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1 Introduction

Knowledge representation (KR) is the area of Arti�cial Intelligence that de-

als with the problem of representing, maintaining, and manipulating knowledge

about an application domain. Since virtually all Arti�cial Intelligence systems

have to address this problem, KR is one of the central sub�elds of Arti�cial

Intelligence.

Main research endeavors in KR are

{ representing knowledge about application areas (e.g., medical knowledge,

knowledge about time, knowledge about physical systems),

{ developing appropriate representation languages,

{ specifying and analyzing reasoning over represented knowledge, and

{ implementing systems that support the representation of knowledge and

reasoning over the represented knowledge.

While knowledge about an application domain may be represented in a va-

riety of forms, e.g., procedurally in form of program code or implicitly as patterns

of activation in a neural network, research in the area of knowledge represen-

tation assumes an explicit and declarative representation, an assumption that

distinguishes KR from research in, e.g., programming languages and neural net-

works. Explicitness of representation means that the represented knowledge is

stored in a knowledge base consisting of a set of formal entities that describe

the knowledge in a direct and unambiguous way. Declarativeness means that the

(formal) meaning of the representation can be speci�ed without reference to how

the knowledge is applied procedurally, implying some sort of logical methodology

behind it.
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Although the above two points seem to be almost universally accepted by re-

searchers working in KR, this consensus has been achieved only recently. Brach-

man and Levesque mentioned in the Introduction to a collection of papers in

1985 that the \research area of Knowledge Representation has a long, complex,

and as yet non-convergent history,"

[

Brachman and Levesque, 1985, p. xiii

]

an

impression that is indeed con�rmed by the papers in this collection. A large

portion of the papers contain meta-level discussions arguing about the right me-

thods for representing knowledge or they present approaches that are completely

incompatible with a logical, declarative point of view.

Nowadays, the picture has completely changed, however. Logical methods

predominate and methodological problems are hardly discussed any longer

[

Brach-

man et al., 1989; Allen et al., 1991; Nebel et al., 1992; Brachman, 1990

]

. Instead,

research papers focus on particular technical representation and reasoning pro-

blems and address these problems using methods from logic and computer sci-

ence.

While this development indicates that KR has become a mature scienti�c

discipline, it also leads to the situation that research results in KR appear to be

less accessible to the rest of the Arti�cial Intelligence community. As a matter

of fact, it is often argued that the foundational results that are achieved in the

KR �eld are not relevant to Arti�cial Intelligence at all.

We concede that a large amount of KR research probably does not have any

immediate impact on building Arti�cial Intelligence systems. However, this is

probably asking for too much. Foundational KR research aims at providing the

theoretical foundations on which we can build systems that are useful, compre-

hensible, and reliable, i.e., it aims at providing the logical and computational

foundations of knowledge representation formalisms and reasoning processes.

Results in foundational KR often \only" provide explanations why a particular

approach works or how an approach can be interpreted logically. Additionally,

the borderlines of what can be represented are explored and it is analyzed how

e�ciently a reasoning process can be. While this may not be of central con-

cern when building Arti�cial Intelligence systems, such results are nevertheless

important when we want to understand such systems, and when we want to

guarantee their reliability.

Perhaps the main motivation and driving force behind most research in KR

has been the desire to equip artifacts with commonsense. This is literally true of a

paper by John McCarthy, �rst published in 1958 and republished as

[

McCarthy,

1968

]

, which started the whole KR enterprise, and it is still true, if only implicitly,

of the papers in this book. In fact, work on the foundations of KR can largely

be indenti�ed with work on the foundations of commonsense reasoning, a point

of view which we will follow throughout this brief survey.

In the following sections, we touch on some basic logical and computatio-

nal aspects of commonsense reasoning. The reader is warned that this is not a

comprehensive overview of the �eld, which would be far outside the scope of

this book. Instead we con�ne ourselves mainly to those areas that are actually

covered by papers in this book.
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2 Logical Foundations of Commonsense Reasoning

As mentioned already in the beginning, the main assumption that distinguishes

knowledge-based systems from other approaches is that knowledge is represented

declaratively in some logic-like language. This is one part of what Brian Smith

has called the knowledge representation hypothesis

[

Smith, 1982

]

. The other part

postulates that these representations play a causal role in engendering the beha-

vior of the system. While this causal connection is present in one form or another

in every knowledge-based system, it is fair to say that so far there are very few,

if any, theoretical results that explain this connection.

Hence most foundational research in KR, including the work reported in this

book, deals with problems that arise from the �rst part of the KR hypothesis

and which can be dealt with independently from the second part. In this context,

one can identify three fundamental questions:

1. What is the right representation language?

2. What inferences should be drawn from a knowledge base?

3. How do we incorporate new knowledge?

In the rest of this section, we will address each question in turn with an emphasis

on the relevant papers in this book.

2.1 The Right Representation Language

While there is little disagreement any more about the assumption that a re-

presentation language is one of logic, where the sentences can be interpreted as

propositions about the world,

3

designing an adequate language is not an easy

task, since the various desirable features are often incompatible. In particular,

very expressive languages usually have poor computational properties, an issue

that has drawn considerable interest since a seminal paper by Brachman and

Levesque

[

1984

]

and which is discussed in more detail in the next section. At

this point we only mention that computational considerations have led to the

development of languages that are far less expressive than full �rst-order logic,

most notably the so-called concept languages or terminological logics. Four of the

papers in this collection are devoted to this topic

[

Baader and Hollunder, 1994;

Bettini, 1994; Allgayer and Franconi, 1994; Donini et al., 1994

]

. From the point

of view of expressiveness, it often seems useful to have special epistemological or

ontological primitives built into the language. Shoham and Cousins

[

1994

]

survey

work in AI on a whole range of mental attitudes like beliefs, desires, goals, or in-

tentions. The need for making such notions explicit is probably most convincing

in multi-agent settings, where agents need to reason about each other's mental

attitudes in order to communicate and cooperate successfully.

[

Gottlob, 1994;

Kalinski, 1994; Niemel�a and Rintanen, 1994

]

consider the speci�c case of belief,

3

Until the late seventies, many so-called representation languages actually violated

this fundamental assumption and led to vivid discussions such as

[

Hayes, 1977;

McDermott, 1978

]

.
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which, together with knowledge, is probably the best understood among the at-

titudes. In these papers a very speci�c aspect of belief is considered, namely the

ability to model certain forms of defeasible reasoning by referring explicitly to

the system's own epistemic state (see Section 2.2 below). Bettini and Lin

[

Bet-

tini, 1994; Lin, 1994

]

, on the other hand, are concerned with adding explicit

notions of time to the language. While Bettini considers incorporating an exi-

sting interval-based concept of time to a temporal logic, Lin proposes a new

axiomatization of time, where time instances are de�ned on the basis of events.

2.2 The Right Inferences

Having explicit representations of knowledge alone is not very useful in general.

Instead one wants to reason about these representations to uncover what is

implied by them. After all, we use the term commonsense reasoning and not

commonsense representation. Until the early seventies, deduction was the main

focus of attention as far as inference mechanisms are concerned. It became clear,

however, that a lot of commonsense reasoning is not deductive in nature.

In particular, many inferences humans draw all the time are uncertain in some

sense and may therefore be defeasible if new information becomes available. The

prototypical example is the assumption that birds normally y and if someone

tells me about a bird called Tweety, then, knowing nothing else, I conclude that

Tweety ies. Later on, if I �nd out that Tweety is indeed a penguin, I withdraw

my earlier conclusion without hesitation. There are essentially two main rese-

arch �elds that try to formalize such reasoning, one which is based on probability

theory (see, for example,

[

Pearl, 1988

]

) and another which directly models non-

monotonic reasoning by modifying classical logic in one way or another (see, for

example,

[

Brewka, 1991

]

). While probabilistic methods are not dealt with at all

in this volume, nonmonotonic reasoning receives a fairly broad coverage

[

Baader

and Hollunder, 1994; Gottlob, 1994; Kakas, 1994; Kalinski, 1994; Niemel�a and

Rintanen, 1994; Weydert, 1994

]

. Except for McCarthy's

[

1980

]

Circumscription,

the main formalisms on nonmonotonic reasoning are represented in this volume.

Baader and Hollunder

[

1994

]

discuss extending terminological logics using Rei-

ter's

[

1980

]

Default Logic (DL). Kakas extends DL by applying ideas from ab-

ductive logic programming to it. Gottlob

[

1994

]

relates DL and Moore's

[

1985

]

Autoepistemic Logic (AEL) by showing how to faithfully translate DL theories

into AEL theories. Both Kalinski

[

1994

]

and Niemel�a and Rintanen

[

1994

]

are

concerned with complexity issues, the former by considering a weaker form of

AEL and the latter by considering only AEL theories of a special form (with

applications to other nonmonotonic formalisms as well). Finally, Weydert

[

1994

]

presents results on nested conditionals. This work is in the tradition of modeling

nonmonotonic inferences on the basis of conditional logics such as

[

Lewis, 1973;

Adams, 1975

]

.

Apart from probabilistic and nonmonotonic reasoning, there are many other

forms such as fuzzy, inductive, abductive or analogical reasoning. Of those the

latter two are represented here with one paper each. Console and Dupre

[

1994

]

address abduction, which is concerned with �nding plausible explanations for a
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given observation. In particular, they address the problem of �nding explanations

at di�erent levels of abstraction. Myers and Konolige

[

1994

]

discuss reasoning

with analogical representations such as maps. They are particularly concerned

with integrating both analogical and symbolic (sentential) representations.

2.3 Evolving Knowledge

Since knowledge bases are hardly ever static, devising methods for incorporating

new information into a knowledge base is of great importance in KR research.

This problem, often referred to as belief revision, is particularly challenging if

the new information conicts with the contents of the old knowledge base. Over

the past decade, substantial progress has been made on the topic of belief re-

vision, particularly since the ground-breaking work by Alchourr�on, G�ardenfors,

and Makinson

[

1985

]

, who propose postulates which any rational revision ope-

rator should obey (now referred to as AGM-postulates). Later, Katsuno and

Mendelzon

[

1991

]

introduce an important distinction between revising a know-

ledge base, which refers to incorporating new information about a static world,

and updating it, where the new information reects changes in the world. They

also propose a set of rationality postulates for update operators. In this volume,

Boutilier

[

1994

]

and Nejdl and Banagl

[

1994

]

present new results following this

line of research. Nejdl and Banagl de�ne subjunctive queries for knowledge bases

in the case of both update and revision. In particular, they show that their query

semantics for revision and update satis�es precisely the AGM-postulates and the

Katsuno-Mendelzon-postulates, respectively. Boutilier shows that, in the context

of conditional logic, belief revision and nonmonotonic reasoning have precisely

the same properties, further substantiating the claim that the two areas are

closely related.

Witteveen and Jonker

[

1994

]

address revision from a somewhat di�erent angle.

Here the emphasis is on �nding plausible expansions of logic programs, which

are incoherent under the well-founded semantics, such that the revised programs

are no longer incoherent.

3 Commonsense Reasoning as Computation

Once a knowledge representation scheme together with its associated common-

sense reasoning task has been formalized logically, we can immediately make

use of the computational machinery associated with logic. For instance, once we

have identi�ed that a particular representation formalism is \simply" a subset of

standard �rst-order logic, we know that resolution (or any other complete proof

method) is a method to compute all the valid consequences of a knowledge base.

In other words, in such a case, commonsense reasoning could be reduced to a

well-known computation technique.

However, this point of view is over-simplifying. First of all, often one deals

with non-standard logics, e.g., non-monotonic or modal logics, for which standard

techniques do not work. Secondly, even in the case that one only has a subset of
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standard �rst-order logic, it does not make sense to use general proof methods

if specialized reasoning techniques, tailored to the restricted language, turn out

to be much more e�cient. In particular, one might be able to specify methods

that always terminate, i.e., inference algorithms.

E�ciency is indeed one of the major problems when we turn logical forma-

lization into computation. As is well-known, even propositional logic requires

already signi�cant computational resources { reasoning in propositional logic is

NP-hard.

4

On the other hand, commonsense reasoning appears to be quite fast

when humans perform it, and, moreover, should work reasonably fast on com-

puters if the system is required to be of any use

[

Levesque, 1988

]

. In particular,

if it is required that the reasoning process is computationally tractable, we are

often forced to restrict the expressiveness of the representation language or to

give up on the accuracy of the answer

[

Levesque and Brachman, 1987

]

.

Research questions coming up in this context are:

1. Can we specify an inference algorithms for the reasoning task?

2. What is the computational complexity of the reasoning task?

3. How can we achieve tractability?

3.1 Inference Algorithms

As is evident from most papers, the formalization of a commonsense reasoning

task as a form of logical inference is usually not overwhelmingly di�cult, pro-

vided appropriate formal techniques and tools are employed. For instance, the

semantics of a terminological logic extended by operators to express collective

entities and relations

[

Allgayer and Franconi, 1994

]

can be speci�ed on less than

half a page. What appears to be much more involved is the speci�cation of an

appropriate reasoning technique.

As pointed out above, one could employ standard proof techniques if the

formalism under consideration is (a notational variant of) a subset of standard

�rst-order logic. However, usually we do not want an arbitrary method, but an

algorithm that is as e�cient as possible { a problem that is addressed by most

of the papers in this volume.

Allgayer and Franconi

[

1994

]

, for instance, showed in their paper that it is

possible to extend the tableau-based technique introduced by Schmidt-Schau�

and Smolka

[

Schmidt-Schau� and Smolka, 1991

]

to terminological logics contai-

ning operators for collective entities, providing us with a sound, complete, and

terminating method for reasoning in this language.

Baader and Hollunder

[

1994

]

also start with terminological logics, but ex-

tend these by incorporating default logic

[

Reiter, 1980

]

, i.e., in this case it is not

possible to use standard �rst-order logic methods. However, as they are able to

show, it is possible to combine the tableau-based reasoning techniques for ter-

minological logics with reasoning techniques developed for default logics

[

Junker

4

Consult, e.g.,

[

Garey and Johnson, 1979

]

for an introduction to computational com-

plexity theory.
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and Konolige, 1990; Schwind and Risch, 1991

]

in an almost straightforward way,

leading to an inference algorithm for the combined formalism. It should be no-

ted that in order to guarantee decidability, it is necessary to use a somewhat

non-standard interpretation of open defaults, though. Since, as shown by Baa-

der and Hollunder, the standard interpretation of open defaults not only leads to

undecidability but also to counter-intuitive results, giving up this interpretation

does not seem to be much of a sacri�ce.

3.2 Computational Complexity of Reasoning

An inference algorithm for a particular commonsense reasoning task demonstra-

tes that that there is one way to turn this task into computation. However, it

does not answer the question whether this is the most e�cient way. In order to

answer this question, computational complexity theory can be used for analyzing

the inherent di�culty of the problem. Such an analysis can guide the search for

more e�cient algorithms or for a reformulation of the reasoning problem in a

way that renders reasoning more e�cient. Finally, a computational complexity

analysis can be used to compare and contrast di�erent reasoning problems.

For instance, Donini et al

[

1994

]

study the extension of terminological logics

by an epistemic operator and show that this operator does not increase the com-

putational complexity of reasoning in one of the standard terminological logics

(the so-called ALC language

[

Schmidt-Schau� and Smolka, 1991

]

). Furthermore,

Donini et al

[

1994

]

are able to show that in some relevant special cases the

complexity goes even down from co-NP-hardness to polynomial time.

Kautz and Selman

[

1994

]

analyze the computational problems arising when

approximating arbitrary propositional theories by Horn theories. They show that

such a Horn theory may sometimes be of exponential size and that it is unlikely

that a dense representation can be found in all cases.

A �nal example for the use of computational complexity theory is the paper

by Gottlob

[

1994

]

. Although this paper is not by itself a paper on computational

complexity analysis of commonsense reasoning, it makes use of computational

complexity results

[

Gottlob, 1992

]

that show that the three main forms of non-

monotonic reasoning all have the same complexity, which implies that there

must exist (polynomial) translations between these formalisms. Based on this

observation, Gottlob develops a translation from default logic to autoepistemic

logic that is quite interesting.

3.3 The Expressiveness vs. E�ciency Tradeo�

If a reasoning problem can be shown to require time that is not polynomial in

the size of the problem description (under the assumption that NP 6=P), this

implies that in the worst case we will not get an answer in tolerable time when

the problem description grows beyond a certain (usually moderate) size. Of

course, if the problem descriptions are almost always small, such computational

complexity results are irrelevant. However, we usually want to deal with more
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than 20 concepts or 10 default rules. So we should consider the possibility of

worst cases for moderately sized problem descriptions.

One way to exclude worst cases is to restrict the expressiveness of the repre-

sentation language the reasoning task has to deal with. Brachman and Levesque,

for example, showed that excluding a particular operator from a terminological

logic reduces the complexity of reasoning from NP-hardness to polynomiality

[

Brachman and Levesque, 1984; Levesque and Brachman, 1987

]

. Subsequent in-

vestigations along this line

[

Donini et al., 1991

]

have shown that requiring poly-

nomiality of the inference algorithm leads to a severe restriction on the possible

constructs one can use.

Although there have been strong arguments about the usefulness of achieving

e�ciency by restricting the expressiveness

[

Doyle and Patil, 1991

]

, there seems

to be nevertheless a consensus that it is useful to analyze special cases of general

reasoning patterns that can be solved more easily than the general problem,

provided the special cases are relevant. Moreover, restricting the expressiveness

can mean a number of things that are quite di�erent from, for example, excluding

a particular operator from a representation language.

For instance, instead of considering a representation language with less con-

structs, it makes sometimes sense to use a language with more constructs but

with restrictions on the structure of allowed expressions. Donini et al

[

1994

]

show

that enlarging a terminological logic with an epistemic operator for building con-

cepts that are used as queries and restricting the forms of the query can indeed

lead to a more natural reasoning task which is also more e�cient.

The work by Myers and Konolige

[

1994

]

also extends the representational

framework (�rst-order logic) in order to achieve e�ciency. In this case, however,

the aim is not to guarantee worst-case e�ciency in all cases, but to provide

special means for representing knowledge about one particular domain { spatial

knowledge { that can be more naturally represented and more e�ciently reasoned

about using analogical representations, which are also much more restricted than

general propositional representations. The main problem Myers and Konolige

identify and solve is the integration of analogical reasoning with the general

framework of reasoning in �rst-order logic.

The paper by Niemel�a and Rintanen

[

1994

]

aims again at guaranteeing po-

lynomial runtime in all cases by restricting expressive power. As in the cases

above, however, they do not restrict the expressive power by disallowing logi-

cal operators in AEL theories, but they consider restrictions on the form of the

theories. In particular, they show that reasoning in strati�ed AEL Horn theories

can be done in polynomial time.

3.4 The Accuracy vs. E�ciency Tradeo�

If the expressiveness of a representation cannot be restricted, other means for

getting timely answers are called for. Usually, one gives up on the quality or

accuracy of an answer, for example, by restricting the processing time or by

employing incomplete reasoning methods. While this may lead to the desired

runtime behavior, it raises the question as to how far we can still trust answers
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from a representation and reasoning system. In other words, we are seeking a

principled description of the reasoning capabilities of an incomplete reasoner.

Kautz and Selman

[

1991

]

addressed this problem by a \knowledge compila-

tion" technique. They propose to compute (o�-line) Horn theories that approxi-

mate the logical contents of a given arbitrary theory. As mentioned above, this

approximation can lead to computational problems in itself

[

Kautz and Selman,

1994

]

. Kautz and Selman show that the approximating theory can become very

large, and although there are sometimes ways around this problem, they can

show that it is very unlikely that dense representations of a approximating Horn

theory exist in all cases. Nevertheless, their approximation scheme appears to be

interesting since instead of general Horn theories one may aim for more restricted

forms of such theories which can be polynomially bounded in size.

Greiner and Schuurmans

[

1994

]

address the multiple extension problem of de-

fault reasoning

[

Reiter, 1987

]

, which is known to be one source of computational

complexity in default reasoning

[

Gottlob, 1992; Nebel, 1991

]

. They propose to

approximate default reasoning by ordering the defaults linearly, where the parti-

cular order chosen is intended to be \optimally correct." As they show, it is not

possible to compute such an ordering in polynomial time, but they approximate

such an ordering by computing a locally optimal ordering.

The paper by Witteveen and Jonker

[

1994

]

applies a similar method to

achieve tractability for revising logic programs. They show that a globally mi-

nimal revision cannot be computed in polynomial time, but a locally minimal

revision can well be computed in polynomial time.

4 Outlook

The collection of papers in this book does certainly not give a complete overview

of the research going on at providing foundations for knowledge representation

and reasoning. For instance, probabilistic approaches are not represented at all.

Nevertheless, the set of papers in this book covers a wide range of topics in the

area of foundational KR&R research and highlights the common research me-

thodology, namely, to analyze representation and reasoning tasks from a logical

and computational perspective. As already mentioned in the Introduction, this

research methodology does most probably not lead to any immediate bene�t in

the sense that we can build faster or better reasoning systems. However, by pro-

viding the theoretical underpinning for KR&R systems, this research will help

us understand where and what the limits of representation and reasoning are

and how we can guarantee a reasonable behavior of KR&R systems.
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