles are arbitrary descriptive terms, where concepts are
applicable to objects, and roles to relations between objects.

When using concepts or roles for making assertions about objects,

concepts correspond to one-place and roles to two-place
predicates. All concepts and roles fall into two distinct
groups: primitive’® or defined. The meaning of a defined concept

(or role) is completely determined by its internal structure: the

parts the concept is composed from specify necessary and
sufficient conditions, whereas primitive concepts are only
partially determined by their structure, which in this case

provides only necessary conditions.

Internal structure of concepts is achieved by composing
concepts with a small set of term-composing operators. In the
following, we give a short overview of main operators chosen for
the TBox of the BACK system together with some examples which are
typical for all KL-ONE alikes. We will use a linear notation, but
at the end of this chapter we give an example in graphic notation
and explain the mapping between the two. Consider the following

examples®:

5 Note that ’primitive’ here refers to kinds of concepts and
roles; previously, we used ’primitive’ for identifying the
basic elements of a representation formalism.

6 The complete syntax and semantics of TBox expressions in the
BACK system is introduced more formally in chapter 3.1.
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Thing = rootconcept:

Person = primconcept: (specializes(Thing))

Male = prl.conceptz(specializes(Thing))

Female = prl.concepta(spec1allzes(Th1ng))

offspring = primrole: (domain_ range(Thing,Thing))

married _to = primrolez (domain_ range(Person,Person))

child = primroles (domain_range(Person, Person),

differentiates(offspring))

Parent = defconcept(specializes(Person),
nrain_restriction{child,1))

Mother = defconcept(specializes(Parent),

specializes(Female))
Mother_ of Daughters =
defconcept(specializes(Mother),
value_restr1ct10n(ch1ld,Fema]e))
Woman = defconcept(specializes(Person),
specializes(Female))
Married Person =
defconcept (specializes(Ferson),
nrlin;restriction(married_to,l))
Unmarried_Person '
defconcept (specializes{(Person),
nrmax restriction{married_to, 0))
Wife B defconcept(specxallzes(Marrxed Person),
specializes(Female),
value restriction(married_to,Male))
Bachelor = prilconceptq(specializes(UnmﬁrricdVPcrson),
specializes(Male))
Unmarried Man with_three_children all of them Female =
defconcept(spec1allzes(Unmarr1Pd Person),
specializes(Male),
prmin restriction(child,3),
nrmax_ “restriction{child,3),
value “restriction(child,Female))

These expressions assign concept (or role) definitions to names.

The definitions (right-hand side expressions) are buitt from
term-forming operators?, and from names, which are place-holders
for their respective definitions. Names have no meaning on their
own; they are only for convenience of the user. For example, the

definition for Parent could be expanded by replacing all names hy

7 Throughout this chapter, term-forming operators are in bold,
concept names begin with an upper case and role names with a
lower case letter.
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their definitions, so that the expanded form contains only term-

forming operators:

Parent = defconcept(
specializes
primconcept: (
specializes(rootconcepti))),
nrmin_restriction(
primroles (
domain_range(..... ),
differentiates(
primrole; (
domain_range(..... )Y,

1)

The indices at rootconcept, primconcept, and primrole indicate

that each use of these operators with a new index introduces a

new primitive (ecf. chapter 3.1.1). With these, the actual
conceptual domain primitives can be introduced. As already
mentioned before, the structure of a primitive concept or role

provides only necessary, but not sufficient conditions. So, given
the examples sbove, describing someone as being a Bachelor
necessarily implies the truth of the description Male and
' Unmarried Person, being part of the structure of the definition
of Bachelor. On the other hand, given the description Male and
Unmarried Person, this does not necessarily imply Bachelor. But,
as Mother is introduced as a defined concept, describing
something as being a Parent and being Female necessarily implies

it is a Mother, because the structure of defined concepts are

sufficient for recognizing an instance of the concept.

As is probably obvious from inspecting the examples, the

specializes operator has the effect of including the concept

referred to in its argument as part of the description of the

concept being defined. Thus, Parent is part of the description
of Mother, and Female is part of the description of Woman. By
using a specializes term in a definition, the concept being

defined is explicitly made a subconcept of the concept being
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specialized, thus inheriting all of its structure. Using the
specializes and primconceptn operators only, a hierarchy of
primitive concepts can be defined.

The nrmin_restriction, nrmax_restriction, and

value restriction operators are used to define concepts in terms
of their relationships to other concepts. nrmin_restriction and
nrmax_restriction restrict the cardinality of role-fillers for a
given role. In the definition of Parent,

nrmin _restriction(child,l) specifies that there must exist at

least one object as a role-filler of the child role. As this is
part of the definition of Parent, we can infer that for anything
described as Parent, an object in the child role must exists,
although we may not know who it is. On the other hand, if
something is described as Person, and additionally there is
another object asserted to be in a child relationship, we can

infer that this 1is an instance of Parent because all the
conditions of the Parent definition are fulfilled. of course,
this last inference would not be valid if Parent had been
introduced =as a primitive concept. nrmax_restriction(role,n)
specifies that there are at most n objects as role-fillers for
role. Combination of nrmax restriction and nrmin_restriction can
be used to specify an interval of the number of permissible role
fillers; an important special case is defining a role to be
functional by nrain_restriction(role, 1) and

nrmax_restriction(role,1).

The value _restriction operator is used to restrict the kinds
of objects permissible as role fillers. In our examples, Wife
must be married to a Male. Note that a value_restriction does not
require the existence of a role filler for the role; only if any

at all exist, they must fulfill the restriction.

Roles have an internal structure much the same way as

concepts. However, for the BACK system at the present stage we
have restricted ourselves to primitive roles allowing for
necessary, but not for necessary and sufficient conditions for a
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role term. Note that in the examples all roles are introduced
with the primrolen operator. The differentiates operator is the
role analogue for specializes. As part of a role defining term,

it requires the specified role to be a subrole of the role
differentiated. For example, in the definition of child above the
term differentiates(offspring) makes child a subrole
of offspring incorporating the offspring relation as part of the
child relation. With this operator, a role hierarchy can be set
up much the same as for concepts. The domain_range operator
restricts the domain and range of a role according to the
concepts of its arguments. In the example, the child role

requires the related entities to be describable as Person.

Looking at the exemples above, there are obvious relationships
between the concepts: the way they are defined, a Bachelor is
necessarily a Male, Wife and Mother are both necessarily Woman,
etc. In fact, for each pair of concepts, it can be determined
whether one concept is subsumed by the other. This is trivial if
one concept was explicitly introduced as a specialization of the
other (via the specializes operator), but a concept can subsume

another even if it was not explicitly defined as a subconcept.

Mother was defined as Female Parent, and Woman as Female Person.
But the Person description is part of the Parent description, S0
the subsumption relationship holds. Subsumption is computed only
by inspecting the structures of the concepts involved; it can be
seen ns conceptual containment. According to the subsumption
relationship, which defines a partial ordering on the set of
concepts, these can be placed in a directed acyclic graph where

links stand for the subsumption relationship (superconcept -
subconcept relationship). Effectively computing this graph for a
set of concept definitions such that for every concept its
subsuners can be found by following 1links upward, and its
subsumees by links downward 1is referred to as classification.
Inheritance of necessary structural components of concepts to all

their subconcepts is a natural side effect.
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Although sound algorithms for computing subsumption are fairly
simple and computationally tractable, it is difficult to come up

with tractable and complete algorithms. This is heavily dependent

on the set of term-forming operators chosen. Until now (although
this may change in future), we have not included a defrole
operator, the analogue to the defconcept operator for roles.
With defined roles, no tractable and complete subsumption

algorithm is known, at least for the usual, intuitively plausible
two-valued semantics [Brachman & Levesque B4] [Patel--Schneider
B71]. This operator, however, would certainly enhance the
expressivity of our TBox language. For instance, the child role
could then be a defined role, defined as an offspring relation
between Person. A son role could be defined as a child role the

range of which is restricted to Male.

Figure 1 shows some of the concepts and roles of the examples

in a graphical notation. The shaded ellipses are primitive
concepts, the white ones defined. The fat arrows indicate
subsumption relationships; note that they do not correspond one

to one to the specializes terms in the linear definitions because
we are assuming a classified net where concepts are placed at the
mos't specific position possible. The role hierarchy is indicated
at the right; in our case there are only two: offspring and
child. The role links show the restrictions for a role at a
concept: the child role at Parent is number restricted to the
interval 1..infinite, and at the Mother_ of_Daughters concept it

is additionally value restricted to HWoman.
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Fig. 1: Some Example Definitions in Graphical Notation
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2.3.2 The Choice of Primitives for the Assertional Level

Traditionally, KIL-ONE has always been more concerned with the
terminological part of the hybrid representation scheme. As a
consequence, there is uno generally accepted set of primitives for
representing assertional knowledge associated with KL-ONE.
Various, widely differing proposals have been made, some of which

have been implemented.

In the earliest and most simplistic approach to the
assertional level (cf. {Schmolze & Brachman 82]), assertions are
represented by nexuses, which are connected to TBox concepts by
description wires. A nexus with a description wire denotes the
existence of an object satisfying that description. Coreference
of descriptions can be expressed by connecting several
description wires to one nexus. Nexuses are placed into
contexts, allowing for different ’'worlds’ to be represented. As

far as we know, these ideas were never taken as a starting point

for an implementation.

KL-TWO [Vilain B5], and KRYPTON {Brachman et al 83] were the
first implementations of KL-ONE combined with a sophisticated
assertional component, thus deserving to be labelled hybrid
systems. KL-TWO is the combination of NIKL [Moser 831, a
terminological representation system based on KL-ONE, and PENNT,
a propositional inference engine based on RUP {McAllester 82].
In KRYPTON, a terminological component somewhat less expressive
than NIKL was integrated with the Stickel theorem prover
[Brachman et al 85], which is a full-fledged theorem prover for
first order predicate logic. Both systems showed the feasibility
of the hybrid approach; but for basically two reasons we adopted
another direction in the design of the assertional component of

the BACK system.

Foremost, there is the problem of the computational complexity
associated with a complete inference mechanism for any standard

logic. In our point of view, a knowledge representation formalism
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intended to be useful for representing large bodies of knowledge
should not suffer from the possibility of combinatorial explosion
built into its basic inference mechanism. But this is the case

even for propositional logic. Usually the problem is circumvented

by restricting inferences, either by some arbitrary limit on
resources allocated, or by using an incomplete set of inference
rules. But both of these are rather unsatisfactory ways of

dealing with the problem because in both cases the net behaviour
of the system is at odds with the semantics of the representation
language. Indeed, a language as expressive as propositional or
first order logic available at a user interface for an

assertional component of a knowledge representation system is

highly misleading Jjust for this reason: what the wuser expects
from logic, he will not get from the machine, although it seems
to 'understand’ it (or, in case of complete inference, vyou will

have to wait a very long time for an answer in any but trivial
cases). Therefore, we feel that the formalism at the core of a
knowledge representation system should be rather less expressive,
but on the other hand computationally tractable and inferentially

complete with respect to its semantics®.

The other reason for our search for an alternative set of
primitives for the ABox has to do with the interplay of
terminological and assertional knowledge. Taxonomic reasoning
based on TBox definitions can be very powerful, but only if there
are corresponding assertional primitives available that allow to
make full wuse of them. This is what we have called balanced

expressiveness of TBox and ABox.

As a consequence, for representing assertional knowledge we
have defined a language which is in many ways less expressive
than full propositional calculus, but on the other hand includes
some operators involving special kinds of quantification in order
to match the possibilities of the TBox. Although we have not

proven the desired properties (tractability and completeness of

8 These issues are discussed in length in {Patel-Schneider 87],
[Lévesque B86].
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inference) mentioned above, we feel we have found a good starting

point.

Our assertional language can be briefly characterized by the
following features: Assertions are made by creating unique
constants in the ABox described with a TBox concept (which may be
an arbitrary complex description, see above). This is equivalent
to applying concepts as one-place predicates to constants.
Furthermore, unique constants are additionally described by sets
of role-value pairs, where values are constructed as value
expressions, which are basically boolean expressions without
negation containing other unique constants (the role fillers),
and two additional operators, lhe card(min,max) operator, and the
cwa operator. Disjunction in value expressions allows for a
certain restricted kind of incomplete knowledge for role fillers,
whereas the card and the cwa operators can be used for expressing
restricted kinds of knowledge involving negation - and
gquantification. The card operator restricts the cardinality of a
set of role fillers for a role; it matches the number restriction
operators nrmin_resiriction and nrmax_restriction of the TBox.
The c¢wa operator (abbreviation for closed world assumption)
restricts the set of possible role fillers for a role to be in
the set of those already mentioned, thus excluding all other
known or unknown candidates. Although this does not match a TBox
operator one to one, closing the set of role fillers to be
considered allows for additional inferences particularly in
connection with value restrictions defined for a concept in the
TBox. A more detailed description of the ABox language is given

in chapter 3.2 and 4.2.

2.4 Towards a Functional Paradigm for Knowledge Base Formalisms

To conclude this chapter on our representational philosophy,
let us summarize the main points that guided us in the design of

the BACK system.
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1. In our view, the purpose of a knowledge representation
formalisms such as BACK is to provide a well-defined
functionality as part of a larger, knowledge based system. Al

systems are designed to carry out a variety of tasks for many of
which a lot of knowledge is needed. Of course, it is possible to
build this knowledge right into the problem solving program
itself, but this approach becomes increasingly infeasible in the
face of large bodies of knowledge with rich internal structure.
Seperating the actual problem solving part of an AI program from
the knowledge base has distinct advantages. It provides means of
structuring, storing, and retrieving bodies of knowledge 1in a
declarative manner independent of the program wusing it. In
addition, knowledge engineering activities such as debugging,
enforcing consistency, and incremental knowledge acquisition all
depend on some kind of formalism that respects the fact that
knowledge is always about something in the world, and thus more

than a mere data structure.®.

2. In this perspective, it seems natural to view a knowledge
base as black box with whom a user (a person or a program)
communicates via a tell/ask interface. The user is not concerned
with how the KB performs its task, only with its functionality
which is specified by the semantics of the interface languagel!®.
The terms tell and ask stress the fact that communication of
knowledge is always about something in the world and that the

black box should behave accordingly.

3. The communication language has to be expressive enough to
be able to convey useful knowledge for a broad range of domains.

Expressiveness is an issue at two different levels: the

9 0f course, from the viewpoint of a programmer, anything
represented in a computer can be seen as a data structure.
However, to be used as knowledge data structures must have an
interpretation in the outside world, and a user must be able to
rely on the assumption that these data structures are
manipulated in a way consistent with their interpretation (cf.
[Newell 82]).

10 This functional view of knowledge representation was

effectively put forward by [Brachman et al 83].
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terminological level and the assertional level. Languages to be
useful for communicating richly structured knowledge must be able
to handle complex concepts in terms of their internal structure
rather than treat them as primitives. In order to be able to do

this, the user should be able to tell the knowledge base about

the meaning of a concept. This is especially important for
technical, task—- and domain-specific concepts likely to occur in
Al knowledge bases. Expressivity at the terminological level is
determined by the primitives provided for defining new, complex
concepts in terms of already known ones. On the other hand,
communicating knowledge implies the wuse of concepts to assert
facts about the world. Expressivity on this level depends on the

kind of primitives provided to construct such assertions.

4. In order to successfully transfer knowledge via a language,
both partners must in some sense understand the language; the
language must have an interpretation that both partners share. In
particular, the user of a knowledge base must have reliable
information on how the knowledge base interprets what it has been
told, what kind of inferences it draws, how it combines different
pieces of knowledge, eto. This 1is accomplished by providing a

well-defined, formal semantics for the tell/ask language.

5. If the semantics is to be a reliable guideline for the
user, it should be fully operational: all consequences of
knowledge told as specified by the semantics ought be computable,
and thus subsequently be retrievable by asking the knowledge
base. Formal semantics are not worth the effort if in the end
they do not correctly describe the behaviour of the knowledge

base.

6. A knowledge base should provide answers to its users within
a reasonable time. This raises very difficult problems because
even for languages of rather modest expressivity complete
inference procedures tend to involve combinatorial search and
thus be computationally intractable. We have the problem of

determining the trade-off between between expressivitiy of a
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representation language and its computational complexity. This is
a major issue in current research: finding representation

langunges that are expressive enough to be useful and still admit

sound and complete inference procedures that are tractable. In
the design of the BACK system, we have taken a fairly
conservative approach by restricting ourselves to

representational primitives that are hopefully tractable.
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3 The BACK Formalism

In this chapter the BACK formalism is introduced. The form
(the syntax) which is used to represent the knowledge and the
meaning (the semantics) of these forms are explained. Any system
dependent aspect, however, will be neglected in this chapter.
Interaction with and modification of the represented knowledge as
well as the operationalization of the semantics will be described
in the next chapter. This separation of issues proves to be
useful in serveral respects:

- The semantics can be invesltigated without referring to any
particular implementation. I'n particular, questions of
computational complexity, and connected with that,
completeness and soundness of proof procedures (relativ to the
semantics) can be analyzed. ’

- The expressiveness can be determined.

- Characteristics of the formalism such as vividness [lLevesque
86] or balancedness (cf. [Luck 86], [Nebel 86]) can be

determined.

The description of the BACK formalism is divided into two
parts according to the hybrid nature of the system (and hence the
formalism). The first part gives the syntax and semantics of the
language for representing the terminological knowledge (the TBox
formalism). The second part describes the formalism for

representing assertional, factual knowledge (the ABox formalism).

Representation of knowledge, however, is not only concerned
with formalizing what is explicitly known, but also with what has
been represented Implicitly. Therefore, in addition to the
specification of syntax and semantics, we give an informal
account of inferences which can be drawn on the basis of the
semantics. In contrast to the claim we made above, procedural
metaphors are used in describing these in order to emphasize the

context they are used in.
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After this description the characteristics of both formalism
are discussed 1in detail and compared with other similar
formalisms. In particular the properties mentioned above are

taken into account.

3.1 The Formalism for Representing Terminological Knowledge

The discussion about structural inheritance networks started

off by drawing circles, little boxes and arrows between them
(Brachman 79]. Because of the limited capabilities of computers
in those days, the networks had to be translated into a linear
form when the first implementation took place [Woods 79]. A

linear form of such networks does not only offer the opportunity
to feed such networks into a computer, but it makes it possible
to assign compositional semantics to such networks (if the

linearization is chosen appropriately).

Semantics may be regarded as superflous, in particular from a
user’s point of view. However, taking a scientific perspective
the specification of semantics for representation languages is
inevitable. Without semantics a scientific discourse cannot take

place, e.g. when comparing different representation languages.

A more pragmatic consideration is that without semantics the
notion of correctness is just an empty term. For example, the
development of the classification procedure (cf. 3.1.3) from an
intuitive-based procedure to a sound inference technique took
place on the grounds of the development of semantics for KL-ONE
alikes (cf. [Lipkis B82], [Schmolze & Israel B3], [Brachman &
Levesque B4], [Patel-Schneider 86]), which in turn was only
possible because an appropriate form of network linearization, in

fact, a language, had been chosen.

Such languages are commonly termed frame description languages
{Brachman & Levesque 84] or term definition languages
{Schlumberger 85]. These names emphazise the fact that they are

intended to be used for defining or describing categories.
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However, it is not possible to make statements about restrictions
occuring in the domain, i.e. to introduce axioms. That means a
collection of expressions of a term definition language does not

exclude any model (in the model theoretic sense) .

At first sight this might seem to be a serious restriction for
a knowledge representation formalism, even if it is only used to
introduce terminology. However, with such formalisms it is
possible to draw taxonomic inferences, which proved to be very
powerful and which is heavily exploited in Al systems using such
knowledge representation formalisms (e.g. [Nebel & Sondheimer

861]).

Additionally, BACK provides the possibility of introducing

restrictions into the terminological knowledge base. This is very

similar to NIKL [Robins 86], but we tried to introduce such
restrictions at well defined points, excluding some very weird
constructions. These restriction statements might emigrate to
anolher component, the inferential box (IBox) or natural law box
(NBox) (ef. (MacGregor B86] and Brachman’s statement inp [Moore
86]).

3.1.1 Syntax of the TBox Formalism

In the following the concrete syntax for TBox expressions is
given in BNF!1, The language defined does not only describe the
form of the represented knowledge abstractly but is also (part

of) the interface language to be used in interacting with the

system. However, there are some exceptions which are marked as
such.
11 Nonterminals are printed with the regular font, terminal

symbols are printed with boldface. .22 and !’ are used as

meta-symbols.
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TBOX EXPRESSIONS

TBoxExpr :== TBoxRestriction |
TBoxDefinition
A knowledge base consists of a set of TBox expressions, which

in turn are either restrictions or definitions.

TBOX DEFINITIONS

TBoxDefinition :== Name = TBoxTerm
Name ;== PrologAtom

A TBox definition assigns a TBox term to a name. This name can
be used in the subsequent expressions to refer to that term.
Because the entire system is implemented in Prolog, the syntactic

category of names is just the category of Prolog atoms.

TBOX TERMS

TBoxTerm :== Aset | Concept ! Role

A TBox term is either an attribute set, a concept or a ralet?.
In the semantics attribute sets and concepts are viewed as one-

place predicates and roles are viewed as two-place predicates.

12 0f course, instead of explicit TBox terms names may be used,
if they are defined as appropriate TBox terms. This will
become obvious from the following definitions.
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ATTRIBUTE SETS

Aset ;== attrset ( Attributelist ) ! Name
AttributeList == Attribute |

Attribute , Attributelist
Attribute :== PrologAtom

An attribute set can be viewed as an extensionally defined

concept. Its extension is defined by enumerating all elements
which belong to the set!3. In contrast to regular, intensional
concepts, attribute sets are not related to other concepts by
roles (see below). This language coostruct, which is unique for

TBox languages, is especially useful for representing perceivable

qualities, as for example colors or sex.

In other TBox languages it 1is necessary to introduce concepts
for sexes which have very weird extensions, e.g. the nxtensinh of
the concept FEMALE--SEX seems to be either the concept itself
(which does not fit into the semanltics), or a unique constant,
which can only be decribed by being the unique member of the
extension, or a set of arbitrary FEMALE SEXes which probably does

not meet the intended meaning.

The real problem with the above concepts is thal they are not
concepts in the usual sense, but they behave more like constants,
particular individuals of the domain. However, TRox languages
usually do not permit to introduce such constants, even if they

are considered to be part of the terminology.

13 That means, here we are restricting the domain by specifying
part of the extension, i.e. we are asserting the exislence of
individuals, contrary to the claim made above that TDLs are
not restrictive. And as a matter of fact, attributes are not
really belonging to a TDL. However, they are very useful for
the purpose of counting, reasoning about disjointness etc. and
therefore we consider them as part of the terminological
language. Perhaps, they should also emigrate to the TBox or
NBox.
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CONCEPTS

Concept ;== DefConcept |
PrimConcept

PrimConcept : == rootconcepty !
primconcepty ( CSpeclist ) !
Name

DefConcept 1 == defconcept( CSpecList ) !
Name

A concept is either defined or primitive. The former means
that the concept is totally determined by its specification (the
concept specification list). The latter means that it is either
one of the basic root concepts, which are mutually disjoint, or
jt is a partially specified concept mentioning only necessary

conditions.

The indices i and s are not part of the system’s interaction

language; however, each time a root concept form or primitive
concept form is entered into the system, a new root or primitive
concept is generated. That means, even if no index is used,

internally a mechanism generates such indices when such a form is
entered. For example, after entering the following TBox
expressions into the system:

object = rootconcept

action = rootconcept
from a descriptive point of view the following TBox expressions
are part of the TBox:

object = rootconcepta
action = rootconcept:z

Anatomy of the BACK System ~-30~

The BACK Formalism

CONCEPT SPECIFICATIONS

CSpeclist == CSpec | CSpec , CSpeclist

CSpec == gpecializes( Concept } |
value_restriction( Role , ConceptOrAset ) !
nrmin_restriction( Role , Number ) !
nrmax_restriction( Role , Number ) .
rvm{ RvmOp , [ Role ] , [ Role ] )

RvmOp == =

ConceptOrAset :== Concept | Aset

Number :=x 0 | Positivelnteger ' im

A concept is defined by giving a list of concept

specifications (except for root concepts, which are introduced as

such). A concept specification is

a specializes term, meaning that the concept 1is a
specialization of the argument!?t,

a value restriction of a role (sece below), with the meaﬁing
that the role is filled with individuals satisfying this
restriction,

a number restriction of a role giving a minimal or maximal
number of role fillers, which can be 0 (zero), in {(infinite)
or a positive integer,

or a role value map which establishes relationships between

role fillers.!5

An important point which distinguish term definition languages

from other frame or network formalisms is that the concept

specifications are seen as definitions. That means that concept

specifications do not state that a concept has certain

properties, but that the specified properties are definilional

(sufficient and necessary) for this concept. Therefore, if we

want to find out whether one concept 1is more special than

14

15

This is similar to ISA or AKO in other semantic network
formalisms.

We expect to have more elaborated role value maps similar to
NIKL in future versions. For this reason the two role
arguments are already (one-element) lists instead of pure
roles.
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Concept ;== DefConcept !
PrimConcept

PrimConcept : == rootcomcepty |
primconcept; ( CSpeclist ) !
Name

DefConcept : == defconcept( CSpecList ) !
Name

A concept is either defined or primitive. The former means
that the concept is totally determined by its specification (the
concept specification list). The latter means that it is either
one of the basic root concepts, which are mutually disjoint, or
jt is a partially specified concept mentioning only necessary

conditions.

The indices i and ;3 are not part of the system’s interaction

language; however, each time a root concept form or primitive
concept form is entered into the systemn, a new root or primitive
concept is generated. That means, even if no index 1is used,

internally a mechanism generates such indices when such a form is
entered. For example, after entering the following TBox
expressions into the system:

object = rootconcept

action = rootconcept
from a descriptive point of view the following TBox expressions
are part of the TBox:

object = rootconcept:
action = rootconceptz
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CONCEPT SPECIFICATIONS

CSpeclist == CSpec | CSpec , CSpeclist
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A concept is defined by giving a list of concept

specifications (except for root concepts, which are introduced as

such). A concept specification is

a specializes term, meaning that the concepl is a
specialization of the argumentt!?,

a value restriction of a role (see below), with the meaﬁing
that the role is filled with individuals satisfying this
restriction,

a number restriction of a role giving a minimal or maximal
number of role fillers, which can be 0 (zero), in {(infinite)
or a positive integer,

or a role value map which establishes relationships between

role fillers.!5

An important point which distinguish term definilion languages

from other frame or network formalisms is that the concept

specifications are seen as definitions. That means that concept

specifications do not state that a concept has certain

properties, but that the specified properties are definitional

(sufficient and necessary) for this concept. Therefore, if we

want to find out whether one concept 1is more special than

14

15

This is similar to ISA or AKO in other semantic network
formalisms.

We expect to have more elaborated role value maps similar to
NIKL in future versions. For this reason the two role
arguments are already (one-element) lists instead of pure
roles.
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another, it is not sufficient to test the transitive closure of
the specializes relation, but the entire specifications have to

be checked. We will discuss this issue further in 3.1.3.

ROLES
Role :== primrolex{ RSpeclist ) | Name
RSpecList ;== RSpec ! RSpec , RSpecList
RSpec .z= differentiates( Role ) !
domain_range( Concept , ConceptOrAset)
Roles are introduced by primrole terms!S. Roles can be

further specified by giving a domain and a range, which restrict
the applicability of the role, and differentiates terms, which

establish a subrole hierachy, similar to the concept hierachy.

One may be tempted to ask why there are not defined roles
(analogous to defined concepts). The reason for this restriction
is that this would add another level of computational complexity,

we arc not willing to pay (cf. 3.3).

At this point a short remark about the history of the BACK
system may be appropriate: The first version of the BACK system
described in [Luck et al 85) neither contained an explicit role
hierachy, nor a means for introducing roles explicitly. Roles
were rather seen as local properties of concepts and introduced
implicitly. We abandoned this view (following the NIKL
development) because it left unspecified the applicability range
of roles, because it permitted ambiguities for locally introduced
subroles, and because explicit introduction does allow for a more
elegant specification of the semantics -- i.e. it is simpler from

a conceptual point of view.

16 Again, the index k is not part of the system’s interaction
language, but this index should emphasize the fact that each
act of entering a primrole term into the system creates a new
unique primitive role.
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The description above covers the entire term description
language in BACK. As it is was said above, also some limited
capabilities to express restrictions are provided. One
possibility is to assert that a set of concepts are disjoint,
i.e. they don’t have any common instances. The other one is to
state that a primitive concept has a singleton extension by

asserting its individuality.

RESTRICTIONS

DisjointnessRestriction .
IndividualRestriction
disjoint( PrimConceptList )
PrimConcept |

PrimConcept , PrimConceptlist
individual{ PrimConcept )

i

ThoxRestriction

DisjointnessRestriction :
PrimConceptList

IndividualRestriction

One point worth mentioning is that only primitive concepts are
allowed to be declared disjoint. The reason for this is that
otherwise the disjointness declaration would result in the
assertion that the (defined) common subconcept of two disjoint
defined concepts does not exist, i.e. it would exclude concepts
from being existent, although they are definable without
reference to the disjoint concepts, which seems to be rather
weird. A similar restriction applies to the individual
restriction: Only primitive concepts can be restricted 1in this
way, because otherwise a definitianal property, such as value or
number restriction has to result in a singleton extension of a

concept, which is difficult to Jjustify.

3.1.2 Semantics of the TBox Formalism

Semantics for a representation formalism prove to be useful
for several reasons. An important one is that it provides a

communication medium for discussing and criticizing a
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representation formalism, because it is possible to abstract from
system dependent idiosyncrasies. This, however, implies that the
semantics is to be specified in a way, which is broadly accepted,
as for example logic. As a matter of fact, Newell claimed that
even though logic might not be the adequate representation
formalism, it 1is the appropriate tool to investigate the

knowledge level [Newell 82].

But even if we restrict ourselves to logic, there are still a
lot of possibilities to specify the semantics of a TBox:

_ An axiomatic approach (cf. e.g. {Vvilain 85]) would translate a
TBox into a set of axioms of first-order predicate logic
(FOPC) referring to the model and proof theory of FOPC. That
means the semantics is given indirectly. The benefit of this
approach is that FOPC is well understood and accepted. The
Jdisadvantage is that it does not meet the intention and
intuition of TDLs in every aspect. For example, the fact that
defined concepts do not restrict anything but Jjust isolate a
certain set of individuals is not captured.

- A model theoretic approach (e.g. [Schmolze B85], [Brachman &
lLevesque B4]) would aim at describing the extensions (in fact,
the structure of possible extensions) of concepts and roles.
This is the most direct approach, because we just specify the
TBox in terms of its extension without recurring to any other
formalism. Additionally, the structure of the models are open
for investigation and modification, as done e.g. in [Patel-
schneider 86].

- The denotational approach (cf. [Schlumberger 85]) assigns
meaning to TBox terms by a denotation function mapping TBox
terms to other objects, preferrable mathematical objects. An
appropriate candidate would be lambda expressions, because
they capture the intuition of definitions -- of building
complex functions out of other functions (cf. [Brachman et al

8531)17. Additionally, we are able to compare concepts by

17 In our case only truth-valued functions, i.e. predicates, are
iqteresting.
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comparing the corresponding lambda expressions directly.
However, it is still an indirect way of specifying the
semantics, because we have to refer to the semantics of the

lambda calculus (e.g. [Stoy 77]) and FOPC.

In some sense the three ways of specifying semantics are all
equivalent for our purpose. The only difference 1is that
intuitions about the formalisms are more obviously mirrored with
e.g. the denotational approach than the axiomatic approach and

that some problems are seen more easily.

In the following we will use the denotational approach to give
the semantics for BACK TBox terms. The fact that names can be
used to denote concepts and roles will be neglected and we assume
that every occurence of a name can be substituted by its

associated concept or role definition, respectively.®

To start off, we assume three sets of predicates (defined over

some domain D}: ‘
A set of (one-place) root predicates RP; with the property
that two different predicates are mutually disjoint, i.e.

forall i,j: &t =/= j =>
forall x: mot (RPi(x) and RP; (x))
and that they are disjoint from the set of all (possible)
attributes.
- A set of (one-place) primitive predicates PP; without any

restriction,

and a set of (two-place) role predicates Rk .

These are the non-logical atomic building blocks we use to
create all concepts and roles. These building blocks can be
viewed as the recognition functions for distinguishing

individuals according to non-analytical categoriesl®.

18 The attentive reader will notice that by this convention we
exclude definitional «cycles, and that the semantics of
inheritance is explained by substituting names by their
defining expressions.

19 However, this is just one view, which s also adopted in
Krypton (Brachman et al 85] and Kandor [Patel-Schneider B84].
In NIKL concept primitves are seen as restrictions over a
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The denotation function F assigns semantics to TBox terms by
mapping them to functions from a domain D (for concepts and
attributes) or D x D (for roles) to truth values:

F: TBoxTerms —-> [D union D x D -> {false, true}]

F is defined as follows:

Flattrset(ai,az,...,an}] =

lambda(x).x=a1 or x=az or ... Or X=an
F[rootconcept:] = lambda(x).RPi (x)
Flprimconcept; (CC)] =

lambda(x).PP;(x) and f[CC](x)
F{defconcept(CC)] = lambda(x).f{CC](x)
Flprimrolex (RC)] =

lambda(x,y).Ru(x,y) and f[RC](x,y)

The function f, a mapping from concept and role specifications to
predicates, is defined as follows:
£[{CC),CC2,...,CCr] =
lambda(x).f[CC:](x) and f[CC2](x) and ... and f{CCnl(x)
f(specializes(C)] = lambda(x).F{C}{(x)
f{value restriction(R,C)} =
lambda(x).forall y: F[R](x,y)=> F{C](y)
f[nrmin_restriction(ﬂ,n)] =
lambda(x).existn y: F[R](x,y)2°
f[nrmax_restriction(R,n)] =
lambda(x).not(existnas1 y: F[R](x,¥))
flrvm(=, (R1],[R2ZD] =
lambda(x).forall y: F[R1](x,y) <=> F[R2](x,V¥)

f[RCl,...,RCn] =
domain, at least in the forthcoming revised semantics
[Schmolze B6]. Both views are, however, compatible in the
sense that the inference capabilities are the same, therefore

we will not further elaborate this point here.
20 The form existn x: P(x) is a short hand for
there exist at least n distinct x, such that P(x), i.e.:
exist x1,...,xn: P(x1) and ... P(xn> and xi =/ X3
(for all 1 <= i,j <= n and i =/= J)
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lambda(x,y).f[RC1](x,y) and ... and f[RCn](x,y)
f[differentiates(R)] = lambda{x,y).F[R](x,y)
f[domain_range(Cl,C2)] =

1ambda(x,y).F[{C1](x) and F(C2](y)

The TBox restrictions are responsible for generating axioms,
which restrict the model. The restriction disjoint(€i,Cz,...,Cn)
creates the following axiom:

(forall x: not(F[{C11(x) and F{Cz](x))) and

(forall x: not(F[C:1](x) and F[Ca]l(x))) and

(forall x: not(F[C1}(x) and F[Cn](x))) and
(forall x: not(F[Cz2](x) and F{C3](x))) and

(forall x: mot(F{Cn-11(x) and F{Cn](x)))

The individual restriction individual(() results in an axiom of
the form:

forall x,y: F[C](x) and F{C](y) => x=y

3.1.3 Inferences in the TBox

The question now arises: What can the semantics tell us? Tt
may help us to determine what can be inferred from a given set of
TBox expressions, i.e. what are legimate questions and how these

inferences can be drawn.

Because of the structure of the TBox language, only certain
kinds of questions make sense. For example, we are not able to
prove that a concept must have a non-empty extension, because we
cannot make assertions about such properties. Another non-

sensical question is to ask how many subconcepts a given concept

has, because there a always (potentially) infinitely many.

As it was said above, the purpose of the TBox language is to

introduce terminology by defining predicates. And only
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relationships between these predicates or inherent properties of
them can be investigated. Under this topic, inheritance,

subsumption and disjointness play a prominent role.

As mentioned earlier, inheritance is explained by the name
substitution rule. The reason for this easy mechanism is that no
defaults or exceptions of inheritance are permitted (cf. chapter
2). However, the substitution of names is not the whole story.

Let us consider the following simple example:

A = rootconcept:
R = primrole1(domain_range(A,A))
B = defconcept(specializes(A),nrmax_restriction(R,ﬁ))
C = defconcept(specializes(B),nrmax_restriction(ﬂ,l),
nrmin_restriction(R,1))
In this case, we want to inherit all information from B d. wn

to ¢. By substituting names by their definitions we get:

¢ = defconcept(specialize(
defconcept(specialize(rootconceptl),
nrmax‘restriction(primrole1(
domain_range(rootconcepty,
rootconcept:)),
5))),
nrmax’restriction(primrolex(
domain_range(rootconcept;,
rootconcepti)),
1),
nrmin_restriction(primrolel(
domain_range(rootconcept:,
rootconcept:)),

1))

Apart from the fact that the above form is a monster and that it
demonstrates that naming terms is a real benefit, there is still
something hidden, namely that the inheritance of properties from
B does restrict ¢ only in the way that ¢ is also a subconcept of
rootconcept:. The number restriction of the role # at 8 however
does not have any effect, because the number restriction at C is
stronger anyway. A reduced form, which is equivalent to the above

according to the semantics, can be given as following:
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c = defconcept(specializes(rootconcept1),
nrmax restriction(primrole(
domain_range(rootconcept,,
rootconcept: }),
1),
nrmin_restriction(primrole1(
domain range(rootconcepty,
rootconcept:)),

1))

The example shows that if we want to know the actual
restrictions of a concept we have to combine the inherited and
stated properties in some way. As a matter of fact, this kind of
inference is always done in the system when defining a new
concept and it is referred to as completion (cf. [Abrett &

Burstein 86}).

Now, that we know how inheritance works, there might be the
question whether the specializes relationship exists only between
concepts which are connected explicitiy. For instance, let us

examine the following case:

A = defconcept(specializes{C),nrmax restriction(R,1))
B = defconcept(specializes(C),nrmaxvrestrictiun(ﬂ,ﬁ))

Obviously, 4 and B are both specializations of €. However, beyond

that there is more. Intuitively, every individual, which can be
categorized by the definition of A4, i.e. which is a ¢ and has at
most one role filler for role R, can also be categorized to be a

B, because if something has at most one role filler it also has
at most five role fillers. That means that B is more general than
A, although this is not explicitly mentioned by =a specializes

specification.

This intuitive notion of more general is mirrored in the

semantics by the fact that F{B](x) is always true when F[A]l(x) is

true, but not vice versa. That means we have an exact meaning of
the more general vrelationship. Fven better, we are able to
formalize the decision process: I1f we want to know, whether A is

more general then 4, we only have to check:
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forallt x: F[Al(x) => F[B](x)

The maintenance of this relationship2?, usually called
subsumption, is one of the conceptually most important aspects in
the TBox component. A so-called classifier takes any incoming
con.ept and places it into the hierarchy at the right place
according to the subsumption relationship to other concepts.22 Of
course, this process is also applied to attribute sets, where

subsumption is decided easily by inspecting the extensions.

By this «classification process a consistent hierarchy is

enforced, which is an invaluable tool during the construction of
a domain model. Furthermore, the «classifier 1is used while
entering new individuals into the ABox. The most specfic

description will be used to categorize them and this in turn can
be used during retrieval. Indeed, the latter usage can be seen
as the hierarchical pattern matching as was proposed in KRL
[Bobrow & Winograd 77], but never realized in a satisfactory way,
because there was no precise definition of what KRL expressions

actually meant.

Unfortunately, decision procedures for the subsumption problem

are computationally tractable only for very simple term
definition languages (cf. [Brachman & Levesque 84)). Therefore
more expressive languages, such as e.g. NIKL, a tractable and
sound, but incomplete decision procedure is used?3. And because

the BACK TBox language is designed to cover more than trivial

cases, this applies here too24,

21 As a matter of fact, this relationship constitutes a meet -
semi~lattice. Note also, that subsumption in both direction
means that the concepts are equivalent.

22 The notion of classification was first introduced by Tom
Lipkis in [Lipkis 82]. A first formal treatment can be found
in {Schmolze & Israel B3]. Subsequently, a lot of research
effort was devoted in investigating the formal properties of
this process.

23 In fact, this is true for any language which is more than
plainly trivial.

24 Some notes about where inferences are missing will be given in

3.3.
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It might be the case that the reader is confused by the two
notions subsumption and inheritance. In particular there might
the question whether they are interdependent, i.e. is it possible
that after detecting a subsumption relationship between two
concepts the inheritance process has to be triggered (and vice
versa)? The answer is obviously negative. Subsumption is decided
on grounds of &ll (including inherited) properties of a concept.
Therefore if we discover a subsumption relationship we know that
all properties of the more general concept are already present in
the more special concept. That means that classification cannot
infer that a concept has additional properties, but can only
change the relationship of immediately specializing, or to put it

more picturally, to move concepts around in the concept hiervachy.

The last kind of 1interesting properties of concepts we

mentioned in the beginning is disjointness, i.e. whether two
concepts denote necessarily mutually exclusive sets.  An
equivalent question is whether the common subconcept of two
concepts is incoherent, i.e. denoting the empty set or the

predicate which is always false.2%

Disjointness may arise for differenl reasons. Obviously, root

concepts are disjoint and therefore all concepts subsumed by

different root concepts are disjoint too. The same applies for
primitive concepts which are marked as disjoint. Apart from
disjointness introduced by roots or restrictions, it can also
happen that concepts are disjoint because of definitions. For
instance, the value restrictions of two concepils may be disjoint
concepts, or the number restrictions wmay be non-overlapping
intervalls. Furthermore, attribute sets are disjoint if their

intersection is empty.

25 The BACK system does not permit to «create such concepts in
order to always enforce a consistent state of knowledge - - in
contrast to e.g. NIKL (cf. 4.1).
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3.2 Tlhe Formalism for Representing Assertional Enowledge

The ABox of the BACK-System is the part of the system where
the state of affairs of a given domain is stored. 1t can be also

seen as the management system for concept instances of TBox

concepts.

1L was designed to represent incomplete knowledge2® such as
the following:
Tom or Dick is the father of Mary
without telling who exactly is the father,
At least one person Is a friend of Mary’ s
without telling who the friends are,
Tom is one of the friends of Mary’s

without naming all the friends of Mary’s.

The formalism for representing this kind of incompleteness is
designed to allow the representation of incomplete knowledge only
locally in contrast to e.g. the proposals made by H.J. Levesque
{Lcovesque 82], permitting assertions such as:

John is married to Mary or Tom is a teacher.

This restriction is for computational reasons (cf. 3.3.1).

On the other hand, inconsistent assertions like
Susan is the father of Mary
violating a value restriction of the TBox,
Tom and Dick are the fathers of Mary
violating a number restriction of the TBox or
Tom is a teacher as well as a car
violating disjoint concept definitions of car and human in the
TBox, have to be rejected by the ABox not because of syntactic

il1l1-formedness but with respect to the definitions given in the

TBox. This section gives a first overview of the ABox language
and its semantics. In chapter 4, the facilities for storing and
26 The notions of incomplete knowledge with respect to a

(nwypothetically completely described) 'world' as defined in
[Levesque 82] and of incompleteness of inference procedures
with respect to given semantics should not be confused!
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retrieving assertions will be explained and discussed by

specifying the ABox interface language.

Kach concept instance consists of an unique identifier, called
unique constant or UC, a reference to the concept it
instantiates, and a set of role-value pairs. The role-value
pairs are references to appropriate definitions of roles in the
TBox and a structure called value expression, which expresses the
actual values of the specific instance of a role for a specific

instance of a concept.

So, if you have defined in the TBox a concept father as
a father is a male human with at Jeast one child, all of
which are human
you can have an instance of the concept of father as an entry in
the ABox representing a specific object described being a father

with some objects as his children.

The ABox of the BACK System is designed according to the
principles of balancedness between TBox and ABox and vividness
mentioned before and discussed later. The main attention is
given to the representation of incomplete but (at least) locally

consistent propositions.

3.2.1 Syntax of the ABox Formalism

A syntax describing the well -formed contents of the BACK ABRox
is given by the following BNF:

ABoxExpr == UCId ~ UCDescr
ucIrd == uci
UCDescr == Concept |
Concept ( Rolelist )
Rolelist == RoleValuePair .
RoleValuePair , Rolelist
RoleValuePair == Role = ValueExpression
ValueExpression == ValueTerm !
ValueTerm or ValueExpression
ValueTerm :== Value |

Value and ValueTerm
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Value :== card( Number , Number ) !
Attribute !
ucid
Concepts, roles and attributes in the syntax refer to TBox

terms as decribed in 3.1.1. Unique constants (UCs) are system
defined unique names. The construct card(i,j) stands for the
representation of at least i, at most j instances being in the
role-relationship to another specific entity, without naming
them. The construct card allows the representation of e.g.

John has not more than 5 friends

without unaming any one of them.

It may be surprising that the cwa operator mentioned in the
introduction is missing from the ABox representation formalism.
The reason for this is simple. Every cwa expression can be
converted to an expression containing only cards, i.e. it does
not contribute to the semantics. On the other hand the conversion
requires exponential space so that it should not actually be
performed (in the system), in particular because inferences over
expressions containing cwas can be performed with square time

complexity.

3.2.2 Semantics of the ABox Formaliam

The semantics for entries in the ABox can be given by a
transcription of the ABox contents in formulas of first order
predicate logic with the following procedure, assuming that
concepts denote 1l-place predicates and roles denote 2-place
predicates?7 . The general form of an ABox expression

uc ~ concept{role:r = valuei,...,rolen = valuen)
can be transformed into
concept(uc) and

role: (uc,value:r) and ... and rolen{(uc,valuen)

27 That means we will use concept and role as a shorthand for
F[concept] and F(role], respectively.
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The form rolei (uc,valuei) can be transformed as follows:

rolei (uc,values or valuep) is transformed into

role;i (uc,valueo) or rolei(uc,valuesp},

role; (uc,valueo and valuep) is transformed into

rolei (uc,valueo) and rolei (uc,values),

role; (uc, card(o,p)) is transformed into

existo x: role;(uc,x) and not(existp+1 x: role; (uc,x))

3.2.3 Inferences in the ABox

As in the case of the TBox, we are able to infer more than it
is represented explicitly in the ABox. The properties which are
interesting in the context of assertional knowledge are,

- how a given object can he described most accuratly in terms of

TBox concept definitions,

- what the degree of incompleteness for a given assertion is,
and

whether assertions are consistent with the rest of the ABox

and with respect to the TBox.

- whether one ABox expression is more general than another, an

issue dealt with in query evaluation (ecf. 4.2.2).

The first aspect is solved by a kind of taxonomic inference

called realization, a term coined by Bill Mark [Mark B2]. The
main idea is that if more information than just the concept of an
individual is given, e.g. the categories of the unique constants
in value expressions or other descriptiouns of the same

individual, the individual might be described more precisely by a
subconcept of the concept initially specified. To put it more
formally, given an individual i which is initially described by
the following ABox expression:

i ~ Ci1(Ri = vi, ...,Rn = wvu)
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then there might be a concept C2z2, such that C) subsumes Cz and
F[C2](i) = true, because the individual i

- is described elsewhere with another concept Cx,

- is a rolefiller somewhere else, which means it is implicitly
described by the value restriction of the role it is a filler
of,

— or because the actual role fillers wvi ... vn allow for the
derivation of stronger value and/or number restrictions.

Because the concept space is a semi-lattice there is eve. a
smallest concept of this kind. This concept might not be
explicitly defined, i.e. is not a npamed term in the TBox, but

getting to know this concept we know all its immediate sub—- and

superconcepts. The principle of deriving this concept -- the most
specialized generalization (hereafter MSG) -— can be stated with
few words. The only thing to do is to derive a concept

specification from the ABox expression (taking into account the
rules mentioned above) and to classify it (cf. [vilain B85]).
However, this process, even though it sounds simple, implies a

lot of complex inferences and interdependencies which we will not

explore here.

One subproblem of the inference process sketched above is the
determination of the degree of incompleteness for a given vnlue
expression. Only if a value expression is closed, i.e. all unique
constants which can potentially participate as role fillers are
known, the determination of a least general specialized concepts
makes sense, because otherwise it cannot be more specialized than

the wvalue restriction of the role at the initially specified

concept.

The determination of the degree of incompleteness does,
however, not only play a role in realization, but is also of
interest for the user in general. Here, the following degrees can
be distinguished:

~ inconsistent: The expression cannot be satisfied, e.g. {¢ and

b and card(1l,1));
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- definite: The expression determines a set of role fillers
uniquely, e.g. (a and b and card(2,2));
— closed: The expression does not determine a unique set, but it
mentions all potential members, e.g. ((a or h) and card(0,1));
~ open: everything else, e.g. (a and b).
The «¢lass a given value expression falls into 1is easily
determined -~~~ with polynomial time complexity, or even linear

time assuming reduced expressions.

Inconsistency is the last property we will look at. It comes
in different flavors. One possibility was already mentioned
above, namely that value expressions can be inconsistent. This

should be distinguished from cases where the empty role filler

set is denoted. An inconsistent value expression is e.g. {a and
card(0,0)), which is just a contradiction according to the
semantics. An expression of the form (card(0,0)), however, only

specifies that there is no role filler.

Inconsistencies can also arise because a concept definition is
incompatible with the actual description of an individual,
because one of the basic assumption about the domain is violated

(e.g. the disjointness of roots) or because one of the additional

axioms 1s not  met. Generally, inconsistencies arise if the
realization creates an incoherent concept. For example, if the
role married_to of the concept husband, which we assume to bhe

restricted to the concept woman, is filled by an individual which

can be categorized to be a man, then we know that the role filler

is an individual which is best described by
defconcept(specin]izes(man),specia]izes(woman))

which does not create a problem 1in the first place, because the

TBox is indifferent about the existence of hermaphrodites.

However, i1f there is, for example, an additional axiom that
states that man and woman are disjoint concepts, or if they are
defined to be disjoint by attributes, then the concept ahove is

incoherent.
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We will close this section with the note that this (admittedly
informal) characterization of inconsistency is more general than
in the former report about the BACK system [Luck et al 85] and

that it is more elegant because it is just the reflection of the

semantics. In addition, it solves in a very natural way one
aspect of the problem of detecting so-called ’non-local’
inconsistencies as described in [Luck et al 85} -- in the
formalism 8s well as in the actual system28. In order to

illustrate this, let us analyze the following example:

TBox contents

object = rootconcept:

human = primconcept1(specializes(object))

man = primconceptz(specializes(human))

woman = primconcepta(specializes(human))

set = rootconceptez

member = primrole1(domain-range(set,object))

team = defconcept(specializes(set),
value_restriction(member,human))

small_team = defconcept(specializes(team),
nrmax_restriction(member,4))

leader = primrolez(differentiates(member),

domain_range(team,human))
modern_small_team
= defconcept(specializes(small_team),
value_restriction(leader,woman),
nrmin_restriction(leader,l),
nrmax_restriction(leader,1))

disjoint(man,woman)

28 The problenm description in [Luck et al 85] also contained an

system aspect, namely the order in which assertions are
entered, resulting in incompleteness of inference depending on
order, a very akward situation! We ignore this issue here,
albeit note: This aspect of the problem has also been solved

by employing a kind of constraint propagation technique.
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ABox contents

ucy - man
ucz - man
uca - man
ucs — man
ucs - modern _small_team(member=uci1 and uca
and uca
and uca)
Even though there is no obvious contradiction, we can infer

that there is an implicit consistency violation for the following
reasons: The role filler of the subrole Jleader must be one of
ucy, ucz, uca or ucs, which are all described by the man concept.
However, the role should be taken by an individual of the woman
concept, which is disjoint from man. That means, even though we
did not obviously violate a restriction, e.g. by specifying a man
for the leader role, there is no valid completion of the ABox.
This implicit contradiction would be detected in the following
way:
first, realization would try to find a MSG for ves = and
describe it as being a modern_small_team and a thing which has
as its value restriction for the member role the man concept;
second, by completion, the value restriction of the member

role is ’percolated’ down to all its subroles;

- third, a new value restriction for the subrole leader is
constructed, which is a specialization of the original one
woman -- and the new one man, resulting in an  incoherent
concept.

It should be noted that this result just popped up after drawing
some straight-forward taxonomic inferences and that no cxpensive
’puzzle mode’ inferences were involved, although the situation

was described in this way.

3.3 Characteristics of the Formalisms

As it might have become obvious from the text above, there
exist a lot of other systems which are similar Lo BACK in scveral

respects.29 Therefore the questions arise, what are the

29 KL-ONE, KL-TWO (including NIKL and PENNI) and Krypton were
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differences and why do they exist? Some of the design rationales
for our system were already mentioned in chapter 2. Therefore we
will concentrate here on matters concerning complexity and

balancedness, which were not discussed in chapter 2.

3.3.1 Complexity Issues

Compuational complexity is an important issue when designing
knowledge representation formalisms which are intended to be used
not only as a kind of communication medium between researchers,
but as a means for representing and applying knowledge inside of
a computer.3® Although it has not been dealt with for a long time
in Knowledge Representation, now the importance seems to be
widely acknowledged. The Computers and Thought Lecture of
IJCAI-85 by Levesque, published as {Levesque BB], elaborated on
this point and gave some hints where intractability in knowledge
representation formalisms can arise and what can be done to

circumvent it.

One point he focussed on was a form of representation he
called vivid. Formally, this is a form of representation where
the knowledge base is a model (in the model theoretic sense) of
itgself; informally, a kind of representation which comes close to

representation by pictures (where e.g. disjunction or negation is

hard to express). As a matter of fact, this kind of
representation we find in relational database systems. It is a
form where a fast answer is always guaranteed. Unfortunately, it

is also a very uninteresting form of representation, because the

expressiveness is very limited. However, it can serve as a
reference point, i.e. one can try to achieve almost wvivid
already mentioned. In addition, there are e.g. Rabbit [Tou et

al 82), KNET [Freeman et al 83], Kandor {Patel-Schneider 847,
Meson [Edelmann & Owsnicki 86], QUIRK [Bergmann & Gerlach B6].

30 For example, the experience with Krypton seems to prove that
it is not an usable system because the general theorem prover
which is used as the ABox is far too slow (cf. Brachman’s

report about Krypton in [Moore 86]).
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representations or to reduce the representation to almost vivid

forms by using logically unsound or incomplete reasoning.

The ABox language introduced in 3.2 can be regarded as almost
vivid. An ABox is certainly not a model of itself, however the
pictoral metaphor applies here very well. The process of filling
an ABox can be interpreted as recognizing a picture in a step-by-
step manner by delivering only positive information.

Disjunctions (in role filler sets) are restricted to cases where

we do not know exactly the members, a situation which «can
certainly occur when looking at a picture. There is no way to
express disjunctions concerning categorization, but only to

choose a more general description (an example for reducing non-
vivid representalions to vivid ones also mentioned by Levesque).
In particular, one cannot express arbitrary disjunctions, which
Levesque regarded as one instance of extremely non-vivid
representations, Tndeed, these are rarely used when describing a
picture, they rather resemble the kind of logical puzzles
published in newspapers. Negation is severely restricted, only
the cwa and card operators allow to express that something does

not hold. And even this is more a kind of positive information.

In making plausible that the ABox representation  formalism
comes close to a vivid representation we, of rcourse, do not claim
that this proves that it is tractable. However, it gave us a good

starting point for the analysis of the inferences and we made at

least plausible that the desired propertly, tractability, holds.

[t might be worth noting, that in the first version of the
ABox formalism a negation operator was present, which has been
dropped later on. One reason was that it was responsible for
strange results in the context of the ecwa operator. Another, more
important one was that conversion to disjunctive normal form of
arbitrary boolean expressions is NP complete, without negation,

however, polynomial.
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Another source of combinatorial explosion «could be the
handling of cwa expressions. Converting them to forms comprising
only and, or and card requires exponential space, and also the

(set theorctic) semantics in 4.2.2 gives rise to the suspicion
that exponential time or space is required because the power set
comes into play. Careful analysis, however, reveals the fact that
for the evaluation of such expressions (e.g. reduction and
detection of subsumption as defined in 4.2.2) it is sufficient to
consider the set of possible members as a kind of ’evaluation
context’ and reducing thereby the complexity to polynomial

time31!.

Concerning the TBox, there are already a lot of papers which
dealt with complexity. Starting with [Schmolze & Israel 83},

which describes an abstract algorithm for subsumption and notes

that the algorithm is sound but incomplete, in [Brachman &
Levesque 84] it 1is proven that complete subsumption is
intractable for languages as powerful as e.g. NIKL. Finally, in

[Patel-Schneider 86] the semantics is weakened to permit complete
subsumption, albeit the weak semantics does not allow for an

intuitive understanding of what is subsumed.

This means that currently there 1is no fully satisfactory
solution. Either
- the expressiveness is reduced to triviality,
-~ the semantics is weakened without having a good intuitive
model, or
- the subsumption is incomplete.
A way out of this dilemma might be to live with incomplete
inferences but try to solve easy special cases and mark others as
incomplete, a solution favored by the developers of NIKL

[MacGregor B6].

31 However, this strategy is not implemented 1in the current
system and therefore disjunctions in cwa expressions are not
permitted.
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Probably, the question comes up: Where does incompleteness
arise? The culprit is the introduction of subroles. 1f we would
leave them out, a complete subsumption procedure would simply
check every subterm against all other subterms. The introduction
of subroles, however, complicates the situation considerably.
Combinations of subterms have to be checked, which is not done in
the implemented subsumption procedure for good reasons: It would
result in combinatorial explosion. For example, the following

subsumption relationship between X and ¥V is not detected:

A = primconcepti(...)

B = primconceptz(specializes(A))

C = primconcepts(specializes(A))

disjoint(B,C}

7 = primconcepta(...)

R = primrole: (domain range(Z,A))

Rl- primrolez(differentiates(R),domain_range(Z,B))
R2= primroles(differentiates(R),domain_range(Z,C))

X = defconcept{specializes(Z),nrmin restriction(R,2))
Y = defconcepl(specializes(Z),nrmin_restriction(R1,1),.
nrmin_restriction(R2,1))
The concept ¥ can be characterized as follows: Because the
ranges of Rl and K2 are disjoint, the respective role fillers are

necessarily different individuals. Furthermorve, because £! and R2

are subroles of R, we known that R must have at least two role

fillers, i.e. the concept ¥ is a specialization of X

A way out of this problem might be to adopt the strategy

described above. Special cases, two disjoint roles, are ecasily
detected, and the same 1is true for detection of possible
incompleteness. The only task 1is to build the specialization

concept for the ranges of all subroles and testing whether this

concept is incoherent.

To summarize, for the sake of efficiency we sacrificed
completeness. However, if the language is already on the other
side of the computational cliff, why are primitve subroles

permitted and defined subroles are not? The reasons are manifold,
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but of pragmatic nature3?. One 1is that defined roles introduce
even more cases where incompleteness arises, e.g. a kind of

modus ponens reasoning (cf. (Patel-Schneider B86}), another one is
that we do not know how to handle defined roles on the
assertional level easily, and at last that this would introduce

the problem of classifying roles.

3.3.2 Balancedness in Hybrid Knowledge Representation Systems

Hybrid knowledge representation systems employ different
representation formalisms in order to represent different kinds
of knowledge, which are, however, somehow connected. Whether a
system is really integrated hybrid, i.e. one thing made of
different ingredients, and not just a diverse collection of
formalisms can be decided by investigating the glue which holds
together the different components. This should at least consist
of a

- representational theory (explaining what knowledge is to be
represented by what formalism) and

- common semantics for the overall system (explaining in a more
sbstract manner the meaning of expressions in the different

formalisms).

A necessary precondition for glueing things together is that
their shapes fit together, a fact we usually take for granted.
And, indeed, when designing the components in one cast -- as in
our case -- they usually do. However, systems as e.g. KL-TWO were
built by using two components developed independently -- NIKL as
the TBox and PENNI?3 as the ABox. They are 1in some sense
unbalanced as we will see below. The term balancedness, which is
a littie bit vague, could be defined by the following principle

of balancedness in hybrid representation systems:

32 That means, they might vanish and open the opportunity to

extend the language.
aa PENNI is an adaption of RUP [McAllester 82] to KL-TWO.
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If a representation construct in a subcomponent of a
hybrid knowledge representation system suggests that
its usage has some impact on knowledge represented in
another component (according to the common
semantics), then there should be such an impact.

Even though this sounds simple, self-evident and hardly to miss,

because of the common semantics, it can be easily violated.

A hypothetical hybrid system as for instance the one sketched

by Figure 2 does violate this principle. The reason is that the

expressiveness of both subsystems do not match. In the example
system we can represent in one formalism the location of objecls
with a situation index, which suggests that the situation index

has 8 certain semantic impact. In the other component, however, a

situation index is not permitted, i.e. inference rules are only
applied inside of one situation. The net result is that the
situation index in the former component can only be regarded.as a
kind of comment, which has no semantic impact, however it can be

used by a program using such a system.
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Figure 2: A hypothetical unbalanced hyprid system
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With KL-TWO we encounter a similar mismatch. Because its
subcomponents were developed independently, they provide
operators which are used in the respective subcomponents, but
without any global semantic impact. Examples are

- the number restriction of NIKL, which has no impact on PENNI,
because in PENNI cardinalities cannot be dealt with. The

reason for this is that the wunique name hypothesis is not

used, 1i.e. two different constants are not considered to be
necessarily different. This means that role fillers cannot be
counted.

_ the value restrictions of NIKL are only used in PENNI to infer
the category of a given role filler. However, the other way
around does not work. A set of role fillers can never be used
to infer something about the individual the role fillers are
related to. The reason is that PENNI lacks an operator which
allows to state that a given set is complete.

-~ the negation operator of PENNI is never used for the
realization process, even if we get something like
not(Concept(X)). The main reason is probably that NIKL does
not provide a corresponding concept forming operator.

- the disjunctive operator of PENNI is not used either. 1If we
have something like (Concepti(X) or Conceptz(X)) it -is
certainly the case that X can be categorized by a concept,
which is both a superconcept of Concept; and Conceptz.
However, this is not inferred, again, probably because there

is no corresponding NIKL operator.

All the above might be summarized under the topic incomplete
reasoning. But a closer look reveals that this incompleteness
has a principal reason, namely that the other component does not
provide the necessary operations to realize the requested
gsemantic structure. Usually, if incompleteness of reasoning is
encountered, the solution is to write a more complete inference
procedure, at least theoretically. The situation described

above, however, cannot be solved in this way without changing the
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respective formalisms39!

In contrast, the BACK system was designed to be balanced in
its expressiveness. We even tried to minimize the occurence of
(cross—component) incompleteness in the reasonting process. The

latter design goal is the reason for only permitting primitive
roles and restricting the role value maps to very simple cases.
As remarked above, this is a pragmatic decision which perhaps

will change in future.

24 We would like to thank Marc Vilain and the NIKL group at
USC/1I8I for discussing the issues described here. Without it,
we would not have been able to formulate our criticism.
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4 The BACK System

In this <chapter the main components of the BACK sytem are
described. In general, we distinguish between two aspects of the
work to be accomplished for the task of knowledge representation:
The more theoretical point of view is concerned with specifying a
representation formalism. This view emphasizes the aspect of
having a sound formalization at hand which has a well-founded
semantics, and for which issues like complexity, completeness of
classification, etc. can be studied. This aspect was discussed

under BACK formalism in chapter 3.

The other aspect of the representation task is concerned with
the practical use of establishing and dynamically changing the
corresponding part of a knowledge Dbase. Questions in this
context encompass problems of how to deal with conflicting
definitions, how to delete or overwrite, how to make use of
classification for the process of taxonomic reasoning, etc. This
view deals with the characteristics of BACK as a knowledge

representation system.

Many of the design considerations for development and
implementation of BACK where guided by aspects of having a system
for practical use; substantial emphasis was put on working out a
maintainable set of functions the system should perform.
Nevertheless it was of paramount importance for us to build a
system which - in fact - is based on a proper formal framework as

described in the previous section.

Also to be mentioned under the system view is a discussion of
appropriate tools and supporting environment for all components
of the knowledege representation system. All this will Dbe

discussed in the following two sections.
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As shown in the diagram below, the system can be discussed

following the division into

~TBox Management

-ABox Management
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4.1 TBox Management

In this chapter the terminological component of the knowledge

representation system BACK, the TBox, is described. First, we
start with a short review of the main TBox operations. The TBox
contents 1s seen as a network structure, and the impact of
operations is studied reflecting their use in the network. The

set of operations discussed constitutes the functional interface

for the TBox.

Then we give an overview of the system environment; the
components of the system are sketched. The integration of the
classifier component and its role within the reasoning process 1is

described.

Finally, a summarizing consideration of the various net
operations discussed so far leads to an extended language, the
BACK TBox interface language. The specification of the language
is given for interfacing with other sytem components of the

overall system.

4.1.1 TBox Net Operations

In chapter 3, the BACK TBox formalism has been described as a
member of the KL-ONE family of representation formalisms. In the
following description we will discuss some questions which arise
when the formalism is taken as the basis for a practically usable

knowledge representation system.

Let us reconsider how the basic structure of the system
follows directly from the structure of the formalism language:
We have a hierarchy of conceptual entities, or concepts, and we
have a hierarchy of 2-place relations between concepts which are
called roles. The role hierarchy is a primitive subsumption

hierarchy in which roles are specified by their place in the
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hierarchy and by an additional specification of their domain and

range. For both hierarchies the nodes are connected by links
according to subsumption. Concepts and roles form two
independent hierarchies; summarizing, we can see them as an

overall network structure.

Also part of the network is the subnet of attribute sets: As
an additional way of defining concepls we included the
possibility of extensional definition by enumerating all

instances of the concept explicitly in contrast to the otherwise
intensional definition of concepts. Al attribute sets are

descendents of the predefined root concept attributes.

Now what problems are we faced wilh when we start
investigating the consequences of the formalism for the dynamical
management system of a such a network? First of all, we can not

expect the wuser to come up with complete definitions (which of

course, if he or she did, would have a well-defined
interpretation on the hasis of the formalism). Instead, the user
we have in mind might prefer to start with preliminary
definitions, incrementally add features to some objects,

redefine, or overdefine them, finally ending up with a network he
or she (or the ABox) can live with, This process has also heen

referred to as knowledge editing [Abrett & Burstein 867 .

For the design of an appropriate system this means we have to

make a choice regarding the way in which the incremental
application of net operations is handled. We have to consider
questions like: what has to be taken into account concerning
inheritance, consistency, deletion, ete¢., when are net entities

generated, and so on.

On-the other hand, we should not be tempted to open up access
to all kinds of manipulation operations on the underliying data
structures. In [Patel-Schneider B4] it was argued convincingly
that only a minimal set of operations should be admitted as

access operations in order to guarantee that the system’s
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behaviour meets what is specified by the semantics of the

formalism.

Summarizing, we need an implementation of a well-founded
representation formalism which allows for access to 1its objects
in similar a way as in object-oriented systems concerning
incremental modification and redefinition of objects. We will
see how this is achieved in making some exemplary considerations

on this task.

The discussion is subdivided according to the following groups

of operations:

- structural net operations
- infimum / supremum operations
- marking operations

cycles

—~ delete operations

4.1.1.1 Structural net operations

The first group of operations corresponds to definitions given
within a term definition language as referred to in chapter 3.
For the BACK system in 1its present state, handling of
redefinition concerning these operations is dealt with under the

following principles:

The formalism dictates logical consistency of the set of
formulas represented by the net.

- At every stage in the course of building the network there
should be a consistent version of the net.

- Every new operation is applied conjunctively as an additional
formula. Its consistency with the existing set is checked and

n11 inheritance consequences are performed immediately.

We will see how this works in an example. Let us assume the
TBox has the following contents: A person is a human which has 0

to infinitely many friends which are humans. Musician is a human.
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Athlete is a human. Musician_friend_person is a person with
friends which are musicians. Athlete friend_person is a person

with friends which are humans.

Written in the TBox interface language:

person = primconcept(specializes(human),

restriction{has friend,human,[0,in]))
musician = primconcept(specializes(human))
athlete = primconcept(specializes(human))

athlete_ friend_person =
primconcept(specializes(person),
restriction(has friend, human,{0,in]))
musician_friend_person =
defconcept (specializes(person),
restriction(has friend,musician,{0,in]))

Now, consider the following sequel of incrementally added
definitions. First we want to modify our definition by telling
that athlete friend_person has a more specific VR for the

has friend role athlete instead of human.

athlete friend person
defconcept(specializes(person),
valuuirestrirlinn(hasrfriend,athlcte))

The conjunction of the new and the old concept, in this case

athlete, is taken for the final definition.
Then we might want to add a concept C] with
-C1 = dofconcept(specinlizes(musician_friendwperson))

The concept €I is 1introduced and inberits all features of its

superconcept . Let us assume we wanlt to establish additionally:
Ccl = defconcept(specia]izes(athleteffriend_person))

For a new value restriction of the has friend role the

conjunction of both value restriction in question, athlete and
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musician is taken. A new concept is generated (which can be

renamed later) and serves as the new value restriction for CI.

A~ we notice in the example, redefinition of a single concept

always vyields the most restricted definition as the new
definition. The reason for the restrictive way of dealing with
additional specifications follows directly from the

interpretation of the network in logic.

A straightforward application of the general principle, as
shown in the example gives rise to certain decisions we will

discuss below.

Our next example for the type of questions arising in a net
management system is inheritance maintenance concerning the local
definition of roles at concepts. For an explanation we take a
look at the connection between concept and role hierarchy: With
regard to roles, BACK underwent a development similar to NIKL in
moving towards an independent role hierarchy (which has also been

called the enlightened view of roles) [Kaczmarek et al B6].

Usually, introduction of a primitive net object means explicit
determination of its place within the subsumption hierarchy. For
an independent role hierarchy we have to specify a new role by
explicitly giving its place in the hierarchy and by an additional

specification of its domain and range.

Given two seperate taxonomies of roles and concepts, the
connection between both hierarchies can also be described from
the concept taxonomy view: A role is attached to the domain
concept, which has a value restriction and a number restriction.
Tollowing this view, roles can also be introduced implicitly
along with a concept operation: If a role restriction is
inti oduced for a concept, and the role has not been introduced so
far, the concept the restriction is attached to is taken as the
role’s domain, and the value restriction concept is taken as the
role’s range. The number restriction remains as an additional
condition for a concept which could be called a local condition

(although inheritance is applied globally).
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As mentioned earlier, one of the main tasks a management
system for a network based on the formalism has to accomplish is
the maintenance of inheritance conditions. For role
restrictions, both kinds of operations, explicit modification
within the role hierarchy and implicit restriction locally at

concepts, have to be managed in a uniform way.

In principle, all roles of a conceptl are strictly inherited
by all subconcepts of a concept. . For the independent role
hierarchy, inheritance is straightforward: Domain and range

concept of a differentiating role must be subconcepts of domain
and range concept of the coresponding role differentiated. To
return to our redefinition problem however, we have Lo deal with
inheritance consequences arising from the dependency of local

restriction conditions from the explicit role hierarchy.

Taking our previous example, we add another role
has_good_friend stating, Person is a human which bhas 0 to

infinitely many good_friends which ave humans,
has good_ friend = primrn]v(dumainvrnngn(pnrson,humﬂn))

and another concept €2 as a a person which has 0 to 3 friends aond

3 to 6 good friends.

¢2 = defconcept(specializes(person),
restriction(has friend,human, [0,3]),
restriction(has goodmfriend,humnn,[3,6]),

So far, no relation has been specified between both roles
has_friend and has good_friend. I1f the additional specification

that has friend is differentiated by has_good_friend

has_good_friend = primrole(differentiafes(hﬂs“friend))

is entered we apply the conjunction principle local at all

concepts. For concept pe son, no new information can be
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inferred. For ¢2 however, we can get a more specific definition
by restricting the corresponding number intervals in the
following way: the lower interval bound is propagated upwards
and the wupper interval bound is propagated downwards. The new

definition of (€2 is

Cc? is a person
¢2 has exactly 3 (3 to 3) friends and 3 good_friends.
(Cc2 might be renamed to three_friend_person)

The example shows how inheritance mechanisms are applied locally
in the wake of a global redefinition. These mechanisms can result
in more specific descriptions which constitute additional

conditions for concepts in the network.

4.1.1.2 Infimum and Supremum Generation

We will now turm to two additional operations, which
comprehend features of several concepts, namely the infimum

concept generation and the supremum concept generation.

The infimum concept of two concepts is the defined concept
which denotes the intersection of the corresponding sets. An
appropriate net operation follows directly from the TBox language

in chapter 3; it is specified as:
C_infimum = defconcept(specializes(C]),specializes(CZ))

In our previous example we already made use of this operation in

generating the common subconcept of athletes and musicians.

The supremum concept of two concepts is the defined concept
wich denotes a unique superset of the union of the corresponding
sets. We introduce the construction of a supremum concept only as
an operation performed on the network. No special construct is
provided for the supremum concept within the term definition

language given in chapter 3 in order to keep a compositional
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semantics for the language. Nonetheless, we can consider the
construction of a superconcept via the following sequel of

operations in the network.

We are looking for the supremum of two concepts, or, to put it

differently, for a unique concept that generalizes them. Both
concepts must be subsumed by the same root. We first look lor
all common subsumers. The infimum concept of these 1is a unique
subsumer of the two candidates to be generalized. We can add

further restrictions to 1t by taking all common roles into
consideration and assigning appropriate value and number
restrictions to it. For number restrictions we take the connected
covering of the corresponding intervals. For the value
restriction we, again, take the generalization (and apply the

conslruction again).

To illustrate our gencralizing operation, let us return to our
previous example again and add another concept

two/one friend person with

two/one_friend_person
defconcept{specializes(person),
rosfrir{ion(has“friend,human,f2,2]),
restriction(has good frieond,human,{1,1])

To obtain the generalization (¢4 of three friend_ person and
two/one_friend person we find that person is their most specinl
common subsumer. As additional features we can add restrictions

for ¢4 finally specifying

¢4 is a person with 2 to 3 friends and
with 1 to 3 good_friends.

Summarizing, we can state the following properties: The

hierarchy of primitive concepts forms a directed acyclic graph
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with regard to subsumption. Every concept net partition subsumed
by a root forms a lattice, i.e. by infimum and supremum operation
every two concepts have a most special common superconcept and a

most general common subconcept.

4.1.1.3 Marking Operations

Let us now review the rest of the operations, namely marking
operations like disjointness, root, individual marking. The way
these operations are dealt with in this context reflects the

distinction given in chapter 3 between term descriptions and term

restrictions25.

Following this distinction, we see two kinds of npetwork
operations: Operations 1like concept specialization or role
restriction add new information for net objects or relations
which can be characterized as structural information. The
subsumption test performed by the classifier is based exclusively
on this type of information. The extent of these operations is

exactly equivalent to the extent of the term definition language.

All remaining operations make additional restrictions on to
the net which carry no structural information in this sense.
However, operations of this type might affect subsumption by
imposing conditions which have to be accounted for additionally

to the basic classification procedure.

A pair of primitive concepts can be marked explicitly to be
disjoint, which means that a common subconcept may not be
introduced in the concept hierarchy. Explicit disjointness
marking should be distinguished from defined disjointness, i.e.
disjointness stated by definitional operations: Two concepts
which for example have conflicting number restrictions, cannot
have a common subconcept because of the coresponding rules for

number restriction inheritance. These concepts are disjoint by

35 Throughout this section we will take the axiomatic view for
all considerations concerning the formalism.
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virtue of their definitions. In the other case, we might have
two primitive concepts which contain no conflicting
specifications. If, however, we want to prevent introduction of
any common subconcepts, these two concepts can bhe marked as
disjoint explicitly (this is done automatically for all root
concepts). We have to restrict explicit disjointness marking to

primitives, as otherwise we excluded the introduction of concept

definitions which are structurally conceivable.
In our example, both concepts
three friend_person and two/one_friend person

arc defined disjoint because of conflicting number restrictions.

Tn contrast for the two primitive concepts
musician and athlete,

disjointness would have to be specified additionally by explicit

marking.

Primitive conceplts can he introduced together with two kinds

of additional properties, as roots and as individual concepts. A
root concept is a primitive concept. Tt may not have a
superconcept. It is marked as mutaually disjoint from all other
root concepts. Root concepts serve as a  structuring mesans for
the concept hierarchy. They support  concept clustering which is

an immediate consequence of most modelling approaches [Hayes 78]

for a larger amount of definitions.

An individual conceplt may not have a subconcept. All concept
which have an individual concept as a value restriction must have

a number restriction of [1,1].

4.1.1.4 Cycles

Some awkward questions concerning cycles arise. Regarding our
incremental way of working with TBox specifications, we often
want to refer to an object already defipned and use it again - on
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the left side of the definition - to specify some additional
features. While in the TBox language discussed in chapter 3

redefinition was excluded for good reasons, an extended interface

language for practical access of the network should cover this

possibility, and we have already discussed several aspects
thereof.
However, as an unpleasant side effect we open wup the

possibility of establishing cyclic specifications in the network,
and we have to deal with them. The question of what the intention
of the user was and whether a modelling idea making use of cycles
is sensible shall not be discussed here. Our main concern is to
make sure that the net editing system, in particular the

classifier does not run into trouble when cycles occur.

What kind of cycles can occur in the network anyway? First
consider subsumption cycles. Trivially, they should - for both
hierarchies - be excluded; the net management system should make

sure we are working with a directed acyclic subsumption graph.

Another case can be seen in the following example: Assuming
we restrict the value restrictions of two concepts ¢l and €2 for

a role is related as follows:

¢1 = defconcept(specializes(C),
value_restriction(is_related,CZ))

c2 = defconcept(specializes(C),
value_restriction(is”related,Cl))

Independent of the user’s intention, the cyclic definition first
does not seem to do any harm within the network. Considering the
classification procedure however, it becomes obvious that the

subsumption relation between both concepts cannot be determined,
the classifier will go astray. We have to exclude either the
specification that both concepts are defined or the specification

of the value restrictions as given above.
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There are cases when cycles concerning primitive concepts are
troublesome too: If ¢l and ¢2 are given as above but are

primitive and we specify 37 with
c3 = defconcept(specializes(Cl),specializes(CZ))

again, by completed inheritance, we obtain a cyclic definition

for C3:

c3 = defconnept(specia]izes(cl),specializes(CZ)
value restriction(is_related,C3))

which cannot be compared successfully on subsumption by the
classifier with another defined concept specified similarly.
Consecquently, specification of a concept like 7 is excluded by

the network management system.

4.1.1.5 Delete Operations
One final remark concerning network deletion operations.

Delete operations in  the system’s present state are quite
radical; for instance the subsumed subnel is deleted for deletion
of a single concept. The present status of these operations
should not be seen as s complete set of operations for detailed
net debugging with appropriate mainlenance mechanisms. So far,
it is rather a set of global net operations. A full treatment of

the problems involved is beyond the scope of this report.

4.1.2 SOCE, a Net Editor for the TBox

We will now turn to a <closer 1look on how a supporting
environment for the net management of a knowledge representation
system should look like. The demands on this component arise
from the task of working on a larger scction of a domain and
dealing with a dynamically «changing or incrementally growing

model. As we have explained above, in most cases the user will
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not have a fixed number of well-formulated basic definitions at
hand. Instead, he probably has an intuitive idea about a wide
range of terminological knowledge. Moreover, the full extent of
what should be covered by definitions will change during use of

the overall knowledge base.

A tool for the TBox should deal with all tasks for the
construction of a taxonomy. For the user interface the
environment should support interactive operations for editing the
network. The environment should provide a clear way of
visualizing and inspecting the net contents36. Internally, the
environment should automatically support all checking and
processing steps required for managing the taxonomy. It has to
maintain all definitions and transform them into the basic

relations of the representation formalism.

The task of providing an appropriate environment for a
representation formalism has been identified as an important part
of an overall representation system for quite a while; a recent
development is discussed in [Abrett & Burstein 86]. Net
manngement for the BACK system is perfomed by the component SOCE,
a Structure Oriented Concept Editor. SOCE is a managing
component that offers a wide range of functions for entering the
terminological knowledge into the system in a practicable way.
The entities of the domain terminology can be formalized
conceptually and entered via a cooperative user interface with
prompting and messaging features. As described above, the
representation formalism dictates consistency of terminological
knowledge with respect to the inheritance rules. The editor must
carry out all necessary checks along with the incremental

construction of the network.

Tn the following, we give an overview of the operations
supported by SOCE; for a more detailed introduction into the use

of the system environment the reader is referred to the BACK-

36 The role of interface features for Al systems is illustrated
in [Bobrow et al B6]: The case study for the distribution of
code shows that 42% are devoted to the user interface.

Anatomy of the BACK System -T2 The BACK System

System User’s Guide.

Regarding the overall system architecture concerning the user
interfaces (see figure 3) we identify SOCE as the basic component
of the knowledge bhase editing system. Tt should be mentioned
that within this chapter only this basic component is described.
The full functionality of the interface operations can much
better be appreciated by considering it together with the
functionality of the BACK Graphics package. All topics
concerning this and other specific interfaces are discussed in
section 5.

The SOCE component diagram (figure 4) shows four main

subcomponents:

- the net operations component
- the consistency and inheritance component
- the net 1/0 management

- the classifier

4.1.2.1 Net Operations Component

All operations described in the last section are invoked via
the net operations component. Tn general, the following steps are

performed when a SOCE operation is processed:

- All names occuring in a specification are checked for correct
reference.

- New links are checked for forming subsumption or definition
cycles.

~ All checks concerning additional marking restrictions (like
root, individual, explicit disjointness) are performed.

- The consistency and inheritance component is invoked for
dealing with the structural information of the new
specification.
1f the operation produces a consistent extension of the TBox
the basic relations are established and filed as BACK core

relations.
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is put onto the operations history. This

on serve as a file for re-loading a net.

us list some more features for specific

- A number of tests can be performed optionally, which is

controlled by system switches. In particular, time consuming

tests like disjointness checks can be omitted optionally.
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The editor maintains all user-defined and system-defined
names: User-defined concept and role names are kept in a
names table, thus providing 8 names dictionary for potentiatl
export to other components. System-defined names ave created
for concepts generated by an infimum operation.

All user-defined and system-defined names can be renamed; all
named objects can be given commentaries as attached data which

are not accounted for concerning inheritance.

4.1.2.2 Consistency and Inheritance Compomnent

Within this component the structural consistency of a new

specification to the net is checked.

Conflicts are detected for the concept hierarchy value
restriction and number restriction.

All local modifications concerning role restrictions  are
checked against the role hierarchy.

Appropriate mechanisms are applied for inheritance of all
roles, diffroles, restrictions, and rvms.

For multiple inheritance, conflicts concerning value
restrictions can make it necessary to generate infimum
concepts internally. In this case the classifier is invoked
for the system-generated concept, in order to find the right
location of the generated concept within the net. The result
of classification can also be a merge of the generated concept
with a concept already known.

For the role hierarchy, domain restriction and range
restriction conflicts are detected. Domain restriction results
in disinheritance of roles at all concepts subsuming the newly
specified domain. For domain and range restrictions an
internal generation of infimum concepts (i.e. also invocation

of the classifier) may be necessary.
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4.1.2.3 Net 1/0 Management

The component encompasses functions for loading, displaying

and saving the TBox contents.

The TBox network can be displayed in a pretty-printed mode.
The features of all objects are shown according to their
specification at concepts and roles. An additional, and for
certain purposes much more elegant (and almost eloquent) way of
visualizing the TBox contents is given by the BACK Graphics

package. We will discuss this in 5.2.

A1l SOCE operations which are performed in the course of a
network generation session are recorded and can be saved any
time. All operations performed by the classifier, i.e. adding
new links and merging of objects, are protocolled as well. The

protocol file can also be edited or generated offline.

By loading a protocol file the sequence of SOCE operations is
executed. The old TBox <contents is added to the new one or is
replaced depending on the existence of an initializing operation.
The file can also contain TBox interface language expressions.
SOCE operations and TBox interface language expressions can be
processed in mixed mode. All corresponding checks and

inheritance mechanisms are applied in this network loading mode.

Loading and saving a TBox network can also be performed in an
alternative way by using the internally filed BACK core
relations. The set of core relations is accessible for writing
on a file at every stage of the network generation process.
Reading a file of core relations again is a quick way to reload a

TBox network generated before. No tests are performed at all in

this mode.
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4.1.2.4 The Classifier

Tt is the task of the classifier to automatically determine
the right place for a term within the taxonomy. Generally
speaking, this means that the classifier has to find all
subsumption relations between a new description and the network

already given.

The core of classification 1is =a comparison between the
structural information of two objects; it is most important to
see that a proper treatment of this test makes use of the well-
defined semantics the formalism is based on. In [Schmolze &
Lipkis B3] a classifier algorithm was given; for the BACK

formalism the corresponding issues were discussed in chapter 3.

Classification is needed for two main purposes within the
system environment: In the modelling phase it is used to

establish all subsumption relations between a new specification

and the existing network. Later, when querying the TBox, the
classification procedure is used to match descriptions in
question with apropriate parts of the network structure. These

queries are referred to as «classification based queries (see

4.1.3.).

A new specification 1is «classified straightforwardly as

follows:

- The concept hierarchy 1is traversed to search for presumptive
comparison objects.

- Subsumption is tested.

- For all additionally found relations the appropriate net
operations like introduction of new links, and merge of
concepts are performed by using the corresponding SOCE
operations.

- Since all operations initiated by the classifier are
protocolled, a classified net can be stored and re-loaded

without using the classifier again.
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A classification based query is dealt with in the following
way:

- An object is generated following the specification of the
queried description.

- The object generated is classified.

- If the object generated is merged with an already existing
object the latter is given as result. Otherwise, the generatad
object is given as answer and remains in the net.

- The other type of queries (net retrieval queries) does not

employ the classifier.

Again, considering the different focus of interest we are
concerned with under the system view, different questions arise
when we investigate classification and its practical use within a

knowledge editing environment.

We already know that we want to deal with preliminary
specifications or definitions not yet given completely. 1f
classification is designed as a process which is performed
automatically for any new TBox specification some unwanted side
effects follow: objects which are not completely specified yet
could be merged and thus disappear, links could be established

which do not correspond to the user’s ultimate intention.

Consequently, it should be possible to initiate classification
gradually along with the incremental modelling process. The
classification process should be fully integrated into the

interactive editing environment.

In the BACK system, the classification task is performed
combinedly by the SOCE-classifier and the net editor SOCE. SOCE
incorporates a number of checking functions to ensure that the
new description 1is placed at an admissible location: the new
description must always be consistent with the set of axioms
represented by the net. SOCE applies appropriate inheritance
mechanisms which furfher complete the specification and add more
restrictions if necessary. In the phase when working exclusively

with SOCE the net can be seen as a pre-classified net.

Anatomy of the BACK System -78- The BACK System

In a second step, all additional subsumption relations can be

detected by the SOCE-classifier and added to the network.

We will see how division of labor works by reviewing our

example: Assume we have the previous TBox contents with
has_good _friend = primrole(differentiates(has friend))
c2 = defconcept{specializes(person),

restriction{has friend,person,[0,3],
restriction(has good friend,person,{3,6])

and additionally we introduce

5 = defconcept(specializes{person),
restriction(has friend,person,[3,3],
restriction(has good friend,person,[3,3])

As explained above, SOCE restricts both NRs of ¢2 to {3,3] by
applying inheritance mechanisms. Rath concepls €2 and €5 are now
identical. Their structural equivalence is  not accounted for by
SOCE, i.e. both concepts coexist until classification is
explicitly initiated. If no other specification has been added
the concepts are merged after classtficalion; their names remain

accessible as synonyms.

Classification of the overall nect is usually not necessary far
working with the net. Tt is possible to remain atl the first
step, and only let SOCE do all consistency checks incrementally.
In this phase, Lhere may exist conceptually identical objects for
further specification; the complete set of subsumplion relations
is not necessarily established at this point. Overall
classification can be postponed until the phase in which the full
extent of all subsumption relations is needed for full taxonomic

reasoning.
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Classification can also be performed locally at single
concepts: in this case the classifier has to deal with associated
VR concepts too, which can result in rearrangement of whole net

partitions.

4.1.3 TBox Net Interface Language

Given our TBox language from chapter 3 as a starting point, we

will now turn to a formal specification of the complete interface

language.

First, we consider two major rationales for the design of an

jinterface language: Every TBox network generated by the language
should represent a set of axioms for which a formal
interpretation in predicate logic can be given. Consistency

should be maintained for the set of axioms represented in this

component.

The first part of an interface language for the BACK TBox net
was already given in the form of the TBox Language. As shown in

chapter 3, both principles hold for the TBox language.

When viewing the set of TBox axioms as a net, we obtain some
more operations which are useful for the TBox management. The
most important extension is to allow access to object names in
order to make redefinition possible. Also operations 1like
supremum generation should be accessible via the TBox Interface
Language. Altogether, these operations constitute the set of

Tell operations for a TBox interface language.

In addition to the specification of Tell operations we will
now specify two kinds of Ask Operations for the complete design

of the TBox Interface Language:

- Net Retrieval Queries
and

- Classification Based Queries
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For net retrieval queries like what 1s the value restriction of

role R at concept CI,
ASK_VAR = vr(C1,R).

the information is directly available from the underlying set of

BACK core relations. Classification is not required in this case.

Classification based queries are queries which require a
structural matching of a more complex description with parts of
the network. For such queries as &e.g. what defined concept

specializes Cl and has C2 as its value restriction for role R,
ASK_ VAR - defconcept(specializes(Cl),vr(R,C2)).

the classifier is employed for the matching procedure. A
similiar kind of distinction between the process of retrieval and

the process of matching is discussed iv {Bobrow & Winograd 77].

To summarize, we can give an overall interface specification
as an extension of the TRox Language given in chapter 3. All
additional operations generate nets (or sels of axioms), which

obey the major principles mentioned above.
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TBoxTel lExpr
TBoxDefinition
Name

TBoxTerm

Aset

Ati,ibutelist

Attribute
Asetlist

Concept

PrimConcept

DefConcept

CSpeclist
CSpec

Conceptlist
RvmOp
ConceptOriset
Number

Role
RSpeclist
RSpec

;== DefConcept

. == defconcept( CSpeclist ) .

The BACK System

TBOX-TRELL SYNTAX

. == TBoxRestriction !

TBoxDefinition

1

Name = TBoxTerm
PrologAtom

o

i
1}

Aset | Concept | Role

1t
1

attrset ( AttributeList } !
attrunion( AsetList )
Name

:== Attribute !

Attribute , Attributelist
= PrologAtom
- Aset ! Aset , Asetlist

PrimConcept

. == rootconcept !

primconcept ( CSpeclist )
Name

Name

.== CSpec ! CSpec , CSpeclist
== specializes( Concept )

v

generalizes( Conceptlist ) !

value_restriction( Role , ConceptOrAset ) !

vr( Role , ConceptOrAset )

prmin_restriction( Role , Number ) !

min( Role , Number )

nr-ax_restriction( Role , Number )

max( Role , Number )y

restriction( Role , ConceptOrAset ,
[ Number , Number 1)

rvm( RvmOp , [ Role ], [ Role ] )

.== Concept ! Concept , ConceptList

Concept ! Aset

.z= 0 ! Positivelnteger ! in

. == primrole( RSpeclist ) ! Name

= RSpec | RSpec , RSpecList

. == differentiates( Role )

domain_range( Concept ,
ConceptOrAset )
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ThoxRestriclion :== Disjointnessﬂestrintinn
IndividualRestriction
DisjointnessRestriction
== disjoint( PrimConceptList )
PrimConceptList :== PrimConcept
PrimConcepl , PrimConceptlList
IndividualRestriction
.-~ ipdividual( PrimConcept )
TBOX-ASK SYNTAX
TBoxAskExpr PrologVariable = ThoxTerm

PrologVaraible = ThoxQueryTerm
ThoxQueryTerm : == node_type_of( Name } !
range_type_of( RoleName )

sc_of ( Name )

vr_of( ConceptName , RoleName )
win_of ( ConceptName RoleNawe )
max_of ( ConceptName , RoleName )
role_of ( ConceptName )

range_of( Role )y

domain_of( Role )

v

System
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4.2 The ABox Management

The BACK system appears to the user with a textual interface
as described in chapter 5. Internally the BACK system ABox
management is functionally divided intoe four components as shown
in Fig. 5. These four components are described in detail in the

next sections.

4.2.1 The Context Mechanism

The context mechanism of the ABox supports the division of an
ABox contents into several, partly dependent contexts. The ideas
incorporated are similar to the mechanisms proposed by e.g.
Sussman and McDermott in [Sussman & McDermott 72] as part of the

programming language CONNIVER37,

Contexts in the BACK system are partially ordered in context-
trees, having the possibility of more than one tree. An

assertion valid in one context is valid in all parent contexts.

This allows modelling of e.g. possible worlds for planning
purposes (cf. e.g. [Luck 85]) or the management of alternatives
and was proposed primarily for user-programmable backtrack-

mechanisms instead of automatic back-tracking as in PROLOG.

The functionality of such mechanisms is described e.g. in
[Barr & Feigenbaum B2], and includes in case of the BACK system

the following basic functions:

37 A simpler version can be found e.g. in FUZZY (cf. [LeFaivre
78]).
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' BACK - ABox Tell/Ask Interface

Store/Retrieve -
Management

Reallzer

GContext —
Managemaent

BACK-ABox—-Managemaent

Fig. 5: The ABox Components

- cntxt_push
directly from the

This

Opens a new context which is dependent

actual context and makes this new context the actual one.
context is initially empty, but all assertions accessible in

the parent-context are accessible in this new context as well

(see the operations clause_all and clause below).
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- cntxt_sprout ( <{context) )

Opens like push a new context directly dependent from the

given context. The new context is not marked as the actual
context.

- cntxt_pop
Pop is the inverse operation to push. The actual context is

deleted as well as all contexts depending (directly as well
indirectly) from this context. The parent context of the

actual context is made the new actual context.

- switch ( <context)> )

Makes the context given as an argument the actual context.

- cntxt_delete ( <context) )
Deletes the given context and all (directly as well
indirectly) dependent contexts. The actual context remains. if
it is not within the set of deleted contexts, atherwise the
parent -context of the given context is made the ac'ual

context.

- cotxt_new
Creates a new context which is independend from all other
contexts already known within the system. This forces the

creation of a new context-tree3®.

For the modification of the contents of one context the
following operations are implemented and used within the BACK

ABox management system:

38 Such a mechanism of independent contexts was proposed by
Brachman and Schmolze in [Brachman & Schmolze 85] as part of
the KL-ONE ABox.
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~ cntxt_asserta ( <context> , <(item> )
Asserts the given item in front of all olher items in the

given context3®.

cntxct _assertz ( ¢context) , <(item> )

Asserts the given item after all items in this vontext.

cntxt_retract ( ¢context> , <{pattern)> )
Deletes the first item in the given context fulfilling the

specifications of the given patternt?.

- cntxt_fetch ( <{context)> , {pattern> )
Unifies the given pattern with the first matchable item of the

given context.

cntxt _clause_all ( ¢context> , <pattern> )
Unifies the pattern with the first matchable item of the given
context. 1f such a unification fails, this operaltion is done

recursively for all parent contexts of the given context.

- cntxt_clause ( (context> , <pattern> )
Unifies 1like clause_all the given pattern with the first
matchable item of the given context or one of its parents. Tn
contrast to clause all the behavior of clause in the case of
back-tracking differs in thal no items are taken as candidates
for a next alternative, if a prior item was matchable with
respect to the given pattern. This opens the possibility Lo

hide items by ’'overwriting’ with respect to a given patiern.

39 If no context is given in these operations, the actual context
is taken as default

40 For the pattern-match the PROLOG unification nalgorithm (ef.
e.g. {Cluzksin, Mellish 81]) is used.
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4.2.2 The Value Expression Prover

The ABox of the BACK system offers a construct called value
expression for the representation of incomplete knowledge (cf.
3.2.1). In this chapter the management of value expressions is

explained in more detail.

The main components of the ABox for handling value expressions
are an expression normalizer and an expression prover. The
expression normalizer takes a value expression in a form
explained below and produces a normalized value expression
corresponding to the definition of value expression given in
chapter 3, which describes a disjunctive normal form. The prover
takes two value expression and proves a subsumption relationship

between these two expressions.

So first, the syntax for an unnormalized value expression is
given with a semantics oriented to set theoretic semantics as an
alternative to the semantics given in chapter 3 for a better

understanding of the normalizing processtl.

1

A unique constant is a value expression.

~ An attribute is a value experssion.

_ If VE:1 and VE2 are value expression, then (VE: and VEz) and
(VE1 or VEz) are value expression.

_ If VE is a value expression, then cwa(VE) and
owa(VE) are a value expression.

~- If i and j are positive integers (including 0 and infinite)

and i is not greater j, then «card(i,j) is a value

expression? 2.

41 In the version of +the ABox reported here, disjunctive
expressions within cwa are not handled, i.e. the prover fails.
This will eventually change in the future (cf. 3.2.1).

42 The special symbol in is provided for representing infinite.
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- Nothing else is a value expression.

A set-theoretic oriented semantics for value expressions can

be given as follows:

1f u is a unique constant or an attribute, i,Jj integer, D the set
of all possible unique constants or attributes and P(D) the
powerset of D, then AS(VE), the set of alternatives determined by

VE, is defined as:

AS (u) := { m element P(D) ! u element m }
AS(card{(i,Jj)) c= { m element P(D) ! i <= iml <= i3
AS(VE: and VE2) := AS(VE:) intersection AS(VE2)
AS(VE, or VEz) := AS(VE1) union AS(VEz2)
AS(owa(VE)) .= { m element P(D) @ n element AS(VE) and
n subset m }
AS (cwa(VE)) .= AS(VE) intersection P(K(VE))
with K(A) as the set of the uniqgue constants and attributes

occurring in the expression VE:

K(u) c= {u}

K(VE:1 and VEz2) = K{VE1) union K(VEz)
K(VE1 or VE2) = K(VE1) union K{(VE2)
K(cwa(VE)) sz K(VE)
K(owa(VE}) = K(VE)
K{card(i,j)) e {1

The normalizing algorithm for value expression 1is quite
straightforward. By inspection of the semantics given, an
expression of the form

ewa(x1 and ... and xn)

is equivalent to

x1 and ... and xn and card(n,n).
The transformation of an expression into its disjunctive normal
form is well known and trivial. 1f an expression has the form
owa(VE),

assuming VE being in a disjunctive normal form, having the form

owa(VE1L or ... or VEn),
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then this is equivalent to
owa(VE:y) or or owa{VEn).

The form
owa(VE: and ... and VEgp)

is equivalent according to the given semantics to

owa(VE1) and and owa(VEn).

The form owa{u) is equivalent to u, iff u is an unique constant
or an attribute. Otherwise, if u  equals card(i, j),
owa{card(i, j)) is equivalent to card(i,in). If u equals owa(VE),

the algorithm is called recursively.

This normalizing algorithm produces a disjunctive normal form
according to the syntax for value expression given in chapter 3,
if the AS(VE) is not the empty set. If it is empty the value

expression is Inconsistentid.

The subsumption prover for value expression takes two value
expression VE1 and VEz and succeeds stating that VE: is subsumed
by VE2 (VEi1=>sVEz), iff AS(VE1) is a subset of AS(VEz). This job
is done by comparing the two normalized forms of VE; and VE:z,

respectively.

For each value expression VE the cardinality supremum Kyup (VE)
is defined as the maximum of the cardinalities of the elements of
AS(VE). The cardinality infimum Kinr (VE) 1is analogously defined
as the minimum of the cardinalities of the elements of AS(VE).
From this and the definition of the semantics for value
expression it is easy to see that the Ksup 1is monotonic
decrcasing by conjunction of two value expressions as well as the

Kinf is monotonic increasing. To put this more formally:

Ksup (VE1 and VEz) =< Ksup (VE1)
Ksup (VE1 and VEz2) =< Ksup(VE2)
Kinsf (VE1 and VE2) >= Kintr (VE1)
Kint (VE: and VE2) >= Kinf(VEz)

43 So the normalizing algorithm is a little bit more complicated
than sketched here, reducing given value expressions and
detecting inconsistent ones.
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This result is used within the realizing component (s. [Luck
871) as a characteristic of +the strategy for incremental

enlarging an ABox content with the store/retrieve component (cf.

4.2.4). an ABox content with the store/retrieve component (cf.

4.2.4).
4.2.3 The BACK System Realizer

The realizer of the BACK system is responsible for checking
items in the ABox for consistency with respect to the definitions
made in the TBox. With the same algorithm the taxonomic

inferences are drawn on the basis of the TBox definitions.

The main idea of the realizer 1is the construction of an
generic concept definition out of an entry of the ABox. This
generic concept definition is incorporated via the TBOX‘TQ]I/ASk
Interface (c¢f. 4.1.3) in the TBox, and will be classified by the
classifier (cf. 4.1.2.4).

A generic  concept definition 1is acceptable by the TBRox
interface with respect to the present content of a given TBox, if
it is consistent with respect to that given content. The result
of the classifying algorithm, working out the consequences of

this generic concept definition, is a most specific generic (MSG)
concept subsuming the generic concept definition built by the
realizer. Therefore the interconnection between TBox and ABox is

done only by using the TBox-Tell/Ask-Interface.

The task of the realizer is collerting all relevant
information connected to a unique cuonstant for the generation of

this generic concept definitiond4,

44 For a discussion of the impact of the structure of an ABox for
the realizing process and a comparism of the different
approaches within KRYPTON, KL-TWO and RACK for example can be
found in [Luck 86].
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The details of the BACK system realizer algorithms can be
found in [Luck 87].

4.2.4 The ABox Store/Retrieve Component

The ABox store/retrieve-component provides the interface of
the ABox to the  user. In case of storing new assertions the
realizer ensures consistency with respect to the TBox as well as
the value expression normaler ensures consistency with respect to

value ecxpressions.

in case of retrieving existing assertions the TBox interface
is called for subsumption relationships (e.g. searching for a
human, an assertion of someone being a man is validation of that)

and the subsumption prover for value expression as well.

A formal syntax definition for ABox queries can be given as

follows:

1t
"

abox_ask ( VE-Variable — Ask-Function ) !
abox_ask ( UniqueConstant — DescrVariable )
a ( Description ) !

the ( Description ) !

some ( Description ) !
all ( Description ) !
a ( X, Description(X) ) !
the ( X , Description(X) ) !
some ( X , Description(X) ) !
all ( X , Description(X) )

ABox—Query

1]
"

Ask-Function

Description == Concept !

Concept ( Rolelnstances )
Description(X) :== Concept ( Role = X ) !

Concept ( Role = X , Rolelnstances )
Rolelnstances == Rolelnstance !

Rolelnstance , Rolelnstances
RolelInstance == Role = Value
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= Value and Value !

Value or Value !
cwa ( Value ) |
owa ( Value ) !
card ( Value ) !
Val

Val 1=~ Ask- Function |
card ( Min , Max ) !
Attribute !
TIniqueConstant

12 ... in

1:2:! ... in

it

Value

Min

Max
UniqueConstant
DescrVariable
VE-Variable

A1l the ask -functions inltroduced above refer to the current
context of the ABox using the Tlow-level query operator CLAUSE
(¢f. chapter 4.2.1). Therefore, not the complete contents of the
ABox is object of these queries, but only the currently visible

part.

In the following, the term description is of great importance.
A description consists of a TRox concept and a number of TBox
roles, each of which are associated with a value expression. In a
query, instead of value expressions there can be additional ask
functions which return value expressions. Furthermore, under
certain conditions a free variable may appear instead of a value

expression, which may be bound by an ask function.

A description is fulfilled by an entry in the ABox, if

there 1is a unique constant which is described by a TBox
concept that is subsumed by the query description, and
all the value expressions connected to the unique constant via
roles are subsumed by the corresponding value expressions of
the query description. A variable in the query description

subsumes any corresponding value expression of the unique

conslant.

This can be expressed more formally as follows:
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If D is a description, then C(D) is its corresponding TBox

concept, RN(D) are the role names appearing 1in D, and
RV(RN: (D)) is the value expression (or free variable) of
RN; (D).

A description Dauery is satisfied by an ABox entry, iff
- there is a unique constant described by Dstore,
- C(Dguery) subsumes C(Dstorea),
~ for all RNi(Dquery) there is a RNi(Dstorea),
- all RV(RNi(Dstorea)) =>s RV(RNi(Dauery)),
or
~ RV(RNi(Dquery)) 1is a varibale, which will in this case be

replaced by RV(RN;i (Dstoreda)).

The ask-functions are one-place functions which are applied to

descriptions as arguments (except for the card function, see
below). They return a value expression, in case the description
is satisfied with respect to the current contents of the ABox.
They may be arbitrarily nested, thus allowing for complex

queries. The following basic functions are provided:

1

a ( <Description> )

Returns the first wunique constant that satisfies the

description in the current context4s.

the ( <Desacription) )
Returns the single unique constant that satisfies the
description in the current context. It fails in case there are

more than one or none at all.

some ( (Description)> )

Returns all unique constants of the current context satisfying
the description in a value expression connected with or. This
amounts to the union of all alternative sets determined by the

unique constants found.

all ( <Description)> )

45

Whal first unique constant means is defined below.
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Returns all unique constants of the current context satisfying
the description in a value expression connected with and. The
alternative set of this expression corresponds to the
intersection of the alternative sets determined by the unique

constants found.

a ( X, <(Description(X)> )*5

Returns as a value expression the role filler for the free
variable X found by projecting the first unique constant
satisfying the description in the current context on  the

Description.

the ( X, <Description(X)> )

Returns the role Tiller for the free variable X by projecting
the single unique constant satisfying the description on the
description. Furthermore, the role filler must be maximally
precise and unique. This ask -functions succeeds only if there
is a single unique constant or atiribute as a raole filler for

the role with the free variable, or in other words, the value

expression for this role fi1ler must be of Lhe form < Ttem and
card( 1,1 where Ttem is either a unique constant or an
attribute. If any of these conditions are not satisficd, lhe

function fails.

some ( X, <Description{(X)> )

Returns the value expression resulting from the projection of
all unique constants satisfying the description on  the
description connected with or. Again, this corresponds to the
union of all the alternative sets of all the value expressions
in the position of the free variable. The value expression
generated by this function subsumes all the value expressions

of the role fillers specified by the free variable of the

unique counstants matching the description.

all ( X, <Description(X)> )

Description(X)> is a description with a free variable X, see
above.
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The same as above, but the value expression vreturned is the
conjunction of all the role fillers found by projection on the
description. Thus, the resulting value expression is subsumed
by all the value expressions of the role fillers specified by
the free variable of the unique constants matching the

description.

- card ( <(Value Expression)> )
Returns a value expression expressing the cardinality of the
value expression passed as the argument. The argument may be

another Ask-Function.

As already mentioned above, a value expression may appear as a
role filler of a role of a description as well as another ask
function returning a value expression. The evaluation of an Ask
Function is inside-out, so that innermost functions are evaluated

first, their results being substituted.

Therefore the ABox-Ask interface can be seen as a function

defined as:
ABox—-Ask : ABox x Ask-Expression -> Value Expression

Accordingly, the ABox-Tell interface for storing expressions

in the ABox can be seen as a function defined as:
ABox~Tell : ABox x Tell-Expression ~-> ABox

The syntactic structure of a ABox-~Tell expression is quite
similar to the syntax of the ABox-Ask expressions. The main

structure can be given as follows:

ABox-Insert :== abox_tell ( UC-Veriable — Description ) !
abox_tell ( UniqueConstant - Description ) !
abox_tell ( UC-Ref — Description )

UC-Ref :== the ( Description ) !
one ( Description ) !
the ( X , Description(X) ) !
one ( X , Description(X) )
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Description ;== Concept !

Concept ( Rolelnstances )
Description(X) :== Concept ( Role = X ) ¢

Concept ( Role = X , Rolelnstances )
Rolelnstances :== Rolelnstance ! Rolelnstance , Rolelnstances

Rolelnstance Role = Value

Value ;== Value and Value
Value or Value !
cwa ( Value ) |
owa ( Value ) !
card ( Value ) !
Val !
Ask- Function

val i== card ( Min , Max } !

Attribute !

UniqueConstant |

UC Variable — Description

a ( Description )

the ( Description ) !

some ( Description )

all ( Description ) !

a ( X, Description(X) ) !

the ( X , Description(X) ) !

some ( X , Description(X) )

all ( X, Description(X) )

unique ( Description )

Min 2 Cin
Max L2 \in
UniqueConstant
UC--Variable
This syntax allows among others the nested creation of new

unique constants as e.g.
abox_tell(UCl-man(has friend:-UCZ woman) }
which generates two unique constants, one described as woman, the

other one described as man with, among others has as a friend the

before generated unique conslant described as woman. The ABox
content for that assertion looks like

uci -~ man ( has friend = ucy )

uc; - woman

The main idea behind the ABox-Tell expression is to connect an

unique constant with a description. If the the unique constant
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is referenced by a variable, a new unique constant will be
created. In all other cases the given unique constant will be

described further by the given description.

There are two possibilities to refer to an already known

unique constant. First you can name this unique constant by using

ijts internal identifier. On the other hand, you can reference an
unique constant by using the functions the and one. These
functions vreturn a unique constant satisfying the given
description. The function the 1is as explained before. The

semantics for the function ome can be sketched as follows:

- one ( ¢{Description> )
Returns the first unique constant satisfying the given
description and is therefore a synonym to the function

a(<{Descriptiond).

- ome ( X, <Description(X)> )
Returns as a value expression the role filler for the free
variable X found by projecting the first wunique constant
satisfying the description in the current context on the
description, which denotes an alternative set with one element

which has exactly one element.

The further description of an unique constant can be seen as a
logical conjunction of the new description with the already known
ones. Therefore the realizing process is monotonic with respect

to the specializition of the categories of unique constants.

An insertion in the ABox fails, if the classification process
fails. In this case the description of an unique constant is
inconsistent with respect to the definitions in the TBox. The
other case of failure occurs, if a value expression is
inconsistent . In this case the rolefiller of this role was

overdetermined.

The semantics of the function unique can be sketched as

follows:

- unique { {(Description)> )
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equals the the(<Description>), if an unique constant satisfies
the description in the actual context. If this is not the
case, a new unique constant is generated described by the

given description.

To conclude this presentation of the BACK ABox management
system it should be mentioned, that =a stack of least recently
mentioned unique constanis is hold in each context and updated by
each insertion of new assertions. This stack s used for
interpreting the functions mentioned the first occurence of an
unique constant. The motivation for this and further details of

the BACK ABox can be found in [Luck 87].
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5 User Interface

In the development of the BACK system it was an important

subtask of the project to establish an environment for the

practical usage of the knowledge representation system. In
particular, the task of using a specific application domain
[Schmiedel et al BB] in order to test several aspects of the

formulism was facilitated considerably by the use of additional
supporting components which were also developed by the KIT--BACK

group.

Besides the usual design considerations for user interfaces in
general, the main principle for our conception was to give access
to the knowledge base only via a set of operations which
guarantee a performance of the system as specified by the

somantics of the formalism (see 4.1.1).

In the following we will give an overview of the corresponding
user interfaces; for a more detailed introduction the reader is
referred to the BACK-System User’s Guide. Depending on the
hardware environment available the following system components

can Le used:

- the BACK Basic System?”
- the BACK Graphics Packaged®

5.1 The Basic System Interface

The basic way of using the system is by accessing the system

via the PROLOG interpreter.

47 the component runs on an IBM 4381 under VM/SP and on SYMBOLICS

36xx
48 the graphics package runs on SYMBOLICS 36xx
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- TBox or ABox are accessed by typing, loading or calling
expressions of the TBox or ABox interface language (in the form

of PROLOG predicates).

- All functions not supported by these interface languages (e.g.
inspecting T/A Box contents) are to be accessed directly as

operations of the corresponding component.

All system output such as T/A Box contents, messages, etc. are

displayed line-oriented on screen.

_ The SOCE interface is the set of net operations on which
interpretation of all TBox descriptions is based. It can be
used directly as an additional meaps of TBox access. In

particular an incremental mode of working with the TBox (e.g.

during the phase of domain modelling) is supported by this
interface. New TBox contents are entered incrementally without
automatically classifying the objects which are dealt with.

Providing the user with this interface however does by no means
stand fer free access to the underlying data structure; the
SOCE interface can rather be seen as a set of operations

shecifying the TBox as an abstract data type.

Using TRox tell expressions instead of SOCE operations is
suitable for interfacing with other components or when
automatic classification of all newly entered objccts is

intended.

5.2 The Graphics Interface

In our section describing the representation system, a case
was made for having a practically manageable interface. The set
of SOCE operations constitute an appropriate interface for the
TBox. However, the full functionality can be exploited much
better by supporting its usage graphically. Also for the ABox a
graphics-oriented utilization of several operations will improve

the system’s transparancy considersbly.
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The BACK Graphics package was developed to provide an — BACK-9ystes Concept Hierachy - BACK Opsrations _
integrated system envronment for a graphics-oriented usage of the i Jp— Load 7 Seve Het

overall system. The package is fully integrated into the , Extend fBox Content

! afisht

Symbolics window management system [Symbolics 85]. Delete 1Box Content

charse” Classify THox

- The main choice-menu pane offers the selection of different

i manmal® 4roman

interfaces according to the mode to be worked in. A choice can NWWJ-MWMK

. . Shou 1Box Centent
human *

THox Inter fmce
v

be made between entering TBox/Abox interface language )
expressions, entering TBox SOCE operations graphically, wusing rmaty et fox Inter face
the natural language test interface for ABox assertions, or \male o imnd” OCC Interface
using a PROLOG listener for all additional functions. . Set Systes Options

Yolant

~ The browse window shows the system’s contents of interest.

- For editing the TBox a network partition |is chosen and

displayed as a directed graph. Various partitions can be

browsed and inspected stepwise. To achieve a clear

visualization of the TBox contents, both concept and role Input/0utput Window

hierarchy are shown apart, one at a time, as pure subsumption
hierarchies; a graphical display of all interrelating links can

he looked up stepwise. Fig. 6: BACK Graphics Interface

- Objects of the TBox can be referred to for further
specification or for inspection of details by selection with
the mouse. Momentary menus are displayed for the choice of
further operations; pop-up menus are displayed for the

=pecification of new items.

~ For the ABox, the state of the context relations is shown
graphically; all context operations can be performed via the

browse window.

The figure below shows a view of the graphics interface.
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