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Zusammenfassung

Die vorliegende Dissertation mit dem Titel “Directed Model Checking for
Timed Automata” befasst sich mit der gerichteten Modellprüfung für Real-
zeitsysteme. Die Arbeit gliedert sich in zwei einführende Teile und einen in-
haltlichen Teil. Der erste Teil führt in das Gebiet der Modellprüfung ein. Hier
werden grundlegende Konzepte wie z. B. Kripke Struktur, temporale Logik und
das Problem der Modellprüfung vorgestellt. Der Teil endet mit einer kurzen
Beschreibung existierender Modellprüfungsverfahren.

Der zweite Teil behandelt Realzeitsysteme und gerichtete Modellprüfung.
Er enthält die Definitionen, die zum Verständnis dieser Dissertation nötig sind.
Zuerst wird die Syntax und die Semantik von Realzeitautomaten eingeführt. Da
Zeit in diesem Modell durch reelle Zahlen modelliert wird, ist der Zustands-
raum eines Realzeitautomaten ein überabzählbar großes Transitionssystem. De-
shalb scheinen Realzeitsysteme ungeeignet für die Modellprüfung zu sein. Das
ist allerdings nicht der Fall, da sich diese Zustandsräume endlich partition-
ieren lassen. Im Anschluss wird die gerichtete Modellprüfung für Realzeit-
systeme eingeführt. Neben der Vorstellung eines allgemeinen Algorithmus für
die gerichtete Modellprüfung werden hier auch existierende Ansätze für die
gerichtete Modellprüfung diskutiert.

Der dritte Teil bildet den Hauptteil der Arbeit. Es werden verschiedene
Heuristiken und Verbesserungen für die gerichtete Modellprüfung eingeführt.
In Kapitel 5 wird die erfolgreichste Relaxierung aus dem Gebiet der Hand-
lungsplanung auf die gerichtete Modellprüfung für Realzeitautomaten adaptiert
und erweitert. Mit den resultierenden Heuristiken ist es möglich, erreichbare
Fehlerzustände in Systemen zu finden, die mit zuvor vorgeschlagenen Heuris-
tiken nicht entdeckt werden können. Im darauf folgenden Kapitel wird Prädi-
katenabstraktion verwendet, um sogenannte Musterdatenbanken zu erzeugen.
Durch die Kombination von bekannten Techniken aus den Bereichen der Mo-
dellprüfung und der künstlichen Intelligenz erhält man eine Familie von Heuris-
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tiken, die mit dem aktuellen Stand der Technik mithalten können. In Kapitel 7
wird eine weitere Musterdatenbank-Heuristik, die auf dem Prinzip der russis-
chen Puppen basiert präsentiert. Der Ansatz zielt darauf ab, diejenigen Teile
des Systems so gut wie möglich zu erhalten, die unmittelbar relevant für die zu
überprüfende Eigenschaft sind. Mit der resultierenden Heuristik lassen sich be-
weisbar kürzeste Fehlerpfade in den größten unserer Fallbeispiele finden. Mit
der Technik, die in Kapitel 8 präsentiert wird, lässt sich heuristische Suche
im Allgemeinen deutlich beschleunigen. Dieser Ansatz kann mit vielen Heuris-
tiken kombiniert werden und skaliert oft deutlich besser als gierige Suche. Gle-
ichzeitig liefert das Verfahren erheblich kürzere Fehlerpfade als gierige Suche.
Im letzten Kapitel wird zuerst eine auf Gegenbeispielen basierende Abstrak-
tionsverfeinerung für Realzeitsysteme präsentiert. Danach wird anhand einiger
Beispiele demonstriert, dass gerichtete Modellprüfung bei fehlerhaften Syste-
men oft deutlich performanter als Abstraktionsverfeinerung ist.

Die Dissertation schließt mit einer Diskussion der wesentlichen Ergebnisse
des dritten Teils und einem Ausblick auf zukünftige Forschungsaufgaben in
diesem Gebiet.



Acknowledgments

I wrote the thesis at hand while I was a member of the research group on the
Foundations of Artificial Intelligence at Albert-Ludwigs-Universität Freiburg,
headed by Bernhard Nebel. It has been a long while from the very beginning of
my PhD studies to the completion of the thesis. During that period, many people
directly or indirectly contributed to it. Now, I would like to take the opportunity
to thank them.

First of all, I want to thank my adviser Bernhard Nebel. Bernhard gave me
the necessary freedom to pursue my own ideas. At the same time he gave me
valuable advice and pushed me at the right time to get this thesis finally done. I
am really thankful for that. Andreas Podelski served as the second reviewer for
this thesis. I not only want to thank Andreas for this service, but also for many
fruitful discussions and a successful collaboration.

Special thanks go to Jörg Hoffmann. Especially in the beginning of my PhD
studies, Jörg helped me a lot to gain ground in heuristic search. For me, working
with Jörg was like learning from him. Many thanks for that. Special thanks
also go to Malte Helmert, for being a friend and an exceptional officemate.
Whenever I had a scientific question Malte almost always had a brilliant answer
to it. I thank Malte for the great time we had, too much coffee and listening
to Helge Schneider. And of course, special thanks also go to Martin Wehrle. I
want to thank Martin for an intensive and very productive collaboration and for
providing valuable feedback on several drafts of this thesis. I really enjoyed our
pair programming sessions in which we created MCTA. It was always fun to
work with Martin.

I also want to thank the German Research Foundation (DFG) that partly
supportedy this work as part of the Transregional Collaborative Research Cen-
ter “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14
AVACS, http://www.avacs.org/). The many inspiring discussions and collabora-
tions we had in the R3 subproject were a valuable contribution to this thesis.

http://www.avacs.org/


IV

In addition to Bernhard, Andreas, Jörg, and Martin, I particularly want to thank
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Part I

Model Checking:
Motivation, Temporal Logic, Methodology





1

Introduction

Modern life without embedded systems is hardly imaginable. In 2002, only 2%
of all produced microprocessors were built in PCs. The vast majority can be
found in embedded systems. The application areas of these systems range from
MP3 players or automobiles to aircraft and factory controllers used in nuclear
power plants. Malfunctions, like the prominent Pentium FDIV bug or the first
test flight of the Ariane 5, can cause enormous loss of money. Even more severe
are bugs in safety-critical systems, as they can result in loss of human lives.
Therefore, correct functioning of these devices is mandatory.

Model checking is an appropriate means to achieve this. In a nutshell, model
checking is a standard technique that supports system engineers in designing
correct systems. The main advantage of model checking is that it is mainly an
automatic method to verify user defined properties that a system has to meet.
The disadvantage of model checking is the state explosion problem. As embed-
ded devices grow both in complexity and functionality, new methods to tackle
the state explosion problem have to be investigated.

The approach presented in this thesis, namely directed model checking, has
its origin in Artificial Intelligence (AI). Especially during the last decade, AI
planning has made tremendous progress in solving larger and larger search
problems. This progress was mainly driven by the development of heuristic
functions. In this thesis we propose methods that alleviate the state explosion
problem by adapting and extending heuristic functions coming from the area
of AI planning to the context of model checking. The main advantage of these
functions is that they are computed fully automatically and do not need any user
input. Therefore, directed model checking, as presented in this thesis, remains
an automatic method.



4 1 Introduction

1.1 Real-time Systems, Verification and Heuristics

Most embedded systems are real-time systems. In general, a real-time system is
a computer system that interacts with the real world and the correct functioning
of the device depends on timing requirements on these interactions. As an ex-
ample of such a system consider an anti-lock braking system of a car. It consists
of sensors that measure the rotational speed of each wheel and a controller that
can influence the brake force for each wheel. If, during a braking operation, the
speed difference of the slowest and the fastest wheel is, for a certain time, above
some threshold, then the brake force for that wheel is not increased any more.
If this is not enough to compensate the speed difference, then the brake force
of that wheel is decreased. This process is continuously repeated. Depending on
how the anti-lock braking system is modeled, it can possibly consist of several
components. For such composed systems, a distinction can be drawn between
synchronous and asynchronous systems. A typical representative of the former
class are digital circuits. Here, the system’s components are all driven by one
common clock and the smallest amount of time between successive events is
known a priori. In contrast, a characteristic attribute of asynchronous systems is
that the time between successive events can be arbitrarily small. These systems
are best modeled using timed automata. Roughly speaking, a timed automaton
is a finite state automaton equipped with a set of real-valued clocks. The values
of these clocks increase with the same constant pace over time.

On the one hand, timed automata are well-suited to model real-time systems,
but on the other hand, the state explosion problem for real-time systems is even
worse. The reason for this is that model checking timed automata suffers from
two sources of state explosion: one stems from the control part (parallel compo-
sition) and is due to the interleaving semantics of the automata, the other source
are the real-valued clocks. Because of the state explosion problem it is often
not feasible to enumerate the entire reachable state space of practically relevant
systems, i. e., it is often not possible to check if the model under consideration
satisfies the given property or not.

One possibility to cope with that problem is to use directed model checking.
In a nutshell, directed model checking is the application of heuristic search to
model checking. In directed model checking, instead of verifying a property,
one tries to prove the opposite, i. e., to falsify the given property. This can be
easier, because an error state may be found by exploring only a small fraction
of the entire search space. Algorithms that are good at detecting error states can
be used for debugging purposes, which is one of the main purposes of model
checking. By applying heuristic search methods to model checking, directed
model checking accelerates the detection of reachable error states. In heuristic
search, the traversal of the state space is guided (“directed”) with a heuristic
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function. Such a function assigns to each state that is encountered during the
state space traversal a heuristic value. States with lower heuristic values are
explored first.

In many cases, the use of directed model checking methods enormously ac-
celerates the detection of error states. It also improves the quality of the found
error traces, i. e., reported error traces are much shorter and thus easier to under-
stand. We will see this in the next section.

1.2 An Illustrative Example

In this section we want to provide the reader with an example of a model check-
ing task for a timed automata system. We further demonstrate the state explosion
problem and how it can be alleviated with directed model checking.

A mutual exclusion algorithm, or mutex for short, ensures that a shared re-
source is never accessed by more than one process of a concurrent system simul-
taneously. For example, in a multi-threaded computer program like a database
system, a mutex can be used to grant write access to the hard disk.

Suppose a software developer has to implement a mutex algorithm for a pro-
gram with two threads. Further suppose that the execution time of each instruc-
tion (each line of code) is between 1 and 2 ms. The developer comes up with
the algorithm shown in Fig. 1.1. The pseudo-code shows the implementation of
the mutex algorithm for the ith thread. In the algorithm, n is a shared integer
variable and pidi = i is the unique id of thread i. The meaning of line 4 is that
the thread has to wait for at least 2 ms. If a thread reaches line 6 it has access to
the shared resource. If the thread no longer needs the resource it releases it and
resets n to 0.

1 function mutex():
2 if n 6= 0 then: goto 2
3 n := pidi
4 wait for ≥ 2 ms
5 if n 6= pidi then: goto 2
6 access resource
7 release resource
8 n := 0

Fig. 1.1. The mutex algorithm for the ith thread

Although the algorithm only consists of a few lines, it is not easy to see
whether it satisfies the mutex property or not. In fact, the algorithm is a flawed
version of the Fischer protocol for mutual exclusion [46, 73]. Due to the inter-
leaving of process execution, which can cause an exponential blow-up of the
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system’s state space, it is difficult for humans to detect such errors. In the exam-
ple, an error state is reachable, because the idle time of the wait instruction in
line 4 has to be strictly greater than 2 ms.

Since each instruction of the mutex function can be executed at an arbi-
trary point in real time, this algorithm is best modeled using timed automata.
Figure 1.2 gives a graphical representation of such an automaton model that
represents the mutex function.

l2 l3

l4

l5l6

n = 0 ∧ xi ≥ 1
xi := 0

n 6= 0 ∧ xi ≥ 1
xi := 0

xi ≥ 1
n := pid i,
xi := 0

xi ≥ 2
xi := 0

n = pid i ∧ xi ≥ 1
xi := 0

n 6=
pid
i ∧
x
i ≥

1

x
i :=

0

n := 0,
xi := 0

xi ≤ 2
xi ≤ 2

xi ≤ 2

Fig. 1.2. A timed automaton model for the mutex algorithm

In the figure, the nodes l2 to l6 represent the locations of the automaton.
They model the value of the program counter, i. e., if the program is in the jth
line of the pseudocode, then the automaton is in location lj . The location l2 is
the initial location of all automata. This is indicated with a small arrow. The
variables pidi and n are defined as in the algorithm from Fig. 1.1 and xi is a
clock variable. A clock variable is a special variable that measures the real time
between successive events. The value of a clock is equal to the elapsed time
since the clock was last reset. An edge, e. g. l2

n=0∧xi≥1−−−−−−→
xi:=0

l3, is enabled if the

current state satisfies the edge’s guard (n = 0 ∧ xi ≥ 1). The values of the
variables are changed according to the edge’s effect (in this case, xi := 0). It
is also possible for the automaton to idle in its current state, but the idling time
can be bounded by a constraint on the clock values. For instance, the automaton
must not idle for more than two time units in location l3. The location l6 is
the critical location, i. e., if an automaton is in this location it has access to the
shared resource. For this reason it is double circled.

To verify that the algorithm satisfies the mutex property, it is sufficient to
prove that always at most one automaton is in its double circled location. Di-
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rected model checking, however, checks if there is a reachable error state, i. e.,
a state where at least two automata are in their critical locations. To check if
the mutex property holds, model checkers like UPPAAL [7] or MCTA [72] can
be used. UPPAAL is a very popular tool suite for designing and model checking
real-time systems. The tool exclusively uses uninformed search methods like
breadth-first or depth-first search. MCTA is also a model checker for real-time
systems, which was mainly developed by the author of this thesis and Mar-
tin Wehrle. In contrast to UPPAAL, MCTA additionally features directed model
checking techniques. MCTA uses a fraction of UPPAAL’s input language and
comes with several heuristics and search enhancements. We will explain them
later in this thesis.

Table 1.1. Comparison of UPPAAL and MCTA. The results are computed on an AMD Opteron
system with 2.3 GHz. Legend: Aut.: number of parallel automata, explored states: the number of
explored states, before an error state was found, trace length: length of the found error trace

explored states runtime in s trace length
Aut. UPPAAL MCTA UPPAAL MCTA UPPAAL MCTA

2 92 9 0.0 0.0 24 8
3 408 11 0.0 0.0 122 10
4 4628 14 0.0 0.0 874 13
5 16770 16 0.1 0.0 2314 15
6 7002 18 0.0 0.0 841 17
7 79212 20 0.8 0.0 4475 19
8 541392 22 8.1 0.0 19039 21
9 942777 24 16.1 0.0 19723 23

10 542160 26 16.0 0.0 10625 25
11 2909478 28 116.5 0.0 23559 27
12 10565796 30 705.3 0.0 36881 29
13 7932379 32 1652.6 0.0 24338 31
14 7568414 34 1799.3 0.0 12742 33
15 12999765 35 9774.0 0.0 15574 35

Table 1.1 provides a first impression of the potential of directed model check-
ing. Here, we compared UPPAAL’s fastest search method with MCTA’s on the
faulty mutex algorithm. The results impressively demonstrate the benefit of di-
rected model checking methods for the analysis of incorrect timed automata
systems. In comparison with UPPAAL, our tool finds much shorter error traces
much faster. While UPPAAL takes more than two and a half hours to detect an
error trace in one of the larger examples, MCTA instantly finds an error trace
that is orders of magnitude shorter and thus is much easier to understand. As
already mentioned, with short error traces it is easier to fix the bug in the algo-
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rithm. Wading through error traces with up to 36000 transitions as provided by
UPPAAL in order to see what went wrong is not feasible.

1.3 Outline

The thesis at hand consists of three parts. The remainder of this part is mainly
a short introduction to model checking. It presents basic concepts like Kripke
structures and temporal logic and defines the model checking problem. This part
is concluded by some brief sketches of prevailing model checking techniques.
Part II focuses on real-time systems and directed model checking. It provides
the necessary notations and definitions to understand this thesis. First, the syn-
tax and semantics of timed automata are introduced. As the non-negative reals
are used to model time, the semantics of timed automata is an uncountable tran-
sition system. At first glance, this seems not to be feasible for model checking.
However, there are finite, exact abstractions of the semantics, namely the re-
gion and the zone automaton. Afterwards, directed model checking for timed
automata is introduced. This includes a basic directed model checking algo-
rithm as well as the discussion of some previous work in this area. Part III is
the main part of this thesis. In Chap. 5, we adapt and extend the most successful
heuristic function from the area of AI planning to the context of model check-
ing timed automata. This allows us to detect reachable error states in systems
that are beyond the scope of other previously proposed heuristics for directed
model checking. In Chap. 6, we use predicate abstraction to generate pattern
database heuristics. Here we obtain a family of heuristics by combining well-
known techniques from the areas of model checking and artificial intelligence.
The obtained heuristics are comparable with the state of the art in directed model
checking. In Chap. 7, we present another pattern database heuristic that is based
on a Russian doll principle. Our approach homes on preserving a precise rep-
resentation of those parts of the system that are of immediate relevance to the
property under consideration. The resulting heuristic allows us to find provable
shortest error traces in our largest benchmarks in a matter of seconds. The tech-
nique presented in Chap. 8 is a generic search enhancement with which general
heuristic search can be significantly accelerated. The framework can be applied
to a wide range of heuristics, and often scales much better than greedy search
and yields almost shortest error traces. This is achieved by not only prioritizing
states, but also state transitions. In the last Chap. 9 of Part III, we first present a
counterexample-guided abstraction refinement loop for timed automata. Here-
inafter, we empirically demonstrate that in the presence of reachable error states,
directed model checking often outperforms counterexample-guided abstraction
refinement. Chapter 10 concludes. This thesis is partially based on the following
papers.
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2

Model Checking

Model checking is a method to verify concurrent systems. Its main advantage
over other approaches like theorem proving is that model checking is an auto-
matic method. As a consequence system engineers do not need expert knowl-
edge in logic to verify their systems. Once a suitable representation of the im-
portant parts of a design is translated into the input language of a model checker
(which is often a simple compilation step), model checking is a fully automatic
method. Another important characteristic of model checking is that temporal
logic is used to specify the properties that a system has to meet. Temporal logic
is very well-suited to describe the behavior of a system over time. Last but not
least, if the system violates a property, a model checker generates a counterex-
ample, i. e., a trace of instructions that led to the violation.

The beginning of model checking dates back to the early 1980s [24, 88].
At that time model checking was more a theoretical technique than a practical
method. Now, 25 years later, model checking is a highly efficient means for the
verification of concurrent systems and is used in many companies. Recently,
Clarke, Emerson and Sifakis received the 2007 Turing Award for their pioneer-
ing and ongoing work on model checking.

2.1 Motivation, Goals and History

The original motivation for model checking was concurrent program verifica-
tion. In such programs it is typically hard to find errors, since the reachability of
an error state may depend on a particular order in which the programs execute
their instructions. In the 1970s, the prevailing verification technique for this kind
of programs were manual proofs, constructed in some Hoare-style logic based
on formal axioms and inference rules. Beside the fact that this approach requires
expert skills in logic and is very time consuming, the main disadvantage of this
approach is that is not feasible to verify large systems. In the late 1970s, Pnueli
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[84] and Owicki and Lamport [81] proposed to use temporal logic to specify
concurrent systems, but proofs at that time were still handmade. At the begin-
ning of the 1980s, things changed dramatically. Clarke and Emerson [24] and
independently Queille and Sifakis [88] combined state space exploration tech-
niques with temporal logic to verify concurrent programs. This was the birth of
model checking. Their idea was to transform a concurrent program into a finite
state transition system. In order to check (verify) if the program is a model of
the property, which is given in temporal logic, their algorithm explored the en-
tire reachable state space. Around 1990, McMillan introduced symbolic model
checking [77]. Here, the states of the state space are not stored explicitly, but
symbolically by representing sets of states with Boolean functions. Such sets
can be efficiently represented using binary decision diagrams [17, 77], hence-
forth called BDDs. With this approach it was possible to verify extremely large
systems, orders of magnitude more than with explicit state model checking [17].
In 1999, bounded model checking was introduced by Biere [12]. The main idea
of this approach is to search for counterexamples in execution traces that con-
sist of k or fewer steps. If no error is found, k is increased until k reaches some
predefined upper bound. Instead of BDDs this approach normally uses proposi-
tional satisfiability testing (SAT). Recently, Yang and Dill [97] and Edelkamp et
al. [43] introduced what today is known as directed model checking. In directed
model checking, instead of verifying a given safety property one tries to falsify
it, i. e., to search for reachable error states. Especially when the system is er-
roneous this is often much easier than the exhaustive enumeration of the entire
state space. The reason for this is that an error state can be encountered by only
exploring a small fraction of the entire reachable state space. To achieve this,
heuristic search methods are used to quickly guide the search toward short error
traces.

All the different model checking approaches have in common that they
tackle the state explosion problem and thus make it possible to model check
larger and larger systems. The progress in model checking can therefore also be
seen as the progress on tackling the state explosion problem.

2.2 Temporal Logic

Conceptually, temporal logic is a formalism to describe the behavior of a system
over time. It implicitly models the ordering of events without introducing time
explicitly. Originally, temporal logic was developed by philosophers and lin-
guists to describe the chronological ordering of events. In the late 1970s, Pnueli
[84] and Owicki and Lamport [81] proposed to use temporal logic to specify
the temporal and sequential behavior of systems. Probably the most important
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temporal properties are safety properties and liveness properties. While a safety
property describes that something bad will never happen, a liveness property
expresses that something good will eventually happen. A typical instance of a
safety property is mutual exclusion, typical liveness properties are request re-
sponse properties.

2.2.1 Kripke Structure

Temporal logic is used to describe the behavior of a system. Such a system
is usually modeled as some kind of Kripke structure. A Kripke structure is a
transition system which is defined over a set of atomic propositions. A Kripke
structure consists of a set of states, a transition relation and a labeling function
that assigns to each state a set of atomic propositions that hold in that state.

Definition 2.1 (Kripke structure). Let P be a set of atomic propositions. A
Kripke structure over P is a tuple M = (S, s0, T, L), where S is a finite set of
states, s0 ∈ S is the initial state, T ⊆ S × S is a transition relation, and L :
S → 2P is a labeling function which assigns to each state a set of propositions
that hold in that state. Here, 2P denotes the power set of P .

Note that there are also definitions of the term where s0 is a subset of S
rather than an element of S. In this thesis, we never deal with systems that have
more than one initial state, hence s0 is always an element of S and not a subset
thereof.

A particular behavior of a Kripke structure corresponds to a sequence of
states where each state of the sequence can be reached from its immediate pre-
decessor state via a transition.

Definition 2.2 (Computation path). Let M = (S, s0, T, L) be a Kripke struc-
ture. A computation path, also called a trace, of M is a possibly infinite se-
quence π = s0, s1, . . . of states with (si, si+1) ∈ T for all i ≥ 0.

The set of all computation paths of a Kripke structure starting from its initial
state can be obtained by unfolding the Kripke structure. This results in an infi-
nite tree, the so-called computation tree. Every path in this tree, starting from s0,
gives one possible behavior of the system. Figure 2.1 shows on the left a small
Kripke structure M , defined over the set of atomic propositions P = {p, q}.
States are depicted by nodes, the initial state is marked with a small arrow. For
each pair of states in the transition relation, there is a directed edge in the graph
connecting these states. Each state is labeled with the set of atomic propositions
that hold in that state. The right part of the figure shows a part of the corre-
sponding computation tree of M . The root of the tree (marked with a small
arrow) corresponds to the initial state of the Kripke structure. The immediate
successors of a node s correspond to the set of nodes {s′ ∈ S | T (s, s′)}.
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{q}
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Fig. 2.1. A Kripke structure and its computation tree

2.2.2 A Branching Time Logic

Based on how a temporal logic deals with branching in the computation tree, it
is either classified as a linear or branching time temporal logic. In a branching-
time temporal logic the temporal operators quantify over all computation paths
that start with a particular state. A linear-time temporal logic provides operators
to describe events along a single computation path. In this thesis, we use com-
putation tree logic (CTL) which is a branching time logic. Computation tree
logic was introduced by Emerson and Clarke [45] in the early 1980s. For exam-
ple CTL can be used to describe that there is a certain behavior of the example
Kripke structure from Fig. 2.1, so that eventually a state is reached in which
p and q are true. In CTL this can be expressed by ∃F(p ∧ q). CTL formulas
are composed of path quantifiers ∃ (for at least one computation path) or ∀ (for
all computation paths) and temporal operators G, F , X and U (globally, finally,
next and until).

In CTL there are two types of formulas, namely state formulas and path
formulas. While a state formula is interpreted on a state, i. e., the current values
of the system’s variables, a path formula is evaluated on a particular computation
path.

Definition 2.3 (Syntax of CTL). Let P be a set of atomic propositions. The
syntax of a state formula is then defined by the following rules.

1. If p ∈ P , then p is a state formula.
2. If ϕ and ψ are state formulas, then ¬ϕ, ϕ∨ψ and ϕ∧ψ are state formulas.

The syntax of path formulas is defined as follows.

1. If ϕ and ψ are state formulas, then X ϕ, F ϕ, G ϕ and ϕU ψ are path for-
mulas.

2. If ϕ is a path formula, then ∃ϕ and ∀ϕ are state formulas.
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Definition 2.4 (Semantics of CTL). Let M = (S, s0, T, L) be a Kripke struc-
ture, defined over the set of atomic propositions P , s ∈ S and π be a computa-
tion path of M . We will write π[k] to refer to the kth state of that sequence. The
semantics of CTL state formulas is defined as follows.

M, s |= p iff p ∈ L(s)
M, s |= ¬ϕ iff M, s 6|= ϕ

M, s |= (ϕ ∨ ψ) iff M, s |= ϕ or M, s |= ψ

M, s |= (ϕ ∧ ψ) iff M, s |= ϕ and M, s |= ψ

M, s |= ∃ϕ iff M,π |= ϕ for some path π with π[0] = s

M, s |= ∀ϕ iff M,π |= ϕ for all paths π with π[0] = s

The semantics of CTL path formulas is defined as follows.

M,π |= X ϕ iff M,π[1] |= ϕ

M,π |= F ϕ iff M,π[k] |= ϕ for some k ≥ 0
M,π |= G ϕ iff M,π[k] |= ϕ for all k ≥ 0
M,π |= ϕU ψ iff M,π[k] |= ψ for some k ≥ 0 and

M,π[i] |= ϕ for all 0 ≤ i < k

Figure 2.2 illustrates the basic CTL operators. The trees in the figure are
computation trees of some Kripke structure. The grayed nodes represent states
in which the formula ϕ holds, in black nodes the formula ψ holds. Intuitively
∃G ϕ means that there is a path on which ϕ holds in every state. The formula
∀G ϕ expresses that the property ϕ holds for all states of the system. Such an ex-
pression is called an invariant. The meaning of ∃F ϕ is that there is a reachable
state in which ϕ holds. The formula ∀F ϕ states that on every path eventually
ϕ becomes true. Intuitively, the meaning of ∃X ϕ is that there is an immediate
successor state in which ϕ holds. The meaning of ∃(ϕU ψ) is that there is some
computation path π such that on the last state of its prefix ψ holds and on all
intermediate states ϕ holds. The formula ∀(ϕU ψ) expresses the same for all
computation paths.

Note that ∀G ϕ is dual to ∃F ϕ. More precisely, let M = (S, s0, T, L) be
a Kripke structure and s ∈ S. M, s |= ∀G ϕ holds iff M, s 6|= ∃F ¬ϕ. Also
M, s |= ∀F ϕ and M, s 6|= ∃G ¬ϕ are equivalent. Also worth mentioning, the
set {false,→,∃X ,∃U ,∃G}, where→ denotes the propositional implication, is
a minimum set of operators: all CTL formulas can be normalized to only use
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∃G ϕ ∀G ϕ

∃F ϕ ∀F ϕ

∃X ϕ ∀X ϕ

∃(ϕU ψ) ∀(ϕU ψ)

Fig. 2.2. Illustration of the basic CTL operators: grayed nodes represent states where ϕ holds, in
the black nodes ψ holds

these operators (cf. [27]). In this thesis, we will also use � for G and ♦ instead
of F .

2.2.3 The Model Checking Problem

With the definitions of Kripke structure and temporal logic, we can now for-
mally define the model checking problem. Let M be a Kripke structure of the
system of interest and ϕ be a temporal logic formula which describes the de-
sired temporal behavior of the system. The model checking problem is to decide
whether M satisfies ϕ. This is summarized in the next definition.

Definition 2.5 (Model checking problem). Let M = (S, s0, T, L) be a Kripke
structure and ϕ be some temporal formula. The model checking problem is de-
fined as the decision problem whether

M, s0 |= ϕ.
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Note that, depending on whether s0 is a set of states or not, there is also
another widely used definition of the model checking problem. Let M and ϕ
be defined as above, then the model checking problem is {s ∈ S | M, s |=
ϕ} ∩ s0 6= ∅. Especially for regression-based state space traversal this may be
more appropriate. In this thesis however, we will only deal with forward search.

2.3 Model Checking Techniques

All different approaches to model checking face one common problem: the state
explosion problem. Roughly speaking, the state space of a practically relevant
system is normally extremely huge because of a combinatorial blowup. This is
due to the fact that the size of a system’s state space tends to grow exponentially
in the number of parallel automata and the number of variables. For example
consider a parallel system with n automata. Each of these automata has k lo-
cations. For this system the size of the state space is kn. The size of the state
space also depends on how independently the automata can perform transitions.
Strong dependency limits the number of possible states.

There are several approaches to deal with the state explosion problem. For
example, distributed and external model checking make use of “extra” compu-
tation resources. In distributed model checking the model checking problem is
distributed over several computers or processors [21, 38, 76]. In external model
checking, secondary memory (e. g. hard disks) is used to store the state space.
By doing so, much larger systems can be analyzed [13, 44, 65]. In the next sec-
tion we will have a closer look at some approaches to tackle the state explosion
problem.

2.3.1 Abstraction-based Methods

The aim of abstraction is to verify a property on an abstract, i. e., simplified,
version of the system under consideration. The abstract system has to be signif-
icantly smaller than the original one, otherwise verification remains as hard as
for the original system. Another property the abstract system has to meet is that
it preserves the behavior of the original system. In general, the abstract system
exhibits more behavior than the original one and thus normally does not satisfy
the same properties as the original one. However, universal properties that are
proved on the abstract system also hold on the original one. There are several
different methods how abstractions can be used for model checking. Here we
will briefly sketch two of them.

Predicate abstraction is the combination of model checking techniques and
theorem proving. It was pioneered by Graf and Saı̈di in the late 1990s [50]. To
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check if a given system satisfies a certain property, the following is done. Based
on a set of abstraction predicates (logical formulas), an over-approximation of
the system under consideration is generated. The transition relation of the ab-
stract system is typically computed using a theorem prover. The abstract system
is then model checked. If the given property is verified then it also holds in the
original system. Otherwise an abstract counterexample is generated. Especially
in the latter case, predicate abstraction is often combined with abstraction re-
finement.

Abstraction refinement was first proposed by Clarke et al. [26] in the early
1990s. Since then many researchers began to automate this process starting with
the work of Balarin and Sangiovanni-Vincentelli [4]. In abstraction refinement,
a safety property is checked on a very coarse abstraction of the system under
consideration. If the safety property does not hold on the abstract system, then
it has to be checked if the abstract counterexample is not spurious, i. e., if it also
holds on the original system. Otherwise the abstraction is refined and the pro-
cess is repeated. In counterexample guided abstraction refinement (CEGAR) the
refinement step depends on analyzing the counterexample, i. e., the abstraction
is refined so that the spurious counterexample disappears in the next iteration.

2.3.2 Symbolic Model Checking

The first symbolic model checker was McMillan’s Symbolic Model Verifier
(SMV) [77] which is nowadays one of the most popular model checkers. The
main idea of symbolic model checking (SMC) is to avoid to explicitly build the
state space of the system under consideration. In SMC a Boolean encoding is
used to represent the transition relation of the system and also to represent sets
of states. The use of binary decision diagrams (BDDs) [15] for SMC was made
popular by McMillan [77]. Independently, Pixley [83] and Couderd et al. [28]
developed similar algorithms. By the use of BDDs, the original model checking
algorithm, proposed by Emerson and Clarke [45], can solve orders of magnitude
larger problems.

In a nutshell, a symbolic forward reachability algorithm can be implemented
like this. Let init : S → {false, true} be a Boolean function (encoded as a BDD)
that represents the system’s initial state. Further let T : S × S → {false, true}
be another BDD that encodes the transition relation of the system. The traversal
algorithm can then be formulated as a fix point iteration, which only uses basic
BDD operations.

F0 = {s ∈ S | init(s) = true}
Fi+1 = {s′ ∈ S | s′ ∈ Fi ∨ ∃s ∈ Fi : T (s, s′)}
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A fix point is reached if Fi+1 = Fi, which can again be checked with basic BDD
operations. The combination of, mainly hand tailored, abstractions and symbolic
model checking made this approach even more successful. Due to this, for the
first time it was possible to apply model checking to industrial designs. There
are success stories on the exhaustive exploration of systems that contain 1020

states [18]. As SMC is so successful, many hardware companies started to use
this approach to validate their designs. Nowadays SMC is a method that is used
in many industrial strength model checkers.

2.3.3 Bounded Model Checking

In 1999, Biere et al. [12] introduced bounded model checking (BMC). The main
idea of bounded model checking is to search for a counterexample in all compu-
tation paths of the system that consists of less than k execution steps. If no coun-
terexample is found, k is increased and the process is repeated until k exceeds
some predefined upper bound, or a counterexample is found. This is somewhat
related to iterative deepening depth-first search. Since the user has to provide
the upper bound for k, which is also called the completeness threshold of the
system, BMC is not a complete method if the bound is not high enough. A
BMC problem can efficiently be reduced to a propositional satisfiability prob-
lem. In contrast to SMC, where BDDs are used in order to represent sets of
states, BMC utilizes SAT procedures. This leverages the success of SAT to the
context of model checking.

In general, the structure of a SAT formula that is generated in the kth itera-
tion of invariant checking looks like this: s0 ∧

∧k−1
i=0 R(i, i+ 1) ∧ ¬pk. Here s0

is a formula describing the initial state of the system, R(i, i+ 1) is an encoding
of the transition relation from iteration i to iteration i + 1 and pi is a formula
describing the invariant in iteration i. Note that termination of this algorithm
cannot be checked as this can be done for BDD-based methods. For BDD-based
methods termination can be checked as BDDs which represent the same sets of
states are equal. The bottleneck of BDD-based methods is that the size of a BDD
can be exponential in the number of states the BDD represents. This can even
be true for systems which can be verified using an explicit state representation.
SAT solvers that are especially tailored to the special structure of the formulas
resulting from BMC improve this method even more [93]. An interesting prop-
erty of BMC methods and SMC methods is that there is only little correlation
on the problems that are hard for SMC and the problems that are hard for BMC
[11]. In this context, BMC methods can be seen as a complementary approach
to SMC. In recent years many hardware companies employ BMC methods to
debug their designs.
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2.3.4 Directed Model Checking

Directed model checking (DMC) is a very young research direction. The papers
by Yang and Dill [97] and Edelkamp et al. [43] are the first contributions to this
area. Both papers appeared around 2000. The term directed model checking was
coined by Edelkamp. In contrast to SMC or BMC, states in DMC are typically
represented explicitly. The main idea of DMC is to explore those parts of the
state space first that show promise to contain reachable error states. As a conse-
quence, it is possible to detect error states in systems whose entire state space
is too huge for brute force methods. In directed model checking, the state space
traversal is guided (“directed”) towards error states based on specific criteria.
Ideally, these guidance criteria are automatically extracted from the system un-
der consideration by taking an abstraction thereof. Based on such an abstraction,
a heuristic function h is computed that typically approximates a state’s distance
to its nearest error state. During the search process, h is used to assign each
encountered state s a heuristic value h(s). These values are used in order to de-
termine which state to explore next. Directed model checking methods mainly
differ in the way how they define and compute their underlying heuristic func-
tions. As directed model checking is the central topic of this thesis, we will give
a more detailed introduction to this research area in Chap. 4. In the main part of
this thesis (Part III), we will present our contribution to this research direction.



Part II

Real-time Systems
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Model Checking for Real-time Systems

Synchronous systems, like digital circuits, where all components are driven by
one common clock, are best modeled using discrete time. In a discrete-time
model, integers are used to model time. Asynchronous systems cannot be mod-
eled appropriately using a discrete-time model. The reason for this is that in
asynchronous systems, the interaction of processes can happen at arbitrary time
points. To be able to use integers for modeling real-time, one has to determine a
fixed minimum time quantum δ, i. e., the smallest time-span of two consecutive
events. All other time-spans can then be expressed by integer multiples of δ. On
the one hand, if δ cannot be chosen precise enough, subtle bugs can be missed.
On the other hand, the smaller δ is, the larger is the induced state space of the
system and thus model checking becomes infeasible. Brzozowski et al. [16]
showed that the reachability problem for synchronous circuits with bounded de-
lays cannot be solved correctly if a discrete time model is used, no matter how
fine the resolution is chosen. To model asynchronous systems correctly, the ap-
plication of real time is preferable. Instead of using integers to model time, the
non-negative reals R≥0 are used.

In this chapter we introduce timed automata, an automata model that is ap-
propriate to model real-time systems. Further, we will give a model checking
algorithm with which these automata can be checked.

3.1 Timed Automata

Timed automata have first been proposed by Alur and Dill [2, 3]. Nowadays,
they are the most used formalism to model real-time systems. In this thesis we
define timed automata as they are used in UPPAAL, a state-of-the-art model
checker for timed automata systems [7]. We use these definitions because much
of our work is implemented in this tool. The definitions in this chapter are
mainly based on the paper of Bengtsson and Yi [10].
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3.1.1 Syntax and Semantics

A timed automaton is a finite automaton equipped with a set of real-valued
clocks. The value of a clock gives the elapsed time since the clock was reset the
last time. All clocks synchronously advance with the same constant pace.

Before we give the formal definition of timed automata, we will first provide
an illustrative example. Figure 3.1 shows a timed automaton that is a very simple
model of a one-button computer mouse. The initial location of the automaton is
init. When the user clicks the mouse button, the automaton takes the edge from
init to single. The edge is annotated with the clock reset x := 0. This resets the
clock x to 0. Afterwards, the value of x increases with the pace of time. If the
user does not click the mouse button again, then the automaton has to leave the
single location after one time unit is passed and goes back to init.

This is modeled by labeling the single location with the location invariant
x ≤ 1. The value of x must satisfy the invariant while the automaton is in that
location. If the invariant is not satisfied, the location has to be left. If the user
was fast enough to double click the mouse button within less than 1 time unit,
then the automaton would take the transition to double.

In the following, X is a finite set of clocks. Let x, y ∈ X be clocks and let
c ∈ Z be an integer constant. We refer to expressions of the form x on c and
x − y on c, where on ∈ {<,>,=,≤,≥}, as clock constraints. We define B(X)
as the set of conjunctions over clock constraints.

Definition 3.1 (Syntax of timed automata). A timed automaton is a tuple A =
〈L, l0, E,Σ,X, I〉 where

1. L is a finite set of locations,
2. l0 ∈ L is the initial location,
3. E ⊆ L×B(X)× (Σ ∪ {τ})× 2X ×L, where 2X denotes the power set of
X , is a set of edges,

4. Σ is a finite set of synchronization labels, and τ 6∈ Σ denotes a special
internal label,

5. X is a finite set of clocks and
6. I : L→ B(X) is a function that assigns invariants to locations.

For an edge 〈l, g, a, r, l′〉 we will also write l
g,a−−→
r

l′. The label g ∈ B(X) is
called the guard of the edge and serves as an enabling condition. The automaton
can only take this edge if the current clock values satisfy g. The label r ⊆
2X represents the clock resets that are executed if the edge is taken. Instead of
writing r = {x, y} we will often write x := 0, y := 0, which is more intuitive.
The purpose of synchronization labels is explained later in Sec. 3.2.

As much of our work is implemented in UPPAAL [7], we also restrict the
form of location invariants to conjunctions over clock constraints of the form



3.1 Timed Automata 25

init single

x ≤ 1

double

x ≤ 1
click
x := 0

click
x < 1

x ≥ 1

Fig. 3.1. A simple timed automaton modeling a computer mouse

x ≺ c, where x is a clock variable, c a natural number and ≺ ∈ {<,≤}. For the
sake of presentation we will leave out “default” labels in figures showing timed
automata. The default location invariant and the default guard always evaluates
to true, the default clock reset affects no clock and the default synchronization
label is τ . Before we define the semantics of timed automata, we first have to
introduce the notion of clock valuation.

Let X be a set of clocks. A clock valuation is a function that maps each
clock in X to the non-negative reals R≥0. The set of clock valuations over X is
denoted with V(X). Let u, v ∈ V(X) be two clock valuations and g ∈ B(X).
For d ∈ R≥0, let u + d denote the clock valuation that maps each x ∈ X to
u(x) + d. For a set r ⊆ X , let [r 7→ 0]u denote the clock valuation that maps
all clocks x ∈ r to zero and all other clocks y ∈ X \ r to u(y). The expression
u |= g means that the clock valuation u satisfies g. Formally, the satisfaction
relation |= is inductively defined as follows. Let x, y ∈ X be two clocks, c ∈ Z
be an integer constant, u ∈ V(X) and on ∈ {<,>,=,≤,≥}.

u |= x on c iff u(x) on c

u |= x− y on c iff u(x)− u(y) on c

u |= ϕ1 ∧ ϕ2 iff u |= ϕ1 and u |= ϕ2

Definition 3.2 (Semantics of timed automata). Let A = 〈L, l0, E,Σ,X, I〉 be
a timed automaton. The semantics of a timed automaton is a labeled transition
system T (A) = (S, s0, T ), where S ⊆ L × V(X) is a set of states and T ⊆
S × (R≥0 ∪ Σ) × S is a transition relation. A state s = 〈l, u〉 ∈ S is a pair
consisting of an automaton location l ∈ L and a clock valuation u ∈ V(X).
The initial state of T (A) is s0 = 〈l0, v0〉, where v0 is the clock valuation that
assigns 0 to every clock in X . The transition relation T is defined as follows.
For the sake of readability, we will write s λ−→ s′ for transitions 〈s, λ, s′〉 ∈ T .

1. 〈l, u〉 d−→ 〈l, u+ d〉 ∈ T for d ∈ R≥0 if for all d′ ∈ R≥0 with 0 ≤ d′ ≤ d it
holds that u+ d′ |= I(l).
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2. 〈l, u〉 a−→ 〈l′, u′〉 ∈ T if there exists an edge e = l
g,a−−→
r

l′ ∈ E such that,

u |= g, u′ = [r 7→ 0]u and u′ |= I(l′).

A transition of the first type is called a timed transition. The automaton idles
in its current state and only lets time pass. While idling, the automaton has to
respect the location invariant. Transitions of the second type are called discrete
transitions. The execution of a discrete transitions takes no time. It is only pos-
sible to take such a transition if the corresponding edge guard is satisfied.

Figure 3.2 illustrates the semantics of the automaton modeling the one-
button mouse from Fig. 3.1. The chart below shows one possible behavior of the
timed automaton when the user performs a double click. Here, the user clicks
the mouse at absolute time points 1.7 and 2.3. The x-coordinate of the chart
gives the absolute time, the y-coordinate gives the current value of x. The hori-
zontal bold line segments in the chart show the location in which the automaton
is at each point in time. Before time point 1.7, the automaton is in location init,
after that time point, the automaton’s current location is single. After time point
2.3 the automaton is at double before it is in init again after time point 2.7. The
diagonal line segments represent the current value of the clock x. The value of
x is initially 0 and constantly increases over time. At time point 1.7, when the
user performs the first click, x is reset. This is because the corresponding edge
from init to single is labeled with the clock reset x := 0. After that time point, x
increases again. After pressing the mouse button a second time, the current lo-
cation is double. This location is labeled with the invariant x ≤ 1, which means
that the automaton must leave this location before the invariant is violated. The
behavior of the automaton as depicted in the figure consists of four timed tran-
sitions and three discrete transitions. Each timed transition corresponds to one
of the intervals where x is growing monotonically. The discrete transitions hap-
pen at the absolute time points 1.7, 2.3 and 2.7. Recall that discrete transitions
happen instantaneously.

Every parallel line to the y-axis corresponds to a state of the timed automa-
ton. For instance, the vertical line, labeled with s in the figure, represents the
following state. The intersection with the bold line gives the current location,
the intersection with the diagonal lines gives the current value of the clock. Thus
the vertical line s represents the state 〈init, u〉, where u is a clock valuation with
u(x) = 0.6.

3.2 Timed Automata Systems

Concurrent systems consist of several parallel components. To be able to model
a concurrent real-time system, several timed automata can be composed into
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init single

x ≤ 1

double

x ≤ 1
click
x := 0

click
x < 1

x ≥ 1

time

x

0 1 2 3

1

init

single

double

init

s

Fig. 3.2. A possible behavior of a timed automaton

an automata system. Let N = {1, . . . , n} and let Ai = (Li, l0i , Ei, Σi, Xi, Ii)
be a timed automaton for i ∈ N . A timed automata system S is the parallel
composition A1 ‖ . . . ‖ An. A system S = A1 ‖ . . . ‖ An of timed automata
can also be seen as a single timed automaton, namely as the product automaton
of A1, . . . , An. For timed automata systems, the synchronization labels play an
important role. They are used for so-called hand-shake synchronization of two
automata. Two automata of the system can simultaneously take two discrete
transitions if the corresponding edges of the involved automata are labeled with
inverse synchronization labels. From now on, we will use the following naming
convention to indicate that two labels are inverse. All the names referring to
synchronization labels either end with a “!” or a “?”. Two labels are inverse, if
their names only differ in the last sign. For instance, the two synchronization
labels a! and a? are inverse. Alternatively, we also use a to denote the inverse
synchronization label to a. Note that there is no inverse synchronization label to
τ . Edges that are labeled with τ cannot synchronize, they are taken individually.
Next we will give the semantics of timed automata systems.

Definition 3.3 (Semantics of timed automata systems). Let S be the timed
automata system A1 ‖ . . . ‖ An, where Ai = (Li, l0i , Ei, Σi, Xi, Ii) is a timed
automaton for 1 ≤ i ≤ n. The semantics of a timed automata system is a labeled
transition system T (S) = (S, s0, T ), where S is a set of states, s0 ∈ S is the
initial state and T is a transition relation. States are pairs of location vectors
l ∈ L1× · · ·×Ln and clock valuations. The initial state s0 is 〈(l01, . . . , l0n), v0〉,
where v0 :

⋃
i∈N Xi → R≥0 is the clock valuation that maps every clock to 0.
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For a location vector l we denote the location vector where the ith component is
replaced with l′i with l[l′i/li]. By I(l), we denote the composed invariant function∧n
i=1 Ii(li). The transition relation T is defined as follows.

1. 〈l, u〉 d−→ 〈l, u+ d〉 ∈ T if u+ d′ |= I(l) for all 0 ≤ d′ ≤ d.
2. 〈l, u〉 τ−→ 〈l[l′i/li], u′〉 ∈ T if li

g,τ−−→
r

l′i ∈ Ei, u |= g, u′ = [r 7→ 0]u and

u′ |= I(l[l′i/li]).
3. 〈l, u〉 τ−→ 〈l[l′i/li][l′j/lj ], u′〉 if there exists i, j ∈ N with i 6= j such that

i) li
gi,a−−→
ri

l′i ∈ Ei, lj
gj ,a−−→
rj

l′j ∈ Ej and u |= gi ∧ gj and

ii) u′ = [ri ∪ rj 7→ 0]u and u′ |= I(l[l′i/li][l
′
j/lj ]).

Again we refer to transitions of the first type as timed transitions. Transi-
tions of the two latter types are called discrete transitions. As the semantics
of timed transitions and the first type of discrete transitions are defined as for
single timed automata, we will only comment on the second type of discrete
transitions. Since these transitions are induced by two edges with inverse syn-
chronization labels, we will call these synchronized transitions. The purpose of
synchronization is to restrict the behavior of the system. Revisit the automa-
ton from Fig. 3.1. Suppose this automaton is part of a system that additionally
consists of an automaton with a single location and a self-loop edge, which is
labeled with the inverse synchronization label to click. In this example the use
of synchronization labels ensures that the mouse automaton can only proceed
from init to single and from single to double, if the automaton modeling the
user simultaneously performs a discrete transition.

We conclude this section with the following definition. Let A be a timed
automaton and T (A) = (S, s0, T ) the transition system representing A’s se-
mantics. A trace of A is a, possibly infinite, alternating sequence of states and
transitions

π = s0
λ0−→ s1

λ1−→ . . .
λi−1−−−→ si

λi−→ . . . ,

where si ∈ S and λi ∈ R≥0∪{τ} for i ≥ 0. The label λi is the real number d if

the corresponding transition si−1
λi−→ si ∈ T is a timed transition with duration

d. If the corresponding transition is a discrete transition, then λi is τ . We call a
state s ∈ S reachable if there is a trace π for which si = s holds for at least one
i ≥ 0.

3.3 The Region Automaton

As the values of clocks are real numbers, the transition system induced by the
semantics of a timed automaton is infinite. Model checking is a verification tech-
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nique for finite transition systems, therefore it seems that model checking is
not appropriate for timed automata. The reason why model checking timed au-
tomata is decidable is due to the fact that there exists an exact, finite abstraction
of timed automata. Alur and Dill [3] first showed that the infinite state space of
timed automata can be finitely partitioned. This is widely regarded as the major
break-through in the verification of timed systems.

The main idea behind this finite partitioning is the following. Given a timed
automata system, it is not important to know the exact value of a clock variable,
as long as it is possible to determine, for all clock constraints that occur in the
system, whether the clock values satisfy them or not. As a consequence thereof,
system states with the same discrete part, i. e., states with the same location
vector, can be grouped together, if their clock valuations satisfy the same clock
constraints. Such a group of states is called a symbolic state.

Let S be a system of timed automata and let X be the set of all clocks that
appear in S. The function k : X → Z that maps each x ∈ X to the largest abso-
lute value |cx|, such that x on cx or x− y on cx is a clock constraint that either is
a subformula of some edge guard or some location invariant, is called the clock
ceiling of S. Clock ceilings play an important role in the finite partitioning of
state spaces of timed automata. We will see this in the next definition.

Definition 3.4 (Region equivalence). Let X be a non-empty set of clocks. Fur-
ther, for d ∈ R≥0, let {d} denote the fractional part of d and bdc denote the
integer part of d. Two clock valuations u and v are region equivalent (denoted
by u ∼k v) iff the following conditions hold for every pair of clocks x, y ∈ X:

1. u(x) > k(x) iff v(x) > k(x)
2. if u(x) ≤ k(x) then

a) bu(x)c = bv(x)c and
b) {u(x)} = 0 iff {v(x)} = 0

3. if u(x) ≤ k(x) and u(y) ≤ k(y) then
{u(x)} ≤ {u(y)} iff {v(x)} ≤ {v(y)}

It is not difficult to prove that region equivalence is an equivalence relation.
An equivalence class [u]k induced by ∼k is the set of all clock valuations that
are region equivalent to u. These equivalence classes are called clock regions.
The idea behind this partitioning is the following. First, if the value of a clock is
greater than its ceiling, it does not matter how large this value is. Second, under
certain conditions, the fraction of a clock value is not important, because clocks
are only compared to integers. Figure 3.3 illustrates this. Let X = {x, y} be a
set of two clocks and let the clock ceilings k(x) = 3 and k(y) = 2. The figure
shows the clock regions for this configuration. It consists of the following 60
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Fig. 3.3. Regions for a system with two clocks

clock regions: 18 open regions, e. g., 0 < x < y < 1, 30 open line segments,
e. g., 1 < x = y < 2 and 12 intersection points, e. g., x = y = 1.

Note that, for a finite number of clocks, there is only a finite number of
equivalence classes. Alur and Dill [3] proved that the number of clock regions
for a set of n clocks is exponential in the number of clocks and the maximum
clock ceilings.

With the notion of clock regions, we can now define the region automaton.
Given a timed automatonA, the corresponding region automaton is a finite tran-
sition system that behaves like A. More precisely, the region automaton is a
sound and complete symbolic representation of the semantics of A.

Definition 3.5 (Region automaton). Let A = 〈L, l0, E,Σ,X, I〉 be a timed
automaton. The region automaton R(A) = (Q, q0, ∆) is a transition system,
where Q is a finite set of states. The states are pairs of automaton locations and
clock regions. The initial state is q0 = 〈l0, [v0]〉, where v0 ∈ V(X) is the clock
valuation that maps every clock in X to 0. Let u, v ∈ V(X) be clock valuations.
Further, let T (A) = (S, s0, T ) be the labeled transition system that represents
the semantics of A. The transition relation ∆ is defined as follows.

1. 〈l, [u]〉 → 〈l, [v]〉 ∈ ∆ if 〈l, u〉 d−→ 〈l, v〉 ∈ T for d ∈ R≥0

2. 〈l, [u]〉 → 〈l′, [u]〉 ∈ ∆ if 〈l, u〉 a−→ 〈l′, u〉 ∈ T

To illustrate the semantics of region automata, consider Fig. 3.4. The figure
shows the region automaton of the timed automaton model of the computer
mouse from Fig. 3.1. The initial state of the region automaton is 〈init, x = 0〉,
states that are not reachable from that state are not shown.

Let A be a timed automaton and R(A) = (Q, q0, ∆) its region automaton.
Further let T (A) = (S, s0, T ) be the transition system that represents A’s se-
mantics. As already stated, the region automaton is a finite representation of the
semantics of A. Alur et al. [1] proved that R(A) and T (A) are bisimilar. This
means, if we want to check if T (A), s0 |= ϕ, where ϕ is a CTL formula, it is
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init, x = 0

init, 0 < x < 1single, x = 0

double, x = 0single, 0 < x < 1

single, x = 1 double, 0 < x < 1

double, x = 1

init, x = 1

init, x > 1

Fig. 3.4. The region automaton for the automaton from Fig. 3.1

sufficient to check if R(A), q0 |= ϕ and vice versa. As the number of states in
the region automaton is finite, the model checking problem for timed automata
is decidable, too. Alur et al. [1] proved that the model checking problem for
timed automata is PSPACE complete.

3.4 Our Formalism

Clock regions are a useful means to partition the infinite state space of timed
automata, but they are not efficient. For instance, suppose that every constant
that appears in the description of the timed automaton model of the one button
mouse (see Fig. 3.1) is multiplied by 10. This causes the region automaton to
consist of 64 states (compared to 10 states).

A more efficient representation of the continuous part of timed automata
states is based on the notion of zones. Let X be a set of clocks and g ∈ B(X)
be a conjunction of clock constraints. A zone Z is the maximal set of clock val-
uations that satisfies g, i. e., Z = {u ∈ V(X) | u |= g}. As every conjunction
of clock constraints induces a zone, we identify such conjunctions with zones.
From the definition of zones it follows that a zone corresponds to a set of clock
regions. Hence, the induced zone automaton is in most cases much coarser than
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the corresponding region automaton and thus states are represented more com-
pactly. This computation model is used in the UPPAAL and the MCTA model
checkers and is also the fundamental computation model of this thesis.

It is well-known that zones can be efficiently represented using a data struc-
ture which is called difference bound matrices [37]. We do not want to describe
this data structure in detail here, since understanding the details is not necessary
for this thesis. In a nutshell, difference bound matrices can be used to represent
and manipulate zones. There is also a canonical, i. e., unique, representation of
zones, which is convenient, because the same conjunction of clock constraints
can be represented by different zones. For an algorithmic introduction to differ-
ence bound matrices, the interested reader is referred to the paper of Behrmann
et al. [6].

3.4.1 Bounded Integer Variables

Before we give the formal definition of the zone automaton, let us mention that
the timed automata systems that we consider in this thesis also feature bounded
integer variables. Every automaton Ai of a timed automata system S is aug-
mented with a finite set of such variables Vi. A state of a timed automata system
is a triple 〈l, v, Z〉, where l is a location vector, v is a variable value vector and
Z is the zone of the state. Every integer variable has an initial value. The val-
ues of integer variables can be used to restrict the behavior of the automaton.
Therefore, edges can be annotated with integer effects and integer guards. In
the following, we define the syntax and the semantics thereof. Let V be a finite
set of bounded integer variables. An integer assignment is an expression of the
form v := c0 +

∑n
i=1 ci · vi, where ci ∈ Z and v, vi ∈ V . An integer effect

is a set of integer assignments, where each integer variable v occurs on the left
hand side of at most one assignment. An integer constraint is a comparison of
the form c0 on

∑n
i=1 ci · vi, where ci ∈ Z, vi ∈ V and on ∈ {<,>,=, 6=,≤,≥}.

An integer guard is a conjunction over such constraints.
The semantics is defined as obvious: an edge l

gI∧gX ,a−−−−−→
f,r

l′ can be taken if

both its integer guard gI and its clock guard gX are satisfied. By taking the edge,
the values of the clocks and integers are changed according to the clock resets r
and the integer effect f .

3.4.2 The Zone Automaton

As already mentioned, zone automata are the fundamental computation model
used in this thesis. In this section we formally define this notion. Actually, the
definition of zone automata is much like the definition of region automata but
hard to read. Therefore we also give a detailed discussion afterwards.
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Definition 3.6 (Zone Automaton). Let S = A1 ‖ . . . ‖ An be a timed au-
tomata system where Ai = 〈Li, l0i , Ei, Σi, Xi, Vi, Ii〉 for 1 ≤ i ≤ n. The zone
automaton Z(S) = (S, s0, T ) is a transition system, where S is a finite set of
states. A state is a tuple, consisting of a location vector, a variable value vector
and a zone. The initial state is s0 = 〈l0, v0, Z0〉, where l0 is the vector consist-
ing of the initial locations, v0 is the vector containing the initial variable values
and Z0 = I(l0) ∧

∧
x∈X x ≥ 0. Further, let T (A) = (Q, q0, R) be a labeled

transition system that represents the semantics of S . The transition relation T is
defined as follows.

1. 〈l, v, Z〉 → 〈l, v, ‖up(Z ∧ I(l)) ∧ I(l))‖S〉 ∈ T
if 〈l, v, u〉 δ−→ 〈l, v, u+ δ〉 ∈ R for δ ∈ R≥0.

2. 〈l, v, Z〉 → 〈l′, fi(v), ri(gi ∧ Z ∧ I(l)) ∧ I(l
′)〉 ∈ T with l

′ = l[l′i/li]
if there exists 〈l, v, u〉 τ−→ 〈l[l′i/li], fi(v), u′〉 ∈ R,
induced by li

gi,τ−−−→
fi,ri

l′i ∈ Ei for i ∈ {1, . . . , n}.

3. 〈l, v, Z〉 → 〈l′, fi(fj(v)), ri(rj(gi ∧ gj ∧ Z ∧ I(l))) ∧ I(l
′)〉 ∈ T

with l
′ = l[l′i/li][l

′
j/lj ]

if there exists 〈l, v, u〉 τ−→ 〈l[l′i/li][l′j/lj ], fi(fj(v), u′〉 ∈ R,

induced by li
gi,a−−−→
fi,ri

l′i ∈ Ei and lj
gj ,a−−−→
fj ,rj

l′j ∈ Ej
for i, j ∈ {1, . . . , n} with i 6= j.

We additionally require that integer variables affected by fi are not affected
by fj and vice versa.

For a zone Z, up(Z) is defined as {u + d | u ∈ Z, d ∈ R≥0}, ‖Z‖S
normalizes Z with respect to the clock ceilings of the timed automaton system
S and r(Z) is an abbreviation for {[r 7→ 0]u | u ∈ Z}.

Again, the first type of transitions is referred to as timed transitions. A timed
successor s′ of a state s only differs from s in the zone. The zone of the succes-
sor state has to respect the invariant I(s). The resulting zone is then extended
by replacing all clock valuations u with u + d, where d is a non-negative real
number. Again, the resulting zone has to respect I(s). Afterwards the zone is
normalized. The normalization is necessary, otherwise the number of zones can
be unbounded. For a more detailed discussion, we again refer to the paper of
Behrmann et al. [6].

There are two types of discrete successors, successor states reached via τ
transitions, and successors reached via synchronized transitions. Let us have a
closer look at discrete successor states, reached via a τ transition induced by the
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edge e = li
gi,τ−−−→
fi,ri

l′i ∈ Ei. We assume that e is applicable in the current state.

The location vectors of the successor state are obtained by replacing the source
location li with the target location l′i of the edge. The variable value vector of the
successor state is obtained by applying the edge’s integer effect fi to the variable
value vector of the predecessor state. To apply the transition, the zone of s has
to respect the edge’s guard and the invariant I(s). Afterwards the clock resets
are applied. The resulting zone then has to satisfy the invariant of the successor
state I(s′).

Let us finally give some remarks concerning discrete successor of two syn-

chronized edges ei = li
gi,a−−−→
fi,ri

l′i ∈ Ei and ej = lj
gj ,a−−−→
fj ,rj

l′j ∈ Ej . Again, we

assume that ei and ej are applicable in the current state. The successor state is
obtained by applying the effects of both edges to the current state. To rule out
ambiguity, we require that, regardless of the order in which the edges ei and ej
are applied, the successor state is unique. Therefore every integer variable that
occurs on the left hand side of an integer assignment of ei must not occur in any
integer assignment of ej and vice versa.

3.4.3 Reachability Analysis for Timed Automata

We conclude this chapter by providing an algorithm for deciding reachability for
timed automata systems. The algorithm from Fig. 3.5 takes as input a system
of timed automata S and a formula ϕ, where ϕ is conjunction over location
predicates, integer constraints and clock constraints. A location predicate is an
expression of the form Ai = l and evaluates to true in a state s if Ai’s current
location is l. The zone of the initial state is Z0 = (

∧
x∈X x ≥ 0) ∧ I(l0). In

line 9, the algorithm checks whether the current state was already explored, i. e.,
it checks if there is an already explored state that subsumes the current state.
For instance, a state 〈l, v, Z〉 is already explored, if there is a state 〈l, v, Z ′〉 in
the closed list with Z ⊆ Z ′. For example, this is the case if Z is induced by
x ≤ 2 ∧ y ≥ 3 and Z ′ = {u ∈ V(X) | u |= x ≤ 3 ∧ y ≥ 1}. The succ(s)
function returns the symbolic successor states for the state s. In the algorithm, s
is of the form 〈l, v, Z〉.

The successor generation function succ operates as follows. Given a state
s = 〈l, v, Z〉, the function first computes all discrete successor states, i. e., all
states that are reached by applying one discrete transition to s. Afterwards, it
computes for every such discrete successor the time successor state.
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1 function reachability(S, ϕ):
2 open = ∅
3 closed = ∅
4 open.insert(s0)
5 while open 6= ∅ do:
6 s = 〈l, v, Z〉 = open.pop()
7 if s |= ϕ then:
8 return True
9 if Z 6⊆ Z′′ for all s′′ = 〈l, v, Z′′〉 ∈ closed then:

10 closed = closed ∪{s}
11 for each s′ ∈ succ(s) do:
12 if s′ 6∈ closed then:
13 open.insert(s′)
14 return False

Fig. 3.5. Reachability analysis for timed automata





4

Directed Model Checking for Real-time Systems

In this chapter we introduce the research area in which this thesis is settled,
namely directed model checking. After a general introduction to this area, we
will discuss directed model checking for timed automata. Directed model check-
ing can be seen as a special technique for the verification of safety properties,
especially when the state space of the system at hand is too huge to be enu-
merated exhaustively. In directed model checking the state space traversal is
focused, in some sense, on those parts of the search space that show promise
to contain reachable error states. This dramatically increases the chance that an
error state can be found before the memory and time resources are exhausted.

4.1 The General Idea

When model checking safety properties, the ultimate goal is to prove the ab-
sence of error states. However, to do so one has to explore the entire state space
of the system under consideration. It is therefore essential to use an efficient rep-
resentation and implementation of its state space. Prominent examples of such
implementations are the SPIN [64] and the UPPAAL [7] model checkers. SPIN

handles the Promela language, describing systems of communicating processes.
UPPAAL handles timed automata systems.

Due to the state explosion problem, enumerating the entire state space is of-
ten not feasible in practice. A potentially much easier task is to only try to detect
error states, i. e., to falsify the safety property. This is easier, because an error
state may be found by exploring only a small fraction of the entire search space.
Research on directed model checking deals with the development of algorithms
that accelerate the detection of states violating a given safety property. As a
consequence, directed model checking algorithms are especially tailored to de-
bugging purposes. They can even be good for proving an application error-free,
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because such algorithms can handle the intermediate iterations in the abstraction
refinement life cycle, i. e., those iterations in which spurious error states exist.

In order to quickly detect error states, two main issues have to be addressed:
first, the search space size, i. e., the number of search states that need to be
considered before an error state is found; and second, the length of the detected
trace to the error state. The search space size determines the scalability of the
search. Short error traces are preferred, because for debugging, they are easier
to understand; in abstraction refinement, they provide better information about
what aspects of the abstraction should be refined. Ideally, one wants an optimal,
i. e., a shortest possible, error trace.

4.2 Directed Model Checking

As already mentioned, directed model checking is the application of heuris-
tic search to model checking. In Artificial Intelligence (AI), especially in AI
planning, heuristic search has been overwhelmingly successful in the past
decade, in particular winning all the satisficing planning competitions (e. g.
[20, 49, 56, 61, 89]). Heuristic search addresses both, the number of explored
search states and the error trace length by influencing the order in which the
search states are explored. The application of heuristic search to model check-
ing was pioneered a few years ago by Edelkamp et al. [42, 43], christening this
research direction directed model checking.

In directed model checking, the search for a particular state that satisfies
some property, e. g. a state that violates a safety property, is guided with a
heuristic function. A heuristic function h is a function that maps states to in-
tegers, estimating the state’s distance to a nearest error state. The search then
gives preference to states with lower h value. There are many different ways of
doing the latter, of which we consider the wide-spread methods A∗ [53, 54] and
greedy search (cf. [82]). In the former, search nodes s are explored by increas-
ing value of c(s) + h(s), where c(s) is the length of the search path on that s
was reached. If h is admissible, i. e., if it never overestimates the real distance
to a nearest error state, then A∗ is guaranteed to return a shortest possible error
trace. In greedy search, search nodes are explored by increasing value of h(s).
This gives no guarantee on the length of the detected error trace, but tends to
explore fewer search states in practice.

Before we give a directed model checking algorithm, we first need the notion
of reachability problem.

Definition 4.1 (Reachability problem). Let S = 〈S, s0, T 〉 be a transition sys-
tem, where S is a set of states, s0 ∈ S is the initial state of the system and
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T ⊆ S × S is a transition relation. A reachability problem is given by a tu-
ple 〈S, ϕ〉, where ϕ is a propositional formula, the so-called target formula. A
reachability problem is the problem to decide if there is a solution, i. e., a trace
starting from s0 to a state s ∈ S which satisfies ϕ.

Model checking invariants can also be stated as a reachability problem. Here,
one wants to prove that there is no reachable error state, i. e., a state that violates
an invariant ϕ. In CTL this is given by S, s0 |= ∀�ϕ. This is equivalent to
S, s0 6|= ∃♦¬ϕ, which is a reachability problem. A solution in this context is
called a counterexample or an error trace.

4.2.1 A Basic Directed Model Checking Algorithm

Figure 4.1 shows a basic directed model checking algorithm. Given a reachabil-
ity problem 〈S, ϕ〉 and a heuristic function h, the algorithm returns True if there
is a state that satisfies ϕ, otherwise it returns False. The initial state of S is s0.
The algorithm maintains a priority queue, called open, which contains visited
but not yet explored states. When open.getMinimum is called, open returns a
minimum element, i. e., one of its elements with minimal priority value. States
that have been expanded are stored in closed. Every state encountered during
search is first checked if it is an error state. If this is not the case, its succes-
sors are computed. Every successor that has not been visited before is inserted
into open according to its priority value. The evaluate function depends on the
applied version of directed model checking, i. e., if applied with A∗ or greedy
search. For A∗, evaluate(s, h) returns h(s) + c(s), where c(s) is the length of
the path on which s was reached for the first time. For greedy search, it simply
evaluates to h(s). When every successor has been computed and prioritized, the
process continues with the next state from the open queue with lowest priority
value. Every state stores information about how it has been reached, i. e., its im-
mediate predecessor state and transition. Therefore, if an error state s is finally
reached, the corresponding error trace is generated by tracing back from s.

The remaining question in this context is, how do we obtain the main ingre-
dient for directed model checking, namely a heuristic function.

4.2.2 Obtaining Heuristic Functions

Our approach to directed model checking has its origins in the area of AI plan-
ning. The heuristics presented in this thesis are based on what AI people call a
relaxation, which is the same as the model checking term abstraction: an over-
approximation. However, the usage of abstractions in AI planning and directed
model checking differs from how they are usually used in model checking. For
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1 function dmc(S, ϕ, h):
2 open = empty priority queue
3 closed = ∅
4 priority = evaluate(s0, h)
5 open.insert(s0, priority)
6 while open 6= ∅ do:
7 s = open.getMinimum()
8 if s |= ϕ then:
9 return True

10 if s 6∈ closed then:
11 closed = closed ∪ {s}
12 for each s′ ∈ succs(s) do:
13 if s′ 6∈ closed then:
14 priority = evaluate(s′, h)
15 open.insert(s′, priority)
16 return False

Fig. 4.1. A basic directed model checking algorithm

instance, in abstraction refinement (cf. Sec. 2.3.1), abstractions are used to prove
the absence of reachable error states. In directed model checking, the abstracted
problem is used to approximate real error distances: the heuristic value for a
state is obtained by solving an abstract reachability problem and taking the
length of the abstract solution as the heuristic estimate for that state. This has to
be done for each state that is encountered during the state space traversal. To be
able to solve such an abstract problem in every search state, the granularity of
the abstraction has to be chosen very carefully. On the one hand, it is desirable
to have heuristic functions that are as informative as possible. On the other hand,
the computation must not be too expensive. In this theses, the abstract problems
are fully automatically generated, based on the declarative description of the
original reachability problem. As a consequence, our directed model checking
approaches are also fully automatic.

4.3 Related Work on Directed Model Checking

Directed model checking is a by now well-established technique that has found
its way in many state-of-the-art tools like UPPAAL (UPPAAL/DMC [69]), SPIN

(HSF-SPIN [43]), or JAVA PATHFINDER [94]. While it is obvious that model
checking, i. e., the state space traversal, can be profitably guided (“directed”)
based on specific criteria, it is perhaps less obvious whether this is still true
for criteria that are extracted automatically from the model itself. Research on
directed model checking is exactly about that question.

The application of heuristic search to model checking was pioneered a
few years ago by Yang and Dill [97] and Edelkamp et al. [42, 43]. Although
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Edelkamp et al.’s work was not the first contribution to this new research direc-
tion, the term directed model checking was actually coined by them. Today, there
are various other approaches of this sort. In the remainder of this section, we will
review some of them. The main difference between all these approaches is how
they define and compute the heuristic function. Different definitions make all
the difference because no heuristic can work well in all examples. The best one
can hope to do is to define a range of heuristics that cover (work well in) an as
large as possible range of examples.

4.3.1 Approaches for Untimed Systems

Heuristics Based on Graph-distance

Edelkamp et al. [42, 43] work in the context of SPIN. They propose to base the
distance estimation on the graph-distances within each single automaton. Their
algorithm is tailored to location reachability. Let S be a system of n parallel au-
tomata A1 ‖ . . . ‖ An, let J ⊆ {1, . . . , n} and let ϕ = ∃♦(

∧
j∈J Aj = lj′) be

a target formula. The locations lj′ that occur in ϕ are called target locations. To
validate the safety property ϕ, Edelkamp et al. propose the following heuristic.
For a system state s, let dAj (s) be the distance of Aj’s current location to its
target location. If Aj has no target location, i. e., Aj = lj′ is not a subformula
of ϕ, then dAj (s) is set to 0. They define an admissible heuristic function as
maxi dAj (s), where s is a system state. A non-admissible heuristic function is
defined as

∑
i dAj (s). These heuristics are then used inA∗ and iterative deepen-

ing A∗. Note that both heuristics are rather crude approximations of the system
semantics. But nevertheless they reported good results on a number of bench-
marks.

Guiding Based on Hints and Target Enlargement

In 1998, Yang and Dill [97] proposed several heuristics for directed model
checking which they implemented in MURϕ++. This is probably the first appli-
cation of heuristic search to model checking. The authors did not call it directed
model checking, but prioritized model checking. As far as we know this term
is nearly never used in the literature. Yang and Dill introduced three heuristics:
two user-definable heuristics and one automatically generated heuristic, namely
the Hamming distance heuristic [52]. This heuristic is based on the bit string
representation of states. The heuristic value of a state is the minimum number
of bits that need to be flipped in order to turn it into a state violating the invari-
ant. The hamming distance heuristic is based on a very crude approximation of
the system and is not very discriminating. In many cases, greedy search with
this heuristic behaves just like ordinary breadth-first search.
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The second heuristic is based on target enlargement. Target enlargement, as
the name suggests, aims at increasing the set of error states and thus makes it
easier to reach one. This is done prior to search, by iteratively computing the
preimage of the set of error states, i. e., the set of their predecessors. The au-
thors propose to overapproximate target enlargement by abstracting the preim-
age operator. This abstraction is based on ignoring a set of user defined system
variables. During search, whenever a state is encountered that is contained in
this enlarged target, the number of abstract preimage computations to reach this
state is taken as the heuristic estimate. The approximation of the preimage op-
erator is up to the user, however the authors give a guideline that often yields a
useful abstraction. Note that this heuristic can also be seen as a pattern database
heuristic. We will discuss pattern database heuristics below.

The third heuristic is called guideposts. To guide the search, the user has
to define a set of guideposts. A guidepost is a condition that is interesting or
a required precondition in order to reach an assertion violation. During search,
states whose history has visited more guidepost are preferred. It is interesting
to see that guideposts are similar to landmarks in AI planning [62]. The main
difference of these approaches is that in the latter landmarks have to be visited
in a particular order before a goal state is reached, while Yang and Dill just use
it as a heuristic estimate.

Structural Heuristics

Groce and Visser [51] introduce two heuristics inspired by the area of testing.
These heuristics are integrated in JAVA PATHFINDER, a tool for model checking
multi-threaded Java programs [94]. The heuristics do not try to target an error
formula but instead drive the search based on a branch covering metric and
on structural properties like the branching structure of the program or thread
interdependency.

They propose to use an amalgam of best first search and beam search in
order to detect errors. They report that their search algorithm can find deep error
states that can only be found by beam search with a very small queue limit.

Their first heuristic is based on a metric for code coverage. In the area of test-
ing a huge number of different code covering metrics have been proposed. The
authors follow a branch coverage metric that requires that at every branching
point in the program all possible branches are visited at least once. The intu-
ition behind this metric is that the higher the code coverage is, the higher is the
confidence that the code is correct.

During search, states covering yet unexplored branches receive the highest
priority. States that cover an already visited branch receive a priority reflecting
the number of times this branch was visited before. The resulting heuristic is not
admissible and is reported to get easily stuck in local minima.
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The second heuristic exploits thread interleavings. It has turned out that test-
ing metrics based on this are especially useful in detecting subtle deadlocks.
Search prioritizes states that are reached on execution traces that involve many
thread switching operations.

Pattern Database Heuristics

Qian and Nymeyer [86] introduced the use of pattern database heuristics [29]
based on abstractions generated by ignoring some of the variables of the system
variables. Roughly spoken, a pattern database contains the entire state space of
an abstraction of the system under consideration. The heuristic value of a state
is the minimum distance of the corresponding abstract state to an abstract error
state. Typically, pattern databases are precomputed and stored in hashtables.
Qian and Nymeyer work in the context of symbolic invariant model checking
and have implemented their techniques in NUSMV [22]. They also provide a
technique to automatically derive abstractions of the system at hand [87]. The
technique is based on the cone of influence abstraction. Starting with the set of
variables that occur in the property, the algorithm iteratively increases this set by
all variables that directly influence the already selected variables. The number
of iterations is an input parameter of the heuristic.

4.3.2 Approaches for Timed Systems

When model checking timed automata systems, one has to deal with two sources
of state explosion. The first source is due to the discrete part of the system, i. e.,
the number of system states is exponential in the number of parallel automata
and the number of variables. The second source stems from the continuous part
of the system. Since the clock variables range over the infinite domain of non-
negative reals, the size of the continuous part is also infinite. Even for the zone
automaton, the number of zones is still exponential in the number of clock vari-
ables. So far, there is no verification method for real-time systems that scales in
both the number of parallel automata and the number of clock variables. Clarke
regards efficient model checking for timed automata systems as one of the most
important challenges in model checking [23].

The aim of subproject R3 of the AVACS project 1 is to tackle this problem by
combining abstraction techniques and directed model checking. While directed
model checking mainly tackles the state explosion coming from the discrete part
of the system, abstraction is a suitable technique to deal with the second source,
i. e., the continuous part. Our work in this project is focused on directed model
1 Automatic Verification and Analysis of Complex Systems (AVACS) is a transregional col-

laborative research center funded by the German Research Foundation (DFG), see http:
//www.avacs.org for more information.

http://www.avacs.org
http://www.avacs.org
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checking for real-time systems. As far as we are aware of, Dräger et al.’s work
[39] and our own work [70] are the first applications of directed model checking
with automatically generated heuristics to real-time systems. Both papers were
published in 2006.

User Definable Heuristics

UPPAAL CORA [8, 75] is an extension of UPPAAL that supports priced timed au-
tomata [9]. In a nutshell, a priced timed automaton is a timed automaton whose
locations and transitions are additionally labeled with prices. The total costs of
an execution trace is the sum of the transition costs plus the costs for idling in
the visited locations of the trace. UPPAAL CORA offers various mechanisms for
guiding and pruning the search for optimal reachability in terms of accumulated
costs. To achieve this, the UPPAAL input language is extended by two special
user defined functions heur and remaining. The first function is used to assign
priorities to search states. The search then gives preference to states with lower
priorities. The remaining function estimates the remaining costs of reaching a
solution. The remaining function is used in order to prune the search space: if
the current costs of a state plus its remaining costs are greater than the total
costs of the best known solution, than this state is pruned from the search. Note
that, in the definition of these functions, it is only possible to refer to system
variables.

Behrmann et al. [8], Larsen et al. [75] and Dierks et al. [34] achieved good
results in applications for which they hand-coded the heuristics. The basic com-
mon idea of these contributions is to transform either scheduling problems or
planning tasks to a reachability problem that can then be solved using UPPAAL

CORA. Neither of them provides an automatic method to compute heuristic val-
ues. To manually design a good heuristic is a tedious and time-consuming job.
A deep understanding of the system at hand is absolutely necessary to carefully
tune the heuristic.

Heuristics Based on Automata-theoretic Abstractions

Dräger et al. [39, 40] developed a heuristic that aims at a close representation of
the process synchronization required to reach the error. Each process is repre-
sented as a finite-state automaton. The heuristic haa estimates the error distance
d(s) of a system state s as the error distance of the corresponding abstract state
α(s) in an abstraction that approximates the full product of all process automata.

The approximation of the product of a set of automata is computed incre-
mentally by repeatedly selecting two automata from the current set and replac-
ing them with an abstraction of their product. To avoid state space explosion,
the size of these intermediate abstractions is limited by a preset bound N : to
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reach a reduction to N states, the abstraction first merges bisimilar states and
then states whose error distance is already high in the partial product.

In this way, the precision of the heuristic is guaranteed to be high in close
proximity to the error, and can, by setting N , be fine-tuned for states further
away from the error. Dräger et al. experimentally found out that fairly low values
ofN , such asN = 50 orN = 100, already significantly speed up the search for
the error, and therefore represent a good trade-off between cost and precision.
Recently this approach has been successfully adapted to the area of AI planning
by Helmert et al. [57].

Heuristics Based on Predicate Abstraction

Recently Smaus and Hoffmann [91] continued our work on using predicate ab-
straction to generate heuristic functions in UPPAAL [63]. In our work [63], it has
been investigated how to construct pattern database heuristics using predicate
abstraction. A pattern database heuristic is typically computed in a preprocess-
ing step.

Therefore, the entire state space of an abstraction of the original system is
explored in a backward manner. During search, the abstract state space serves
as a lookup table for the heuristic values, i. e., the heuristic value of a state
s is the length of an abstract error trace that starts with an abstract state that
corresponds to s. In both papers [63, 91], the abstract state space is obtained
by applying a predicate abstraction to the original system. The main difference
of these two papers is, how a set of predicates is derived that results in a well-
informed pattern database heuristic.

The generation of predicates in our work was mainly syntactical, i. e., they
were directly obtained from the textual representation of the system. Smaus
and Hoffmann use abstraction refinement to refine initial abstractions that are
additionally seeded with randomly generated predicates. The use of abstraction
refinement in their work differs from the traditional use in verification. Instead of
excluding all possible error traces, they aim at getting a small set of predicates
that is informative enough to closely describe the original state space in the
surrounding of error states. Therefore they base a refinement step on several
abstract error paths, starting at arbitrary abstract states.

4.4 Our Model Checking Tools

We developed two directed model checking tools for timed automata. To the best
of our knowledge, these tools are the only tools of that kind that are equipped
with automatically generated heuristics. The only other tool that incorporates
heuristic guidance is UPPAAL CORA, which was discussed above. All directed
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model checking techniques discussed in this thesis are implemented in at least
one of these tools.

4.4.1 UPPAAL/DMC

UPPAAL/DMC [69] is the first tool that we have developed. As the name sug-
gests, UPPAAL/DMC is an extension of UPPAAL that provides generic heuristics
for directed model checking. The development of the tool was joint work with
Gerd Behrmann and Kim G. Larsen from Aalborg University. UPPAAL/DMC

incorporates many directed model checking techniques, for example the heuris-
tics proposed by Edelkamp et al. [43] and Dräger et al. [40]. Moreover, the
following heuristics are also implemented in this tool: hL and hU , two heuris-
tics based on the monotonicity abstraction (see Chap. 5), hPsyn and hPAR, pattern
database heuristics based on predicate abstraction (see Chap. 6) and hA, another
pattern database heuristic based on variable abstractions (see Chap. 7). Precom-
piled Linux binaries of our tool are freely available at http://www.informatik.
uni-freiburg.de/∼kupfersc/uppaal dmc/.

4.4.2 MCTA

MCTA [72] is our second model checking tool for real-time specifications mod-
eled as timed automata. Although the tool can be used for verification, MCTA

is rather optimized for falsification, i. e., detecting violations of safety proper-
ties fast and returning short error traces. In a nutshell, this tool provides nearly
the same functionality as UPPAAL/DMC. It comes with the same heuristics, ex-
cept the pattern database heuristics. In addition, MCTA features a special global
search method (see Chap. 8). The main difference is that MCTA’s architecture
is especially tailored for directed model checking. As a consequence, it is easy
to implement new heuristics or new search algorithms such as multi-heuristic
best-first search proposed by Helmert [56].

MCTA accepts input models in the form of the UPPAAL input language [7].
So far only a fraction thereof is supported, e. g. there is no support for urgent
channels, arrays, etc. yet. Internally, MCTA uses UPPAAL’s timed automata
parser library. For the representation of zones, MCTA uses UPPAAL’s differ-
ence bound matrices library. Both libraries are released under the terms of the
LGPL or GPL, respectively, and are freely available at http://www.uppaal.com/.
All other data structures and all algorithms (and their implementation) used are
genuine to MCTA.

MCTA is also free software and released under the terms of the GPL. Pre-
compiled Linux executables and the source code of MCTA are freely available
at http://mcta.informatik.uni-freiburg.de/.

http://www.informatik.uni-freiburg.de/~kupfersc/uppaal_dmc/
http://www.informatik.uni-freiburg.de/~kupfersc/uppaal_dmc/
http://www.uppaal.com/
http://mcta.informatik.uni-freiburg.de/
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Adapting an AI Planning Heuristic for
Directed Model Checking

Directed model checking is an emerging field, which improves the falsification
of safety properties by providing heuristics that can guide the state space traver-
sal quickly towards short error traces. Heuristic search is also very successful in
the area of AI planning. Our main contribution in this chapter is the adaptation
and the extension of the most successful heuristic function from AI planning to
directed model checking. The heuristic is based on solving an abstracted prob-
lem in every search state. We adapt the abstraction and its solution to systems of
timed automata. Our empirical evaluation revealed that, compared to both blind
search and some heuristics proposed by Edelkamp et al. [42], we consistently
obtain significant, sometimes dramatic, search space reductions. This results in
likewise strong reductions of runtime and memory requirements.

5.1 The Monotonicity Abstraction

In this section we introduce the monotonicity abstraction, the abstraction method
underlying our implemented heuristic function. We first give a high-level de-
scription of the abstraction in a generic way, then we define it in the context of
systems of timed automata.

Before we start, let us remark that the monotonicity abstraction was first
invented in AI planning for the STRIPS fragment of PDDL 2.1 [47]. There it
is known under the name ignoring delete lists [14, 61]. In STRIPS, the delete
lists are effect instructions that make a Boolean variable false. Ignoring delete
lists simplifies the problem because, in STRIPS, variables are only required to
be true. The monotonicity abstraction we describe below is a generalization of
this abstraction approach. We remark that the generalization is not published
in the AI planning literature; it is, in spirit, somewhat similar to Edelkamp’s
framework on generalizing the relaxed planning heuristic [41].
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5.1.1 The General Idea

The monotonicity abstraction is based on the simplifying assumption that every
state variable, once it obtained a value, keeps that value forever. The value of a
variable is no longer an element, but a subset of its domain. That subset grows
monotonically over transition applications, hence the name of this abstraction.

In a little more detail, in general a reachability problem consists of a transi-
tion system and a target formula. The transition system, e. g. a planning task, a
system of timed automata, a piece of program code, etc., can be seen as given by
a set of state variables, a set of transition rules and an initial state. The transition
rules have a guard, i. e., a formula out of some class of (non-temporal) formulas,
and an effect, i. e., an instruction how the variable values change when the rule
is applied. States are value assignments to the variables, the target formula is a
formula. A solution is a path of transitions that, when applied to the start state,
ends in a state that satisfies the target formula.

Under the monotonicity abstraction, the semantics of a transition system as
above is changed as follows. States now map each variable to a subset of its
domain. The initial assignment contains the single value assigned by the initial
state. A formula evaluates to true in a state if there exists a variable value vector
in the state so that the formula evaluates to true when inserting these values. Ex-
ecuting an effect instruction becomes a set union operation, where the new value
of each variable v is its old value (a domain subset) plus the new value assigned
by the effect. If the effect outcome depends on variables, then all possible value
vectors for these variables are used, each yielding a value for v.

Figure 5.1 shows a simple automaton A with two locations l1 and l2 and one
integer variable v. The initial state of the system is 〈A = l1, v = 0〉. Suppose
we want to check if there is a reachable state s in which v = 2 holds. Obviously,
there is no such state. However, in the abstraction there is such a state, i. e., an
abstract state s+ that satisfies the abstract target formula ϕ+ = ∃c ∈ s+(v) :
(c = 2). The initial value of v in the abstraction is {0}. After taking the edge
from l1 to l2, the abstract value of v becomes {0, 1}. Since s+(A) = {l1, l2}
and since the guard of this edge is abstracted to ∃c ∈ s+(v) : (c = 0), the edge
can be applied a second time. Afterwards v’s abstract value becomes {0, 1, 2}.
The new values obtained for v are 1 and 2. The value 1 is obtained by inserting
0 into the effect’s right hand side and the value 2 is obtained by inserting 1. In
this state the abstract formula ϕ+ evaluates to true.

l1 l2

v = 0

v := v + 1

Fig. 5.1. A simple automaton with two locations
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It is not difficult to see that the monotonicity abstraction induces an overap-
proximation of the real transition system. As a consequence, every solution in
the real system corresponds to a solution in the abstract system. We will state
this formally below, for our abstraction of timed automata. In many cases, de-
ciding solution existence is a polynomial-time problem under the abstraction,
making it feasible to solve the abstract problem in every search state. Under
certain conditions, checking satisfaction of a formula becomes NP-hard in the
abstraction, due to the additional existential quantification. In particular, this is
the case in our context of timed automata. We make an additional simplification
to get around this. We will later come back to this.

5.2 The Monotonicity Abstraction for Timed Automata

Before we give our definitions, consider from a higher point of view what hap-
pens if we apply the above abstraction to a system of timed automata. Under the
abstraction, each automaton will potentially be in several locations in a state.
The integer variables will have several possible values in a state. The clock vari-
ables will only accumulate new values. Transitions will be applicable as soon as
one of the possible value vectors satisfies the guard.

Thinking a little more about the clocks, one sees that they are likely to triv-
ialize very quickly under the monotonicity abstraction. The reason for this are
the timed transitions. As time passes, the clocks accumulate all the passing time
points. After waiting from time point u to time point u+ d, the new clock value
subsets contain the entire interval [u, u + d]. So, in a location l with invariant
I(l), the clock value subsets immediately gather all values up to the upper bound
specified by I(l). Initially, all clock values are 0. Since time passes continually,
the clock value subsets will always have the form [0,max], where max is the lat-
est time point yet reached, containing no information other than max. As soon
as a location l′ is reached with I(l′) = true, then max will become infinite. As a
consequence the clock value subsets will be R≥0 and thus every clock constraint
will henceforth evaluate to true.

Therefore, reasoning about clock values under the monotonicity abstraction
is not likely to contribute useful information, unless additional techniques are
used. We present an idea for such additional techniques in Sec. 5.5. For now, we
do not include clocks in the computation of heuristic values. While this is unde-
sirable, as said our empirical results demonstrate that taking (abstract) account
of automaton locations, synchronization, and integer variables can yield useful
search guidance.
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5.2.1 Abstract Semantics

Our definitions are straightforward and read as follows. We denote abstract
constructs with a superscribed + to indicate the additivity of the abstraction.
Let S = A1 ‖ . . . ‖ An be a system of timed automata, where Ai =
〈Li, l0i , Ei, Σi, Ci, Ii, Vi〉 is a timed automaton for i ∈ N = {1, . . . , n}. An
abstract state s+ assigns each automaton Ai a location subset s+(Ai) ⊆ Li.
Each integer variable v ∈

⋃
i∈N Vi is assigned a value set s+(v) ⊆ dom(v).

Formulas (conjunctions over integer constraints) are abstracted by locally, ex-
istentially quantifying the variables in each condition separately. For instance,
a formula (v on1 v

′) ∧ (v on2 c) is abstracted to ∃c1 ∈ s+(v), ∃c′1 ∈ s+(v′) :
(c1 on1 c

′
1) ∧ ∃c2 ∈ s+(v) : (c2 on2 c). That is, we allow achievement of each

condition in separate. We will later explain why we do not use global quantifi-
cation. An assignment of the form v := c, where v ∈ V and c ∈ Z, results
in s+(v) := s+(v) ∪ {c}. An assignment v := w, where v, w ∈ V results in
s+(v) := s+(v) ∪ s+(w). A linear assignment v := c0 +

∑n
i=1 ci · vi, where

ci ∈ Z and v, vi ∈ V results in s+(v) := s+(v) ∪ {c0 +
∑n

i=1 ci · evi | evi ∈
s+(vi) for all 1 ≤ i ≤ n}. Values not contained in dom(v) are removed from
the result. A τ transition of automaton Ai from location li to l′i is enabled if
li ∈ s+(Ai) and the respective abstract edge guard holds in s+. The effect
assignments are executed as above and s+(Ai) := s+(Ai) ∪ {l′i} is set. A syn-
chronous transition of automaton Ai from location li to l′i and of automaton Aj
from location lj to l′j is enabled if li ∈ s+(Ai), lj ∈ s+(Aj) and both respective
abstract edge guards hold in s+. The effect assignments are executed as above
and s+(Ai) := s+(Ai)∪{l′i} as well as s+(Aj) := s+(Aj)∪{l′j} are set. If s0 is
the initial state of S , then the abstract initial state s+0 is given by s+0 (Ai) = {l0i }
for every automaton Ai, and s+0 (v) = {s0(v)} for every variable v ∈ V . A path
of successively enabled transitions from s0 is an abstract solution if it ends in a
state s+ in which the abstract target formula holds.

Let us come back to the question why we evaluate guards by locally, ex-
istentially quantifying the variables in each condition separately. Quantifying
the variables over the entire formula globally yields an NP-complete constraint
problem. So, there is no way around making further abstractions. This is stated
in the next proposition.

Proposition 5.1. Let Vi for 1 ≤ i ≤ n be a set of integer values and let ϕ =
∃e1 ∈ V1, . . . ,∃en ∈ Vn :

∧m
j=1 cj , where cj is a comparison of the form

e1j onj e2j and onj ∈ {<,>,=,≤,≥, 6=}. To decide whether ϕ is satisfiable is
NP-hard.

Proof (Proposition 5.1). We will prove the claim by a reduction from the graph
3-colorability problem, which is NP-complete (cf. [48, GT4]). Let G = (V,E)
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be a graph, where V = {v1, . . . , vn} is the set of vertices and E ⊆ V × V is
the set of edges. There is a conjunct e1j 6= e2j and corresponding existential
quantifications ∃e1j ∈ Vl and ∃ej2 ∈ Vk in ϕ iff there is an edge between vl and
vk in G. Let Vi = {1, 2, 3} for 1 ≤ i ≤ n. From the construction it follows that
ϕ is satisfiable iff G is 3-colorable. �

We chose to do local quantification mainly because it is very simple and
can be implemented efficiently. It also comes in handy for linear arithmetic.
When dealing with linear combinations of integer variables, even checking a
single condition ∃v : f(v) = c, where f is a linear function that depends on the
variables v and c is an integer constant, is NP-hard. This is not usually a problem
since the number of variables in the expressions is typically small. Note that it
is also possible to handle expressions in an incremental way. We will come
back to this is in Sec. 5.3. As the total number of variables in a conjunction
of expressions can become quite large, it is convenient to address the single
expressions in separate.

5.2.2 Properties of the Monotonicity Abstraction

In this section we will prove some theoretical properties of the monotonicity
abstraction. First we will show that every solution of a reachability problem
〈S, ϕ〉 corresponds to an abstract solution of the corresponding abstract prob-
lem, induced by the monotonicity abstraction. Afterwards we show that, if the
assignments and guards that occur in the system S comply with a certain form,
it can be decided in polynomial time if there is an abstract solution. Finally we
prove that solving the abstract reachability problem optimally, i. e., finding an
abstract solution of minimal length, is computationally hard, i. e., NP-hard.

Proposition 5.2. Let 〈S, ϕ〉 be a reachability problem, where S is a system of
timed automata and ϕ a target formula, i. e., a conjunction over location pred-
icates and integer constraints. If t1, . . . , tn is a solution then t1, . . . , tn is also
an abstract solution.

Proof (Proposition 5.2). Let si, for 0 ≤ i ≤ n, denote the reached state af-
ter the execution of transitions t1, . . . , ti. We show by induction over i that
si(Aj) ∈ s+i (Aj) for all automata Aj , and si(v) ∈ s+i (v) for all integer vari-
ables v. This suffices to prove the claim.

It is obvious for i = 0. If it holds for i, then transition ti+1 is enabled in
s+i . The new location and integer variable values resulting from executing ti+1

are, by definition, inserted into the respective s+i+1 value subsets. Each of ti+1’s
assignments is of the form v := c0 +

∑n
j=1 cj · vj , where v, vj ∈ V and cj ∈ Z.

For all these assignments, it holds that si+1(v) = c0 +
∑n

j=1 cj · si(vj). By
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induction it holds that si(vj) ∈ s+i (vj) and c0 +
∑n

j=1 cj · si(vj) ∈ {c0 +∑n
j=1 cj · evj | evj ∈ s+(vj)} ⊆ s+i+1. �

By Proposition 5.2, every solution in the real search space is also contained
in the abstract search space. So the length of an optimal abstract solution is an
admissible heuristic function. We will come back to this below. It can be decided
in polynomial time if there exists an abstract solution or not. This is formally
stated by the next theorem.

Theorem 5.3. Let 〈S, ϕ〉 be a reachability problem, where S is a system of timed
automata and ϕ is a target formula. Let TASolEx+ denote the decision problem
if there is an abstract solution of the reachability problem. If all assignments
that occur in S are either of the form v := c or v := v′, where v, v′ are integer
variables and c is an integer constant, then

TASolEx+ is in P.

Proof (Theorem 5.3). We will describe a polynomial solution algorithm in
Sec. 5.3. �

The polynomial solution algorithm forms the basis of our heuristic functions.
For a heuristic function, what we want to know is not primarily if there is an ab-
stract solution, but what the length of an abstract solution is (if there is one).
Abstract solutions may contain arbitrarily many redundant transitions, and we
want to know what an optimal abstract solution is. We call the length of such
a solution, for a state s, the heuristic value for s. It is denoted with h+(s). Un-
fortunately, computing h+ is still hard. This is formally stated in the following
proposition.

Proposition 5.4. Let 〈S, ϕ〉 be a reachability problem, where S is a system of
timed automata and ϕ a target formula and let l ∈ N. Let TASolMin+ denote
the problem to decide if there is an abstract solution of length at most l.

TASolMin+ is NP-hard.

Proof (Proposition 5.4). We prove the theorem by a reduction from 3SAT. Let
V = {v1, . . . , vn} be a set of n Boolean variables and ϕ =

∧m
j=1(cj1∨cj2∨cj3)

a 3-CNF formula, where cji ∈ {v1,¬v1, . . . , vn,¬vn}. Further let S be the
automata system that consists of the following n + m automata. There is an
automaton Avi for every variable vi ∈ V and an automaton Acj for every clause
cj = (cj1 ∨ cj2 ∨ cj3). The automata are depicted in Fig. 5.2. Every automaton
has a local error location, the double circled location. An error state is reached
if all automata are in their local error locations.
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Avi

vi! ¬vi!

Acj

cj1? cj2? cj3?

Fig. 5.2. Automata encoding variables vi and clauses cj

Assume that f : V → B is a function that assigns each variable v ∈ V a truth
value so that ϕ evaluates to true. An abstract error trace of length 2n+ 3m can
then be constructed as follows. For every automaton Acj select the three transi-
tions from the initial location to the local error location that contains a transition
that synchronizes on a label cjl? that evaluates to true with respect to f . The
synchronization partner for this transition is the automaton Avi , where vi is the
variable of the literal cjl. In Avi we select the path needed for the synchroniza-
tion. For the Avi automata that are not needed in order to synchronize with any
of the Acj automata, select the two τ transitions leading from the initial state to
the local error location. The total length of this abstract error trace is 2n+ 3m.

Assume there is an abstract error trace of length 2n + 3m. For each Avi at
least two τ transitions are needed to reach a local error state. For every automa-
ton Acj also two τ transitions are needed plus one synchronized transition. This
sums up to 2n+3m. From this abstract error trace we construct f : V → B such
that f satisfies ϕ as follows. Set f(vi) to true iff automaton Avi synchronizes
on vi!. �

Note that one does not even need integer variables in the proof to Proposition
5.4. The desired admissible heuristic function h+, based on our abstraction,
cannot be computed efficiently. So, in practice, we will have to approximate h+.
We introduce two approximation techniques in the next section, one computes
a lower bound, the other one computes an upper bound.

5.3 Approximating h+

Our heuristic functions map search states to integers. For each state s that is
encountered during search, we are facing the following situation. We are given
a system of timed automata, a target formula, and a state s. The task is to ap-
proximate the length of an optimal abstract solution that starts with s.
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These approximations are based on a forward-chaining algorithm that gen-
eralizes algorithms proposed in the context of numeric planning [59]. The al-
gorithm is a forward fixpoint computation. It determines in polynomial time
whether there is an abstract solution, by building a data structure called the ab-
stract transition graph, or ATG for short. The ATG is a layered graph encoding
the reachability information. Pseudocode is given in Fig. 5.3. The algorithm
takes as input a system of timed automata S = A1 ‖ . . . ‖ An, where Ai is
a timed automaton, a target formula ϕ and the state s for which we want to
compute a heuristic value.

1 function build-atg(S, ϕ, s):
2 for each Ai do: L0(Ai) := {s(Ai)}
3 for each v do: V0(v) := {s(v)}
4 k := 0
5 while Lk, Vk 6|= ϕ+ do:
6 for each Ai do: Lk+1(Ai) := Lk(Ai)
7 for each v do: Vk+1(v) := Vk(v)

8 for each enabled τ edge li
gi,τ−−−→
fi,ri

l′i of all automata Ai do:

9 Lk+1(Ai) := Lk+1(Ai) ∪ {l′i}
10 for each assignment v := c0 +

Pn
l=1 cl · vl in fi do:

11 Vk+1(v) := Vk+1(v) ∪ {c0 +
Pn
i=1 ci · evi | evi ∈ Vk(vi)}

12 for each pair of enabled edges li
gi,a−−−→
fi,ri

l′i, lj
gj ,a−−−→
fj ,rj

l′j of all Ai 6= Aj do:

13 Lk+1(Ai) := Lk+1(Ai) ∪ {l′i}
14 Lk+1(Aj) := Lk+1(Aj) ∪ {l′j}
15 for each assignment v := c0 +

Pn
l=1 cl · vl in fi ∪ fj do:

16 Vk+1(v) := Vk+1(v) ∪ {c0 +
Pn
i=1 ci · evi | evi ∈ Vk(vi)}

17 if Lk+1(Ai) = Lk(Ai) for all Ai and Vk+1(v) = Vk(v) for all v then:
18 minlayer :=∞
19 return
20 k := k + 1
21 minlayer := k

Fig. 5.3. Building an abstract transition graph (ATG)

The ATG is a sequence of location sets Lk(Ai) and of variable value sets
Vk(v), the layers of the graph. The algorithm from Fig. 5.3 builds these in an
incremental way, so that their contents increase monotonically over k. As al-
ready said, the algorithm is a forward fixpoint computation. The initial location
and variable value sets L0 and V0 contain the current locations and variable val-
ues of the state s. While the abstract target formula ϕ+ is not satisfied in the
abstraction, i. e., if there are no locations in Lk and no variable values in Vk
such that ϕ+ evaluates to true, then the following is done. We call a transition
t enabled if the source locations (there are two locations if t is a synchronized
transition) of the transition are contained in Lk and there are variable values in
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Vk such that the guard of the transition is satisfied. For every enabled transition
t the target locations are added to the corresponding location sets. The variable
value sets are updated according to the assignments of t. A fixpoint is reached
if, after processing each enabled transition, the location and variable value sets
Lk, Vk and Lk+1, Vk+1 are equal. In this case there is no abstract solution and
the iteration terminates, setting minlayer to infinity.

Lemma 5.5. If for a reachability problem 〈S, ϕ〉 there is an abstract solution of
length n, then the built-atg algorithm successfully stops in at most n steps.

Proof (Lemma 5.5). Say t1, . . . , tn is an abstract solution. We prove that, when
running the algorithm without the stopping criterion, in iteration n the target for-
mula will be satisfied. This suffices because, obviously, if the stopping criterion
holds in an earlier iteration m < n then there is a fixpoint: Lk(Ai) = Lm(Ai)
for all Ai and k > m, and Vk(v) = Vm(v) for all v and k > m, yielding a
contradiction.

Let s+k , for 0 ≤ k ≤ n, denote the state after abstract execution of transitions
t1, . . . , tk in the start state. We show by induction over k that s+k is contained in
Lk and Vk, i. e., for all i it holds that s+k (Ai) ⊆ Lk(Ai) and for all v it holds
that s+k (v) ⊆ Vk(v). This suffices to prove the overall claim. The induction base
case is obvious. If the induction hypothesis holds for k, then tk+1 is enabled by
Lk and Vk, so it is processed in the inner loop. The locations added by tk+1 are
inserted into s+k+1. The values added by its effects v := c0 +

∑n
i=1 ci · vi are

inserted into Vk+1(v), because s+k (vi) ⊆ Vk(vi) by induction hypothesis. So,
the values inserted into Lk+1 and Vk+1 in particular contain the values inserted
by tk+1 into s+k+1 with these effects. �

In particular, if the procedure for constructing the ATG terminates unsuc-
cessfully, then there is no abstract solution. It is easy to see that, if the targets
are reached in layer minlayer, then an abstract solution can be constructed as the
sequence, for k = 0, . . . ,minlayer− 1, of all transitions enabled by Lk and Vk.
So altogether the algorithm for constructing the ATG is a polynomial procedure
deciding existence of an abstract solution, and Theorem 5.3 follows.

5.3.1 Remarks on Linear Arithmetic

Before we introduce two heuristics based on the monotonicity abstraction, we
give some remarks on linear arithmetic.

Note that, if we allow linear expressions over unbounded integer variables,
then the build-atg algorithm from Fig. 5.3 does not necessarily terminate. To see
this, consider the automaton A depicted in Fig. 5.4. Suppose the initial state of
the system is given by 〈A = l1, v = 1〉 and the error state is 〈A = l2, v = 0〉.
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Of course the error state is neither reachable in the real search space nor in the
abstract search space. The construction algorithm for the ATG, however, does
not terminate. This is because an abstract error state is never reached and thus
the stopping criterion of the while loop is never satisfied. Also the fixpoint test
(line 14 in Fig. 5.3) always fails, because Vk 6= Vk+1 for all layers k.

l1 l2

v := v + 1

Fig. 5.4. An example where build-atg would not terminate for unbounded variables

Of course, since we only consider bounded integer variables, termination
is guaranteed. This is because there are only finitely many variable values that
can be added to the variable value sets. In general the variable value sets Vk
cannot be represented in size polynomial of the reachability problem. To see this
consider Fig. 5.5 as an example. It depicts an automaton with n+1 assignments
and n + 1 variables. Suppose that the initial state is given by l0 and the values
of all variables vi are 0. During the construction of the ATG, as soon as the
assignment of the edge from ln to ln+1 is executed, vn will contain 2n different
values, which is exponential in the number of assignments.

l0 l1 l2 ln−1 ln ln+1

v0 := 20 v1 := 21 vn−1 := 2n−1 vn :=
Pn−1
i=0 vi

Fig. 5.5. Abstract variables can contain an exponential number of values.

In order to overcome this situation, it is possible to apply an additional ab-
straction on the linear arithmetic. We refer the reader to Hoffmann’s article about
the METRIC-FF planning system [59]. Note that this additional abstraction re-
sults in a coarser abstraction of the system’s semantics and thus the resulting
heuristic is less informed.

Some final notes about the handling of linear expressions in the abstraction.
As said, testing ∃v : f(v) = c is NP-hard for linear expressions f(v), but the
number of variables in v is typically small. Our main algorithmic trick to deal
with the expressions efficiently is an incremental computation. If, at some point
during the construction of the ATG, we want to know whether ∃v : f(v) = c
is true based on the current value subsets Vk, then we can refer back to the
last time we asked that same question, and just take into account how the value
subsets have changed since then. In fact, we just keep a flag at each expression
occurring in the input, indicating whether the expression can be satisfied yet.
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Every time the value subset of a variable occurring in the expression changes
(grows), we see whether that change serves to satisfy the expression; if so, we
set the flag. Checking guard satisfaction in the ATG then simply means to refer
to the flags. Similarly, one can deal with linear expression effect right hand
sides, v := f(v′). We just enumerate the set of value tuples for v′, referring
back to the previous version of that set. Typically, just one or two variables in
f(v′) have gathered new values since the last evaluation of f(v′). It suffices to
enumerate these changes and extend the old tuple set correspondingly. Note that
this incremental approach can, in fact, be implemented for (almost) arbitrarily
complicated expressions, not only linear ones.

5.3.2 The hL Heuristic

Let us focus again on how to approximate h+. As said, we compute a lower
bound as well as an upper bound. We call the lower bound hL, and the upper
bound hU . By Proposition 5.5, a lower bound on h+ is the minlayer value de-
termined by the ATG algorithm. We set hL(s) to that value as computed by the
procedure for building the ATG for the state s (see Fig. 5.3). Note that hL returns
infinity for s if there is no abstract solution. From Proposition 5.2 it follows that
in such cases there is also no real solution and thus the state can be excluded
from further examinations. Pseudocode for the hL heuristic is given in Fig. 5.6.

1 function hL(S, ϕ, s):
2 build-atg(S, ϕ, s)
3 return minlayer

Fig. 5.6. The hL heuristic

5.3.3 The hU Heuristic

Regarding an upper bound, note that, with the above, the number of all transi-
tions enabled at layers k = 0, . . . ,minlayer−1 provides such a bound. However,
this bound is likely to be far too generous, counting transitions that are reach-
able but not needed to achieve the targets. We therefore use a more involved
method to determine our upper bound hU . The method basically selects, at each
layer k = 0, . . . ,minlayer − 1, a subset of the enabled transitions, so that the
sequence of the selected transitions is still an abstract solution. This is done
by a backward-chaining procedure on the ATG. We set hU to the length of the
selected abstract solution. Note that this abstract solution is not necessarily opti-
mal. Like the hL heuristic, the hU heuristic assigns infinity to a state from which
the abstract error state is not reachable.
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From a successfully built ATG, one can select an abstract solution with the
algorithm given in Fig. 5.7.

1 function extract-solution(S, ϕ, s):
2 for k := 0, . . . ,minlayer do:
3 for each Ai do: TLk(Ai) := ∅
4 for each v do: TVk(v) := ∅
5 make-target(minlayer, ϕ)
6 for k := minlayer, . . . , 1 do:
7 for each Ai do:
8 for each l′ ∈ TLk(Ai) do:
9 select transition t enabled at k − 1 that ends in l′

10 make-target(k − 1, t’s start locations, t’s guard formulas)
11 for each v do:
12 for each c ∈ TVk(v) do:
13 select t enabled at k − 1 with effect v := c0 +

Pn
i=1 civi such that

c ∈ {c0 +
Pn
i=1 cievi | evi ∈ Vk−1(vi)}

14 for each vi that occurs in the effect do:
15 select evi ∈ Vk−1(vi) such that c = c0 +

Pn
i=1 cievi

16 TVk−1(vi) := TVk−1(vi) ∪ {evi}
17 make-target(k − 1, t’s start locations, t’s guard formulas)

Fig. 5.7. Extracting an abstract solution from an abstract transition graph

1 function hU (S, ϕ, s):
2 build-atg(S, ϕ, s)
3 if minlayer =∞ then:
4 return∞
5 extract-solution(S, ϕ, s)
6 return number of selected transitions

Fig. 5.8. The hU heuristic

The algorithm makes use of location sets TLk(Ai) and of variable value sets
TVk(v). At ATG layer k, these sets contain the current target locations and target
variable values at layer k. A location l is a target location, if the target formula
contains a location constraint of the form A = l. A target value for a variable
vi is a, possibly empty, subset Vi of the variable’s domain dom(vi), so that the
integer part of the abstract target formula ϕ+ is satisfied by V1, . . . , Vn The TL
and TV sets are initialized as empty, then the target locations and formula of the
overall task are inserted by the make-target function. That function is explained
in detail below. Transitions supporting the targets in the TLk(Ai) and TVk(v)
sets are selected during a backwards loop over k from the top ATG layer to
layer 1. The start locations and guard formulas of the selected transitions are
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inserted into the TL and TV sets; by construction of the ATG, these new targets
will appear at layers below k (see also below). It is ensured that the transition
effects achieve the desired target.

The make-target function takes as arguments a number m, a set of locations,
and a set of formulas (the sets contain 1 or 2 elements each). The function first
determines, for each location l in automaton Ai, the lowest k such that l ∈
Lk(Ai) and sets TLk(Ai) to TLk(Ai) ∪ {l}. Note that k ≤ m will hold by
construction, i. e., the new location targets are inserted at layers below in the
graph (otherwise the transition would not be enabled at m).

The interesting part is the selection of the linear guard. As we know that
every guard of any transition in the ATG is satisfied, we have to find a value for
each variable that occurs in the guard such that the guard is satisfied. For each
chosen value c of variable v, the lowest k with c ∈ Vk(v) is determined, and
TVk(v) is set to TVk(v) ∪ {c}. Note again that k ≤ m will hold. For every such
variable value pair we add a transition that assigns this value to the variable to
the relaxed plan. Note again that k ≤ m will hold.

Proposition 5.6. Let 〈S, ϕ〉 be a reachability problem, where S is a timed au-
tomata system and ϕ a target formula and s a state of S, so that the algorithm
in Fig. 5.3 stops with success. Then the transitions selected by the algorithm in
Fig. 5.7 form an abstract solution.

Proof (Proposition 5.6). First, note that by construction of the abstract transi-
tion graph, the algorithm cannot fail, i. e., there is always a transition sufficient
to support a target location or variable value. We form the abstract solution by
arranging the transitions in inverse order of selection, i. e., in particular from
bottom k = 0 to top k = minlayer − 1. We show by induction over k that the
start locations, and the guards, of the transitions are satisfied in the respective
abstract state of execution. For k = 0 this is obvious. For k > 0 it follows be-
cause the start locations and guards of the transitions were posted as targets at
layers below, and thus achieved by the respective selected supporting transitions
(which are enabled by induction hypothesis). So all selected transitions will be
enabled in the sequence, thus achieving the (global) target locations and formula
that were posted at the start of the algorithm. �

Consider Fig. 5.9 as an example. It depicts a system consisting of two au-
tomataQ andB that can synchronize via the synchronization label a. The initial
state of the system is given by s0 = 〈Q = q1, B = b1〉. Suppose that an error
state is reached when both automata are in their double circled locations.

The ATG for this automata system is given in Fig. 5.10, it can be constructed
in n steps as follows. Automaton Q takes the edge to q2 once, and can then take
its edge from q2 to q1 exactly n − 1 times in sequence. This is possible since
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b1 b2 b3 bn−1 bn

q1 q2

B
a? a? a?

Q

a!

Fig. 5.9. A simple example where hL and hU deliver bad heuristic values

location q2 remains in the reached location subset Lk(Q), for each value of k.
At layer n the abstract target formula is satisfied and the algorithm stops.

Note that, in order to reach an error state in the real search space, Q needs
to go through repeated cycles. More precisely, as B has n locations, the real
solution takes 2(n − 1) transitions, half of which are synchronized between
both automata. Especially if we replaced the edge from q1 to q2 with a chain of
m non-synchronized edges, the example illustrates that the hL and hU estimates
can be arbitrarily bad.

Layer k Lk(B) Lk(Q)

0 {b1} {q1}
1 {b1} {q1, q2}
2 + i {b1, . . . , b2+i} {q1, q2}

Fig. 5.10. The ATG for the initial state of the system from Fig. 5.9

Figure 5.11 gives another example. In the start state, all automata are in the
bottom location. An error state is reached if all automata are in the double circled
locations. In each automaton except the first one, one has two choices, one of
which leads into a dead end (a state from which the error cannot be reached),
since the required synchronization will not be available anymore. Built for the
start state, each layer k of the ATG corresponds exactly to the locations that
can be reached within k steps — in particular, the double circled location in
the kth automaton. So minlayer = n, and hL = hU = n is the precise error
state distance. If, during search, a wrong decision was made in automaton Ai,
then the top left location in Ai does not appear in the ATG, and the heuristic
value is∞. Another example where hL and hU are precise is, e. g., a situation
that requires (only) to repeatedly increment an integer variable. Intuitively, hL

and hU are good at detecting long sequences of transitions that build upon each
other to achieve some target, and at finding out that such a sequence is not
available. What they are not good at is to see that the same thing has to be
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done multiple times1 – under the monotonicity abstraction, everything needs to
be done at most once. A bad situation was given earlier in Fig. 5.9, where the
top automaton needs to go through repeated cycles, while hL and hU act as if a
single cycle is sufficient.

A1

a1!

A2

a1?a1?

a2!a2!

a1?

. . .

An−1

an−1?an−1?

an!an!

an−1?

An

an?an?

an?

Fig. 5.11. A simple example where hL and hU deliver the precise error distance

5.4 Evaluation

We evaluated our heuristics by comparing them to other heuristics and other
uninformed search methods in two different settings.

In the optimal setting, we are interested in finding shortest possible error
traces. The configurations of this setting are UPPAAL’s breadth-first search
(BFS) and A∗ search with the hL and dL heuristics. The latter heuristic is a
heuristic proposed by Edelkamp et al. [42, 43], which we will explain in the
next section.

In the suboptimal setting, we are interested in finding any solution. The con-
figurations of this setting are UPPAAL’s randomized depth-first search (rDFS)
and greedy search with any of hL, hU , dL and dU . Note that UPPAAL’s rDFS
is by far the most efficient uninformed search method across many examples,
including ours. The dU heuristic, also proposed by Edelkamp et al., is explained
in the next section.

5.4.1 The Heuristic Functions

Edelkamp et al. [42, 43] work in the context of SPIN. They propose to base
the distance estimation on the graph-distances within each single automaton.
For automaton Ai, let d(Ai) be the distance of Ai’s start location to its target
location, when ignoring all edge guards. Recall that a target location is a location
1 When repeatedly incrementing a variable, every increment has a different effect.
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that appears in a location constraint in the target formula. If there is no target
location, then d(Ai) is set to 0. An admissible heuristic function, called dL,
is defined as maxAi d(Ai), and a non-admissible heuristic function, called dU ,
is defined as

∑
Ai
d(Ai). We implemented these heuristic functions, taking the

d(Ai) to be the graph distances in the individual automata.
The underlying abstraction of the dL and dU heuristics is a rather crude

approximation of the system semantics. It completely ignores synchronization
and integer variables. Examine Fig. 5.11 again. Recall that for this example the
hL and hU heuristics return the precise error distance and are able to detect all
dead ends. In contrast, the heuristic value for the initial state returned by dL is 2
and that of dU is 2n− 1, and no dead ends are detected.

Note that our heuristics are computationally more expensive than dL and dU ,
i. e., computing the heuristic function takes more runtime than what is needed
for dL and dU . However, as we will see, this often pays off in terms of much
smaller explored search spaces.

5.4.2 The Benchmark Set

All our benchmarks stem from the AVACS benchmark suite and can be obtained
at http://www.avacs.org.

The Ci examples, where 1 ≤ i ≤ 9, come from a case study called Single-
tracked Line Segment. It models a distributed real-time controller for a seg-
ment of tracks where trams share a piece of track. It was originally modeled in
terms of PLC automata [32, 68], an automata-like notation for real-time pro-
grams. The PLC automata were translated into timed automata with the tool
MOBY/RT [80]. The property to be checked requires that never both directions
are given permission to enter the shared segment simultaneously. This prop-
erty is ensured by three PLC automata of the whole controller. We injected an
error by manipulating a delay such that the asynchronous communication be-
tween these automata is faulty. The given set of PLC automata had eight input
variables. We used MOBY/RT to constructed nine models with decreasing com-
plexity by abstracting more and more of these inputs.

The Mi and Ni examples, for 1 ≤ i ≤ 4, come from a study called Mutual
Exclusion [32]. It models a real-time protocol to ensure mutual exclusion in a
distributed system via asynchronous communication. We flawed the model by
increasing an upper time bound. By applying various abstraction techniques,
we got models of different complexity. The resulting models do not have many
automata but a non-trivial number of clocks and variables.

The FAi and FBi examples are two different versions of the Fischer protocol.
The index i gives the number of parallel automata. An error state is reached if
at least two automata are simultaneously in a certain location. We made error

http://www.avacs.org
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states reachable by weakening one of the temporal conditions in the automata.
The variants differ in the way how they encode the error condition. Variant A
adds additional automata with synchronization. Variant B specifies two of the
automata for the error condition.

The Ai examples, where 2 ≤ i ≤ 6, model an arbiter tree that establishes
mutual exclusion between 2k client processes. The processes are arranged in a
binary tree of height k, where each leaf node is a client and each internal node is
an arbiter that ensures mutual exclusion between its two children. The examples
A2, . . . , A6 contain arbiter trees of height 2–6, with an exponentially growing
number of processes. An error state is reached if two clients simultaneously have
access to the shared resource. Due to a faulty client, such a state is reachable.

A more detailed description of our benchmarks can be found in the Appendix
of this thesis.

5.4.3 Experimental Results

We implemented all heuristics mentioned in this chapter in MCTA. The tool can
be freely downloaded from http://mcta.informatik.uni-freiburg.de/. All experi-
ments in this section were obtained on an AMD Opteron 2.3 GHz system with
4 GByte of memory.

As said, our configurations finding optimal error paths are UPPAAL’s stan-
dard breadth-first search (BFS), and MCTA’s A∗ search with hL and dL. Our
suboptimal configurations are UPPAAL’s standard randomized depth-first search
(rDFS), which is by far UPPAAL’s most efficient standard method across many
examples, including ours. The results, reported in this thesis, are averaged over
ten runs. Additionally we use MCTA’s greedy search with any of hL, hU , dL

and dU .
The results for the suboptimal configurations are in Table 5.1 (rDFS, hL, and

hU ) and in Table 5.2 (dL and dU ). The results clearly demonstrate the potential
of our heuristic functions. Consider Table 5.1 first. Except in the FB examples,
where hL behaves very badly, the heuristic searches consistently find the error
paths much faster. Due to the reduced search space size, they can solve more of
the larger C examples. At the same time, they find much, by orders of magni-
tude, shorter error paths in all cases. In the FB examples, hL does worse than
hU because its heuristic value does not improve if only one of the two target
automata moves closer to its destination: the ATG becomes shorter only if both
get closer.

Table 5.2 shows the results for the suboptimal configurations obtained with
the dL and dU heuristics. Except in the Fischer variants, using greedy search
with the dL and dU heuristics, behaves, much like rDFS. In most cases even
more states are explored. The error paths are up to two orders of magnitude

http://mcta.informatik.uni-freiburg.de/
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Table 5.1. Experimental results for the suboptimal configurations rDFS, greedy search with
hLand hU . Dashes indicate out of memory (> 4 GByte).

runtime in s explored states trace length
Exp. rDFS hL hU rDFS hL hU rDFS hL hU

C1 0.1 0.0 0.0 24404 1989 373 880 89 62
C2 0.3 0.1 0.1 64042 3559 663 770 123 74
C3 0.4 0.1 0.0 86142 4242 928 618 119 68
C4 4.5 0.6 0.5 921415 20081 10406 1569 116 103
C5 46.1 5.1 3.0 8388325 141174 55676 3745 345 118
C6 – 57.4 9.0 – 1253431 185293 – 641 130
C7 – 419.8 54.8 – 9475793 878345 – 1175 200
C8 – 102.5 106.8 – 2601885 1878328 – 556 385
C9 – 179.8 516.2 – 4641449 7890458 – 995 280
M1 0.4 0.0 0.1 39838 2431 5125 1246 294 71
M2 1.3 0.1 0.2 127973 7436 13153 2809 640 93
M3 0.9 0.2 0.2 97987 12924 12602 2716 591 100
M4 4.1 0.2 0.6 408400 13497 30276 11940 750 150
N1 1.7 0.1 0.2 55690 4834 7691 1100 329 80
N2 5.9 131.3 0.8 188784 185770 23392 3350 40652 122
N3 4.3 0.1 1.5 146601 7533 37381 3028 499 113
N4 27.7 1.2 10.4 917774 46948 141354 14713 1661 230
FA5 0.0 0.0 0.0 419 9 9 111 8 8
FA10 0.1 0.0 0.0 10435 9 9 1406 8 8
FA15 0.7 0.0 0.0 43273 9 9 4641 8 8
FB5 0.0 0.0 0.0 293 167 7 78 12 6
FB10 0.0 2.3 0.0 7933 86462 7 1207 22 6
FB15 1.5 – 0.0 93632 – 7 9973 – 6
A2 0.0 0.0 0.0 95 33 28 31 18 18
A3 0.0 0.0 0.0 6030 202 76 105 24 18
A4 0.2 9.7 0.0 46642 75106 39 752 36 28
A5 – 65.7 1.7 – 257208 4027 – 74 47
A6 – – – – – – – – –

longer than those found by rDFS, except in Fischer variant A. Note that the
heuristics cannot handle variant C of the Fischer protocol as the target formula
for these examples is not expressed in terms of location predicates. For this rea-
son, they are left out in the table. In variant B, similarly to hL, the dL heuristic
quickly fails. In variantA, due to the construction both dL and dU are constantly
1, and the search spaces are identical to those of a non-randomized depth-first
search. In the arbiter examples, the dL heuristic performs slightly better than
hL, in terms of runtime and explored states. However, the error traces found by
hL and hU are much shorter than the ones found by dL and dU . Note that the
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hU heuristic dominates all other heuristics on the A examples and finds nearly
optimal error traces.

Table 5.2. Experimental results for greedy search with dL and dU . The rDFS results are the same
as in Table 5.1.

runtime in s explored states trace length
Exp. rDFS dL dU rDFS dL dU rDFS dL dU

C1 0.1 0.0 0.1 24404 10251 11336 880 747 460
C2 0.3 0.1 0.2 64042 31886 32921 770 1279 846
C3 0.4 0.2 0.3 86142 53025 48948 618 1190 817
C4 4.5 2.1 2.6 921415 378723 373492 1569 4401 1461
C5 46.1 21.1 26.9 8388325 2957129 2851025 3745 14518 2326
C6 – 218.3 208.3 – 24247904 23461978 – 93504 17209
C7 – – – – – – – – –
C8 – – – – – – – – –
C9 – – – – – – – – –
M1 0.4 0.1 0.2 39838 9885 10991 1246 1306 1348
M2 1.3 1.0 210.2 127973 47783 437394 2809 6878 157110
M3 0.9 0.7 348.4 97987 35502 400854 2716 4797 149101
M4 4.1 3.0 6045.7 408400 118621 2346575 11940 25555 408092
N1 1.7 0.3 0.5 55690 12052 13764 1100 1413 2324
N2 5.9 4.8 3.9 188784 82488 73660 3350 12557 10245
N3 4.3 2.6 4173.2 146601 46305 881199 3028 12598 234661
N4 27.7 59.6 25.9 917774 504586 277981 14713 51651 28635
FA5 0.0 0.0 0.0 419 48 48 111 40 40
FA10 0.1 0.0 0.0 10435 48 48 1406 40 40
FA15 0.7 0.0 0.0 43273 48 48 4641 40 40
FB5 0.0 0.0 0.0 293 449 9 78 65 6
FB10 0.0 169.1 0.0 7933 5502590 9 1207 1860 6
FB15 1.5 – 0.0 93632 – 9 9973 – 6
A2 0.0 0.0 0.0 95 27 23 31 22 13
A3 0.0 0.0 0.0 6030 151 277 105 91 39
A4 0.2 0.3 0.2 46642 28742 16942 752 501 129
A5 – 0.1 – – 2883 – – 2606 –
A6 – – – – – – – – –

The results for the optimal configurations in Table 5.3 demonstrate that hL

also has some potential to improve finding optimal error paths, but to a lesser
extent than in the suboptimal setting. A∗ with hL has the smallest search spaces
in all cases, and the best runtimes in all cases except the large Ci examples, of
which it can solve more than the other configurations due to the lower memory
requirements. The dL heuristic, on the other hand, most of the time yields per-
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formance very similar to that of BFS. None of the configurations could solve
C7, C8, or C9.

Table 5.3. Experimental results for our optimal configurations, i. e., BFS,A∗ search with hL, and
A∗ search with dL

runtime in s explored states trace
Exp. BFS dL hL BFS dL hL length

C1 0.2 0.1 0.1 35325 22673 10470 54
C2 0.6 0.3 0.4 109583 60588 24658 54
C3 0.8 0.4 0.5 143013 80900 28694 54
C4 8.8 4.1 3.8 1400895 581942 184413 55
C5 72.8 38.1 29.1 12484178 4246042 1140376 56
C6 – – 270.1 – – 9250356 56
M1 0.6 0.3 0.2 50001 17810 14128 47
M2 2.4 1.4 0.9 223662 62887 47543 50
M3 2.5 1.4 1.1 234587 64690 54156 50
M4 10.6 6.4 4.9 990513 226368 180353 53
N1 4.7 3.5 2.8 100183 50894 40482 49
N2 22.8 20.5 16.4 442556 215012 177131 52
N3 23.2 22.5 19.8 476622 226509 196083 52
N4 105.5 130.5 119.9 2001222 939069 830062 55
FA5 0.0 0.0 0.0 1467 597 71 8
FA10 0.4 0.2 0.0 37942 13102 511 8
FA15 5.2 4.5 0.1 348827 108017 1701 8
FB5 0.0 0.0 0.0 362 78 54 6
FB10 0.1 0.0 0.0 5422 523 429 6
FB15 0.4 0.1 0.1 34307 1718 1504 6
A2 0.0 0.0 0.0 630 209 62 12
A3 0.3 0.2 0.1 103935 18792 2006 17
A4 – – 100.4 – – 813303 22
A5 – – – – – – –
A6 – – – – – – –

To conclude this section, we remark that it is not easy to construct heuristics
for the used examples by hand. It took Dierks, who is an expert in the used exam-
ples, as well as in PLC automata and their translation into timed automata, two
weeks of trials and intensive experimentation before getting to a performance
better than what we report above for our fully automatic technology [33].
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5.5 Exploiting Automata Locations

Although the performance of the presented heuristics in this chapter is quite
impressive, the heuristics so far do not include clocks in the computation of
heuristic values. In Sec. 5.2 we mentioned that it does not make sense to treat
clocks like integer variables when using the monotonicity abstraction to com-
pute heuristic values. The reason for this is that clocks trivialize very fast.

In this section we discuss a possible way how to overcome this limitation.
First we sketch the general idea, afterwards we present a refined version of the
build-atg algorithm and prove that the resulting heuristic is admissible.

5.5.1 The General Idea

One possibility to avoid that clocks trivialize too fast is to distinguish between
the clock value subsets that can be reached at the individual automaton loca-
tions. Due to location invariants restricting the passage of time, the intervals
possible at individual locations are more restricted than the globally reachable
interval. Particularly, constraints on how one clock value can change due to a
transition often transfer to all other clocks as well since for them time elapses in
the same way.

Consider the system depicted in Fig. 5.12 as an example. The system consists
of two timed automata B and Q that share a common clock variable x. Say the
initial state is 〈B = b1, Q = q1, x = [0,∞)〉 and an error state is reached if Q
is in its double circled location q3.

b1 b2 b3 bn−1 bn

q1 q2 q3

B
x := 0

Q
x ≥ 2 x ≤ 1

Fig. 5.12. A simple example how to split clocks over locations

The idea of splitting clock value subsets over individual locations when com-
puting the ATG is as follows. First, the clock values of x that can be reached in
each initial location of each automaton are [0,∞). As all other locations are not
reached yet, the current clock values for these locations are empty. In the first it-
eration of the construction of the ATG, automaton B takes the edge to b2. As an
effect, the clock values that can be achieved in b2 are set to [0,∞). Automaton
Q takes the edge from q1 to q2. Because of the edge’s guard, the clock values
that can be achieved in q2 are [2,∞). As long as x is not reset, the clock values
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for x in location q2 cannot be smaller than 2. Therefore, the edge from q2 to q3
is not enabled until the edge from bn−1 to bn is taken. This edge is applied in
iteration n− 1, setting the achieved clock values for q2 to [0,∞). After the next
iteration an abstract error state is reached.

It is not difficult to see that the length of a shortest possible error trace is
n+ 1. First Q takes the edge to q2. Since x has to be reset in order to enable the
edge from q2 to q3, B has to take all its edges. Afterward the edge from q2 to
q3 is enabled, which yields an error trace of length n+ 1. The heuristic value of
hL and hU for the initial state is 2. If we used the extended version of the ATG
construction to compute hL or hU , then the heuristic value would be n.

5.5.2 The hL
X Heuristic

In this section we present a refined version of the build-atg algorithm that treats
clocks like in the example from the last section. Pseudocode for this algorithm
is given in Fig. 5.13.

The build-atgX algorithm takes as input a reachability problem, consisting of
a timed automata system S and a target formula ϕ, a state s for which we want
to compute a heuristic value and the zone Z of that state. Lines 2–6 of Fig. 5.13
initialize the data structures. The locations and integer variables are treated as
in the build-atg function (see Fig. 5.3). Clocks are represented by zones and
are treated as follows. Xk(l) is a zone that represents a set of overapproximated
clock values that can be achieved in location l in at most k steps. Note that a step
in this context corresponds to a discrete transition followed by a delay transition.
In the initial iteration of the algorithm, X0(l) equals the input zone Z if l is
currently reached. For all other locations l′ of all automata X0(l′) represents the
empty zone.

Lines 9–12 of the algorithm initialize the Lk+1, Vk+1 and Xk+1 data struc-
tures by just copying the corresponding structures from the previous iteration.
In line 8, the controlling expression of the while loop checks if an abstract state
is reached that satisfies the target formula. The target formula is satisfied if there
is a state s in {〈l, v,

∧
q∈lXk(q)〉 | l ∈ ΠiLk(Ai), v ∈ ΠjVk(vj)} that satisfies

the target formula. Here, Π denotes the Cartesian product operator.
The body of the for loop that starts in line 13 does the following for every

edge e = l
gI∧gX−−−−→
f,r

l′ of every automaton Ai. Here, gI denotes the integer part

of e’s guard and gX denotes the clock part. First it checks if e’s start location l
is in Lk and if e’s integer guard gI is satisfied by Vk (same as for the build-atg
algorithm, see Fig. 5.3). If this is the case, the algorithm computes the successor
zone Z ′. Therefore the zone of e’s start location Xk(l) is first intersected with
gX . Afterwards e’s clocks resets r are applied. Then, the up function sets the
upper bounds of all clocks to infinity. The resulting zone is cut with the location
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invariant of e’s end location l′. Note that the computation of Z ′ corresponds
exactly to the semantics of timed successors (see Sec. 3.4.2). If afterwards Z ′

is not empty, i. e., the clock guard and the location invariant are satisfied by Z ′,
then Lk+1 and Vk+1 are updated as in the build-atg algorithm (see Fig. 5.3). The
zone of e’s end location Xk+1(l′) is set to ‖Xk+1(l) + Z ′‖. The plus operator
computes the convex hull of both zones and ‖ · ‖ normalizes the resulting zone
with respect to the clock ceilings of the system S.

The for loop in line 21 applies the resets of e to all zones Xk+1(l), where l
is not a location of the current automaton Ai. This is done by setting Xk+1(l)
to ‖Xk+1(l) + up(free(Xk+1(l), r)) ∧ I(l)‖. Again the plus operator computes
the zone representing the convex hull of Xk+1(l) and free(Xk+1(l), r). The
function down sets the lower bounds in Xk+1(l) of all clocks in r to zero and
leaves the upper bounds untouched. Lines 23–31 check if a fixpoint is reached.

Note that, for the sake of presentation, the depicted algorithm does not deal
with synchronization. However the implementation thereof is straight forward.
Figure 5.14 illustrates the functioning of the build-atgX . The figure shows a
timed automata system consisting of two automata. Let A1 denote the automa-
ton at the top and A2 denote the automaton at the bottom. The automata share
a common clock variable x. Location l1 is labeled with the invariant x ≤ 3
and location l′2 is labeled with x ≤ 1. Suppose that the initial state of the sys-
tem is given by 〈A1 = l1, A2 = l2, x = [1, 3]〉 and a target formula ϕ is
(A1 = l′1) ∧ (A2 = l′2). The exact distance to a target state is two: first the
system has to take the transition from l1 to l′1 and afterwards the transition from
l2 to l′2. If the system first takes the transition from l2 to l′2, then an error state is
not reachable.

The first line of the table from Fig. 5.14 gives the abstract initial state, i. e.,
the content of the data structures Lk and Xk at layer 0. The zones for locations
l1 and l2 equal the zone of the initial state, the zones for all other locations are
empty. In the next iteration all applicable transitions are applied. Let us begin
with the transition from l1 to l′1. Since the guard of that transition is satisfied by
X0(l1), X1(l′1) is set to [2,∞). As an additional effect, L1(A1) is updated to
{l1, l′1}. Since this edge has no resets, the only thing which is done is that the
upper bounds ofX1(l2) are set to infinity. Next the algorithm processes the edge
from l2 to l′2. The zone X1(l′2) is set to [0, 1]. Note that actually also the upper
bounds of X1(l1) had to be increased, but because of l1’s location invariant this
has no effect. The target formula is not satisfied by L1, X1, i. e., there is no
state in {〈l,

∧
q∈lX1(q)〉 | l ∈ L1(A1) × L1(A2)} that satisfies ϕ. The state

〈A1 = l′1, A2 = l′2, X1(l′1) ∧X1(l′2)} does not satisfy ϕ since its zone is empty.
In the next iteration, all changes are due to the reset of l2 → l′2. It causes X2(l′1)
to be [0,∞). Now the state 〈A1 = l′1, A2 = l′2, X2(l′1) ∧ X2(l′2)〉 satisfies ϕ,
since its zone x = [0, 1] is not empty.
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1 function build-atgX (S, ϕ, s, Z):
2 for each v do: V0(v) := {s(v)}
3 for each Ai do:
4 L0(Ai) := {s(Ai)}
5 for each l of Ai do: X0(l) := ∅
6 X0(s(Ai)) := Z
7 k := 0
8 while Lk, Vk, Xk 6|=A ϕ do:
9 for each Ai do:

10 Lk+1(Ai) := Lk(Ai)
11 for each l of Ai do: Xk+1(l) := Xk(l)
12 for each v do: Vk+1(v) := Vk(v)
13 for each Ai do:
14 for each edge l

gI∧gX−−−−→
f,r

l′ of Ai with l ∈ Lk(Ai) and Vk |=A gI do:

15 Z′ := up(r(Xk(l) ∧ gX)) ∧ I(l′)
16 if Z′ 6= ∅ then:
17 Lk+1(Ai) := Lk+1(Ai) ∪ {l′}
18 for each assignment v := c0 +

Pn
j=1 cj · vj of f do:

19 Vk+1(v) := Vk+1(v) ∪ {c0 +
Pn
j=1 cj · evj | evj ∈ Vk(vj)}

20 Xk+1(l
′) := ‖Xk+1(l

′) + Z′‖
21 for each l ∈

S
A 6=Ai

Lk(A) do:
22 Xk+1(l) := ‖Xk+1(l) + up(free(Xk+1(l), r)) ∧ I(l)‖
23 fixpoint-reached := true
24 if exists Ai such that Lk+1(Ai) 6= Lk(Ai) then: fixpoint-reached := false
25 if fixpoint-reached then:
26 for each Ai do:
27 for each l of Ai do:
28 if Xk+1(l) 6= Xk(l) then: fixpoint-reached := false
29 if fixpoint-reached and Vk+1(v) = Vk(v) for all v then:
30 minlayer :=∞
31 return
32 k := k + 1
33 minlayer := k

Fig. 5.13. The build-atgX algorithm is an extension of the build-atg algorithm with clocks split
over locations.

If we replace the build-atg function with the build-atgX function in the im-
plementation of the hL heuristic we get the hLX heuristic. Pseudocode thereof is
given in Fig. 5.15.

5.5.3 Admissibility of the hL
X Heuristic

In this subsection we will prove that the hLX heuristic from Fig. 5.15 is an ad-
missible heuristic. Admissibility is a consequence of the next theorem.

Theorem 5.7. In the kth iteration of the build-atgX algorithm the set Sk =
{〈l, v,

∧
q∈lXk(q)〉 | l ∈

∏
i Lk(Ai), v ∈

∏
j Vk(vj)} is a superset of the states
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l1

x ≤ 3

l′1

A1

l2 l′2

x ≤ 1
A2

x ≥ 2

x := 0

Layer k Lk(A1) Lk(A2) Xk(l1) Xk(l
′
1) Xk(l2) Xk(l

′
2)

0 {l1} {l2} [1, 3] ∅ [1, 3] ∅
1 {l1, l′1} {l2, l′2} [0, 3] [2,∞) [1,∞) [0, 1]

2 {l1, l′1} {l2, l′2} [0, 3] [0,∞) [1,∞) [0, 1]

Fig. 5.14. The functioning of the build-atgX algorithm

1 function hLX (S, ϕ, s, Z):
2 build-atgX (S, ϕ, s, Z)
3 return minlayer

Fig. 5.15. The hLX heuristic

that are reachable within at most k steps. Here,
∏

denotes the Cartesian product
operator.

Proof (Theorem 5.7). We will prove the proposition by induction over k. For
k = 0, Sk just contains the initial state for which we want to compute a heuristic
value. For the induction steps, we have to show that Sk+1 overapproximates the
state that are reachable within at most k+1 steps, given that Sk contains at least
the states that are reachable within at most k steps. This holds if we show that
for all applicable transitions t with t = s→ s′, where s ∈ Sk, then s′ ∈ Sk+1.

Let t be such a transition that is induced by the edge e = li
gI∧gX−−−−→
f,r

l′i,

s = 〈l, v, Z〉 and s′ = 〈l′, v′, Z ′〉. Since s(Aj) ∈ Lk(Aj) for all Aj and
s(v) ∈ Vk(v) for all v, the edge e is processed by the algorithm, i. e., the body
of the for loop starting in line 14 is executed. Next we have to show that Z ′ ⊆
Xk+1(s′(Aj)) for allAj . If this is the case we know thatZ ′ ⊆

∧
j Xk+1(s′(Aj))

and hence s′ ∈ Sk+1. Let Ai denote the automaton to which e belongs. For the
zone D′ of the successor state s′,

D′ = up(r(Z ∧ gX)) ∧ I(s′)
⊆ up(r(Xk(s(Ai)) ∧ gX)) ∧ I(s′)
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holds by induction hypothesis. As I(s′(Ai)) is a conjunct of I(s′), I(s′) ⊆
I(s′(Ai)) holds for all automata Ai. From this it follows that D′ ⊆ Z ′, where
Z ′ is the zone from the algorithm in line 15.

As D′ is not empty, Z ′ is not empty either and hence the integer and clock
updates are applied. We do not include integer variables and locations in this
proof as they are handled in exactly the same way as in the build-atg algorithm.
For Xk+1(s′(Ai)) it holds that D′ ⊆ Xk+1(s′(Ai)), since Xk+1(s′(Ai)) con-
tains Z ′ (line 20 of the algorithm).

It remains to prove that D′ ⊆ Xk+1(s′(Aj)) for all automata Aj 6= Ai. For
the zone D′ of the successor state it holds that

D′ = up(r(Z ∧ gX)) ∧ I(s′)
⊆ up(r(Xk(s(Aj)) ∧ gX)) ∧ I(s′)
⊆ up(r(Xk+1(s(Aj)) ∧ gX)) ∧ I(s′)

since by induction hypothesis it holds that D ⊆ Xk(s(Aj)) and furthermore
Xk(s(Aj)) ⊆ Xk+1(s(Aj)) for all Aj by construction.

Since s′(Aj) = s(Aj) for all automata Aj 6= Ai and Z ∧ gX ⊆ Z for all
zones Z, the following holds:

D′ ⊆ up(r(Xk+1(s(Aj)) ∧ gX)) ∧ I(s′)
⊆ up(r(Xk+1(s′(Aj))) ∧ I(s′)
⊆ up(r(Xk+1(s′(Aj))) ∧ I(s′(Aj)).

Since a reset operation r affects the lower and the upper bound of a clock, only
setting the lower bound to zero and leaving the upper bound unchanged yields a
zone that subsumes the original zone. Therefore we have

D′ ⊆ up(r(Xk+1(s′(Aj))) ∧ I(s′(Aj))
⊆ up(free(Xk+1(s′(Aj)), r) ∧ I(s′(Aj)).

By this equation it follows that D′ ⊆ Xk+1(s′(Aj)) for all automata Aj . �

5.5.4 Evaluation

We implemented this algorithm and evaluated it on the benchmarks from
Sec. 5.4. It turned out that compared to the hL heuristic, the hLX heuristic found
only slightly shorter error traces and the number of explored states only drops
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down very marginally. Due to the computational overhead, the runtime of the
hLX heuristic was up to several orders higher than the time needed for the hL

heuristic. Of course it might be possible to come up with a more efficient imple-
mentation, but it remains puzzling why the guidance of the hLX heuristic on our
benchmarks is only comparable to that of the hL heuristic, although the latter
heuristic does not take clocks into account.

Thinking a little more about the values a clock can achieve in a location, it
is obvious that in each location the possible values for each clock are bounded.
Probably the easiest way to derive such bounds is as follows. An upper bound
for a clock in a location is given by the invariant of that location. A lower bound
for each clock is zero since clocks only evaluate to the non-negative reals.

Typically, if the values of all clocks in a location l are between their respec-
tive lower and upper bounds, the clock guard of each outgoing edge is satisfied.
This is because of the following reasons. As the lower bound of all clocks is
zero, every clock constraint of the form x ≤ c or x < c, where x is a clock
and c a positive integer, is always satisfied. Clock constraints of the form x ≥ c
or x > c that occur in the edge guard are satisfied if the upper bound of x, in-
duced by l’s location invariant, is greater (or equal) than c. But this is normally
the case, since otherwise the edge is never applicable at all. Probably only for
synchronized transitions this does not always hold to exclude certain synchro-
nization combinations.

So let us come back to the question why the hLX heuristics behaves only sim-
ilarly to the hL heuristic on our benchmarks. It turned out that after one or two
iterations of the build-atgX algorithm, almost all clocks trivialized, i. e., their
lower bounds are zero and their upper bounds are equal to the corresponding
location invariant. This means that after a few iterations of the build-atgX algo-
rithm,Xk has reached a fixpoint. From then on all clock guards are satisfied and
thus including the clocks does not provide useful information.

5.6 Conclusion

We have introduced methods for automatically generating two heuristic guid-
ance functions in MCTA. We have shown the functions’ potential for yielding
more efficient finding of error states, by reducing the number of search states
that need to be considered, as well as guiding the search to short error paths.

We also tried to include clocks in the computation of heuristic values in a
nontrivial way, but it seems that, at least on our benchmarks, this only brings a
slight improvement in terms of explored states and reported error trace length.
Since the runtime of hLX is up to orders of magnitude higher compared to hL,
we therefore did not investigate this direction further.
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Heuristic Functions Based on Predicate Abstraction

Predicate abstraction [50] is an abstraction method which is broadly established
in model checking. In this chapter, we show how to use predicate abstraction
to generate heuristic functions. The overall methodology follows the pattern
database approach from AI [29]. In this approach, the abstract state space is
exhaustively built in a preprocessing step and used as a lookup table during
search. While typically pattern databases use rather primitive abstractions ig-
noring some of the relevant symbols, we use predicate abstraction, dividing the
state space into equivalence classes with respect to a list of logical expressions,
the predicates. We empirically explore the behavior of the resulting family of
heuristics. In particular, while several challenges remain open, we show how to
obtain heuristic functions that are competitive with other state-of-the-art heuris-
tics for directed model checking. This chapter is based on joint work [63] which
was mainly done by Jörg Hoffmann and Jan-Georg Smaus.

6.1 Predicate Abstraction

Predicate abstraction is an abstraction method that is typically applied to a sys-
tem before it is analyzed with a model checker. As a consequence of this ab-
straction, the state space of the abstract system is usually much smaller than the
state space of the original system, and thus model checking is less expensive.
Depending on certain properties of the abstraction and the outcome of the anal-
ysis of the abstract system, one can draw conclusions about the real system. For
instance, if the property ϕ under consideration holds for the abstract system and
the abstraction is property preserving with respect to ϕ, then ϕ also holds for
the real system. Methods based on predicate abstraction have been extremely
successful in the verification of temporal safety properties [5, 19, 58].
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6.1.1 The General Idea

The general idea of predicate abstraction [50] is to partition the state space of the
system under consideration into equivalence classes. These equivalence classes
are induced by a set of predicates P , i. e., a set of Boolean expressions defined
over the variables of the system. Thus a system state s can be represented by
a vector b of truth values, stating which of the predicates are true or false in s.
Two system states s1 and s2 are equivalent with respect to P iff they satisfy the
same predicates from P .

For every transition s→ s′ of the original system, there is an abstract transi-
tion b → b

′
. The abstract system thus overapproximates the real system, which

enables us to analyze the abstract system in order to draw certain kinds of con-
clusions about the real system. If there is no reachable abstract error state in the
abstract system, then there is no reachable error state in the real system.

Fig. 6.1. The general idea of predicate abstraction

Figure 6.1 illustrates the relation of the original system’s and the abstract
system’s state space obtained via predicate abstraction. The state space of the
original system is depicted on the left. The right side of the picture shows the
abstract state space induced by some predicate abstraction and a transparent
overlay of the original state space to ease observing the correspondence of con-
crete and abstract states. The abstract states, i. e., the equivalence classes, are
the grayed regions. The circle nodes in these grayed regions are the states of
the original state space that are equivalent with respect to the chosen predicates.
There is an abstract transition (a black arrow) from the abstract state b to the
abstract state b

′
, if there is a concrete transition (a grayed arrow) connecting the

concrete states s and s′ that are subsumed by b and b
′
, respectively.
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6.1.2 Predicate Abstraction for Timed Automata

In this subsection we explain how to generate a predicate abstraction for a sys-
tem of timed automata. Let S = A1 ‖ . . . ‖ An be a system of timed automata.
Further, let X and V denote the set of clocks and integer variables, respectively,
that appear in at least one automaton Ai of the system. In this section we will
refer to the set var(S) = X ∪ V ∪ {Ai}ni=1 as the variables of the system S .

A predicate abstraction of a timed automata system S is defined by a finite
set P of predicates over var(S). There are three different types of predicates,
namely predicates over integer variables, predicate over clocks and predicates
over automata. A predicate over integer variables is a linear expression of the
form c0 on

∑n
i=1 ci · vi, where c0, ci ∈ Z, vi ∈ V for i = 1, . . . , n and on is a

comparator. A predicate over clocks is either of the form x on c or x − y on c,
where x, y ∈ X and c ∈ Z. A location predicate is of the form A = l, where l
is a location of automaton A. Such a predicate evaluates to true in a state s iff
the current location of A is l, i. e., s |= (A = l) iff s(A) = l.

We denote by a bitvector for P any conjunction that contains exactly each
p ∈ P , possibly negated. Let T (S) = (S, s0, T ) be the state space of S. For
s ∈ S, we will henceforth use s ∈ T (S) as an abbreviation. For a bitvector b,
the set [b] = {s ∈ T (S) | s |= b} is called the extension of b. The extensions
of the bitvectors are equivalence classes in the state space T (S) of S . If s ∈ [b],
then we will also write [s] instead of [b]. The abstract state space for P , denoted
T P(S), is the directed graph where the nodes are all bitvectors for P , and there
is a transition from b to b

′
iff there exist s ∈ [b] and s′ ∈ [b′] such that there

is a transition from s to s′ in S. Obviously, T P(S) is an overapproximation
of T (S), i. e., if s′ is reachable from s ∈ T (S), then [s′] is reachable from
[s] ∈ T P(S).

6.1.3 Building the Abstract State Space

When building the abstract state space, one has to frequently decide if there is
a transition from a bitvector b to a bitvector b

′
. Obviously, enumerating [b] and

[b′] is not feasible, because the number of bitstrings is exponential in the num-
ber of predicates. Instead, one formulates the transitions of the real system as
conjunctions over constraints on variable values before and after the transition.
We will explain how to obtain these formulas in the next subsection. With these
formulas, the test if there is a transition between [b] and [b′] comes down to
the satisfiability of a conjunction of constraints. We use this method to generate
abstract state spaces, regressing from the target formula in a breadth-first man-
ner to build the fraction of the abstract state space that is reachable from that
condition. Concretely, we repeatedly consider a formula ϕ that formulates the
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properties of the set of states that should be inserted next into the state space,
i. e., ϕ is initially the target formula, and later the conjunction of the constraints
given by the regressed abstract state and the transition.

The precise method to find the corresponding abstract states would be to
enumerate all bitvectors and check if they are satisfiable in conjunction with ϕ.
As this is not feasible, we additionally use a Cartesian abstraction, and set the
resulting state to

∧
p∈P{p | ϕ |= p} ∧

∧
p∈P{¬p | ϕ |= ¬p}. That is, one just

checks which “bits” are definitely implied, and leaves the others unspecified. We
denote such partial bitvectors with c, keeping the notation [c] = {s ∈ T (S) |
s |= c}. By T CP (S) we denote the abstract state space, i. e., the graph of partial
bitvectors built in this way.

6.1.4 Encoding Transitions

For the generation of the abstract state space, we have to translate every transi-
tion t = s → s′, where s, s′ ∈ T (S) are states of a timed automata system S
into a corresponding conjunction over Boolean expressions. The variables that
occur in these expressions refer to the automata, the integer variables and the
clock variables of the systems. In these encodings, primed variables refer to the
successor state s′, unprimed variables refer to the source state s of t.

A timed transition with duration d ≥ 0 can be encoded by the conjunction
over the following expressions. The conjunction

∧
i(Ai = A′i) ∧

∧
j(vj = v′j)

encodes that a timed transition only affects clock variables, i. e., automata loca-
tions and integer variables remain unchanged. The values of each clock xk is in-
cremented by d, this is stated by the next conjunction

∧
k(xk+d = x′k)∧d ≥ 0.

Finally, the successor state s′ has to satisfy the invariant I(s′) =
∧
i s(Ai).

Therefore the conjunction
∧
m

∧
n(Am 6= ln ∨ I(ln)) is introduced. This means

that if automaton Am is in location lk, then the successor state has to satisfy
I(lk). Note that the variables that occur in the encoding of the location invari-
ants are primed, i. e., these variables refer to the successor state.

A discrete transition induced by some τ edge l
g,τ−−→
f,r

l′ of automaton Ai can

be encoded by the conjunction over the following expressions. The conjunct
(Ai = l) ∧ (A′i = l′) ∧

∧
j 6=i(Aj = A′j) encodes that only the location of

automaton Ai is changed by the transition. All other automata remain in their
current locations. If v := co +

∑n
i=1 ci · vi is an effect of the edge, then the

conjunct v′ = co+
∑n

i=1 ci ·vi is introduced. For all other variables v that are not
affected by the edge’s effect, a conjunct of the form v′ = v is introduced. Clock
resets are treated similarly: for each clock x that is reset by the edge, a conjunct
of the form x′ = 0 is introduced. For all other clocks x, there are conjuncts of
the form x′ = x. Synchronized transitions are translated in a similar fashion.
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6.2 Pattern Database Heuristics

As already said, this chapter is based on joint work with Hoffmann, Smaus, Ry-
balchenko and Podelski. In our paper [63], predicate abstraction is for the first
time, as far as we are aware, used to define heuristic functions. In a manner rem-
iniscent of the pattern database approach [29], we construct the entire abstract
state space prior to the actual search. During search, the abstract state space is
used as a lookup table, i. e., states are mapped onto their abstract counterparts,
and the error distance of the counterpart is taken as the heuristic estimate. In dif-
ference to our approach, pattern databases traditionally use simple abstractions,
for example Qian and Nymeyer obtain their abstractions by mostly ignoring
some of the relevant symbols [86]. In Chap. 7 we describe their approach as
well as an improvement in more detail.

6.2.1 Predicate Abstraction Pattern Databases

To turn a predicate abstraction into a heuristic function, we simply map the state
for which we want a heuristic estimate into the abstract state space and read the
error distance from there. Precisely, if ϕ is the target formula, P is the predicate
set, and s ∈ T (S) is a state of the system S, we get

hP(s) = min
c1,c2∈T CP (S)

{dP(c1, c2) | s ∈ [c1],∃s′ ∈ [c2] : s′ |= ϕ}.

Here, dP(·, ·) denotes the graph distance in T CP (S), which is ∞ if there is no
path from the first to the second argument. Since the bitvectors c in T CP (S) are
partial, there may be several c1 with s ∈ [c1]. The heuristic value hP(s) of s is
∞ if no error state is reachable in T CP (S) from any such c1. This implies that
no error state is reachable in T (S) from s. Since we minimize over all c1 and
c2, it follows that hP is admissible. This is stated by the next proposition.

Proposition 6.1. Let 〈S, ϕ〉 be a reachability problem, P be a set of predicate
and s be a state of T (S). Then

hP(s) ≤ min
s′∈T (S)

{d(s, s′) | s′ |= ϕ},

where d(·, ·) denotes the graph distance in T (S).

The proposition holds for the following reasons. As the abstract state space
is an overapproximation of the real state space, there exists an abstract transition
for every transition of the real system. As a consequence, every solution for the
system is also a solution for the abstract system. Another interesting property
of this kind of heuristics is that they are monotone in the predicate set. This is
stated in the next proposition.
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Proposition 6.2. Let 〈S, ϕ〉 be a reachability problem and let P1 and P2 be
predicate sets such that P1 ⊆ P2. Further, let s be a state of T (S). Then it
holds that

hP1(s) ≤ hP2(s).

This is simply because, TP2(S) makes all distinctions that TP1(S) makes. What
it tells us is that, if we refine a predicate set P by inserting new predicates into it,
we obtain a heuristic function that dominates the previous one, in that it provides
a potentially better lower bound. In fact, in such cases, one can expect that A∗

with hP2 expands fewer states than A∗ with hP1 in practice. More precisely,
Pearl proved that, except for some borderline cases, every state that is expanded
by hP2 is also expanded by hP1 [82].

6.2.2 Implementation Details

We implemented the proposed heuristics from this chapter in the UPPAAL/DMC

model checker. Therefore, we had to modify the definition of hP to work on the
UPPAAL/DMC search space, i. e., the zone automaton Z(S) of the system S.
Let s ∈ Z(S), ϕ be the target formula and [s] ⊆ T (S) be the corresponding set
of system states. We define

hP(s) = min
c1,c2∈T CP (S)

{dP(c1, c2) | [s] ∩ [c1] 6= ∅, ∃s′ ∈ [c2] : s′ |= ϕ}.

Obviously, again this leads to an admissible heuristic function, and the mono-
tonicity in the predicate set is preserved. While the definition looks fairly com-
plicated, we will see in the next section that, once the abstract state space T CP (S)
is built, the function can be implemented quite efficiently.

For every search state UPPAAL/DMC encounters, the heuristic function must
be computed. This makes it indispensable to implement that function efficiently.
To overcome this problem, we do the following:

1. We formulate the mapping of search states into T CP (S) as a bitset inclusion
problem, and

2. we use a tree-like data structure to address this inclusion problem efficiently.

Remember that the abstract states in T CP (S) are partial bitvectors c, i. e., sets
of possibly negated predicates p ∈ P . Given a UPPAAL/DMC search state s ∈
Z(S), by ψ(s) we denote the constraint conjunction corresponding to s, i. e.,
location and integer valuations plus the zone of s. We define the following bitset

c(s) = {p | ψ(s) |= p}
∪ {¬p | ψ(s) |= ¬p}
∪ {p,¬p | ψ(s) 6|= p, ψ(s) 6|= ¬p}.
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In words, c(s) contains all bits that may possibly be true in s, i. e., that are
satisfied by at least one system state in [s]. While the definition of c(s) in-
volves entailment checks, due to our particular circumstances c(s) can be com-
puted efficiently. First, the UPPAAL/DMC search state contains precise valua-
tions for all locations and integer variables; the uncertainty is exclusively about
the clocks. So predicates not involving clocks can simply be evaluated in s.
Second, whether a clock predicate is implied by s or not can be read off from
a single pass over the zone of s, which is given in form of a difference bound
matrix. We observe:

[s] ∩ [c1] 6= ∅ ⇔ c(s) ⊇ c1.

This is because [s] ∩ [c1] 6= ∅ iff c1 contains no bit that is known to be false in
s. In other words, if all bits contained in c1 may be true in s. We obtain:

hP(s) = min
c1,c2∈T CP (S)

{dP(c1, c2) | c(s) ⊇ c1,∃s′ ∈ [c2] : s′ |= ϕ}.

This is a syntactic characterization except for ∃s′ ∈ [c2] : s′ |= ϕ; but that
we have dealt with already when building T CP (S); we simply mark, during that
preprocess, the respective c2, i. e., the start state in our backward search as error
states. Of course, we also annotate each state c with its distance to the nearest
error state. Since we build T CP (S) backward breadth-first, we get that distance
for free. We are left with the following problems:

1. In the preprocess, store T CP (S) as a set of bitsets annotated with their error
distance,

2. during search, quickly find all bitsets that are contained in c(s).

Both can be accomplished using a data structure called Unlimited Branching
Tree [60]. In a nutshell, this is a tree structure that stores sets of sets, exploiting
shared elements between the sets to optimize space usage and access time for
answering subset queries of the precise kind we need here. The details are not
essential for understanding our approach, so we omit them. A node in the tree
may have as many branches as there are distinct elements in the sets, hence the
name.

6.2.3 Selecting Predicates

An important characteristic of our method, which it shares with traditional pat-
tern databases, is that it yields a very large family of heuristics, rather than just
a single one. Every different set of predicates yields a different abstract state
space, which gives a different heuristic function. The main question is: How
should we choose the predicates? This is the same main question as in the stan-
dard use of predicate abstraction. However, in our approach the abstraction does
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not have to be precise enough to verify the property of interest, in order to be
useful. So we have much more freedom of design.

In this subsection, we introduce two approaches to choosing a set of pred-
icates. The first one simply collects the predicates from the syntax, e. g. tran-
sition guards of the timed automata system, which is not likely to be property-
preserving. The second one uses counterexample guided abstraction refinement.

Selecting Predicates Syntactically

The first approach to building a set of predicates is a syntax-based approach. As
indicated before, the abstraction predicates are simply read off the description of
the timed automata system. Given a timed automata system S = A1 ‖ . . . ‖ An,
the created set of predicates consists of all expressions that appear as an edge
guard, or as a location invariant of some automaton Ai. Further, the abstraction
distinguishes between the locations, which is equivalent to including the loca-
tion predicate Ai = l for each automaton Ai of the system and each location l
of Ai.

Selecting Predicates via Abstraction Refinement

The second approach to building a set of predicates is based on counterexample
guided abstraction refinement (CEGAR) [25]. CEGAR is an iterative abstrac-
tion refinement methodology to analyze if a system satisfies a given property.
Therefore, the system under consideration is first abstracted. Afterwards, the
abstract system is examined using a model checker. If there exists an abstract
counterexample, then it is analyzed whether it is spurious or not. If the abstract
counterexample is spurious, then the initial abstraction is refined in order to
exclude the spurious counterexample. In Chap. 9, we give a more detailed intro-
duction to CEGAR, as well as an application to timed automata.

Here we apply CEGAR to generate a set of predicates. We implemented
this method via an interface to the ARMC tool [85]. ARMC is a recent model
checker based on CEGAR. Predicates are generated from spurious error paths
by an analysis using a constraint based interpolation [90] to find a concise reason
for the failure (the spuriousness) of the path. We modified ARMC to feature a
maximal number of iterations as an input parameter. If ARMC finds a correct
abstraction, i. e., one with no reachable error states, ARMC stops with no output,
causing our overall program to terminate. Recall that the absence of abstract
error traces implies the absence of real error traces. If ARMC finds a real error
trace, it stops and outputs the abstract state space. The same happens otherwise,
i. e., if the maximum iteration is reached. The abstract state space is read in, and
stored for later lookup.
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For our purposes, we can stop the process at any time — we do not have to
wait until a real error path is found. In our experiments, we simply fix a number
of refinement iterations which becomes an input parameter. We will see that, by
using abstraction refinement for a heuristic — combining abstraction refinement
and state space search — we can solve examples that cannot be solved by either
method (abstraction refinement or blind state space search) alone. Generating
the predicates using abstraction refinement is, we think, particularly promising:
this technique has the power to adapt the heuristic function quite flexibly and
intelligently to the individual problem instance at hand. Surprisingly, we were
not yet able to obtain entirely convincing results with the technique; we believe
there is hope for the future. This will be discussed in detail later.

6.2.4 Combining Multiple Pattern Databases

Apart from the parametrization given by the choice of predicates, we explore
another parameter defining how the timed automata system is split into sev-
eral parts. It turns out that predicate abstraction is much too time-consuming
when done on the entire automata system. So we apply another abstraction
method beforehand. We define a partitioning of the set of automata, i. e., we
split the system and hand each part to the predicate abstraction engine in sep-
arate. The splits are made so that few potential interactions are violated. The
transition guards responsible for the violated interactions are removed. During
search, a heuristic value is looked up in each part, i. e., in each corresponding ab-
stract state space. These values are aggregated by taking their sum as the overall
heuristic value. Since we removed the guards responsible for violated interac-
tions, this aggregated heuristic value is still admissible. This kind of heuristics
is commonly referred to as additive pattern databases. There are many possible
strategies for making the split. We use a simple greedy strategy parametrized by
the split bound b, i. e., the maximal number of automata in a single part of the
partitioning.

A very simple abstraction method is to partition the set of automata con-
tained in a system. As said, we use this abstraction prior to predicate abstrac-
tion, in order to make the latter feasible. One simply considers each part of the
partitioning — a subset of the automata — in separate. The only problem with
this approach is that, of course, the automata typically interact with each other
in various ways, and cannot be split without violating such interactions. We
identify a possible definition of what interaction means. We approximate that
definition to obtain an admissible splitting strategy.

Let e1 be an edge of automaton A1, and e2 be an edge of automaton
A2 6= A1. Let f be an effect of e1, i. e., a variable assignment, or a synchro-
nization label, and let γ be the guard of e2, i. e., a constraint over variables, or a
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synchronization label. Let π be a computation trace of the system on which e1
occurs before e2. We say that f affects γ if the following holds. When removing
f from e1 and simulating the execution of π while ignoring the guards of all
edges between e1 and e2, γ is no longer satisfied at the point when e2 should be
executed. Similarly, this definition is made also for location invariants. We say
that automaton A1 affects automaton A2 if there is an effect of an edge of A1

that affects a guard of an edge, or a location invariant of A2. We say that A1 and
A2 interact if A1 affects A2, or vice versa.

Proposition 6.3. Let 〈S = A1 ‖ . . . ‖ An, ϕ〉 be a reachability problem,
where S is a timed automata system and ϕ a target formula. Further, let
Π ⊆ {A1, . . . , An} such that no automaton which is not in Π affects any au-
tomaton in Π . Then, for every state s of T (S), the following holds:

min
s′∈T (S|Π)

{dΠ(s|Π , s′) | s′ |= ϕ|Π} ≤ min
s′∈T (S)

{d(s, s′) | s′ |= ϕ},

where s|Π is s restricted to the locations and variables mentioned inΠ , T (S|Π)
is the state space of Π , ϕ|Π is ϕ restricted to conjunctions over variables and
locations mentioned in Π and d(·, ·) or dΠ(·, ·) is the graph distance in T (S)
or T (S|Π), respectively.

In words, the isolated automata Π provide an admissible distance estimate.
The reason for this is that any solution path for 〈S, ϕ〉 can be restricted onto
the edges present in Π , to obtain a solution for 〈Π,ϕ|Π〉. Otherwise, if that
restricted path was not a solution for Π , a constraint in Π would be unsatis-
fied and we could construct a contradiction since an edge on the sub-path for
{A1, . . . , An} \ Π would have to affect that constraint. Note that, in particu-
lar, Prop. 6.3 says that, if 〈S, ϕ〉 is solvable, then 〈Π,ϕ|Π〉 in isolation is also
solvable. We further have:

Proposition 6.4. Let 〈S, ϕ〉 be a reachability problem, and Π1, . . . ,Πm be a
partitioning of S , with Πi ∩ Πj = ∅ for i 6= j, such that for all automata
Ai ∈ Πi and Aj ∈ Πj with i 6= j holds that Ai and Aj do not interact. Then,
for any state s of T (S), the following holds:

m∑
i=1

min
s′∈T (S|Πi )

{dΠi(s|Πi , s′) | s′ |= ϕ|Πi} ≤ min
s′∈T (S)

{d(s, s′) | s′ |= ϕ},

where the notations are as in Prop. 6.3.

This tells us that we can safely add the individual heuristic values. The rea-
son is that we can partition any solution path for 〈S, ϕ〉 into independent solu-
tion paths for each reachability problem 〈Π1, ϕ|Π1〉, . . . , 〈Πm, ϕ|Πm〉.
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What we have just seen is not yet practical since there normally is no split
that does not violate any interaction. Otherwise there would be no point in pos-
ing both parts of the system within the same problem. We become practical by
finding potential interactions, and simply removing guards that constitute vio-
lated potential interactions. Concretely, we use the simplistic notion saying that
effect f cannot affect condition γ if the variable x affected by f and any variable
that can transitively be affected by the value of x, does not appear in γ. For ex-
ample, x := 1 can affect x+ y > 2. On the other hand, x := 1 can affect y > 2
if there also is an effect y := x somewhere, but not if there is no chain of vari-
ables from x to y. In our preprocess, we simply consider all pairs of occurring
f and γ, and check if they satisfy this criterion. If they do not, we say that they
have a potential interaction. We then greedily put automata together into one
part of the partitioning, such that few potential interactions to automata in other
parts remain. For those interactions that do remain, we remove the responsible
γ. Note that the latter will in particular remove synchronization actions that also
occur in other parts. Figure 6.2 shows our partitioning algorithm. The input is a
reachability problem 〈S, ϕ〉 and the split bound b, i. e., the maximum number of
automata in one partition.

1 function partition-system(S = A1 ‖ . . . ‖ An, ϕ, b):
2 rem := {A1, . . . , An}
3 i := 1
4 while {A ∈ rem | A affects ϕ} 6= ∅ do:
5 select A ∈ {A ∈ rem | A affects ϕ}
6 Πi := {A}
7 while |Πi| < b and (rem \Πi) 6= ∅ do:
8 for each A′ ∈ (rem \Πi) do:
9 h1(A

′) := |{A′′ ∈ Πi | A′ can synchronize with A′′}|+
|{A′′ ∈ Πi | A′ interacts with A′′}|

10 h2(A
′) := number of target constraints that A′ affects

11 Πi := Πi ∪ arg max{(h1(A
′), h2(A

′)) | A′ ∈ (rem \Πi)}
12 rem := rem \Πi
13 i := i+ 1

Fig. 6.2. A greedy algorithm to compute a partitioning of a timed automata system

With Prop. 6.4, our resulting heuristic function is still admissible, except for
the effects of synchronization. In a solution path to 〈S, ϕ〉, a set of synchronized
edges will be counted as a single transition, while in the partitioned system every
edge will be counted separately. In our opinion, this potential non-admissibility
is benign. For example, if only binary synchronization is allowed, then the real
error state distance is over-estimated by at most a factor of 2, in the worst case,
which one can realistically expect to be far away from the typical case. We ran a
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number of tests using our heuristics with A∗, and never obtained a sub-optimal
solution.

6.3 Evaluation

As already mentioned, we implemented all heuristics proposed in this chapter in
the UPPAAL/DMC model checker [69]. The results that we are going to present
in this section are obtained on an AMD Opteron system, running at 2.3 GHz.
We set the memory limit to 4 GByte.

6.3.1 Experimental Setup

We evaluated our pattern database heuristics by comparing them to other heuris-
tics search methods using A∗ and greedy search. The heuristic hPsyn uses the
syntax-based method of Sec. 6.2.3 to obtain a set of predicates with splitting
bound b = 2. We set b to 2 for the following reasons. With increasing splitting
bound b, the preprocessing time for hPsyn quickly becomes larger than the actual
time spent for the search. The smallest number of explored states are obtained
with b = 4, the shortest overall runtimes are obtained with b = 1. Therefore,
we set b = 2, which is a good trade-off between runtime and the number of
explored states. The hPAR heuristic uses the abstraction refinement approach for
generating PDBs. For this heuristic, the preprocessing time constantly grows
with increasing splitting bound b. The higher the number r of refinement steps
is, the faster grows the preprocessing time with increasing b. With increasing
splitting bound, the number of explored states decreases. This effect becomes
stronger for higher values of r. Note that the decrease of the number of explored
states never pays off in terms of runtime. The runtime heavily depends on the
number of refinement steps r. The results for hPAR are obtained with splitting
bound b = 2 and r = 4 refinement iterations. For both heuristics, hPsyn and hPAR,
we report results that we obtained by combining multiple pattern databases. The
selected parameters b and r for hPsyn and hPAR are the most successful configu-
rations, of the many possible configurations of our code, that we found in our
experiments. For a detailed experimental evaluation of the parameters, the inter-
ested reader is referred to Chap. B. The haa results are obtained with a heuristic
proposed by Dräger et al. [40]. A brief description of this heuristic can be found
in Sec. 4.3.2. The results reported in the table are obtained with N = 50. This
is the best value for N , i. e., when increasing N , the number of explored states
does not decrease much, but the overhead for merging the automata increases a
lot.

As benchmarks we took the Single-tracked Line Segment case study (the C
examples). TheM andN examples come from the Mutual Exclusion case study.
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The FA and FB examples are two flawed versions of the Fischer protocol. The
A examples model arbiter trees. A more detailed description of our benchmarks
can be found in the appendix of this thesis.

6.3.2 Experimental Results

From a quick glance at Table 6.1 and Table 6.2, one sees that our new heuristics
are indeed competitive with the other heuristics. The heuristics based on the
monotonicity abstraction explore very few states in theM andN examples. The
hU heuristic yields the best results the C examples. Note that UPPAAL’s rDFS
cannot solve C6–C9 within the given memory bounds of 4 GByte. It is also
worth mentioning that the hL and hU heuristics take more time to compute than
the other heuristics. This is because the heuristics based on the monotonicity
abstraction are the only ones of the tested heuristics that are not organized as a
lookup table, i. e., the abstract problem has to be solved in every search state.
Note that Table 6.1 was already presented in Sec. 5.4.3. Here it is just repeated
to ease comparing the results.

The results obtained withA∗ are shown in Table 6.3. Here it turns out that no
configuration can solve the larger C and A examples. They are left out from the
table. Except in the A examples, the best results are obtained with the hPsyn and
hPAR heuristics. They explore fewer states than the corresponding configurations
with hL and haa . The overall runtime of the two heuristics based on predicate
abstraction is comparable with the runtime for haa .

6.4 Discussion

When we empirically determined the best parameters b and r for our heuris-
tics, i. e., the splitting bound and the number of refinement iterations, we made
the following curious observation. When using greedy search, the number of
explored states often increases when we make the abstraction more refined. In
particular, this is a surprise since every time we refine the abstraction we ob-
tain a heuristic that dominates the previous one (see Sec. 6.2.1). At first glance,
it seems impossible that a heuristic that dominates another one yields a larger
number of explored states. But this only holds in the A∗ context [82]. A closer
look reveals that this is possible quite naturally for greedy search. Imagine a
state s that has two successors s′1 and s′2. Suppose that s′1 leads to an error state
on a narrow path with only little branching of length 10. Further suppose that s′2
is the start of a huge part of the state space containing no error states at all. Let
h be an admissible heuristic function that is dominated by another admissible
heuristic h′. Say h(s′1) = 5, h(s′2) = 8 and h′(s′1) = 9, h′(s′2) = 8. Although,
h′ is more precise than h, it will yield a much larger number of explored states.



90 6 Heuristic Functions Based on Predicate Abstraction

Table 6.1. First part of the greedy search results. The rDFS results were obtained with UPPAAL’s
randomized depth-first search, the hL and hU results were obtained with MCTA’s greedy search
and the particular heuristic. Dashes indicate out of memory (> 4 GByte).

runtime in s explored states trace length
Exp. rDFS hL hU rDFS hL hU rDFS hL hU

C1 0.1 0.0 0.0 24404 1989 373 880 89 62
C2 0.3 0.1 0.1 64042 3559 663 770 123 74
C3 0.4 0.1 0.0 86142 4242 928 618 119 68
C4 4.5 0.6 0.5 921415 20081 10406 1569 116 103
C5 46.1 5.1 3.0 8388325 141174 55676 3745 345 118
C6 – 57.4 9.0 – 1253431 185293 – 641 130
C7 – 419.8 54.8 – 9475793 878345 – 1175 200
C8 – 102.5 106.8 – 2601885 1878328 – 556 385
C9 – 179.8 516.2 – 4641449 7890458 – 995 280
M1 0.4 0.0 0.1 39838 2431 5125 1246 294 71
M2 1.3 0.1 0.2 127973 7436 13153 2809 640 93
M3 0.9 0.2 0.2 97987 12924 12602 2716 591 100
M4 4.1 0.2 0.6 408400 13497 30276 11940 750 150
N1 1.7 0.1 0.2 55690 4834 7691 1100 329 80
N2 5.9 131.3 0.8 188784 185770 23392 3350 40652 122
N3 4.3 0.1 1.5 146601 7533 37381 3028 499 113
N4 27.7 1.2 10.4 917774 46948 141354 14713 1661 230
FA5 0.0 0.0 0.0 419 9 9 111 8 8
FA10 0.1 0.0 0.0 10435 9 9 1406 8 8
FA15 0.7 0.0 0.0 43273 9 9 4641 8 8
FB5 0.0 0.0 0.0 293 167 7 78 12 6
FB10 0.0 2.3 0.0 7933 86462 7 1207 22 6
FB15 1.5 – 0.0 93632 – 7 9973 – 6
A2 0.0 0.0 0.0 95 33 28 31 18 18
A3 0.0 0.0 0.0 6030 202 76 105 24 18
A4 0.2 9.7 0.0 46642 75106 39 752 36 28
A5 – 65.7 1.7 – 257208 4027 – 74 47
A6 – – – – – – – – –

This is due to the fact that h′ is exclusively more precise for s′1 and not for
s′2. Similar situations may also occur when we do a refinement step with ARMC.
In fact, the defining characteristic of the refinement step is that it excludes the
detected spurious error path, i. e., exactly one shortest spurious error path. All
other spurious error paths of the same length may remain. The heuristic values
in the environment of the removed spurious error path will increase. This is the
region of the state space where the heuristic is refined. The heuristic values in
the environment of the other spurious error paths will remain the same. Note
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Table 6.2. Second part of the greedy results. All results were obtained with UPPAAL/DMC’s
greedy search and the particular heuristic. Dashes indicate out of memory (> 4 GByte).

runtime in s explored states trace length
Exp. haa hPsyn hPAR haa hPsyn hPAR haa hPsyn hPAR

C1 0.1 1.2 3.3 2025 1588 1508 148 158 112
C2 0.1 1.3 3.6 4740 3786 4098 197 180 128
C3 0.2 1.4 3.8 6970 3846 5583 197 186 136
C4 0.4 1.9 4.5 31628 30741 41831 172 240 279
C5 1.9 3.5 7.2 260088 185730 425264 267 422 506
C6 17.2 16.6 22.7 2948925 1942277 2850769 376 756 770
C7 224.5 158.9 174.2 29948574 18455933 20632762 854 1063 2216
C8 216.6 120.2 204.0 28413627 14793386 25598687 706 975 2878
C9 – – – – – – – – –
M1 0.2 0.7 1.4 21260 23257 36808 89 100 115
M2 0.8 1.5 2.4 78117 84475 145178 101 127 136
M3 0.9 1.5 2.6 85301 92548 143275 104 97 134
M4 3.0 3.8 6.3 287122 311049 552341 123 135 191
N1 1.2 1.9 3.6 30970 31593 51434 109 127 82
N2 5.3 6.6 9.2 149013 172531 246878 126 157 136
N3 5.4 6.2 11.5 158585 167350 296450 107 129 167
N4 28.4 33.6 42.9 785921 975816 1411536 146 212 270
FA5 0.0 0.0 0.0 80 80 29 20 20 8
FA10 0.0 0.1 0.0 130 130 44 20 20 8
FA15 0.1 0.3 0.0 180 180 59 20 20 8
FB5 0.0 0.1 0.0 21 21 23 6 6 6
FB10 0.0 0.3 0.0 36 36 38 6 6 6
FB15 0.1 0.4 0.0 51 51 53 6 6 6
A2 0.0 0.0 0.1 31 46 46 12 12 12
A3 0.1 0.0 0.1 863 187 187 20 21 21
A4 0.4 0.1 0.1 2283 10633 10633 33 78 78
A5 14.1 – – 1220430 – – 212 – –
A6 – – – – – – – – –

that, due to our splitting algorithm (see Sec.6.2), ARMC only gets a part of the
whole system. Therefore it is possible that ARMC finds an abstract error trace
that is also a real one, but only for the specific part of the system not for the
whole system. If the removed spurious error path happens to be the (only) one
that actually corresponds to a real solution, then the refinement will increase our
search space in pretty much the way as illustrated with s1 and s′2 in the example
above.

Our intuition was confirmed quite clearly when we ran the following test on
exampleC4 with splitting bound b = 3, i. e., forC4, splitting bound b = 3 means
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Table 6.3. Summary of A∗ results. The hL results were obtained with MCTA, all other results
were obtained with UPPAAL/DMC. Dashes indicate out of memory (> 4 GByte).

runtime in s explored states trace
Exp. hL haa hPsyn hPAR hL haa hPsyn hPAR length

C1 0.1 0.1 1.3 3.4 10470 9784 7088 9402 54
C2 0.4 0.3 1.3 3.7 24658 34644 15742 25931 54
C3 0.5 0.3 1.5 3.9 28694 40078 15586 30559 54
C4 3.8 2.1 2.6 5.6 184413 324080 108603 233052 55
C5 29.1 15.8 8.3 15.1 1140376 2449667 733761 1708529 56
C6 270.1 211.8 66.0 134.0 9250356 24332209 7360078 16868109 56
M1 0.2 0.2 0.8 1.4 14128 19422 22634 26909 47
M2 0.9 0.9 1.7 2.4 47543 77523 94602 112739 50
M3 1.1 1.1 2.1 2.9 54156 94882 121559 148474 50
M4 4.9 5.5 6.5 8.0 180353 436953 466967 569469 53
N1 2.8 2.4 3.2 4.2 40482 46920 46966 56985 49
N2 16.4 11.5 10.9 11.2 177131 211132 211935 219579 52
N3 19.8 12.4 11.8 17.0 196083 238161 233609 318317 52
N4 119.9 61.8 50.7 63.7 830062 1111400 1036002 1258229 55
FA5 0.0 0.0 0.0 0.0 71 1457 1457 278 8
FA10 0.0 0.5 0.5 0.1 511 37922 37922 1448 8
FA15 0.1 6.0 6.2 0.1 1701 348797 348797 4218 8
FB5 0.0 0.0 0.1 0.0 54 21 21 23 6
FB10 0.0 0.0 0.1 0.0 429 36 36 38 6
FB15 0.1 0.1 0.4 0.0 1504 51 51 53 6
A2 0.0 0.0 0.0 0.1 62 120 155 107 12
A3 0.1 0.1 0.1 0.1 2006 5763 20658 14574 17
A4 100.4 102.4 – – 813303 13163834 – – 22

that we have two pattern databases. We incrementally increased the number of
refinement iterations and measured the number of explored states as well as
the length of the shortest abstract error path found in both abstractions at the
maximum level. The data we obtained are given in Table 6.4.

When increasing r from 2 to 3, we first notice the hypothesized effect. In
difference to before, the length of trace1, found in the first abstraction did not
increase and promptly the number of explored states went slightly up. At this
level, the abstract error trace of the second abstraction became a real error trace
for the given part of the system. This is the reason why it stays fixed from now
on. With r = 10, the length of trace1 finally increases again and promptly the
number of explored states goes sharply down. In this refinement step, trace1

became also a real error trace, so here stops our experiment.
One can try to overcome this phenomenon by making the refinement mech-

anism less focused on a single error path, trying to exclude the spurious error
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Table 6.4. Results for theC4 example, obtained with greedy search using hPAR and splitting bound
b = 3, i. e., two pattern databases. Abbreviations: r: number of refinements, states: number of
explored states, tracei: length of shortest abstract error trace in ith abstraction.

r states trace1 trace2

0 516282 6 5
1 511180 9 7
2 49384 13 10
3 56081 13 12
4 46837 13 12
5 63606 13 12
6 279374 13 12
7 279374 13 12
8 279374 13 12
9 361555 13 12

10 50060 16 12

paths more broadly. The straightforward idea is to introduce predicates so that
all shortest spurious error paths are removed and not just a single one. This may
require too much computational overhead. It remains to be seen if one can de-
fine successful selection heuristics and greedy strategies that remove the most
relevant error paths, or that introduce only the most relevant predicates. An idea
for the latter may be to define relevance of a predicate based on how many er-
ror paths it serves to remove. Another idea might be to use a sort of perimeter
search within the abstraction, where the error condition would be broadened to
the final layer of a depth-bounded backwards breadth-first search. Alternatively,
of course, one can use our above observations simply to design an automatic
selection of the number of refinement steps: refine until, in an iteration k, the
length of the shortest spurious error path does, for the first time, not increase;
take the heuristic function defined by the abstract state space from iteration k−1.

6.5 Conclusion

There clearly is promise in defining heuristic functions for model checking
based on predicate abstraction. Apart from the idea, we have contributed a
method to efficiently store and query the heuristic information, a method to
split a system of timed automata without losing admissibility and a first empir-
ical exploration. Our empirical results are not yet at a level that would be thor-
oughly satisfying, but we are competitive with the other techniques that have
been proposed so far. The main surprise was the good performance of syntax-
based predicate abstractions. We did not expect that one can do so well with
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such a simple form of abstraction predicates. In particular, we expected abstrac-
tion refinement to yield much better heuristics. The reason why this is not (yet)
the case appears to lie in the following oddity. One would expect that a more
refined heuristic yields a smaller search space. However, in disquietingly many
cases, refining the abstraction yielded a larger search space in our experiments.
We believe there is hope to overcome this with modified refinement strategies.



7

Fast Directed Model Checking via
Russian Doll Abstraction

In the previous chapters we have presented several powerful heuristics for di-
rected model checking, but many problems still prove to be notoriously hard.
For instance, so far we are only able to detect some unnecessarily long error
paths in the harder instances of our benchmark set. With the heuristic we are
going to introduce in this chapter, we can find provably shortest error paths for
these benchmarks in a matter of seconds. The heuristic is based on a kind of
Russian Doll principle, where the heuristic for a given problem arises through
using UPPAAL/DMC for the complete exploration of a simplified problem. The
simplification consists in removing parts from the problem that are distant from
the error property. As our empirical results confirm, this simplification often
preserves the characteristic structure leading to the error.

7.1 Russian Doll Abstraction

The proposed heuristics from this chapter belong, like the heuristics from the
previous chapter, to the family of pattern database heuristics (PDB). PDB
heuristics were first proposed in AI [29] for solving hard search problems in sin-
gle agent games such as the famous Rubik’s Cube. A PDB heuristic is obtained
by abstracting the problem at hand by ignoring some of the relevant symbols,
e. g., some of the variables. Prior to search, the usually much smaller state space
of the abstracted problem is built completely. During search, the abstract state
space is used as a lookup table to obtain the heuristic values. When dealing with
PDBs, the main question is, which symbols should be ignored, i. e., how should
we abstract the problem to obtain a PDB? In AI, most strategies are aimed at
exploiting parts of the problem that are largely independent. For instance, the
strategies proposed by Culberson and Schaeffer [29] and Haslum et al. [55] are
of that type. The idea behind them is to generate a separate PDB for several
parts of the system and accumulate the heuristic values. Indeed, also the heuris-
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tics from Chap. 6 and Edelkamp et al.’s heuristic based on the graph distance
[42, 43] can be seen as an instance of this type.

7.1.1 The General Idea

The main idea of our abstraction selection strategy is actually an extension and
an improvement of Qian et al.’s work [87]. Our selection strategy is based on
what we call a Russian Doll principle: Rather than trying to split the entire
system into, more or less, independent parts, one homes in on the part of the
system that is most relevant to the target formula and leaves that part entirely
intact. We chose the name Russian Doll based on the intuition that the part left
intact resembles the child Russian Doll, which is smaller but still characteristi-
cally similar to the parent. Intuitively, this is more suitable for model checking
than traditional AI techniques, because a particular combined behavior of the
automata nearest to the target formula is often essential in how the error arises.
The child Russian Doll preserves such combined behaviors and should hence
provide useful search guidance. The excellent results we obtained in our bench-
marks indicate that this is indeed the case, even with rather small child dolls,
i. e., with rather small abstractions.

Given the key idea of the Russian Doll strategy, i. e., keep all and only sym-
bols that are of immediate relevance to the target formula to be checked, the
question remains what is relevant. Answering this question precisely involves
solving the problem in the first place. However, one can design computationally
easy strategies that are intuitively very adequate for model checking. The basic
idea is to do some form of abstract cone of influence (COI) computation [27] and
ignore those symbols that do not appear in the COI. Qian et al. [87] use a sim-
ple syntactic backward chaining process that iteratively collects variable names
and requires the user to specify a threshold on the maximal considered distance,
i. e., the number of iterations of the kept variables from the target formula. In
our work, we use a more sophisticated procedure based on the monotonicity ab-
straction (see Chap. 5). Our procedure selects a subset of the relevant symbols
(automata, synchronization labels, clock variables and integer variables) based
on an abstract error path. No user input is required. Once it is decided which
parts to keep, our implementation outputs those parts in the UPPAAL input lan-
guage. In Russian Doll style, UPPAAL/DMC itself is then used to compute the
entire state space of the abstracted problem which is stored in a lookup table.
During search, heuristic values are just read off that table.

7.1.2 Obtaining Abstractions

This section presents the technicalities of generating the simplified problem in
UPPAAL’s input language and using UPPAAL/DMC to compute the heuristic
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function. We start this section by introducing the notion of variable abstrac-
tions. Given a system S and an abstraction set A, i. e., a subset of the system’s
variables, a variable abstraction is an abstraction of S where the variables from
A are ignored. This is stated formally in the next definition.

Definition 7.1 (Variable Abstraction). Let S = A1 ‖ . . . ‖ An be a system of
timed automata and letA ⊆ {A1, . . . , An} ∪X ∪ V ∪Σ be an abstraction set,
where X denotes the set of clocks of the system, V is the set of integer variables
of S and Σ is the set of synchronization labels. We define the abstraction α with
respect to A as follows.

α(true) = true

α(false) = false

If ϕ and ψ are clock constraints, location constraints and/or integer constraints,
then

α(ϕ) =

{
true var(ϕ) ∩ A 6= ∅
ϕ otherwise

α(ϕ ∧ ψ) = α(ϕ) ∧ α(ψ)

If a is a synchronization label, then

α(a) =

{
τ a ∈ A
a otherwise

If f is a set of integer assignments and/or clock resets, then

α(f) = {e | e ∈ f ∧ var(e) ∩ A = ∅}

If e = l
g,a−−→
f

l′ is an edge, where g is the guard of the edge, a is a synchronization

label, f is a set of integer assignments and/or clock resets, then the abstract edge
α(e) is defined as

α(l
g,a−−→
f

l′) = l
α(g),α(a)−−−−−−→
α(f)

l′

If A = 〈L, l0, E,Σ,X, V, I〉 is a timed automaton, then the abstract automaton
is defined as

α(A) = 〈L, l0, {α(e) | e ∈ E}, Σ \ A, X \ A, V \ A, α(I)〉,

where α(I)(l) = α(I(l)), for all locations l. Let
∏

denote the parallel compo-
sition. For a system S of timed automata, the abstract system is defined as
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α(S) =
∏

A∈S\A

α(A).

For states s ∈ T (S), where T (S) is the state space of S, the abstraction of s is
defined as s|A, i. e., the projection of s on the variables not contained in A.

In words, given an abstraction set A, the corresponding variable abstraction
α applied to a system of timed automata S simply ignores any automaton that
appears in A, as well as any constraints or effects that involve variables or syn-
chronization labels from A. Note that α(S) is still a system of timed automata.
We call this kind of abstractions variable abstractions, since they are based on
ignoring a subset of the system’s variables. With the notion of α, we can now de-
fine what we call an abstract reachability problem. Let 〈S, ϕ〉 be a reachability
problem, defined as usual, then the corresponding abstract reachability problem
α(〈S, ϕ〉) is defined as 〈α(S), α(ϕ)〉.

l1 l′1

l2 l′2

l1 l′1

l2 l′2

A1

v ≥ 3

A2 v := w

A = {w}
A1

v ≥ 3

A2

Fig. 7.1. Not every abstraction set yields an overapproximation.

It is important to note that the abstraction does not always induce an over-
approximation of the original system. For instance, consider the system S of
two timed automata A1 and A2, that share the integer variables v and w, on the
left of Fig. 7.1. If the system’s initial state is given by 〈A1 = l1, A2 = l2, v =
0, w = 7〉 then it is possible to reach a state where both automata are in their
double circled locations. If we abstract the system with respect to the abstraction
set A = {w}, then we get the system depicted on the right of Fig. 7.1. In the
abstract system, such a state is no longer reachable. The following is a sufficient
condition on A to ensure that A induces an overapproximation.

Definition 7.2 (Closed Abstraction Set). Let S = A1 ‖ . . . ‖ An be a system
of timed automata and let A be an abstraction set. In the following, let Ai =
〈Li, l0i , Ei, Σi, Xi, Vi, Ii〉 denote an automaton of S . We define A is closed iff
all of the following conditions hold:

1. For each automaton Ai ∈ S ∩ A:
a) Σi ⊆ A and
b) if there is an edge e ∈ Ei such that x := 0 is a clock reset of e, then
x ∈ A and
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c) if there is an edge e ∈ Ei such that v := exp is an effect of e, then
v ∈ A.

2. For each automaton Ai ∈ S \ A:
if there is an edge e ∈ Ei such that v := exp is an effect of e, where
var(exp) ∩ A 6= ∅, then v ∈ A.

It is easy to verify that a value of a variable, i. e., a clock or an integer vari-
able, never depends on variables that are in the abstraction set. We will see in
the next section that closed abstraction sets yield admissible heuristic functions.
It is obvious that any abstraction set can be closed by extending it according to
Definition 7.2.

An abstract system that is induced by a closed abstraction set simulates the
original system, i. e., there is a simulation relation [78] between the original
system and the abstract system.

Proposition 7.3. Let S be a system of timed automata and let A be a closed
abstraction set. The relation H ⊆ T (S)× T (α(S)) with H(s, ŝ) iff ŝ = α(s),
where T (S) is the state space of S and T (α(S)) is the state space of α(S), is
a simulation relation.

Intuitively this means that the abstract system can behave like the original
system, i. e., if the original system can take a transition, then the abstract system
can also take a transition leading to an abstract state that corresponds to the
original successor state in some sense.

Proof (Proposition 7.3). According to the definition of simulation relation, we
have to prove that for all s ∈ T (S) and all ŝ ∈ T (α(S)), if H(s, ŝ), then the
following conditions hold:

1. s|A = ŝ and
2. for every transition s→ s′ of T (S) there is a transition ŝ→ ŝ′ of T (α(S))

with H(s′, ŝ′).

Proving the first point is trivial, since this is exactly the definition of α. For
proving the second point, we have to distinguish between discrete transitions
and timed transitions. Let t = s → s′ be a discrete transition induced by some
τ edge of an automaton A ∈ A. As A is not present in the abstraction, the
corresponding abstract transition t̂ is a delay transition with duration time δ = 0.
From Definition 7.2 it follows that t only affects automata and variables from
A, hence t̂ = α(s) → α(s′). The same also holds for synchronized edges. For
every successor state s′ of s that is reached via a timed transition t with duration
δ ∈ R≥0, it holds that
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s′ |= I(s′) ∧
∧
A∈S

(A = s(A)) ∧
∧
v∈V

(v = s(v)) ∧
∧
x∈X

(x = s(x) + δ)︸ ︷︷ ︸
=ψ

.

For the corresponding abstract time successor ŝ′ of ŝ reached via a delay
transition t̂ with the same duration, the following holds.

ŝ′ |= α(I)(ŝ′) ∧
∧

A∈S\A

(A = ŝ(A))∧∧
v∈V \A

(v = ŝ(v)) ∧
∧

x∈X\A

(x = ŝ(x) + δ)

︸ ︷︷ ︸
=ψ′

What we have to show is that ŝ′ |= α(ψ). This can be proven by just applying
the definition ofα several times toψ′, bearing in mind that the value of a variable
v 6∈ A only depends on variables that are also not in A. The proof for discrete
transitions that are induced by an edge of an automaton A 6∈ A is analogous to
the proof for timed transitions. �

7.1.3 Pattern Databases

As already mentioned, in our approach, a pattern database for a reachability
problem 〈S, ϕ〉 is obtained as the result of a complete state space exploration
using UPPAAL/DMC. Recall again that UPPAAL/DMC’s search space coincides
with the zone automatonZ(S) of the system under consideration S. This means
that each state s ∈ Z(S) that UPPAAL/DMC considers corresponds to a set of
system states where all automata locations and integer variables are fixed but
the clock valuation can be any of a particular zone. We will use [s] ⊆ T (S) to
denote the set of system states corresponding to s ∈ Z(S).

Note that all the presented techniques from this chapter can be easily applied
to discrete state spaces, in a manner that should become obvious in the follow-
ing. What we do in order to obtain a pattern database heuristic for the reach-
ability problem 〈S, ϕ〉 is the following. First, an abstraction set A is chosen
with the techniques detailed below in Sec. 7.2. Given A, we use UPPAAL/DMC

to solve 〈α(S), false〉, i. e., UPPAAL/DMC is used to generate the entire reach-
able zone automaton Z(α(S)). During the traversal thereof, the abstract state
space is written on the fly into a file, in a simple format. Once UPPAAL/DMC

has stopped, an external program is used to find all error states in the file and
to compute dα(S,ϕ)(s′) for all states s′ ∈ Z(α(S)), where dα(S,ϕ)(s′) denotes
the distance from s′ to a state that satisfies α(ϕ). The program is a version of
Dijkstra’s algorithm with multiple sources [36]. In other words, UPPAAL/DMC
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computes the zone automaton of the abstracted problem and an external pro-
gram finds the distances to the abstracted error states.

It remains to specify how the zone automaton of the abstract problem and
dα(S,ϕ) are used to implement a heuristic function for solving 〈S, ϕ〉. The core
operation is to map a state from Z(S) to a set of corresponding states from
Z(α(S)). For a state s ∈ Z(S), by s|A we denote the projection of the system
states in s onto the variables not contained in A.

Definition 7.4. Let 〈S, ϕ〉 be a reachability problem, where S is a system of
timed automata and ϕ is a target formula. Further, let A be an abstraction set.
The abstraction of s ∈ Z(S) under A is defined as

α(s) = {s′ ∈ Z(α(S)) | s′ ∩ s|A 6= ∅}.

The heuristic value of s ∈ Z(S) under A is defined as

hA(s) = min
s′∈α(s)

{dα(S,ϕ)(s′)}.

Note that s′∩s|A 6= ∅may be the case for more than one s′ ∈ Z(α(S)), i. e.,
we have s′ ∩ s|A 6= ∅ iff s′ and s agree completely on the automata locations
of A \ A and on the values of V \ A, and the zone of s′ is consistent with the
zone of s.1 Testing consistency of two zones is a standard operation for which
UPPAAL/DMC provides a highly efficient implementation. Consequently, in our
implementation, we store Z(α(S)) in a hash table indexed on the automata and
integer variables of α(S) not contained in A, where each table entry contains a
list of zones, one for each corresponding abstract state s′. Of course, dα(S,ϕ)(s′)
is also stored in each list entry. Obtaining heuristic values is then realized via a
hash table lookup plus zone consistency checks in the list, selecting the smallest
dα(S,ϕ)(s′) of those s′ for which the check succeeded.

Lemma 7.5. Let 〈S, ϕ〉 be a reachability problem, where S is a system of timed
automata and ϕ is a target formula. Further, let A be a closed abstraction set
for S and s ∈ Z(S) be a state. Let dS,ϕ(s) denote the distance of s to the
nearest state se ∈ Z(S) satisfying ϕ, then the following holds.

hA(s) ≤ dS,ϕ(s)

Proof (Lemma 7.5). As Z(S) and T (S) are bisimulation equivalent, it suffices
to prove the lemma for ŝ ∈ [s] ⊆ T (S). Since there is a simulation relation
between α(S) and S (see Prop. 7.3) it follows that every trace π = t1, . . . , tn in
T (S) is also trace in T (α(S)). It remains to show that ŝ |= ϕ implies α(ŝ) |=
α(ϕ). This is proven via structural induction over the definitions of |= and α. �

1 In a discrete state space, s′ and s agree completely on all non-abstracted variables.
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Note that, Lemma 7.5 does not hold ifA is not closed. For instance, this can
be seen in the example from Fig. 7.1. The figure illustrates that, a symbol that
is abstracted away can contribute to changing the status of a symbol that is not
abstracted away. The importance of Lemma 7.5 is that, plugging our heuristic
function into A∗, we can guarantee to find a shortest possible, i. e., an optimal,
error path.

7.2 Choosing Abstraction Sets

Having specified how to proceed once an abstraction setA is chosen, it remains
to clarify how that choice is made. The traditional AI design principle for PDBs
is to look for different parts of the problem that are largely independent and to
construct a separate PDB for each of them, accumulating the heuristic values.
For instance Korf and Felner [66] and Haslum et al. [55] demonstrated that this
principle is powerful. Now, consider this design principle in model checking. An
error typically arises due to some complex interaction between several automata.
If one tears those automata apart, the information about this interaction is lost.
A different approach, first mentioned by Qian et al. [87], is to keep only one
PDB that includes as much as possible of those parts of the system that are of
immediate relevance to the target formula. The intuition is that the particular
combined behavior responsible for the error should be preserved. To realize this
idea, one needs a definition of what is close to the target formula, and what is
distant. The notion of cone of influence [27] computation lends itself naturally to
obtain such a definition. Qian et al. [87] use a simple method based on syntactic
backward chaining over variable names. In this section, we first present Qian et
al.’s approach, afterwards we introduce our more sophisticated method based on
the monotonicity abstraction. As we shall see, this method leads to much better
empirical behavior on our benchmark set.

7.2.1 A Cone-of-influence-based Method

Qian et al.’s [87] method adapted to timed automata starts with the symbols,
i. e., the automata, the integer variables and the clock variables, occurring in the
target formula. This set of symbols forms layer 0. Iteratively, new layers are
added, where layer n + 1 arises from layer n by including any symbol y that
does not occur in a layer n′ ≤ n, and that may be involved in modifying the
status of a symbol x in layer n, e. g., x and y may be variables and there may
exist an assignment x := exp where y ∈ var(exp). The abstraction set is then
chosen based on a user-supplied cut-off value d. The resulting abstraction set A
will contain exactly all the symbols in layers n > d.
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Let us give an example for this method. Say 〈S, A2 = l2〉 is a reachability
problem, where S consists of the three automata A1, A2 and A3, depicted in
Fig. 7.2. The automata share two integer variables u and a. Let the initial state
of the system be 〈A1 = l1, A2 = l1, A3 = l1, u = 0, a = 0〉. Layer 0 of Qian et
al.’s method only contains the automaton A2, mentioned in the target formula.
The next layer also contains u, since this variable influences A2, i. e., it appears
in the guard of A2’s edge. Layer 2 additionally contains A1 and a, since u can
be influenced by A1 via a. All subsequent layers contains all variables of the
system. Say we fixed the cut-off value d to 2, then the abstraction set A would
only containA3. Note thatA is not closed, the corresponding closed abstraction
set is A = {A3, a, u}.

l1 l2

l1 l2

l1

A1 u := a

A2

u ≥ 0

A3

a := 1

a := 0

Fig. 7.2. A system with three automata

Intuitively, the problem with this syntactic backward chaining is that it is not
discriminative enough between transitions that are actually relevant for violating
the error property, and transitions that are not. In our experiments, we observed
that, typically, the layers n converge to the entire set of symbols very quickly.
For instance for our largest benchmark example, this is already the case for
n = 5. When cutting off very early, e. g. at n = 2, one misses some symbols
that are important, and at the same time one includes many symbols that are not
important.

7.2.2 A Method Based on the Monotonicity Abstraction

Our key idea for improving on the difficulties of Qian et al.’s method is to do a
more informed relevance analysis. For obtaining an abstraction set for the reach-
ability problem 〈S, ϕ〉, we first abstract the problem according to the mono-
tonicity abstraction (see Chap. 5) and compute an abstract error path. After-
wards we set A to those symbols that are not affected by any of the transitions
contained in the abstract error path. This way, we get a fairly targeted notion of
what is relevant for reaching an error and what is not. Note that this approach
does not require any parameters and hence as a side effect we also get rid of the
need to request an input parameter from the user. This means that our method
for choosing abstraction sets is fully automatic.
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As already mentioned, the monotonicity abstraction is detailed in Chap. 5.
Here we will only briefly revisit the method by constructing an abstraction set
for the system depicted in Fig. 7.2. Recall that the main idea of the monotonicity
abstraction is based on the simplifying assumption that state variables accumu-
late, rather than change, their values. The value of a variable in a state is now a
subset, rather than an element, of the variable’s domain. If a variable is assigned
a new value, then this value is included into the variable’s value set, without
removing any old values. Hence the value range of each state variable grows
monotonically over transitions.

Figure 7.3 gives our method for choosing the abstraction set A. The algo-
rithm takes as input a reachability problem and returns a closed abstraction set
for it. The algorithm first obtains an abstract solution π, by first building an ATG
and extracting π afterwards.

1 function select-abstraction-set(S, ϕ):
2 build-atg(S, ϕ, s0)
3 π = extract-solution-modified(S, ϕ, s0)
4 A0 := { all symbols from S not affected by π}
5 return close(A)

Fig. 7.3. Selecting an abstraction set based on the monotonicity abstraction

The method consists of two parts, a forward chaining and a backward chain-
ing step. The forward chaining step, build-atg (cf. Fig. 5.3), simulates the si-
multaneous execution of all transitions in parallel, starting from the start state.
In a layer-wise fashion, this computes for every state variable what the subset
of reachable values is. The forward step stops when it reaches a layer where the
target formula is satisfied. The backward step, extract-solution-modified, then
starts at this layer, selecting transitions that can be responsible for achieving
variable values that satisfy the target formula. The guards of these transitions
yield new state variable values that must be achieved at an earlier layer. The
process is iterated, selecting new transitions to support the new values and so
on. The outcome of the process is a sequence π = t1, . . . , tn of transitions that
leads from the start state to a state satisfying the target formula, when executed
under the monotonicity abstraction. We then collect all symbols not affected by
π, i. e., we set A0 to

A0 := {Ai ∈ S | Ei ∩ π = ∅}
∪ {a ∈ Σ | not ex. e ∈ π s. t. ae = a}
∪ {v ∈ X ∪ V | not ex. e ∈ π s. t. v ∈ lhs(fe) and

ex. Ai ∈ S \ A0 and ex. e ∈ Ei s. t. v ∈ var(ge)}.
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In this notation, e ∈ π is a shorthand for asking whether any of the transitions t
from π involves the edge e = l

ge,ae−−−→
fe,re

l′. The expression E ∩ π is a shorthand

for E ∩ {e | e ∈ π}. In words, we keep all automata, actions, clock variables
and integer variables that are modified on the path, and we keep all clock and
integer variables that are relevant to a guard in an automaton that we keep. We
obtain our final abstraction set A by closing A0 according to Definition 7.2.

1 function extract-solution-modified(S, ϕ, s):
2 for k := 0, . . . ,minlayer do:
3 for each Ai do:
4 TLk(Ai) := ∅
5 for each v do:
6 TVk(v) := ∅
7 make-target(minlayer, ϕ)
8 for k := minlayer, . . . , 1 do:
9 for each Ai do:

10 for each l′ ∈ TLk(Ai) do:
11 select t enabled at k − 1 that ends in l′

12 make-target(k − 1, t’s start locations, t’s guard formulas)
13 for each v do:
14 for each c ∈ TVk(v) do:
15 select t enabled at k − 1 with effect v := c0 +

Pn
i=0 civi such that

c ∈ {c0 +
Pn
i=0 cievi | evi ∈ Vk−1(vi)}

for each vi that occurs in the effect do:
select evi ∈ Vk−1(vi) such that c = c0 +

Pn
i=0 cievi

TVk−1(vi) := TVk−1(vi) ∪ {evi}
16 make-target(k − 1, t’s start locations, t’s guard formulas)
17 return selected transitions

Fig. 7.4. The modified algorithm for constructing abstraction sets

Let us remark two things. First, recall that, when dealing with linear arith-
metic, the complexity of constructing an abstract solution is exponential. Hence,
the complexity of our abstraction selection algorithm is also exponential. It is
only exponential in the maximum number of variables of any linear expression
over integer variables that occur on the description of the system. Without lin-
ear arithmetic, the complexity is polynomial (see Chap. 5 for details). Second,
we use a slightly modified version of the extract-solution algorithm described
in Sec. 5.3.3. The modified algorithm is depicted in Fig. 7.4. The modified al-
gorithm is obtained by removing the grayed lines from the original one. The
modified algorithm does not consider indirect variable dependencies. We found
this method to yield better performance, by selecting more relevant variable
subsets.
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7.2.3 Comparison of the Methods

Reconsider the system from Fig. 7.2. If we apply our monotonicity abstrac-
tion based selection algorithm to this system, then the abstract solution only
consists of the transition induced by the edge of automaton A2. Therefore, our
abstraction set is {A1, A3, a, u}. Figure 7.5 illustrates the different effects of our
method and the one of Qian et al. While our abstract system only consists of one
automaton, their abstract system consists of two, which unnecessarily blows up
the computation of the PDB. Also note that, on the one hand, the abstraction set
obtained with our approach depends on the given system, its initial state and the
given target formula. On the other hand, Qian et al.’s method does not depend on
the system’s initial state. In this example, the induced PDB heuristics obtained
with either methods are the same.

l1 l2

l1 l2

l1

Abstraction obtained with Qian et al.’s
method: A = {A3, a, u}

A1 u := a

A2

u ≥ 0

A3

a := 1

a := 0
l1 l2

l1 l2
l1

Abstraction obtained with our method:
A = {A1, A3, a, u}.

A1 u := a

A2

u ≥ 0

A3

a := 1

a := 0

Fig. 7.5. A comparison of the two methods

The monotonicity abstraction forms an appropriate basis for choosing ab-
straction sets because it is computationally efficient and provides useful infor-
mation about relevance in the problem. Let us consider an example to illus-
trate this. Figure 7.6 illustrates one of our industrial case studies, called Single-
tracked Line Segment. It concerns the design of a real-time controller for a seg-
ment of tracks where trams share a piece of track. Each end of the shared piece
of track is connected to two other tracks. The safety property to be checked
requires that never both directions are given permission to enter the shared seg-
ment simultaneously. That property can be violated because some of the tempo-
ral conditions in the control automaton are not strict enough.

Let us consider Fig. 7.6 in some more detail. As one would expect, Actuator
1 and Actuator 2 are the two automata in direct control of the signals allowing
(signal up) or disallowing (signal down) a tram to enter the shared track. In
particular, the invariant expresses that always at most one of those signals is up.
The main controller automaton contains the faulty control logic that governs
how the signals are set. The four counter automata count how many trains have
passed on each of the four tracks that connect to the shared segment. The error
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filter FES1

filter FCS1

counter EC1

error detection

filter FLS1

filter FES2

filter FCS2

filter FLS2

counter EC2

counter CL2

main controller

Actuator 1

Actuator 2

counter CL1

Fig. 7.6. The Single-tracked Line Segment case study

detection detects inconsistencies between the counts, meaning that a train that
should have left the shared segment is actually still inside it. Finally, each filter
automaton receives an input variable from a sensor, and removes the noise from
the signal by turning it into a step function based on a simple threshold test. This
avoids, for instance, mistaking a passing truck for a tram.

In this example, the advantage of our method is that the found abstract er-
ror path touches only Actuator 1, Actuator 2, and the control unit. That is, the
abstract error path involves exactly those automata that are immediately respon-
sible for the error. Further, the abstract error path involves exactly the variables
that are crucial in obtaining the error. The other, irrelevant, variables and au-
tomata have only an indirect influence on the error path and need not be touched
to obtain an error under the monotonicity abstraction. Now, consider what hap-
pens if we apply Qian et al.’s [87] syntactic backward chaining instead. In the
start layer, indexed 0, of the chaining, we have only Actuator 1 and Actuator 2.
In the next layer, indexed 1, we correctly get the control unit, but we also get er-
ror detection and two of the counter automata. In just one more step, at layer 2,
we get every automaton in the whole system. Hence, based on this information,
there is no way of separating the relevant symbols from the irrelevant ones.

7.3 Evaluation

In this section, we empirically evaluate our heuristics by comparing them with
other heuristics as well as with two uninformed search methods in two different
settings. In the optimal setting, we are interested in finding shortest possible
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error traces. Therefore we use A∗ search with all the admissible heuristics from
the next subsection. As a base line, we use UPPAAL’s breadth-first search (BFS).
In the suboptimal setting, we are interested in finding any solution for the given
reachability problems. Here we use greedy search with the heuristics described
in the next subsection. As a base line, we use UPPAAL’s randomized depth-first
search (rDFS) in this setting. The rDFS results are averaged over ten runs.

7.3.1 Experimental Setup

We compare our heuristic with the graph distance-based heuristic dL proposed
by Edelkamp et al. [43] as implemented in MCTA. We also compare our heuris-
tic with the pattern database heuristic proposed by Qian et al.’s [87] which we
re-implemented in UPPAAL/DMC. In the tables, we call this heuristic hcoi . The
reported results for hcoi where obtained by first using their abstraction set se-
lection strategy with the cut-off value d = 3. This is the best cut-off value
that we detected by an exhaustive search in the range of possible values. For
a detailed discussion about possible cut-off values, the interested reader is re-
ferred to Chap. C in the appendix of this thesis. The pattern databases were built
according to this set. We also compare our heuristic with the haa heuristic pro-
posed by Dräger et al. [39, 40], for which we set the input parameter N to 100
(see Sec. 4.3.2 for more information). Of course we also compare our heuristic
with our own, previously introduced heuristics: The hL heuristic, which is based
on the monotonicity abstraction (see Chap. 5), as well as the hPsyn heuristic for
which we set the splitting bound b to 2 and the hPAR heuristic, for which we
fixed the number of refinement steps to r = 4 and the splitting bound b to 2 (see
Chap. 6).

Note that, if a technique requires a parameter setting, then we choose the
setting that performs best in terms of total runtime. It is important to note that
this does not compromise the other performance parameters: The number of
explored states correlate positively with the runtime, the length of the detected
error path does not vary significantly over parameter settings.

The examples Ci, for i = 1, . . . , 9, in Tables 7.1 and 7.2 model the Single-
tracked Line Segment case study that was explained above. The examples Mi

andNi for i = 1, . . . , 4, come from the Mutual Exclusion case study. A detailed
description of all used benchmarks can be found in the appendix of this thesis.

7.3.2 Experimental Results

All reported results are obtained on an AMD Opteron 2.3 GHz system with
4 GByte of memory. Note that the reported runtime results include any pre-
processing. For the runtime needed to construct the PDBs, the reader is referred
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to Chap. C in the appendix of this thesis. Let us first consider the results for
the optimal setting, depicted in Table 7.1. The results for the C examples are
striking. While all other techniques suffer from severe scalability issues, we can
detect error states in even the largest example in basically no time at all. This
is due to the quality of the heuristic, which is clearly indicated in the number
of explored search states. Only for A∗with the hcoi heuristic, the number of ex-
plores states is similar to that of our Russian Doll approach, but on the expense
of a significantly longer preprocessing.

Concerning the runtime results of the M and N examples, it turns out that
the performance of our technique is comparable to those of the other pattern
database heuristics. It is worse in the smaller examples where the overhead for
computing the Russian Doll pattern database does not pay off in terms of total
runtime. Note that this is benign, i. e., what matters are the hard cases. It is re-
markable that, consistently, our method explores at least one order of magnitude
fewer search states than any of the others, except the hcoi -based method. This
clearly indicates again that our approach yields the best search guidance.

The results for the suboptimal settings are depicted in Table 7.2. The results
for the hL, haa , hPsyn and hPAR heuristics are all much better, compared to the
optimal search: They explore fewer states in less time. This improvement is
bought at the cost of significantly longer error paths. In most cases, the returned
error paths are more than an order of magnitude longer than the shortest possible
error path. For rDFS and the heuristic functions by Edelkamp et al. [43], the
trace length increase is even more drastic, by another order of magnitude, and
with only a moderate gain in runtime.

Concerning the C examples, Qian et al.’s heuristic yields the smallest num-
ber of explored states and the shortest error traces. However, the runtime behav-
ior is not convincing. In fact, the runtime of all approaches is clearly dominated
by the runtime of our Russian Doll approach. Note that with the hA heuristic,
the number of explored states as well as the runtime increases a bit compared to
the A∗ configuration. It is not clear to us why this is the case, the loss in error
path quality is relatively minor.

In summary, the empirical results clearly demonstrate how superior our Rus-
sian Doll heuristic function is, on these examples, in comparison to previous
techniques.

7.3.3 Discussion

By far the closest relative to our work is the work by Qian et al.’s [87] which
uses an intuitively similar strategy for generating pattern database heuristics. As
we have shown, our improved strategy yields much better heuristic functions, at
least in our suite of benchmarks. It remains to be seen whether that is also the
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Table 7.1. Results for the optimal search. The runtime is the total runtime including any prepro-
cessing. Dashes indicate out of memory (> 4 GByte).

runtime in s search space trace
Exp. BFS dL hL haa BFS dL hL haa length

C1 0.2 0.1 0.1 0.2 35325 22673 10470 8649 54
C2 0.6 0.3 0.4 0.4 109583 60588 24658 21719 54
C3 0.8 0.4 0.5 0.5 143013 80900 28694 28753 54
C4 8.8 4.1 3.8 2.5 1400895 581942 184413 328415 55
C5 72.8 38.1 29.1 16.6 12484178 4246042 1140376 2466025 56
C6 – – 270.1 216.9 – – 9250356 24754930 56
C7 – – – – – – – – –
C8 – – – – – – – – –
C9 – – – – – – – – –
M1 0.6 0.3 0.2 0.3 50001 17810 14128 21945 47
M2 2.4 1.4 0.9 0.8 223662 62887 47543 70361 50
M3 2.5 1.4 1.1 1.4 234587 64690 54156 108968 50
M4 10.6 6.4 4.9 4.8 990513 226368 180353 388475 53
N1 4.7 3.5 2.8 2.4 100183 50894 40482 46996 49
N2 22.8 20.5 16.4 9.4 442556 215012 177131 183215 52
N3 23.2 22.5 19.8 12.6 476622 226509 196083 250928 52
N4 105.5 130.5 119.9 54.6 2001222 939069 830062 1014036 55

pattern database heuristics

runtime in s search space trace
Exp. hPsyn hPAR hcoi hA hPsyn hPAR hcoi hA length

C1 1.3 3.4 0.8 0.8 7088 9402 130 130 54
C2 1.3 3.7 2.5 1.6 15742 25931 187 89813 54
C3 1.5 3.9 3.3 0.8 15586 30559 197 197 54
C4 2.6 5.6 29.8 0.9 108603 233052 466 1140 55
C5 8.3 15.1 275.1 1.0 733761 1708529 2147 7530 56
C6 66.0 134.0 267.8 1.2 7360078 16868109 6229 39436 56
C7 – – 267.0 1.8 – – 16357 149993 56
C8 – – 237.6 1.8 – – 16353 158361 56
C9 – – – 1.9 – – – 127895 57
M1 0.8 1.4 2.4 3.3 22634 26909 15008 190 47
M2 1.7 2.4 9.4 3.9 94602 112739 63356 4417 50
M3 2.1 2.9 9.1 3.8 121559 148474 77462 11006 50
M4 6.5 8.0 38.7 4.5 466967 569469 300262 41359 53
N1 3.2 4.2 19.2 19.8 46966 56985 345 345 49
N2 10.9 11.2 107.0 13.2 211935 219579 534 3811 52
N3 11.8 17.0 105.8 16.2 233609 318317 570 59062 52
N4 50.7 63.7 529.3 40.6 1036002 1258229 810 341928 55
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Table 7.2. Results for the greedy search. The runtime is the total runtime including any prepro-
cessing. Dashes indicate out of memory (> 4 GByte).

runtime in s search space trace length
Exp. rDFS dL hL haa rDFS dL hL haa rDFS dL hL haa

C1 0.1 0.0 0.0 0.1 24404 10251 1989 1456 880 747 89 88
C2 0.3 0.1 0.1 0.3 64042 31886 3559 4139 770 1279 123 151
C3 0.4 0.2 0.1 0.4 86142 53025 4242 4899 618 1190 119 182
C4 4.5 2.1 0.6 0.8 921415 378723 20081 46543 1569 4401 116 275
C5 46.1 21.1 5.1 3.1 8.4e+6 3.0e+6 141174 386523 3745 14518 345 391
C6 – 218.3 57.4 22.7 – 2.4e+7 1.3e+6 3.7e+6 1096 93504 641 536
C7 – – 419.8 300.6 – – 9.5e+6 3.5e+7 – – 1175 923
C8 – – 102.5 196.2 – – 2.6e+6 2.6e+7 – – 556 888
C9 – – 179.8 – – – 4.6e+6 – – – 995 –
M1 0.4 0.1 0.0 0.2 39838 9885 2431 17007 1246 1306 294 68
M2 1.3 1.0 0.1 0.7 127973 47783 7436 59944 2809 6878 640 100
M3 0.9 0.7 0.2 0.7 97987 35502 12924 59594 2716 4797 591 68
M4 4.1 3.0 0.2 2.1 408400 118621 13497 204396 12k 25555 750 78
N1 1.7 0.3 0.1 0.8 55690 12052 4834 23700 1100 1413 329 88
N2 5.9 4.8 131.3 3.8 188784 82488 185770 110482 3350 12557 40652 105
N3 4.3 2.6 0.1 3.1 146601 46305 7533 96710 3028 12598 499 98
N4 27.7 59.6 1.2 16.5 917774 504586 46948 511146 15k 51651 1661 193

pattern database heuristics

runtime in s search space trace length
Exp. hPsyn hPAR hcoi hA hPsyn hPAR hcoi hA hPsyn hPAR hcoi hA

C1 1.2 3.3 0.9 0.7 1588 1508 130 130 158 112 54 54
C2 1.3 3.6 2.4 0.8 3786 4098 187 56894 180 128 54 127
C3 1.4 3.8 3.3 0.8 3846 5583 197 290 186 136 54 56
C4 1.9 4.5 29.8 0.8 30741 41831 474 1163 240 279 56 57
C5 3.5 7.2 268.5 1.1 185730 425264 2673 39837 422 506 57 75
C6 16.6 22.7 270.5 1.3 1.9e+6 2.9e+6 9027 80878 756 770 57 64
C7 158.9 174.2 269.6 5.0 1.8e+7 2.1e+7 178513 697104 1063 2216 70 64
C8 120.2 204.0 238.1 8.2 1.5e+7 2.6e+7 28678 1.2e+6 975 2878 57 97
C9 – – – 15.2 – – – 2.3e+6 – – – 108
M1 0.7 1.4 2.2 3.1 23257 36808 4461 249 100 115 77 55
M2 1.5 2.4 8.2 3.5 84475 145178 22172 495 127 136 101 76
M3 1.5 2.6 8.6 3.4 92548 143275 47705 993 97 134 92 53
M4 3.8 6.3 33.2 3.5 311049 552341 138147 3577 135 191 81 105
N1 1.9 3.6 19.5 19.4 31593 51434 242 242 127 82 56 56
N2 6.6 9.2 106.3 13.2 172531 246878 503 470 157 136 59 63
N3 6.2 11.5 103.5 11.6 167350 296450 534 1787 129 167 64 70
N4 33.6 42.9 557.5 7.7 975816 1.4e+6 1217 10394 212 270 65 80
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case for other problems. It should also be noted that Qian et al.’s [87] use their
heuristic function in a rather unusual BDD-based iterative deepening A∗ pro-
cedure, and compare that to a BDD-based breadth-first search. As the authors
state themselves, it is not clear in this configuration how much of their empiri-
cally observed improvements is due to the heuristic guidance, and how much of
it is due to all the other differences between the two search procedures. In our
work, we use standard heuristic search algorithms. We finally note that Qian et
al.’s [87] state as the foremost topic for future work to find better techniques
choosing the abstraction. This is exactly what we have done in this chapter. We
remark on the side that we developed our technique independently from Qian et
al. [87], and only became aware of their work later.

7.4 Conclusion

We have explored a novel strategy for generating pattern database heuristics for
directed model checking. As it turns out, this strategy results in an unprece-
dented efficiency of detecting shortest possible error paths, solving within a few
seconds several benchmarks that were previously hardly solvable at all.

Our empirical results must of course be related to the benchmarks on which
they were obtained, and it is a priori not clear to what extent they will carry
over to other model checking problems. However, there certainly is a non-zero
chance that they will carry over. This makes the further exploration of this kind
of strategy an exciting direction, which we hope will inspire other researchers
as well.



8

Useless Transitions are Useful

In the previous chapters of this thesis, we mainly focused on the development
of heuristic functions for directed model checking to accelerate the detection of
reachable error states. In this chapter, we propose a general enhancement to di-
rected model checking based on the evaluation of state transitions. We present
a schema, parametrized by a heuristic function, to evaluate transitions and pro-
pose a new method for the state space traversal. Our framework can be applied
automatically to a wide range of heuristic functions. The empirical evaluation
impressively shows its practical potential. Apparently, the new method identi-
fies a sweet spot in the trade-off between scalability (memory consumption) and
short error traces.

8.1 Evaluating State Transitions

Before we start to present our new method, let us briefly recall how the state
space traversal in directed model checking is guided in order to detect error
states. Generally, these guidance criteria are automatically extracted from the
model under consideration by taking an abstraction thereof and computing an
abstract distance function h, a heuristic function. For a state s, the heuristic
value h(s) approximates the distance of s to a nearest error state. These values
are used during the state space traversal in order to determine which state is
explored next.

Each different version of directed model checking thus arises through the
choice of the abstraction that is used to compute the heuristic function, and
by the choice of the algorithm for traversing the state space. In the previous
chapters, we mainly focused on the first point, i. e., we defined abstractions that
lead to heuristic functions to guide the state space traversal efficiently towards
an error state. Considering the second point, there are two predominantly used
algorithms of directed model checking, namely A∗ and greedy search (cf. [82]).
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A∗ is guaranteed to find shortest possible error traces for admissible heuristics,
but is often too memory consuming for large systems. Greedy search does not
necessarily find shortest possible error traces, but mostly scales much better than
A∗ in practice.

In this chapter, we present a new version of directed model checking that
seems to identify a sweet spot in the trade-off between scalability, i. e., memory
consumption, and short computed error traces. It is based on the concept of use-
less transitions which is an adaptation of the useless actions approach that has
been introduced in the context of AI Planning [95]. As indicated by its name, the
concept of useless transitions extends directed model checking by additionally
evaluating transitions, not just states. We will see that this is a general concept
in the sense that useless transitions can be computed fully automatically with
the given heuristic function. That is, whatever the choice of the underlying ab-
straction for computing the heuristic function has been, we can use the already
computed heuristic function in order to effectively recognize useless transitions.
We will characterize a class of heuristics for which our method is suited best. We
define a new (non-deterministic) strategy for the state space traversal that takes
these useless transitions into account. The new strategy is an amalgam of the
two strategies A∗ and greedy search. For the two extreme cases of abstraction,
it becomes the former or the latter, respectively.

We have implemented our method and have applied it to a number of bench-
marks coming from the AVACS benchmark suite. This allowed us to experi-
mentally compare the new directed model checking method with the two exist-
ing predominant methods A∗ and greedy search. The empirical results impres-
sively show the benefit of our approach: We obtain almost shortest error traces,
whereas the number of expanded states reduces significantly compared to A∗

and also to greedy search in most cases.

8.1.1 An Illustrating Example

In this subsection we provide an example that greatly oversimplifies the issues
at hand but gives an intuition about useless transitions and their potential use-
fulness. Figure 8.1 depicts a system consisting of n parallel components A1 to
An. In the initial state of the system, every automaton Ai is in location li0, and
an error state is reached if all automata are in their double circled locations.
Suppose that we apply directed model checking to check if this error state is
reachable. Further suppose that we therefore use the dL heuristic, the maximum
graph distance heuristics proposed by Edelkamp et al. [42, 43].

It turns out that, for this problem, the maximum graph distance is a rather
uninformed heuristic function. It cannot distinguish states that are nearer to the
error state from others. If there is at least one automaton Ai for which s(Ai) =
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li0, then the heuristic value is 1. We may characterize the state space topology
induced by this heuristic as follows. There is one single plateau, i. e., for all of
the 2n reachable system states but for the error state the abstract distance is 1.
This means that the guidance based on the dL heuristic is very poor. In fact, for
every heuristic function, similar situations arise.

In the example, it is trivial to see that each state transition that is induced by
an edge of an automaton that leaves the automaton’s error location (depicted by
a double circle) should be avoided as much as possible during the state space
traversal. It is a useless transition! Without steps corresponding to such transi-
tions, the state space traversal stops after n steps and returns a shortest possible
error path.

l10 l20 ln0

l11 l21 ln1

A1 A2

. . .

An

Fig. 8.1. An automata system with n parallel components

8.1.2 Existing Methods

The problem of evaluating state transitions has been studied mostly in the area
of AI Planning. In this context, we have proposed an approach to avoid useless
actions which has led to a significantly improved search behavior on a wide
range of planning instances [95]. In Sec. 8.2, we adapt this technique to the con-
text of directed model checking of timed automata systems. Complementary
to useless actions, Hoffmann and Nebel [61] and Helmert [56] proposed what
they call helpful actions and preferred operators, respectively. These methods
are used to select a set of promising successors to a search state. The helpful-
ness of a transition is determined during the computation of the heuristic values,
which are obtained by solving an abstract problem. Roughly speaking, a tran-
sition is considered helpful if it is contained in that abstract solution. However,
this approach is specific to the applied distance function.

8.2 Transition-based Directed Model Checking

Until now, directed model checking algorithms have roughly followed the
scheme depicted in Fig. 8.2. The figure shows a directed model checking al-
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gorithm, that was already discussed in Sec. 4.2.1. Recall that the evaluate func-
tion (line 15 of the algorithm) depends on the applied version of directed model
checking, i. e., if applied with A∗ or greedy search. For A∗, evaluate(s, h) re-
turns h(s) + c(s), where c(s) is the length of the path on which s was reached
for the first time. For greedy search, it simply evaluates to h(s).

1 function dmc(S, ϕ, h):
2 open = empty priority queue
3 closed = ∅
4 priority = evaluate(s0, h)
5 open.insert(s0, priority)
6 while open 6= ∅ do:
7 s = open.getMinimum()
8 if s |= ϕ then:
9 return True

10 if s 6∈ closed then:
11 closed = closed ∪ {s}
12 for each outgoing transition t of s do:
13 s′ = successor(s, t)
14 if s′ 6∈ closed then:
15 priority = evaluate(s′, h)
16 open.insert(s′, priority)
17 return False

Fig. 8.2. A basic directed model checking algorithm

Directed model checking algorithms that follow this scheme suffer from the
fact that A∗ is often, due to the high memory consumption, not practical and the
error traces of greedy search are often of poor quality. In this section, we propose
an extension based on transition evaluation. We will first define the theoretical
concept of useless transitions and then its practical counterpart, the relatively
useless transitions. This notion can be directly used to combine A∗ and greedy
search to a new transition-based directed model checking algorithm.

8.2.1 Useless and Relatively Useless Transitions

In this section, we give the definition of useless transitions. We will first give an
exact notion that captures precisely our intuition on the one hand, but is compu-
tationally hard on the other hand. To overcome this problem, we will investigate
ways to approximate this definition, leading to the concept of relatively useless
transitions. As already mentioned, our technique is a very general enhancement
for heuristic search. We therefore first introduce our approach for general tran-
sition systems and adapt it to the context of timed automata afterwards. The
systems that we consider in this section are concurrent systems with interleav-
ing and binary synchronization. These systems differ from timed automata in
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that they do not feature any kind of variables, i. e., no clocks and no integer vari-
ables. We will use the symbol S to denote such systems and T (S) to denote the
corresponding state space.

Intuitively, a transition is useless if it is not needed to reach the nearest error
state on a shortest path. This is formally stated in the next definition.

Definition 8.1 (Useless Transition). Let 〈S, ϕ〉 be a reachability problem. A
transition t of T (S) leading from a state s to a state s′ is useless in s iff no
shortest trace from s to the nearest error state starts with this transition.

We use d(s) to denote the distance of a state s to a nearest error state. More
precisely, d(s) = n if there is a trace π from s to an error state with |π| = n and
there is no trace π′ from s to an error state with |π′| < n. If we want to stress
that d is a function also on the system S, we will write dS(s).

By Definition 8.1, a transition t is useless in a state s if and only if the
real error distance d does not decrease by one, i. e., a transition from s to s′

is useless iff d(s) ≤ d(s′). To see this, recall that d(s) ≤ d(s′) + 1 for every
transition. If a shortest error trace starts from s with t, then d(s) = d(s′) + 1.
Otherwise the error distance does not decrease, i. e., d(s) < d(s′)+1. Since the
distance values are all integers, this is equivalent to d(s) ≤ d(s′). We will use
the inequality d(s) ≤ d(s′) in connection with the idea of removing a useless
transition. Therefore, we will define the notion of reduced systems. To do this,
we first need some more terminology. For a concurrent system S = A1 ‖ . . . ‖
An, we define a function µS that maps transitions from the system’s state space
T (S) = (S, s0, T ) to the edges of the automata Ai, that induce this transition.
Note that this function is implicitly given by the implementation of the successor
generator (see line 13 of Fig. 8.2).

Figure 8.3 illustrates the mapping µS . On the left of the picture, there is a
system consisting of two automata A1 and A2. On the right, the picture shows
the state space of the system. Given the transition 〈l′1, l′2〉 → 〈l1, l2〉, µS evalu-

ates to {l′1
a!−→ l1, l

′
2
a?−→ l2}. These are the edges that induce the transition.

l1

l′1

l2

l′2

A1

τ a!

A2

τ a?

(l1, l2)

(l′1, l2)

(l1, l
′
2)

(l′1, l
′
2)

Fig. 8.3. A system and its state space
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Based on the definition of µS , we now define reduced systems.

Definition 8.2 (Reduced system). Let S = A1 ‖ . . . ‖ An be a system and t
a transition of S’s state space T (S). The reduced system with respect to t is
defined as

St = A′1 ‖ . . . ‖ A′n,

where A′i = 〈Li, l0i , Ei \ µS(t), Σi〉.

Note that, according to the definition of µS , at most two automata Ai are
affected by reducing the system (one in the case of interleaving, two in the case
of binary synchronization). Roughly speaking, a transition t of the system’s state
space T (S) corresponds to one or two edges of one or two automata of S. The
reduced system St is obtained by removing these edges from the corresponding
automata. Note that removing one edge from an automaton A removes several
transitions from the system’s state space T (S). Figure 8.4 illustrates this. The
figure shows the reduced system of the system from Fig. 8.3. The system is
reduced with respect to the transitions t = 〈l1, l2〉 → 〈l′1, l2〉. Removing the
corresponding edge l1 → l′1 from automaton A1 yields the depicted system St
and its state space T (St).

l1

l′1

l2

l′2

A1

a!

A2

τ a?

〈l1, l2〉

〈l′1, l2〉

〈l1, l′2〉

〈l′1, l′2〉

Fig. 8.4. Removing an edge induces several transitions to be removed.

Based on the definition of reduced systems, we now give a proposition that
leads to a testing criterion for useless transitions.

Proposition 8.3. Let 〈S, ϕ〉 be a reachability problem and let T (S) = (S, s0, T )
be the state space of S. Further, let t = s→ s′ ∈ T be a transition.

If dSt(s) ≤ dS(s′), then t is useless in s.

Proof (Proposition 8.3). If dSt(s) ≤ dS(s′), then dS(s) ≤ dS(s′) because
dS(s) ≤ dSt(s), i. e., the error distance cannot decrease in reduced systems. As
dS(s) ≤ dS(s′) iff t is useless in s, the claim follows directly. �
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This property can be interpreted as follows. A transition t is useless in s if
the error state is still reachable from s on the same shortest trace when the corre-
sponding edges that induce t are removed from the system. However, this char-
acterization is not practical as computing exact distances is PSPACE-complete
[67].

The above characterization has its own intricacies. To illustrate this, we use
the two systems depicted in Fig. 8.5. An error state in each system is reached
if its double circled location is reached. Observe that, for a transition to be use-
less, it is not enough to require that dSt(s) ≤ dS(s). To see this, consider the
left system. Here, every transition that is induced by the outgoing edges of l0
would then wrongly be recognized as useless. Furthermore, it does not suffice
to require dS(s) = dS(s′). The transition induced by the edge from l0 to l1
leaving the initial state of the right system would not be recognized as useless
although it is, i. e. it is not part of a shortest error trace.

l0

l1 l2

l3

l0

l1

l2

l3

Fig. 8.5. Two example systems

A direct way to approximate the test for uselessness, provided by Proposition
8.3, is to use the given heuristic function h instead of d. This is reasonable
because h is designed for exactly the purpose of approximating d. When we
want to stress that h is a function also on the system S, we will write hS .

Definition 8.4 (Relatively Useless Transition). Let 〈S, ϕ〉 be a reachability
problem and let T (S) = (S, s0, T ) be the state space of S. Further, let t ∈ T
be a transition with t = s→ s′ and let hS be a heuristic function. Then

t is relatively useless for hS in s if hSt(s) ≤ hS(s′).

Note that this is exactly the testing criterion from Proposition 8.3 where the
exact distance function d has been replaced by the heuristic function h. Obvi-
ously, the quality of this approximation strongly depends on h’s precision. A
very uninformed function, e. g. a function that constantly returns zero, recog-
nizes every transition as relatively useless. However, the more sophisticated the
distance estimation, the more precise is the approximation. We will come back
to this point in the next section. Intuitively, taking a relatively useless transition
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t does not seem to guide the state space traversal towards an error state as the
stricter distance estimate in St does not increase.

One would expect that transitions should not be relatively useless if they
lead to states nearer to an error state. Indeed, under the reasonable assumption
that heuristic functions h never decrease their estimate in reduced systems, i. e.,
hS(s) ≤ hSt(s) for all systems S, transitions t and states s, transitions leading
to better estimates are never relatively useless in any system S.

Proposition 8.5. Let 〈S, ϕ〉 be a reachability problem and T (S) = (S, s0, T )
be the state space of S. Further, let h be a heuristic function such that for all
s ∈ S and t ∈ T , hS(s) ≤ hSt(s). Let t ∈ T be a transition with t = s→ s′.

If h(s′) < h(s), then t is not relatively useless for h in s.

Proof (Proposition 8.5). Assume that t is relatively useless, i. e., hSt(s) ≤
hS(s′). As hS(s) ≤ hSt(s), we have hS(s) ≤ hS(s′), showing that the distance
estimate does not decrease when the relatively useless transition t is applied. �

8.2.2 Directed Model Checking with Relatively Useless Transitions

In this subsection, we put the pieces together. So far, we have presented a no-
tion of useless transitions to identify transitions that should be less preferred
during the state space traversal. A direct way to integrate this information is to
“penalize” states that result from applying such a transition. This is reasonable
because avoiding transitions that are not likely to appear in shortest error traces
is likely to improve the detection of short error traces. States that are reached by
applying such a useless transition should be less preferred when traversing the
state space.

As argued in Sec. 8.1 and Sec. 8.2, there are two choices to be made when the
directed model checking approach is applied, namely choosing the underlying
abstraction for the heuristic functions, and choosing the algorithm that is essen-
tially determined by the evaluate function that computes the priority values for
the states. Here, we assume that a heuristic function h is already given, and h
is additionally used to determine relatively useless transitions. For the second
point, we give a simple extension of the evaluate function in Fig. 8.6. Recall
that s and t (lines 2 and 3) are stored in the successor state and can be accessed
easily. As outlined above, states that result from applying a relatively useless
transition are “penalized”. As penalty value for s, we chose c(s), the length of
the trace on which s was reached for the first time. This leads to a combination
of A∗ and greedy search as discussed in more detail below.

Overall, this algorithm is an amalgam of the algorithms A∗ and greedy
search based on transition evaluation. Its behavior depends on the accuracy of
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1 function evaluate(s′, h):
2 s = predecessor of s′

3 t = transition from s to s′

4 if t is relatively useless for h in s then:
5 priority = h(s′) + c(s′)
6 else:
7 priority = h(s′)
8 return priority

Fig. 8.6. Evaluation function based on relatively useless transitions

the underlying heuristic function h. As mentioned earlier, the more accurate h
is, the more transitions are classified correctly, and therefore, the more it tends
towards greedy search. At the extreme ends of the spectrum, it becomes greedy
search, i. e., for the perfect distance function that classifies every transition cor-
rectly, and breadth-first search, respectively, which is a degenerated version of
A∗ for the distance function that constantly returns zero. From this perspective,
our algorithm can be considered as a combination of greedy search and A∗.

8.2.3 Discussion

Although it is technically possible to apply our algorithm to all kinds of heuristic
functions, there are heuristic functions that are probably best suited for this con-
cept. Let us have a look at this class of functions. Roughly speaking, heuristic
functions can be divided into two classes, namely those that compute the values
on the fly by solving an abstract problem in every search state, and those that do
it in a preprocessing step, typically by computing a lookup table (e. g., a pattern
database). The concept of useless transitions seems to be best suited for heuris-
tic functions that are computed on the fly because the time overhead to compute
this information is comparatively low. Contrarily, distance functions from the
second class are less suited because for every reduced system, an additional pat-
tern database has to be computed (recall that for the computation of the useless
values, the system is reduced and the heuristic value is recomputed on this mod-
ified system). However, as we will see, for heuristic functions computed on the
fly, the overall performance can often be significantly improved.

The performance of our approach strongly depends on the quality of h that
is used to guide the search and to determine useless transitions. The higher the
precision of h, the more transitions are evaluated correctly, and hence, the bet-
ter the overall performance as many unnecessary states need not be considered.
In small examples, heuristic functions like the graph distance heuristic dL pro-
posed by Edelkamp et al. [42, 43] could already lead to improvements. Pointing
to our motivating example in Sec. 8.1.1, we recognize that all transitions cor-
responding to edges from down to up are relatively useless for the graph dis-
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Fig. 8.7. Avoiding useless transitions applied to the example system with 9 parallel automata

tance heuristic, whereas all other transitions are not. In this example, applying
our algorithm leads to a shortest possible error trace with dramatically smaller
explored state space than with greedy search or A∗. Figure 8.7 is to provide a
visual impression. It shows the explored state spaces when the state space traver-
sal does not respectively does take into account the relatively useless transitions
recognized by our tool. For more complex examples, more sophisticated heuris-
tic functions are needed to benefit from our approach, as we will empirically
show in the next section.

8.3 Evaluation

We have implemented the algorithm from the previous section in our model
checker MCTA [72]. We compare our search method withA∗ and greedy search.
As the examples from our benchmark set are actually timed automata, they dif-
fer from the concurrent systems for which we have introduced the concept of
useless transitions, in the following points. Timed automata additionally feature
integer and clock variables and transitions can additionally be labeled with inte-
ger variable and clock guards and integer variable assignments and clock resets.
Recall that the concept of useless transitions is general and can be adapted to
that class of automata in a straightforward way: Let S be a system of timed
automata. To check if a transition t = s → s′ of the zone automaton Z(S)
is useless, determine the set of edges that induce this transitions. Then, remove
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these edges from the system and compute the heuristic value for s in the reduced
system.

To get a conservative approximation of useless transitions, we have imple-
mented our concept in a stronger way than described in the last section. When
the reduced system St is computed for a system S = A1 ‖ . . . ‖ An and a
transition t of Z(S), we additionally remove all edges in the automata Ai that
read variables that are set by some edge e ∈ µS(t), and edges that lead to the
same location as some edge e ∈ µS(t).

8.3.1 Experimental Setup

We evaluated our algorithm for a number of heuristic functions. To ease com-
paring the results obtained with our approach, we include the results for the
two heuristics, hL and hU , based on the monotonicity abstraction introduced in
Chap. 5. Recall that computing heuristic values with the hU heuristic is more
expensive than using hL. However, as we will see in Sec. 8.3.2, this pays off in
better search behavior. We also include results for the maximum graph distance
heuristic dL introduced by Edelkamp et al. [42, 43].

As usual, we evaluated our approach on benchmarks coming from the
AVACS benchmark suite. The C examples model the Single-tracked Line Seg-
ment case study, the M and N examples stem from the Mutual Exclusion case
study. The FA and FB examples are flawed versions of the Fischer protocol.
The benchmarks A2–A6 contain arbiter trees of height 2–6. The appendix of
this thesis provides more information about all our benchmarks.

8.3.2 Experimental Results

The reported experimental results were obtained on a 2.3 GHz AMD Opteron
system with 4 GByte of memory. We compare our new state space traversal
technique, denoted UT, with A∗ and greedy search (G) in three different con-
figurations. In the first configuration, hL is used as the heuristic function, the
second uses hU and the third configuration uses the dL heuristic.

Table 8.1 shows the results of the first configuration. Here, the number of
explored states significantly decreases compared to A∗ and we are able to solve
much larger problems. Compared to greedy search, the length of the found error
traces are significantly shorter. Moreover, due to better search guidance, we ad-
ditionally often get significant improvements in terms of the number of explored
states and traversal time.

The results for the second configuration are depicted in Table 8.2. Note that
hU is more informative than hL, and search behavior therefore is mostly better
(in particular, the Fischer protocol examples are trivial for hU ). This fact directly
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Table 8.1. Experimental results for the hL heuristic with A∗, greedy search (G), and our com-
bined approach (UT). Dashes indicate out of memory (> 4 GByte).

runtime in s explored states trace length
Exp. A∗ G UT A∗ G UT A∗ G UT

C1 0.1 0.0 0.1 10470 1989 1822 54 89 81
C2 0.4 0.1 0.1 24658 3559 1471 54 123 81
C3 0.5 0.1 0.1 28694 4242 1266 54 119 81
C4 3.8 0.6 0.1 184413 20081 843 55 116 96
C5 29.1 5.1 0.1 1140376 141174 398 56 345 67
C6 270.1 57.4 0.1 9250356 1253431 398 56 641 67
C7 – 419.8 0.1 – 9475793 398 – 1175 67
C8 – 102.5 0.2 – 2601885 770 – 556 74
C9 – 179.8 0.4 – 4641449 1543 – 995 122
M1 0.2 0.0 0.1 14128 2431 3087 47 294 83
M2 0.9 0.1 0.1 47543 7436 4775 50 640 95
M3 1.1 0.2 0.2 54156 12924 8971 50 591 80
M4 4.9 0.2 0.3 180353 13497 12416 53 750 89
N1 2.8 0.1 0.2 40482 4834 4922 49 329 87
N2 16.4 131.3 0.6 177131 185770 17449 52 40652 180
N3 19.8 0.1 1.3 196083 7533 29661 52 499 125
N4 119.9 1.2 7.9 830062 46948 125802 55 1661 390
FA5 0.0 0.0 0.0 71 9 9 8 8 8
FA10 0.0 0.0 0.0 511 9 9 8 8 8
FA15 0.1 0.0 0.0 1701 9 9 8 8 8
FB5 0.0 0.0 0.0 54 167 7 6 12 6
FB10 0.0 2.3 0.0 429 86462 7 6 22 6
FB15 0.1 – 0.0 1504 – 7 6 – 6
A2 0.0 0.0 0.0 62 33 15 12 18 12
A3 0.1 0.0 0.0 2006 202 32 17 24 17
A4 100.4 9.7 0.1 813303 75106 95 22 36 22
A5 – 65.7 0.1 – 257208 34 – 74 27
A6 – – 0.7 – – 39 – – 32

influences the performance when applied with our algorithm: With UT and hU ,
we obtain even better results than with UT and hL. Note that hU is not admis-
sible, which means that there is no guarantee to obtain a shortest possible error
trace in this setting in theory. However, in practice, we obtained shortest possi-
ble traces in our examples with A∗, except in C4–C6. The trace length of UT is
always shorter or of the same length than with greedy search. In particular, note
that for both hL and hU configurations without UT, the large C examples C7–
C9 could only be solved with an error trace of very poor quality compared to
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UT. Moreover, the largest arbiter example A6 could not be solved at all without
UT within 4 GByte of memory.

Table 8.2. Experimental results for the hU heuristic with A∗, greedy search (G), and our com-
bined approach (UT). Dashes indicate out of memory (> 4 GByte).

runtime in s explored states trace length
Exp. A∗ G UT A∗ G UT A∗ G UT

C1 0.2 0.0 0.0 6000 373 237 54 62 54
C2 0.4 0.1 0.0 13920 663 206 54 74 54
C3 0.5 0.0 0.0 16146 928 193 54 68 54
C4 4.3 0.5 0.1 106689 10406 170 59 103 55
C5 31.1 3.0 0.1 635203 55676 143 58 118 61
C6 274.2 9.0 0.1 5161691 185293 143 58 130 61
C7 – 54.8 0.1 – 878345 143 – 200 61
C8 – 106.8 0.1 – 1878328 378 – 385 94
C9 – 516.2 0.2 – 7890458 533 – 280 115
M1 0.2 0.1 0.1 14035 5125 4555 47 71 71
M2 1.0 0.2 0.1 46681 13153 2816 50 93 78
M3 1.1 0.2 0.3 52556 12602 10541 50 100 71
M4 5.6 0.6 0.3 179903 30276 8825 53 150 81
N1 2.7 0.2 0.2 39500 7691 5410 49 80 77
N2 16.0 0.8 0.1 158323 23392 5198 52 122 120
N3 17.3 1.5 0.6 180071 37381 16268 52 113 112
N4 116.1 10.4 0.4 759644 141354 11166 55 230 228
FA5 0.0 0.0 0.0 9 9 9 8 8 8
FA10 0.0 0.0 0.0 9 9 9 8 8 8
FA15 0.0 0.0 0.0 9 9 9 8 8 8
FB5 0.0 0.0 0.0 7 7 7 6 6 6
FB10 0.0 0.0 0.0 7 7 7 6 6 6
FB15 0.0 0.0 0.0 7 7 7 6 6 6
A2 0.0 0.0 0.0 20 28 20 12 18 18
A3 0.0 0.0 0.0 23 76 27 17 18 17
A4 0.1 0.0 0.0 336 39 34 22 28 22
A5 9.4 1.7 0.3 6644 4027 42 27 47 27
A6 – – 1.6 – – 50 – – 32

Table 8.3 gives the results for the third configuration (dL). Here, we observe
that the results with UT are less significant than with the first two configurations.
This is because, having a closer look at the heuristic values in many of the
instances, the heuristic values are often constant. This is due to the very coarse
abstraction (i. e., the graph distance) used by dL. Therefore, too many transitions
are relatively useless for this heuristic, causing the search process to degenerate
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Table 8.3. Experimental results for the dL heuristic with A∗, greedy search (G), and our com-
bined approach (UT). Dashes indicate out of memory (> 4 GByte)

runtime in s explored states trace length
Exp. A∗ G UT A∗ G UT A∗ G UT

C1 0.1 0.0 0.1 22673 10251 13194 54 747 61
C2 0.3 0.1 0.3 60588 31886 34353 54 1279 61
C3 0.4 0.2 0.6 80900 53025 47049 54 1190 61
C4 4.1 2.1 3.7 581942 378723 331062 55 4401 62
C5 38.1 21.1 31.0 4246042 2957129 2369452 56 14518 63
C6 – 218.3 301.0 – 24247904 19240827 – 93504 59
C7 – – – – – – – – –
C8 – – – – – – – – –
C9 – – – – – – – – –
M1 0.3 0.1 0.3 17810 9885 12773 47 1306 100
M2 1.4 1.0 0.7 62887 47783 34263 50 6878 97
M3 1.4 0.7 0.8 64690 35502 40105 50 4797 101
M4 6.4 3.0 3.2 226368 118621 124604 53 25555 91
N1 3.5 0.3 0.8 50894 12052 21336 49 1413 88
N2 20.5 4.8 6.2 215012 82488 101174 52 12557 95
N3 22.5 2.6 5.8 226509 46305 102765 52 12598 118
N4 130.5 59.6 40.0 939069 504586 461638 55 51651 132
FA5 0.0 0.0 0.0 597 48 597 8 40 8
FA10 0.2 0.0 0.2 13102 48 13102 8 40 8
FA15 4.5 0.0 4.6 108017 48 108017 8 40 8
FB5 0.0 0.0 0.0 78 449 9 6 65 6
FB10 0.0 169.1 0.0 523 5502590 9 6 1860 6
FB15 0.1 – 0.0 1718 – 9 6 – 6
A2 0.0 0.0 0.0 209 27 212 12 22 12
A3 0.2 0.0 0.3 18792 151 16089 17 91 17
A4 – 0.3 – – 28742 – – 501 –
A5 – 0.1 – – 2883 – – 2606 –
A6 – – – – – – – – –

towards A∗. However, UT mostly still explores fewer states than A∗, thereby
producing significantly shorter error traces than greedy search.

Overall, the concept of useless transitions has shown its potential in an im-
pressive way. The results show a significant improvement of the error traces
in comparison to greedy search as well as a significant reduction of the ex-
plored state space compared to A∗. On many problems, the size of the explored
state space is even smaller than with greedy search. Our experimental evalu-
ation has shown this effect on a large number of benchmarks, ranging from
academic to industrial examples with instances of different difficulties, ranging
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from very easy to very hard. We have seen that the overall performance of UT
depends on the precision of the underlying heuristic function. With UT, a so-
phisticated heuristic like hL already often leads to significant better guidance
of the state space traversal than with greedy search and A∗. More informative
heuristic functions, like hU , also lead to better search guidance when applied
with UT, and hence, the number of explored states further decreases. With less
informative heuristics, like dL, the impact of UT decreases and the whole search
process degenerates towards A∗.

8.4 Conclusion

We have introduced the concept of useless transitions to directed model check-
ing as an adaptation of the useless actions approach that has been successfully
proposed in the area of AI Planning. Based on useless transitions, we have pro-
posed a hybrid algorithm between A∗ and greedy search that seems to identify
the sweet spot of the trade-off between scalability and short computed error
traces. We have implemented this algorithm and evaluated it empirically on a
number of benchmarks for a number of heuristic functions. Our empirical eval-
uation shows a substantial performance gain in terms of explored states when
compared with A∗, and a significant solution quality improvement when com-
pared with greedy search. Due to better guidance abilities, we often even explore
less states than greedy search.

As outlined in the discussion section, our approach seems to be currently
best suited for heuristics that are computed on the fly, and less suited for heuris-
tics based on pattern databases. This is because the time overhead seems to
be too large when adapting it for such functions in a straight forward way. To
investigate how to adapt our concept efficiently to pattern databases heuristics
will be an important topic for future research. Furthermore, it will be interesting
to refine our concept to more than two degrees of uselessness. We expect that
algorithms exploiting that knowledge further improve the state space traversal.





9

Automatic Abstraction Refinement for
Timed Automata

While the previous chapters deal with the development and improvement of di-
rected model checking methods, this chapter deals with counterexample-guided
abstraction refinement (CEGAR) for real-time systems. At a first glance directed
model checking and CEGAR seem to be two completely different methods. But
both approaches have the capability to analyze huge systems whose time and
space complexity lies beyond the scope of dump brute force methods. Typically,
both approaches achieve this by using overapproximations of the system under
consideration. In directed model checking overapproximations are used to com-
pute heuristic functions. CEGAR approaches iteratively search for reachable er-
ror states in abstractions of increasing complexity. Since these abstractions are
overapproximations, absence of abstract counterexamples implies a valid result
for the original system. If an abstract counterexample is found it is used to con-
struct either a counterexample for the original system or to identify a slightly
refined abstraction in which the found spurious counterexample cannot occur
anymore.

The main part of this chapter deals with the development of an efficient
CEGAR approach for real-time systems modeled in a subset of timed automata,
namely PLC automata [31]. Afterwards we will come back to directed model
checking by comparing our CEGAR approach with our previously discussed
directed model checking methods.

9.1 Counterexample-guided Abstraction Refinement

Counterexample-guided abstraction refinement is an abstraction-based approach
to tackle the state explosion problem. The main idea of this approach is to find
an appropriate abstraction of the system under consideration that can be an-
alyzed within the given memory and time limit. If the used abstraction is an
overapproximation, then the absence of an abstract counterexample implies the
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absence of concrete counterexamples. Such an abstraction is called a safe ab-
straction. However, if a model checker analyzes a safe abstraction and discovers
a counterexample, the question arises whether the counterexample is spurious
or not, i. e., whether there exists a corresponding counterpart in the full model.

Without automation, model checking by abstractions consists of several,
error-prone and time-consuming tasks. First, the user has to select a proper ini-
tial abstraction which usually requires a deep knowledge of the system under
consideration. If the model checker finds a counterexample in this abstraction,
then one has to analyze whether it is spurious or not. If the counterexample is
real, then we are done, otherwise the selected abstraction was too coarse. In this
case the initial abstraction must be refined so that the spurious counterexample
is eliminated. These steps are repeated until there is no abstract counterexample,
or the abstract counterexample is also a counterexample for the full system.

The approach presented in this chapter automates all steps of the abstraction
refinement loop in the setting of real-time specifications given as PLC automata
[33]. This leads to a fully automated abstraction refinement loop as depicted in
Fig. 9.1. The loop starts with the coarsest possible abstraction and iterates as
long as spurious counterexamples are found. If the model checker finds an ab-
stract counterexample (CE), then a counterexample analyzer is used to check
whether it is spurious. Our analyzer first constructs a test automaton from the
abstract counterexample. The composition of the full model with the newly gen-
erated automaton is then fed into the model checker. We extended the model
checker in such a way that if the counterexample is spurious, the model checker
also reports hints why it is spurious. These hints are then used in the refinement
step in order to eliminate the abstract counterexample. The termination of this
abstraction refinement loop is guaranteed by the fact that each iteration removes
at least one of finitely many abstracted variables.

To demonstrate the potential of our approach we carried out several nontriv-
ial case studies, i. e., the respective full models cannot be handled within the
given memory resources by blind search. Our approach is able to handle them
with only a fraction of the resources, starting from the initial abstraction towards
a refined abstraction for which a definite answer could be found.

9.1.1 Existing Methods for Timed Automata

Abstraction refinement was pioneered by Clarke et al. [26] in the early 90s.
Since then many researchers have automated this process starting with the work
of Balarin and Sangiovanni-Vincentelli [4]. Also in the area of timed automata
there are approaches for model checking by iterative refinement of approxima-
tions. One of these approaches was implemented in Laroussinie and Larsen’s
compositional model checker CMC [74]. This tool starts with a small subset of
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Fig. 9.1. A Counterexample-guided abstraction refinement loop

the automata of the system. It subsequently adds automata to this set and mini-
mizes the intermediate result.

Another abstraction refinement approach was developed by Möller et al. [79]
and Sorea [92] in which predicate abstraction was used at the level of the regions
which are defined by predicates over clocks. The approach uses symbolic coun-
terexamples from failed model checking attempts. Such a symbolic counterex-
ample represents a sequence of sets of states, and can be seen as generalization
of a linear counterexample. To exclude a spurious symbolic counterexample
from further iterations, new abstraction predicates are chosen randomly from a
set of predefined predicates. Except for the fact that new abstraction predicates
are chosen randomly, this approach is, in some respect, quite similar to what we
are proposing here. The main differences are the nature of the counterexamples
and that new abstraction variables are selected more carefully. Unfortunately the
authors do not give any runtime results.

9.2 From PLC Automata to Timed Automata

In our setting, a reachability problem 〈S, ϕ〉 consists of a real-time system S,
which is given in terms of PLC automata, together with a target formula ϕ. To
solve such a reachability problem with our framework, we use MOBY/RT to
compute an abstraction of the given PLC automata. MOBY/RT is a tool for the
development and analysis of PLC automata [80]. From the verification perspec-
tive the most important feature of MOBY/RT is the generation of safe abstrac-
tions of an arbitrary set of PLC automata together with a temporal property into
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the input syntax of UPPAAL 3.4. These abstractions are generated according to
the entities (e. g., variables and delays) of the PLC automata the user has chosen
for abstraction.

In the following we will briefly describe PLC automata and how they are
related to timed automata.

9.2.1 PLC Automata

The formal specification language called PLC automata has been developed
to enable formal verification of real-time properties of PLC programs. A Pro-
grammable Logic Controller (PLC) is a standardized hardware platform which
is especially equipped to simplify the design of real-time controllers in practice.
It can be seen as a simple computer with a special real-time operating system.
A PLC communicates with the environment via unbuffered asynchronous input
and output channels. The environment may change the values of the inputs arbi-
trarily whereas the outputs are controlled by the PLC. PLCs behave in a cyclic
manner where every cycle consists of the following three phases: first the in-
puts are polled, then the new output values are computed and finally the outputs
are updated. The repeated execution of this cycle is managed by the operating
system. The only part the programmer has to adapt is the computing phase. De-
pending on the program and on the number of inputs and outputs there is an
upper time bound for such a cycle.

In the definition of PLC automata we consider the upper time bound for a
complete cycle and the possibility to delay the system’s reactions depending on
state and input. Figure 9.2 gives an example of a PLC automaton. The automaton
has three locations l0, l1, l2 and an output variable output that ranges over ok,
test and alarm. It reacts to a Boolean input variable signal. Every location has
two labels shown below its name in the picture. They define a delay time d and a
constraint ψ on the input. The value of d defines the minimal amount of time that
the system should stay in the corresponding location provided that, meanwhile,
only input values satisfying ψ are polled.

l0

0

l1

90,¬signal

l2

0

¬signal
output := test

signal

output := ok

¬signal

output := alarm

Fig. 9.2. An example of a PLC automaton

A PLC automaton describes the behavior of the system in the computation
phase. The operational behavior is similar to a finite state machine, i. e., depend-
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ing on the polled input value, the system changes both its state and its output.
The behavior is modified in only one case: if the annotations of the current state
are d and ψ, then a transition is only executed when the polled input does not
satisfy ψ or the current state holds longer than d time units. That means a tran-
sition is disabled if the polled input satisfies ψ and the current state has not
exceeded the delay time d.

Thus, the PLC automaton in Fig. 9.2 behaves as follows: it starts in location
l0 and remains there as long as it reads only the input signal, provided by the
environment. The first time it reads ¬signal it changes to location l1. In l1 the
automaton reacts to the input value signal by changing the state back to l0 inde-
pendently of the time it stayed in state l1. If it reads ¬signal in l1 the behavior
of the system depends on the duration it already stayed in l1. If 90 time units
have elapsed it can take the transition to l2. Otherwise, no transition is fired. In
l2 the automaton remains forever. If the cycle time of the automaton is smaller
than 2 time units, we know that the automaton changes its output to alarm when
¬signal holds longer than 90 time units because the cycle time of 2 time units
has to be considered.

Note that PLC automata are implementable. Dierks proposed a translation
of PLC automata into source code for PLCs [30]. Olderog and Dierks [80] also
developed a translation into C++ code, which is tailored to Lego Mindstorms.
The intended logical relationship between the execution of the code by the real-
world hardware and the semantics given in the rest of this paper is refinement.
In other words: the real-world implementation cannot show a behavior that is
not covered by the formal semantics.

9.2.2 Semantics of PLC Automata

The semantics of PLC automata is defined in terms of timed automata [30, 33].
In this thesis we do not want to give a formal definition thereof, since only
an intuitive understanding of their functioning is needed to understand our ap-
proach. Here, we just present a sketch of the semantics using the example of
Fig. 9.2. The semantics of this automaton, depicted in Fig. 9.3, consists of two
timed automata and the following shared variables and clocks: z is a clock that
represents the duration of the PLC cycle, y is a clock that measures how long
the system stays in l1, Out and sig represent the variables Output and signal re-
spectively, used in the PLC automaton. The variable Psig represents the polled
value of the input variable signal. The locations of the PLC automaton appear
as a set of locations in the timed automaton. For example, the location l0 has
two representatives in the timed automaton in order to represent the internal
state of the PLC within the cycle, i. e., l0/p stands for polling, l0/cu stands for
computing and updating. The transitions between l0/p and l0/cu implement the
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polling behavior of the PLC automaton in location l0. The polling step copies
the current value of sig to the variable Psig which is used for the subsequent
computations. The outgoing transitions from l0/cu represent the reactions of
the PLC automaton in location l0. Depending on the polled value of sig the sys-
tem switches to l1/p or remains in l0/cu. Moreover, these transitions reset the z
clock because the cycle has been finished. If the automaton switches to l1/p the
output variable is changed appropriately and the clock y is reset to be able to
check whether 90 time units have elapsed while staying in location l1. Since l1
is equipped with a delay the semantics needs more locations to represent the be-
havior. After polling (transition from l1/p to l1/c) the timed automaton checks
whether the delay time has passed or the delay condition is not satisfied. If this
is the case, then a transition to l1/u is enabled. Otherwise the system can switch
to l1/d (“delayed”) where the cycle is finished. Note that the semantics is non-
deterministic with respect to the timing in order to model the physical reality.
To ensure progress each location has the invariant z ≤ 2. Note that, for the sake
of readability, these invariants are not shown in Fig. 9.3. Therefore, the timed
automaton has to execute a cycle within the upper bound because only transi-
tions to li/p reset the z clock. To model the environment that can change the
input variable sig arbitrarily a so-called driver automaton, depicted on the right
of Fig. 9.3, is added that can always toggle the input.

l0/p l1/u l2/p

l0/cu l1/p l2/cu

l1/c

l1/d

l

Psig

z := 0,
Out := Ok

¬Psig

z := 0,
Out := Alarm

z
>

0

P
si

g
:=

si
g

P
si

g

z
:=

0

¬Psig

z := 0,
y := 0,

Out := Test

z
>

0

P
si

g
:=

si
g

y
>

9
0
∨

P
si

g

y ≤
90 ∧ ¬Psig

z := 0

z
>

0

P
si

g
:=

si
g

z
:=

0

sig := ¬sig

Fig. 9.3. The semantics of the PLC automaton from Fig. 9.2 in terms of timed automata
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9.2.3 Generating Abstractions

Abstractions of this semantics are generated by selecting a set of bounded inte-
ger variables and clocks. Then, in a sense reminiscent of the definition of closed
abstraction sets (see Sec. 7.1.2), the abstract semantics is derived from the full
semantics by removing all assignments to the abstracted variables and clocks
and replacing all constraints by the strongest constraint that is weaker than the
original and that does not contain abstracted entities. For example, the guard
y ≤ 90 ∧ Psig is replaced by Psig if the clock y is abstracted and sig is not.

9.3 Abstraction Refinement for Timed Automata

In this section we describe how we automate the single components of the ab-
straction refinement loop. In the next subsection we present how an abstract
counterexample is checked whether it is spurious or not. In the following sub-
section, we close the loop by explaining how we get a refined abstraction, pro-
vided that the encountered abstract counterexample is spurious.

9.3.1 Counterexample Analysis

In the abstraction refinement loop, when model checking a safety property of
an abstract system returns a counterexample, one has to investigate whether it is
spurious or not. One possibility of doing this is to build a linear test automaton
T from the abstract counterexample, in which every location has at most one
outgoing edge. This test automaton is then composed with the full system S to
be verified. If the last location of the test automaton is reachable in the composed
system, then we know that the abstract counterexample is also a counterexample
for the full system.

It is desirable that the test automaton T is able to find a concretization if
there is any and, moreover, it is mandatory that T restricts the behavior of the
full system as much as possible. If this is not the case, the test automaton is
useless because it would make no difference to model check the full system
only. We therefore construct the test automaton so that it synchronizes with the
full system as often as possible. By doing this, only a small fraction of the full
system’s state space is explored. This makes perfect sense, because we are only
interested in a concretization of the abstract trace.

To additionally restrict the behavior of timed automata, UPPAAL provides
so-called committed locations. A system state is a committed state if at least
one of the current automata locations is committed. Committed locations are a
mechanism to restrict the behavior of the overall system. A committed state can-
not delay and the next transition applied to this state must involve an outgoing
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edge of a committed location. Figure 9.4 shows a system of three parallel timed
automata P , Q and R. The system has three clocks x, y and z, three integer
variables k, m and n, binary synchronization labels a and b and a committed
location q2 (indicated by the “c”). For example, if the system is in a state where
P is at p1, Q is at the committed location q2 and R is at r1, then this system
state is committed. The system then has to take the edge from q2 to q3 which
requires Q to synchronize with R.

p1

x ≤ 11

P
p2 p3

q1
Q c

q2 q3

r1
R

r2 r3

x > 4

x := 0

x = 6, a?

m := k

y == 13, a!

k := 42

b!

b?

n := k

z ≥ 28

Fig. 9.4. A simple UPPAAL model

A counterexample, as provided by UPPAAL, is a finite sequence of states that
are either connected via transitions or via delays with a certain duration. Sup-
pose the initial state of the system depicted in Fig. 9.4 is given by the three
initial locations p1, q1 and r1 together with the initial values of the integer
variables and the initial values for the clocks. All clocks and integer values
are 0 in this state. If we use UPPAAL to verify whether the temporal formula
∃♦(P = p3 ∧Q = q3 ∧R = r3) holds, the tool reports the error trace given on
the left of Fig. 9.5. The trace starts with the initial state of the system and ends
with a state satisfying the given property. Each state of the trace assigns each au-
tomaton of the system a location, each variable a value of the variable’s domain
and each clock a rational value. A test automaton built from such a trace pro-
ceeds if the full model of the system executes a transition that enables the guard
of the next transition of the test automaton. The problem is to decide whether
a transition in the full model matches. Checking the values of the integer vari-
ables is straight-forward. To check the clock values is a bit tricky because a trace
may also have clock valuations with rational numbers. Below we show how this
problem can be solved. Another problem is to match the locations. The locations
are not subject to abstractions. Hence, they appear in both the full and the ab-
stract model. However, UPPAAL does not provide any syntactic means to refer
to locations in guards, i. e., location constraints may only occur in the target for-
mula. Therefore, we introduce an auxiliary integer variable for each automaton
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of the system. The current value of this variable identifies uniquely the current
location of the automaton. Thus, the test automaton is able to match locations
by checking the corresponding auxiliary variable. In order to preserve the same
behavior with respect to global time we add a clock T to the test automaton.
This clock is never reset and therefore it represents the current duration of the
trace at any time. The next three paragraphs give a detailed description on how
to build a test automaton.

Translating the Initial State

The first element of an abstract trace is the initial state of the abstract system.
For reasons of completeness, we add a corresponding check for reasons of com-
pleteness. We add a transition leading from the initial location t0 of the test
automaton to a new location t1. The guard of this transition checks if the sys-
tem’s variables have the right values at time point time = 0. To restrict the full
model’s behavior t0 is a committed location.

Translating Delay Transitions

A delay transition with duration d ∈ Q, where Q denotes the rational numbers,
of the abstract counterexample is translated as follows: suppose that, after the
transition is made, the system is in a state which is described by the valuation
val and that T ∈ Q is the sum of all durations that occur before the transition.
Let the most recently added location of the test automaton be tn. In this case we
add two locations tn+1 and tn+2 to the test automaton and the two transitions

tn
await(T+d)−−−−−−−→ tn+1 and tn+1

await(T+d)∧check(val)−−−−−−−−−−−−−−→ tn+2. Here await(q) for
q ∈ N is T = q and for q ∈ Q \ N is bqc > T ∧ T < dqe. Note that by the
definition of await(q) the test automaton searches for an overapproximation of
the given abstract trace. The expression check(val) is the conjunction of tests
whether all discrete variables of val are equal to the valuation of the state. Note
that this approach is correct because if there is no concretization found using
this overapproximation then there is no concretization at all. If a concretization
is found then the concrete trace may differ from the abstract trace with respect
to the non-integer delays but it is a trace of the full model that satisfies the
reachability property. An alternative approach would be to multiply all timing
constants with the common denominator and check for equality only.

Translating τ Transitions

A τ transition in the counterexample also introduces two locations in the
test automaton. Suppose the last added location of the test automaton is tn
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t0 t1
T = 0 ∧ k = 0 ∧m = 0 ∧ n = 0( P.p1 Q.q1 R.r1 )

x=0 y=0 z=0 k=0 m=0 n=0

t1 t2

t2 t3

T = 7

T = 7 ∧ p = q = r = 1
∧ x = y = z = 7
∧ k = m = n = 0

Delay: 7

( P.p1 Q.q1 R.r1 )
x=7 y=7 z=7 k=0 m=0 n=0

t3 t4

t4 t5

T = 7, C?

T = 7 ∧ p = 2 ∧ q = r = 1
∧ x = 0 ∧ y = z = 7
∧ k = m = n = 0

P.p1->P.p2 { x > 4, tau, x := 0 }

( P.p2 Q.q1 R.r1 )
x=0 y=7 z=7 k=0 m=0 n=0

t5 t6

t6 t7

T = 13

T = 13 ∧ p = 2 ∧ q = r = 1
∧ x = 6 ∧ y = z = 13
∧ k = m = n = 0

Delay: 6

( P.p2 Q.q1 R.r1 )
x=6 y=13 z=13 k=0 m=0 n=0

t7 t8

T = 13 ∧ p = 3 ∧ q = 2 ∧ r = 1
∧ x = 6 ∧ y = z = 13
∧ k = m = 42 ∧ n = 0

Q.q1->Q.q2 { y == 13, a!, k := 42 }
P.p2->P.p3 { x == 6, a?, m := k }

( P.p3 Q.q2 R.r1 )
x=6 y=13 z=13 k=42 m=42 n=0

t8 t9

T = 13 ∧ p = q = 3 ∧ r = 2
∧ x = 6 ∧ y = z = 13
∧ k = m = n = 42

Q.q2->Q.q3 { 1, b!, 1 }
R.r1->R.r2 { 1, b?, n := k }

( P.p3 Q.q3 R.r2 )
x=6 y=13 z=13 k=42 m=42 n=42

t9 t10

t10 t11

28 < T < 29

28 < T < 29∧p = q = 3∧r = 2
∧ 21 < x < 22 ∧ 28 < y, z < 29

∧ k = m = n = 42

Delay: 15.5

( P.p3 Q.q3 R.r2 )
x=21.5 y=28.5 z=28.5 k=42 m=42 n=42

t11 t12

t12 t13

28 < T < 29, C?

28 < T < 29 ∧ p = q = r = 3
∧ 21 < x < 22 ∧ 28 < y, z < 29

∧ k = m = n = 42

R.r2->R.r3 { z > 28, tau, 1 }

( P.p3 Q.q3 R.r3 )
x=22 y=29 z=29 k=42 m=42 n=42

Fig. 9.5. A trace reported by UPPAAL for the system from Fig. 9.4 when analyzing the formula
∃♦(P = p3 ∧Q = q3 ∧R = r3) and the corresponding test automaton
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and after the τ transition the system is in a state described by the valuation
val. Let T and tn be defined as above. Here, we add the locations tn+1 and

tn+2 to the test automaton and the two transitions tn
await(T )∧C?−−−−−−−−→ tn+1 and

tn+1
await(T )∧check(val)−−−−−−−−−−−−→ tn+2. Note that we exploit the fact that the abstract

model made a τ transition to introduce a synchronization of the test automaton
with the full model via the channel C. By this, the test automaton is notified as
soon as the full model changed the values for the variables and the search space
is reduced. Since time is supposed to pass, the location tn cannot be committed.
However, to restrict the behavior of the system tn+1 can be committed.

Translating Synchronized Transitions

A synchronized transition of the counterexample is translated as follows: sup-
pose again, that the valuation val, T and tn are defined as above. In contrast
to how we handle a τ transition, we cannot force the test automaton to par-
ticipate. However, we know that whenever MOBY/RT generates a synchro-
nized transition this only happens directly after a τ transition and that all
synchronized transitions are leaving a committed location. Note that this is a
MOBY/RT specific property. Therefore we add the location tn+1 and the tran-

sition tn
check(val)∧await(T )−−−−−−−−−−−−→ tn+1. As synchronized transitions can happen se-

quentially when more than one automaton is in the network and the transition’s
origin is a committed location, we have to make location tn committed, too.

Consider the trace generated by UPPAAL on the left of Fig. 9.5 again. If we
apply the above construction rules we get the test automaton described on the
right of that figure. For the sake of readability, locations in the test automaton
are not marked as committed.

9.3.2 Refining Abstractions

When an abstract counterexample reveals to be spurious, a model checker nor-
mally does not give any hint why this is the case. Usually, the next steps one
has to do in order to get a refined version of the current abstraction is to analyze
the counterexample. Here, one has to identify variables or clocks respectively
that hinder the progress of the test automaton. Normally, this has to be done
manually and, on the one hand, is a tedious and time consuming procedure and
on the other hand requires a deep understanding of the model to verify. We will
henceforth refer to both integer variables and clocks simply as variables.

Our approach automates the analysis of the counterexample. We did this by
extending UPPAAL so that if an abstract counterexample is spurious, UPPAAL

reports this and at the same time provides a set of variables that should not be
abstracted in the next iteration of the abstraction refinement loop.
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To determine a refined abstraction, we exploit the fact that our test automata
are linear. If the abstract counterexample turns out to be spurious, then there is a
unique edge in the test automaton whose starting location is reached, but not its
target location. We call the starting location of this edge the dead end location
and the transition induced by this edge we call the dead end transition. The dead
end transition can either be blocked because there is no enabled transition in the
full system that can synchronize with the test automaton, or because there is no
reachable state with a valuation of the variables that satisfies the guard of the
dead end transition.

Automatic Analysis of Counterexamples

Our approach for automatically analyzing abstract counterexamples determines
a minimal set of variables Vhint, so that if these variables had different values,
the test automaton T could take at least the dead end transition. This is done on
the fly, while UPPAAL checks if the error trace is spurious. Figure 9.6 sketches a
typical verification algorithm for safety properties. The arguments of the verify
function are the system under consideration, composed with the test automaton
S ‖ T , and the property ϕ to verify. The state s0 is the initial state of the system.
We extended this algorithm by including the lines 13–15.

1 function verify(S ‖ T , ϕ):
2 open = {s0}
3 closed = ∅
4 while open 6= ∅ do:
5 s = open.pop()
6 if s |= ϕ then:
7 return True
8 if s 6∈ closed then:
9 closed.push(s)

10 for each outgoing transition t of s do:
11 if t is enabled then:
12 s′ = succ(s, t)
13 open.push(s′)
14 progress(s′)
15 else:
16 analyze(s, t)
17 return False

Fig. 9.6. Reachability analysis

During the analysis, UPPAAL checks each outgoing edge from a location in
the current state s if it is enabled. If this is the case, the successor state s′ is com-
puted and added to the open list. In addition to the normal verification function,
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we now call progress with the successor state s′ (line 14). Pseudo-code for the
progress function is given in Fig. 9.7. It determines the reached location of the
test automaton that has currently the smallest distance to the test automaton’s
last location. Remember, if the last location of the test automaton is reachable,
then the counterexample is a real counterexample. If the counterexample is spu-
rious, then after the execution of the verify function, the location dead end from
Fig. 9.7 is the dead end location.

1 function progress(s):
2 if dist(s(test)) < dist(dead end):
3 dead end = s(test)
4 Vhint = ∅

Fig. 9.7. On the fly detection of the dead end location

If, during the generation of successor states, a transition t is not enabled it is
passed together with its starting state s to the analyze function (line 16). Pseudo
code for this function is shown in Figure 9.8. The analyze function checks if the
test automaton in s is in the current dead end location. If this is the case, then
it checks if applying t would enable the current dead end transition tdead end.
If this is the case, then analyze collects all the variables and clocks respectively
that appear in unsatisfied constraints of t’s guard. If the set of these variables u is
smaller than Vhint, then Vhint is updated. After the execution of the verify function
Vhint contains variables that hinder the execution of the dead end transition.

1 function analyze(s, t):
2 if s(test) 6= dead end then:
3 return
4 if tdead end is synchronized then:
5 if t can synchronize with tdead end then:
6 V = {c ∈ inv(succ(s, t)) | c unsat constraint}∪
7 {c ∈ guard(t) | c unsat constraint}
8 if |V| ≤ |Vhint| ∨ Vhint = ∅ then:
9 Vhint = V

10 else if assignment of t makes guard(tdead end) true then:
11 V = {c ∈ inv(succ(s, t)) | c unsat constraint}∪
12 {c ∈ guard(t) | c unsat constraint}
13 if |V| ≤ |Vhint| ∨ Vhint = ∅ then:
14 Vhint = V

Fig. 9.8. On the fly extraction of least blocking variables. Used expressions: inv(s): conjunction
of s’s location invariants, s(test): the location of the test automaton in s, succ(s, t): the successor
state of s reached through t, guard(t): t’s guard, dist(l): distance from a location l of the test
automaton to the last location of the test automaton in terms of transitions.
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Explanations

After UPPAAL has checked that the counterexample is spurious, all variables
that occur in the set of unsatisfied constraints Vhint are reported. These variables
should not be abstracted in the next iteration, as they hinder the progress of the
test automaton. This ensures that the revealed spurious counterexample will not
be found in the next iteration. In the following, we explain that the reported
variables are likely to be helpful.

From the construction of the test automaton we know that there are at most
two types of transitions in the test automaton: synchronized transitions and τ
transitions. The guard of such a synchronized transition is always satisfiable
because it was already satisfied when the starting location of the transition was
reached. It only checks that no time elapses since the last transition. Depending
on which part the transitions represent from the abstract counterexample, we
can distinguish three different cases.

If the dead end transition belongs to one of the transitions introduced for a
delay in the abstract counterexample, then the progress of the test automaton is
blocked because the full system cannot idle due to an unsatisfied location in-
variant. This is only possible if this location invariant talks about a clock that
was abstracted away because in the abstraction it is possible to take this tran-
sition. Therefore this clock should not be abstracted in the next iteration of the
abstraction refinement loop.

If the dead end transition belongs to one of the two transitions introduced for
a τ transition in the abstract counterexample, then we know that the progress of
the test automaton stops because of a τ transition in the full system. The reason
for this is that the clock guards of the two introduced transitions are satisfied. So
the only reason why this may block is that the guard that checks the valuation
of the variables is not satisfied. But this is only possible if there is no enabled
τ transition in the full system whose assignments would make the guard true.
As there is such a transition in the abstraction, we again know that this must
be because of an unsatisfied transition guard. So the variables that occur in the
unsatisfied constraints of this guard should not be abstracted in the next iteration.

The last possible reason why the dead end transition is blocked is that there is
no enabled transition with an assignment that would make the guard of the dead
end transition true. From the construction of the test automaton this can only
be a synchronized transition in the full system because a τ transition in the full
system always has to synchronize with the test automaton which is not possible.
As we know that there is a synchronized transition in the abstract system that
makes the guard of the dead end transition true, this transition would do it also
in the full system. The reason why the progress of the test automaton is stopped
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is that either the guard of this synchronized transition or a location invariant of
the successor state is not satisfied.

9.4 Evaluation

To demonstrate the potential of our approach we chose the Single-tracked Line
Segment (SLS). It is the specification of a control system for a single-tracked
line segment for tramways, and is implemented by distributed PLC automata
[31]. We took three different models of the SLS case study as examples. As the
safety property to verify, we chose the mutual exclusion of drive permissions,
i. e., the control system never gives permission to both directions simultane-
ously. All the reported results were obtained on an AMD Opteron system. We
set the memory limit to 4 GByte.

The first model (S1) we checked is a manipulated system that we obtained
by changing a delay time but with the assumption that everything is imple-
mented on only one hardware device. The full timed automata model we got
from MOBY/RT had 9 processes, 2 clocks and 24 integer variables. Table 9.1
shows in the first row the resources needed to check the full model of S1 using
the standard UPPAAL verification engine. It took 305 seconds to verify that the
manipulated delay time does not lead to an error if the system is implemented
on one device. In the following rows the steps of the abstraction refinement loop
are given. Each step consists of a verification run to find an abstract counterex-
ample (left columns) and the check for spuriousness (right columns). For these
runs we use UPPAAL/DMC’s greedy search with the hL heuristic (see Chap. 5
for details). The use of directed model checking makes sense here, because it can
be expected that the current abstraction contains (abstract) counterexamples and
directed model checking detects counterexamples faster. Note that whenever a
spurious counterexample is found a refined abstraction is derived. This refined
abstraction considers more entities (at least one clock or one integer variable
more than before).

For S1 it turns out that with our counterexample guided abstraction refine-
ment we can prove correctness of the model using an abstraction with 1 clock,
4 processes and 14 integer variables less than the full model. The accumulated
number of explored states, i. e., the sum over both state columns of the S1 exam-
ple, is 986878. This is only about 3% of the states that are explored by UPPAAL

to produce the result for the full model. Also the summarized time consumption
of our CEGAR approach is of the same magnitude, compared with UPPAAL’s
runtime for the full model. Note that in abstraction 3, the number of processes
has changed. The reason for this is that whenever a variable is added to the next
abstraction that is triggered by the environment, then an additional automaton
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is added to the system that drives this variable. These driver automata are auto-
matically generated by MOBY/RT.

Table 9.1. Abstraction refinement results for the experiments. Abbreviations: #c: number of
clocks, #p: number of processes, #v: number of integer variables, time: runtime in seconds, states:
number of explored states, trace: length of found error trace, CE: counterexample, dashes indicate
out of memory (more than 4 GByte) or, in the trace column, absence of error states

abstract search spuriousness check
Exp. #c #p #v states time trace #c #p #v states time result

S1: full 2 9 24 35918002 305.2 verified
Abstr. #1 0 4 3 47 0.0 19 3 10 24 3403 0.0 spurious CE
Abstr. #2 1 4 3 47 0.0 20 3 10 24 460243 4.3 spurious CE
Abstr. #3 1 5 5 58 0.0 21 3 10 24 51841 0.8 spurious CE
Abstr. #4 1 5 6 44 0.0 21 3 10 24 166725 1.8 spurious CE
Abstr. #5 1 5 8 160 0.0 31 3 10 24 287819 3.0 spurious CE
Abstr. #6 1 5 10 16491 0.7 – verified

S2: full 3 10 25 – – –
Abstr. #1 0 5 3 53 0.0 27 4 11 25 7615 0.0 spurious CE
Abstr. #2 1 5 3 53 0.0 27 4 11 25 7615 0.0 spurious CE
Abstr. #3 2 5 3 53 0.0 27 4 11 25 10424455 124.8 spurious CE
Abstr. #4 2 5 6 2477 0.1 76 4 11 25 4346623 50.8 spurious CE
Abstr. #5 2 6 8 11091 0.4 59 4 11 25 786511 9.3 spurious CE
Abstr. #6 2 6 9 992 0.0 40 4 11 25 1540343 17.0 spurious CE
Abstr. #7 2 6 11 4310 0.2 56 4 11 25 1360127 20.4 spurious CE
Abstr. #8 3 6 11 5016 0.2 68 4 11 25 2946704 31.9 disproved

S3: full 3 10 25 – – –
Abstr. #1 0 5 3 53 0.0 27 4 11 25 7615 0.0 spurious CE
Abstr. #2 1 5 3 53 0.0 27 4 11 25 7615 0.0 spurious CE
Abstr. #3 2 5 3 53 0.0 27 4 11 25 10424455 124.8 spurious CE
Abstr. #4 2 5 6 2477 0.1 76 4 11 25 4346623 50.8 spurious CE
Abstr. #5 2 6 8 11091 0.4 59 4 11 25 786511 9.3 spurious CE
Abstr. #6 2 6 9 992 0.0 40 4 11 25 1540343 17.0 spurious CE
Abstr. #7 2 6 11 4310 0.2 56 4 11 25 1360127 20.4 spurious CE
Abstr. #8 3 6 11 5016 0.2 – verified

For the next verification problem we removed the assumption about the par-
titioning of the PLC automata onto hardware devices. The second experiment
(S2) represents a distributed system. Now, the manipulated delay time leads
to an incorrect system. However, it was not possible to find a counterexample
with UPPAAL’s randomized depth-first search in the full model within the given
memory limit of 4 GByte. This time the abstraction refinement loop had to it-
erate 8 times to generate an abstraction for which a definite answer was found,
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i. e., a counterexample in the full model. The computed abstraction saved 4 pro-
cesses and 14 integer variables.

In our final experiment (S3) we reverted to the original delay time. Again,
it was not possible to check the full model within the memory limits. The ab-
straction refinement loop generated the same sequence of refined abstractions
and terminated after 8 iterations again. But this time the final abstraction has no
counterexample.

9.5 Discussion

All the experiments from the last section show that the abstraction refinement
approach presented in this chapter is able to generate abstractions effectively
for which definite verification results can be found. The main benefits are that
there is no need for human interaction at all, an abstraction of the model is
computed automatically for which a reliable verification result can be computed
and that this approach reduces significantly the resources (runtime and number
of explored states). However, there is no guarantee that this approach computes
a minimal abstraction but it is obvious that it will terminate since each iteration
adds at least one of the finitely many entities of the model.

One interesting question that pops up when reading the result Table 9.1 is:
How does our abstraction refinement loop perform compared to directed model
checking methods? Table 9.2 is to answer this question.

The first column of the table gives the used heuristic with the search method
given in the row above. The heuristics for which we report results are the follow-
ing. The hA heuristic is the PDB heuristic based on the Russian Doll approach
from Chap. 7. The heuristics hPsyn and hPAR are two PDB heuristics, based on
predicate abstraction (see Chap. 6). The splitting bound b for the hPsyn heuristic
was set to 2. For the hPAR heuristic, we set the splitting bound b to 1 and the
number of refinement steps r to 4. The haa is a heuristic proposed by Dräger et
al. [40]. A brief description of their method was presented in Sec. 4.3.2. Recall
that their heuristic is parametrized, we set the parameter N to 100, which works
good on these benchmarks. Further, we report results for the two heuristics hL

and hU based on the monotonicity abstraction (see Chap. 5 for details), and
the two graph distance-based heuristics dL and dU proposed by Edelkamp et
al. [42].

The results for all the pattern database heuristics as well as the results for the
haa heuristic were obtained with UPPAAL/DMC. All other results were obtained
with MCTA.

It turns out that all direct model checking methods can prove the S1 ex-
ample error-free, with respect to the given target formula. Note that this is not
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Table 9.2. Abstraction refinement compared to directed model checking. Abbreviations: AR: our
abstraction refinement approach, states: number of explored states, time: runtime in seconds,
trace: length of the detected error path. Dashes either indicate out of memory, i. e., more than
4 GByte or that there is no error path.

S1 S2 S3

states time trace states time trace states time trace

AR 986878 10.6 – 21444038 255.1 153 18497334 223.2 –

UPPAAL/DMC’s greedy search

hA 0 0.1 – 2283214 15.0 108 0 0.8 –
hPsyn 11320444 155.1 – 43712781 428.5 895 – – –
hPAR 18593678 121.8 – 26422889 211.5 3225 – – –
haa 15061671 329.3 – – – – – – –

UPPAAL/DMC’s A∗ search

hA 0 0.1 – 135259 1.6 57 0 0.8 –
hPsyn 12791886 163.8 – – – – – – –
hPAR 26690320 201.3 – – – – – – –
haa 21822058 401.2 – – – – – – –

MCTA’s greedy search

hL 4519322 191.4 – 4641286 170.6 995 – – –
hU 4639011 298.2 – 7889320 523.6 280 – – –
dL 7003688 53.2 – – – – – – –
dU 6703513 51.1 – – – – – – –

MCTA’s A∗ search

hL 6437232 209.6 – – – – – – –
hU 6448250 323.9 – – – – – – –
dL 9431992 77.2 – – – – – – –
dU 9424486 78.8 – – – – – – –

MCTA’s useless transitions

hL 4559825 267.8 – 1543 0.3 122 – – –
hU 4540415 405.3 – 399 0.2 105 – – –
dL 6784648 102.3 – – – – – – –
dU 6784981 101.4 – – – – – – –

surprising, because even UPPAAL’s breadth-first search can solve this problem.
This means that the state space of this example is not too big, given a memory
limit of 4 GByte. However, all methods, except the Russian Doll heuristic hA,
need more time to solve this problem than the abstraction refinement approach.
Again, this is not surprising, since the only benefit of heuristic search in the
absence of reachable error states is that the heuristic can be used for pruning
(recall that all heuristics, except the dL and dU heuristics, can detect dead ends).
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More precisely, if a heuristic estimate for a state is infinity, this state can safely
be excluded from the search. The hA heuristic does not expand any states. The
reason for this is that in the underlying abstraction, which is used as the pattern
database, no abstract error state is reachable. Hence, after building the PDB, the
search is over.

It is interesting to see that, in the absence of reachable error states, all the
heuristics explore a different number of states, depending on whether A∗ or
greedy search is used. At a first glance this seems to be wrong, and in fact it
would be wrong for discrete state systems. However, since we are dealing with
the symbolic state space of timed automata, this is possible for the following
reasons. Recall that a symbolic state consists of a discrete part and a continuous
part, i. e., the zone of the state. Suppose there are several states s1, . . . , sn with
the same discrete part but different zones. Say Zsi is the zone of si and Zsi ⊆
Zsj iff i ≤ j. If the states are explored in increasing order of their indices,
then all the states s1, . . . , sn are added to the open queue, and thus explored.
The reason for this is that when the algorithm checks if si is in the open or the
closed queue, then there is no such state, because the zone of si is not subsumed
by any previously visited state. If the states are expanded in decreasing order,
then only sn is explored, because every state si, with i < n is subsumed by sn
and thus not inserted into the open queue.

Let us have a closer look at the results for the S2 example. Here, due to
the size of the state space, A∗ was only able to solve this problem with the hA

heuristic. But again, the runtime is orders of magnitude shorter than the runtime
of our CEGAR loop. The runtime results for greedy search obtained with hA, hL

and hPAR are shorter or at least of the same order of magnitude. The runtime of
hA is one order of magnitude shorter than the runtime of our CEGAR approach.
The results obtained with the useless transitions approach with hL and hU are
even 2 orders of magnitude shorter. In our opinion it is not surprising that the
directed model checking methods perform well on S2. The reason for this is that
in this example there is a reachable error state, and directed model checking is
especially tailored to the fast detection of such states.

In the last example, only our abstraction refinement loop and the methods
that use the hA heuristic can prove this example error free. Here, for the same
reason as for the S1 example, the search with our Russian doll approach termi-
nates after the construction of the PDB, because there is no reachable abstract
error state. All the other heuristics are not able to solve this problem. The reason
for this is that the state space of this example is too big, and too few states can
be pruned.
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9.6 Conclusion

In this chapter, we first presented an approach for counterexample-guided ab-
straction refinement for a subclass of timed automata. Afterwards, we empir-
ically compared this approach with some directed model checking techniques.
For the CEGAR approach, we defined how to construct test automata that can be
used to check whether a full model is able to behave as the abstract trace, i. e.,
to check whether an abstract trace is spurious or not. Moreover, we extended
the model checker UPPAAL in such a way that it executes an analysis of why
a full model cannot execute a spurious trace. The result of this analysis is used
to refine the given abstraction in a way that the spurious counterexample can-
not occur anymore. This approach allowed us to construct a closed abstraction
refinement loop. We want to add that our abstraction refinement approach was
developed for PLC automata, but the methodology is generally applicable to the
full range of timed automata based models expressible within UPPAAL.

The empirical comparison of the CEGAR approach and the directed model
checking techniques revealed the following. Especially in the presence of reach-
able error states, directed model checking is often superior to our CEGAR ap-
proach. Our best-performing directed model checking method, namely the Rus-
sian doll approach from Chap. 7, even outperformed the CEGAR approach in
the absence of reachable error states.
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Discussion

The general lesson that can be learned from this thesis is that directed model
checking is a powerful means to detect subtle errors in large systems of timed
automata. In this thesis, we proposed several directed model checking tech-
niques with which the state explosion problem of real-time systems can be ef-
ficiently alleviated. With the techniques from this thesis it is now possible to
detect reachable error states in huge practically relevant systems that are be-
yond the scope of previously proposed directed model checking methods and
blind search.

10.1 Conclusion

At the point when we started to work on directed model checking for timed au-
tomata, detecting reachable error states in large real-time systems was hardly
possible. The prevailing methods that existed at that time could only cope with
systems of moderate size. The only way to analyze larger systems was to ap-
ply abstractions or hand-tailored heuristics as implemented in UPPAAL CORA

(see Sec. 4.3.2). However, both approaches require a deep understanding of the
system under consideration, maybe even an intuition where possible errors lurk.
When model checking is used in an abstraction refinement loop or for debug-
ging purposes, it is desirable to obtain short error traces. Short error traces are
easier to understand and provide useful information about which particular be-
havior of the system is responsible for reaching an error state. However detect-
ing provable shortest error traces with hand-crafted heuristics or abstractions is
a time-consuming and error-prone process.

With the directed model checking techniques presented in the thesis at hand,
the situation has changed a lot. We proposed several powerful heuristics and
search enhancements for model checking timed automata. All of them are fully
automatically generated, based on the declarative description of the system un-
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der consideration. As a consequence, directed model checking, as proposed in
this thesis, is a push-button technology that needs no additional user input. The
developed techniques allow to cope with systems of non-trivial size that previ-
ously could hardly be analyzed automatically. In the following, we will briefly
highlight the main contributions of this thesis.

The two heuristics hL and hU based on the monotonicity abstraction, were
the first heuristics that we have developed that allowed us to detect reachable
error states in the largest instances of our benchmark set. They clearly outper-
formed the previously proposed heuristics by Edelkamp et al. [42] and blind
search as implemented in UPPAAL. However, the detection of provable shortest
error traces with A∗ and hL was only possible for two more instances of our
benchmark set.

We used the monotonicity abstraction not only to generate the both heuris-
tics hL and hU , but it is also part of a novel strategy for the generation of a
highly efficient pattern database heuristic. By using the monotonicity abstrac-
tion to obtain abstraction sets on which a pattern database heuristic can be built,
we get a fairly targeted notion of what is relevant to the target formula under
consideration. The resulting pattern database heuristic allows us to detect short-
est possible error traces in the largest of our benchmarks in a matter of seconds.

Our approach to avoid useless transitions is a powerful means to further al-
leviate the state explosion problem. It can be seen as a special form of heuristic
search, where not only just states are heuristically evaluated, but also state tran-
sitions. The framework can be applied to a broad range of heuristics, namely
those heuristics that are computed on-the-fly. A nice property of our approach
is that the same heuristic that is used to evaluate states can be used to evaluate
transitions, without changing its implementation. Compared to A∗ and greedy
search, this approach scales much better, and, at the same time, yields rather
short error traces.

Last but not least, we also want to add that all techniques developed in this
thesis are implemented in at least one of our model checkers UPPAAL/DMC and
MCTA. So far these are the only available tools for directed model checking of
timed automata. Especially MCTA has proved to be a very powerful directed
model checking tool, i. e., MCTA outperforms standard UPPAAL not only in
terms of runtime but also in terms of explored states and error trace length. We
implemented MCTA from scratch and released it under the terms of the GPL and
in the hope that it also serves as a platform to develop and implement additional
directed model checking techniques for timed automata.
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10.2 Future Work

This is the last section in this chapter, and thus also in this thesis. As a final re-
mark, we want to point our vision on how to deal with larger and larger systems.
We believe that the state explosion problem of huge systems has to be tackled in
two ways. First, one has to exploit the underlying structure of the systems under
consideration more explicitly. For example, the heuristics and search methods so
far do not explicitly take into account structural properties like communication
or causal dependencies of variables or transitions. Second, we need a tight in-
tegration of directed model checking and other model checking techniques like
compositional model checking or abstraction refinement. For instance, when do-
ing abstraction refinement, it seems promising to us to exploit the fact that one is
repeatedly confronted with several abstractions of the same system. We believe
that addressing these points will not only lead to new potential heuristics, but
also to novel strategies for the state space traversal.
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Case Studies and Benchmarks

A.1 The Fischer Protocol

The well-known Fischer Protocol is a mutual-exclusion protocol, first proposed
by Fischer [46]. For a more detailed description of the protocol we refer the
interested reader to Lamport’s article [73]. The system consists of n timed au-
tomata (identical up to renaming), plus a shared integer variable id ranging from
0 to n. Each automaton Ai behaves as follows: after remaining idle for some
time, it checks whether the common resource is free (test id = 0) and if so, be-
fore k time units sets id to i. Then it waits for some time and, making sure that
id is still equal to i, enters the critical section. If id is not equal to i (meaning
that some other automaton has requested access) then automaton Ai has to retry
later.

A.1.1 The Models

We use three variants of the Fischer protocol with 5, 10 and 15 automata. The
test examples are denoted FAi and FBi , respectively, and i is the number of
parallel automata. The error condition is that at least two of the automata are
simultaneously in the location labeled with cs (see Figure A.1). We injected this
error by weakening the temporal conditions in the automata (from < to ≤). The
variants differ in the way they encode the error condition.

• Variant A adds an additional automaton with synchronization.
• Variant B selects and specifies two of the automata for the error condition.

Table A.1 provides the number of components of the model.
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init

req

x ≤ k

waitcs

id = 0

x := 0

x ≤ k
x := 0,

id := pid

x > k∧id = pid

id := 0 id = 0

x := 0

Fig. A.1. Timed automata model for the Fischer protocol

Table A.1. Number of system components. Abbreviations: Exp.: the model’s name, aut.: the
number of automata in the model, clock: the number of clocks in the model, vars: the number of
integer variables, sync: number of synchronization labels

Exp. aut. clocks vars sync

FA5 6 5 1 2
FA10 11 10 1 2
FA15 16 15 1 2
FB5 5 5 1 0
FB10 10 10 1 0
FB15 15 15 1 0
FC5 5 5 2 0
FC10 10 10 2 0
FC15 15 15 2 0

A.2 The Single-tracked Line Segment Case Study

The Single-tracked Line Segment case study (SLS) stems from an industrial
project partner of the UniForM-project [68]. The problem is to design a dis-
tributed real-time controller for a segment of tracks where trams share a piece
of track. Figure A.2 sketches the system architecture.

The railway lines are marked by thick lines and share a short part. The short
arrows describe the directions of trains. The movements of trains are detected
by six sensors, three for each direction. The arrival of trains is recognized by
entrance sensors ES1 and ES2. The sensors CS1 and CS2 check whether a train
enters the critical section, while LS1 and LS2 recognize leaving trains. The
information delivered by the sensors are processed by two computing devices
called PLC 1 and PLC 2. They notice the movements of trains and compute
which direction is allowed to use the critical section.
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LS2

CS2

Fig. A.2. The SLS architecture

A.2.1 The Models

A distributed controller was modeled in terms of PLC automata [33], which is
an automata-like notation for real-time programs. According to their tasks, we
can distinguish five different automata in the system:

• The signals of the sensors are filtered by six components. The purpose of
these filters is to compensate some inherent unreliabilities of the sensor hard-
ware.

• Four counters accumulate the information about passing trains produced by
the filters. For each zone of interest we need a counter to determine the num-
ber of trains in this zone. For each direction there is a waiting zone, i. e.,
a zone between the entrance sensor and the critical sensor, and there is a
critical zone, i. e., a zone between the critical sensor and the leaving sensor.
If a counter recognizes that the number of trains in its corresponding zone
leaves the plausible range, which is [0, 2] for the SLS, an error signal is
raised.

• One component summarizes the error signals of all filters and counters.
• The permissions which direction is allowed to enter the critical section are

computed in the main controller. The decision depends on the current values
of the counter and the current state of the main controller.

• Two automata produce the signal for the traffic lights for each direction. To
this end they need the information whether there is a train in its waiting zone,
whether its direction has got the permission to enter the critical section, and
whether there is an error in the system or not.

The system diagram of the controller for the SLS is given in Fig. A.3. The
figure shows 14 system nodes, which are represented by icons. For example,
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filter FES1

filter FCS1

counter EC1

error detection

filter FLS1

filter FES2

filter FCS2

filter FLS2

counter EC2

counter CL2

main controller

Actuator 1

Actuator 2

counter CL1

Fig. A.3. System diagram of the SLS controller

on the left side of the diagram, there are six filter components, which are re-
sponsible for the transformation of the sensor outputs into reliable values. The
resulting signals, which are delivered to the traffic lights on the railway, are
generated by the two actuator components on the right of the diagram.

This system of PLC automata can be transformed into (abstractions of) their
semantics in terms of timed automata with the tool MOBY/RT [80]. For the
evaluation of our approach we choose the property that never both directions
are given permission to enter the shared segment simultaneously. This property
is ensured by 3 PLC automata (main controller, Actuator 1, Actuator 2) of the
whole controller, and we injected an error by manipulating a delay so that the
asynchronous communication between these automata is faulty. In MOBY/RT
abstractions are offered for the translation into the timed automata. The given
set of PLC automata has eight input variables. We constructed nine models with
increasing size by decreasing the number of abstracted inputs. Table A.2.1 pro-
vides the number of components of the model.
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Table A.2. Number of system components. Abbreviations: Exp.: the model’s name, aut.: the
number of automata in the model, clock: the number of clocks in the model, vars: the number of
integer variables, sync: number of synchronization labels

Exp. aut. clocks vars sync

C1 5 3 12 3
C2 6 3 14 3
C3 6 3 15 3
C4 7 3 17 3
C5 8 3 19 3
C6 9 3 21 3
C7 10 3 23 3
C8 10 3 24 3
C9 10 3 25 3

A.3 The Mutual Exclusion Case Study

The Mutual Exclusion case study models a real-time protocol to ensure mutual
exclusion in a distributed system via asynchronous communication. The pro-
tocol is described in full detail in Dierk’s article [32]. The case study consists
of three automata. Two of them, S1 and S2, have exactly two locations, one of
those is considered to be safe and the other one is considered to be unsafe in
some sense. They are given in Fig. A.4.

safe unsafe
goi ∧ granti

safei := false
¬goi

safei := true

¬(goi ∧ granti) goi

Fig. A.4. The automaton Si, the loop transitions are not necessary but added for clarity.

These automata are driven by two Boolean input variables goi and granti.
The first one represents the desire to enter the unsafe state. Since goi it is an
input, it is not known beforehand when the transition to the unsafe state is re-
quired by the environment. Moreover, in case of the unsafe state the goi input
controls how long the unsafe state is kept. The second input, granti, is assumed
to be triggered by an output of a controller. Hence, the automaton Si can only
enter the unsafe state if the grant is given. The Boolean output variable safei can
be read by both the controller and the environment. The controller needs this in-
formation for changing grants and the environment needs it to do, for example,
something that requires exclusive access to some resource.
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A.3.1 The Models

A first naive variant of a controller modeled as PLC automata [31] is given in
Fig. A.5. The idea to achieve mutual exclusion of the unsafe locations in S1 and
S2 is to give grant to Si not before S3−i has set safe3−i to true. This is done in
the locations “wait for Si”. As soon as the controller detects that Si has entered
the unsafe locations it retracts the grant for Si by the edge from “grant for Si”
to “wait for Si”. This naive controller does not try to be fair since it may happen
that S2 waits forever for a grant while the controller is in location “grant for S1”
but S1 never enters the unsafe location. Even worse, if all three automata are
implemented on different devices it is not very difficult to construct a trace that
violates the main requirement of mutual exclusion.

wait for S2 grant for S1

grant for S2 wait for S1

safe2

granti := true

¬safe1 grant1 := false

safe1

grant2 := true

¬safe2 grant2 := false

Fig. A.5. A model of faulty controller

The failure is due to the fact that the cyclic behavior of the automata involved
is not synchronized. Hence, Si may get a grant, and become unsafe afterwards.
This is polled by the controller and it will retract the grant at the end of its cycle.
But before this happens Si can become safe again and poll its grant value which
is still set to true. Now the controller finishes its cycle, retracts the grant and
poll the status of Si which safe. Therefore, it permits S3−i to enter the unsafe
location. Since Si has polled a given grant it will become unsafe, too.

The fault is not that Si can switch to the safe location and poll a grant twice.
Since the Si are given it is the controller’s task to cope with this behavior. The
core of the fault is that the controller believes that polling safei to be true is suf-
ficient to give grant to the other automaton. It has to consider that Si has polled a
given grant and will become unsafe. To avoid this problem the controller should
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wait a period of time in order to be sure that Si cannot change to the unsafe lo-
cation anymore. The time distance between polling a grant and switching to the
unsafe state is less than εi. The time distance between polling Si to be safe and
giving grant to S3−i is less than εc. Since it is necessary for the counterexample
that these periods overlap it will be sufficient to wait in state “wait for Si” for
εi+εc time units. With this modification the mutual exclusion property is valid.
Figure A.6 contains a correct controller.

wait for S2

t2

grant for S1

grant for S2 wait for S1

t1

safe2 ∧ ¬t2
granti := true

¬safe1 grant1 := false

safe1 ∧ ¬t1
grant2 := true

¬safe2 grant2 := false

Fig. A.6. A model of a correct controller

The models which serve as benchmarks are flawed versions of this controller.
We introduced an error by increasing an upper time bound in the model. The
flawed specification was then transformed into its timed automata semantics
by applying various abstractions techniques. The resulting models do not have
many automata but a non-trivial number of clocks and variables. Table A.3 pro-
vides the number of components of the models.

A.4 The Arbiter Tree Case Study

This case study models a mutual exclusion protocol based on a tree of binary
arbiter processes. Figure A.7 shows an instance with four clients. Client pro-
cesses are situated at the leaves of the tree. In order to gain access to the shared
resource, they may send a request to their respective parent, which in turn passes
the request on to its parent, and so on. When the root process of the tree receives
a request, it generates a grant which is then propagated back down. When the
client is done with the resource, it sends a release signal.
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Table A.3. Number of system components. Abbreviations: Exp.: the model’s name, aut.: the
number of automata in the model, clock: the number of clocks in the model, vars: the number of
integer variables, sync: number of synchronization labels

Exp. aut. clocks vars sync

M1 3 4 11 0
M2 4 4 13 0
M3 4 4 13 0
M4 5 4 15 0
N1 3 7 11 0
N2 4 7 13 0
N3 4 7 13 0
N4 5 7 15 0

root

arbiter 1

arbiter 2

client 1 client 2

arbiter 3

client 3 client 4

root

arbiter 1

arbiter 2

client 1 client 2

arbiter 3

client 3 client 4

reql?, grl!, rell?

req!, gr?, rel!

reqr?, grr!, relr?

Fig. A.7. Arbiter tree: Access to a shared resource is controlled by binary arbiters arranged in a
tree, with a central root process.

In order to avoid blocking client processes, arbiters need to be ready to re-
ceive requests from one of their children even when they are already processing
one for the other child. In this case it makes sense to send a grant to the second
child as soon as a release is received from the first, instead of first forwarding
the release upwards and sending a new request. This can be applied asymmetri-
cally (giving a grant to the left child first, and always forwarding releases from
the right child to the parent) in order to not monopolize the resource.

A.4.1 The Models

We model the arbiter tree using finite automata for the root, arbiter, and client
processes. The instances are parametrized by the height H of the tree, and con-
tain 2H − 1 arbiters and 2H client processes. The smallest example (H = 2)
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has 1.02 · 106 product states; this increases to 1.88 · 10104 states in the largest
instance (H = 6).

l1
l2

l3

l6

l10 l9 l11

l4 l5

l7 l8

reqr?

reql?

relr

req! gr?

req! gr?

grl!

grr!

rel?

rell

rel! relr?

rell? reql?

reqr?

rell?

relr?

Fig. A.8. A faulty arbiter automaton

The case study uses an incorrect implementation which eventually allows
several client processes to access the resource simultaneously. This situation
results from a faulty client process sending spurious release signals, and a flaw
in the arbiters which makes them not check for this possibility and discard such
a signal. One such faulty arbiter is shown in Fig. A.8. Table A.4 provides the
number of components of the model.

Table A.4. Number of system components. Abbreviations: Exp.: the model’s name, aut.: the
number of automata in the model, clock: the number of clocks in the model, vars: the number of
integer variables, sync: number of synchronization labels

Exp. aut. clocks vars sync

A2 8 0 0 21
A3 16 0 0 45
A4 32 0 0 93
A5 64 0 0 189
A6 128 0 0 381
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syn and hP

AR

In this chapter we show some experimental results which we used to determine
good parameters for the two heuristics hPsyn and hPAR, based on predicate ab-
straction from Chap. 6. All results are obtained on an AMD Opteron system
with 2.3 GHz and 4 GByte of memory.

B.1 Experimental Results for the Syntax-Based Abstractions

Table B.1 shows our results that we obtained when using the syntactical ap-
proach to select a set of predicates. In the table, the split bound b ∈ {1, 2, 3, 4}
increases from left to right. The split bound is given as the top entry of each
column. Note that we do not provide the results where the entire automata sys-
tem is handed to the abstraction engine in total. The reason for this is that when
using the whole system, the abstract state space could only be built for the Fis-
cher examples and the smaller M and N examples. Consider the M and N
examples and what happens as b increases from 1 to 4. The preprocessing time
increases sharply, quickly becoming larger than the time spent for the actual
search. Strangely, the number of explored states also grows, from b = 1 to
b = 2, before decreasing again from b = 2 to b = 4. It is unclear to us what
causes this behavior. The smallest search spaces are obtained with b = 4, the
smallest overall runtimes are obtained with b = 1. Note that allM andN exam-
ples can be solved quite quickly even with a blind search (cf. Table 6.1). The C
examples are more interesting in that respect, because blind search scales badly
there. They exhibit very similar behavior in terms of the overhead. The number
of explored states decreases sharply from b = 1 to b = 2 and increases sharply
from b = 2 to b = 3. Again, the reason for this behavior is unclear.

All in all, the syntax-based abstractions give surprisingly good performance,
e. g. hPsyn with b = 2 is very competitive in the C examples, but they do not
seem to have much potential for further improvements. One could try to allow
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Table B.1. Results for greedy search with hPsyn . The first row gives the split bound, i. e., the
maximum number of automata per PDB. Dashes indicate out of memory (> 4 GByte).

explored states runtime in s trace length
1 2 3 4 1 2 3 4 1 2 3 4

FA5 80 80 80 80 0.0 0.0 0.0 0.0 20 20 20 20
FA10 130 130 130 130 0.0 0.1 0.2 0.0 20 20 20 20
FA15 180 180 180 180 0.0 0.3 0.5 0.0 20 20 20 20
FB5 21 21 21 21 0.0 0.1 0.1 0.0 6 6 6 6
FB10 36 36 36 36 0.2 0.3 0.2 0.0 6 6 6 6
FB15 51 51 51 51 0.4 0.4 0.5 0.0 6 6 6 6
C1 1455 1588 4698 6207 0.3 1.2 8.6 46.3 119 158 95 78
C2 3273 3786 10843 10507 0.5 1.3 9.4 1.6 137 180 99 95
C3 5879 3846 10375 10195 0.4 1.4 9.3 1.6 135 186 99 95
C4 44837 30741 66336 66761 0.9 1.9 20.2 4.3 163 240 73 68
C5 301065 185730 436678 435309 3.2 3.5 26.5 9.0 241 422 121 101
C6 2.8e+6 1.9e+6 4.2e+6 3.9e+6 21.8 16.6 78.5 54.4 409 756 134 166
C7 3.5e+7 1.8e+7 4.1e+7 4.0e+7 386.1 158.9 567.0 575.9 844 1063 249 214
C8 3.2e+7 1.5e+7 2.5e+7 2.5e+7 329.4 120.2 336.2 353.7 1006 975 1203 581
C9 – – – – – – – – – – – –
M1 16446 23257 12780 12780 0.3 0.7 3.1 0.4 219 100 73 73
M2 68956 84475 37780 34947 0.8 1.5 4.5 1.1 137 127 108 82
M3 62371 92548 55726 55098 0.7 1.5 4.7 1.2 147 97 110 100
M4 275433 311049 198407 139875 2.5 3.8 7.5 2.3 215 135 118 115
N1 22025 31593 12327 12327 0.8 1.9 5.8 0.6 197 127 81 81
N2 122382 172531 80276 58766 3.7 6.6 10.2 3.0 206 157 154 122
N3 140201 167350 76116 70677 4.1 6.2 9.3 2.5 213 129 122 120
N4 739268 975816 657486 390297 19.7 33.6 28.9 12.9 280 212 263 277
A2 44 46 32 32 0.0 0.0 0.0 0.0 13 12 12 12
A3 710 187 863 116 0.0 0.0 0.0 0.1 39 21 20 20
A4 73628 10633 2283 1.8e+6 0.4 0.1 0.0 16.5 129 78 33 32
A5 – – 1.2e+6 4.1e+6 – – 14.5 52.2 – – 212 53
A6 – – – – – – – – – – – –

more freedom in the selection of the predicates, but such an approach is likely
to be wild guesswork, at least without a deeper analysis of the system. An idea
worth trying is to integrate syntax-based predicate selection into abstraction re-
finement: as a start, one could select, amongst others, the guards that are not
satisfied by the spurious error path.
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Table B.2. Results for A∗ search with hPsyn . The first row gives the split bound b, i. e., the maxi-
mum number of automata per PDB. Dashes indicate out of memory (> 4 GByte).

explored states runtime in s trace
1 2 3 4 1 2 3 4 length

FA5 1457 1457 1457 1457 0.0 0.0 0.0 0.1 8
FA10 37922 37922 37922 37922 0.4 0.5 0.7 0.8 8
FA15 348797 348797 348797 348797 5.6 6.2 6.6 7.2 8
FB5 21 21 21 21 0.1 0.1 0.1 0.1 6
FB10 36 36 36 36 0.1 0.1 0.3 0.3 6
FB15 51 51 51 51 0.3 0.4 0.5 0.6 6
M1 30945 22634 21263 21263 0.5 0.8 3.3 3.3 53
M2 122502 94602 71785 79976 1.6 1.7 4.8 7.2 54
M3 128809 121559 95924 101201 1.6 2.1 5.2 7.4 56
M4 563807 466967 342619 380434 6.9 6.5 9.6 13.4 57
N1 57941 46966 42372 42372 3.1 3.2 7.4 7.4 60
N2 253911 211935 178540 189536 12.6 10.9 15.9 20.0 61
N3 287915 233609 240327 228807 14.6 11.8 18.5 21.3 63
N4 1094412 1036002 954499 1058000 52.4 50.7 56.5 68.3 64
C1 17127 7088 4956 7048 0.5 1.3 8.9 635.8 54
C2 45739 15742 10875 10844 0.6 1.3 9.4 15.8 54
C3 51905 15586 10639 10644 0.8 1.5 9.5 15.7 54
C4 441464 108603 74767 74456 3.8 2.6 20.4 39.9 55
C5 3383157 733761 494501 462102 27.4 8.3 28.7 51.7 56
C6 33954943 7360078 4903968 4717608 370.1 66.0 95.6 120.7 56
C7 – – – – – – – – –
C8 – – 28147792 29398550 – – 450.1 722.4 57
C9 – – – – – – – – –
A2 454 155 68 68 0.0 0.0 0.0 0.0 12
A3 58799 20658 5763 3354 0.2 0.1 0.1 0.1 17
A4 – – 13163834 1422336 – – 129.6 16.1 22
A5 – – – – – – – – –
A6 – – – – – – – – –

B.2 Experimental Results for the Predicates Selected via ARMC

The hPAR heuristic has two parameters: the split bound b and the maximum num-
ber of refinement iterations r in ARMC. Table B.3 restricts to the C examples
– which are the most relevant examples. The data are arranged in a slightly
unusual way, grouped by example rather than by configuration parameters. We
chose this form to ease observing how the behavior for an example changes as
a function of the configuration parameters.
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Table B.3. Results for greedy search with the hPAR heuristic. The columns headed with 0, 1, 4
and 7, give the number of refinement steps r. The first column gives the used splitting bound b,
i. e., the maximum number of automata per PDB. Dashes indicate out of memory (> 4 GByte).

explored states runtime trace length
0 1 4 7 0 1 4 7 0 1 4 7

C1

1 19778 17330 2806 2806 0.4 0.5 0.6 0.7 793 499 207 207
2 8769 8861 1508 1508 0.7 1.5 3.3 3.4 110 217 112 112
3 8769 8861 1172 6362 1.0 2.2 7.2 24.6 110 217 74 86
4 16291 12044 3630 21050 7.2 21.9 112.6 862.5 84 167 124 178

C2

1 62046 59031 8143 8143 0.6 0.7 0.8 0.8 961 781 336 336
2 39710 35245 4098 4098 1.0 1.8 3.6 3.6 94 267 128 128
3 39710 35245 3256 25601 1.2 2.5 7.7 26.2 94 267 84 156
4 39710 35245 3256 25601 1.3 3.0 9.8 34.2 94 267 84 156

C3

1 88015 89194 10191 10191 0.8 0.9 0.8 0.8 915 745 328 328
2 67166 53616 5583 5583 1.1 2.0 3.8 3.8 118 277 136 136
3 67166 53616 4278 30407 1.4 2.7 8.1 27.0 118 277 88 168
4 67166 53616 4278 30407 1.5 3.2 10.1 35.2 118 277 88 168

C4

1 897900 872580 79069 79069 5.0 5.2 1.4 1.4 2304 1585 672 672
2 516282 511180 41831 41831 3.6 4.7 4.5 4.5 138 380 279 279
3 516282 511180 46837 279374 4.0 5.7 9.9 32.0 138 380 258 125
4 516282 511180 46837 279374 4.2 6.2 11.8 40.7 138 380 258 125

C5

1 9031659 8411983 1126261 1126261 54.4 51.5 7.8 7.8 4124 4124 1438 1438
2 4904033 6873082 425264 425264 29.7 45.0 7.2 7.2 294 1652 506 506
3 4904033 6873082 473470 2371892 30.2 46.1 13.2 46.0 294 1652 356 453
4 4904033 6873082 288614 1920988 30.4 46.9 15.8 53.5 294 1652 252 205

C6

1 – – 4477523 4477523 – – 28.9 28.7 – – 6619 6619
2 – – 2850769 2850769 – – 22.7 22.9 – – 770 770
3 – – 2653185 24601726 – – 28.2 211.1 – – 800 408
4 – – 3812970 20493668 – – 44.9 208.2 – – 1130 357

C7

1 – – – – – – – – – – – –
2 – – 20632762 20632762 – – 174.2 167.9 – – 2216 2216
3 – – 20652018 – – – 194.2 – – – 2266 –
4 – – 25656694 – – – 257.9 – – – 717 –

C8

1 – – – – – – – – – – – –
2 – – 25598687 25598687 – – 204.0 203.0 – – 2878 2878
3 – – 32200707 – – – 296.9 – – – 1887 –
4 – – 27966148 – – – 263.9 – – – 1183 –
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Let us start with some of the simpler observations to be made in Table B.3.
For b = 1 and b = 2, the table entry for r = 7 is always identical to the entries
with r = 4. This is because ARMC finds feasible error paths. More precisely,
with b = 1 ARMC finds feasible error paths, in all examples and in all parts
of the partitionings, i. e., in each single automaton in 4 refinement iterations.
So increasing the maximum number of refinement iterations beyond 4 does not
have any effect. With b = 2, ARMC finds feasible error paths in 3 refinement
iterations already.

Now, consider what happens as we let the configuration parameters vary.
Consider first the splitting bound b when moving up or down in the table. Com-
pared to the hPsyn results, the number of explored search states is more stable.
In most cases, the number of explored states stays the same, or decreases, with
increasing splitting bound. Particularly with many refinement iterations, there is
a relatively sharp monotonic decrease over increasing splitting bound. Notable
exceptions to this rule are a few configurations for C1, and when moving from
b = 3 to b = 4 in the C6 example. We observe that the decreased search space
size never pays off in terms of runtime, i. e., when moving downwards in a col-
umn within one example, the runtime almost always increases monotonically.

B.3 Runtime Results for the Generation of PDBs

In this section we will have a closer look at the runtime needed for the prepro-
cessing, i. e., the time that is needed in order to build a PDB. Table B.4 shows the
total runtime, i. e., preprocessing time plus search time, and the preprocessing
time for different configurations of our heuristics. The first row of the table gives
the number of refinement steps r used for the hPAR heuristic. The first column
of the table gives the splitting bound b, i. e., the maximum number of automata
per PDB.

For both approaches, i. e., the syntax-based and the abstraction refinement-
based approach, exampleC1 is exceptionally hard for the preprocess. The reason
for this is that this example only consists of 4 automata, which have a large
abstract state space together. In the examples C2, . . . , C8, one of these automata
is split away. The preprocessing time for both heuristics consistently grows with
growing splitting bound b. The C6 example is the first example where the larger
overhead for the hPsyn heuristic pays off in runtime, i. e., the runtime results for
b = 2 are faster than that for b = 1, which is due to the reduced search space
(see Table B.1). In particular for the hPAR heuristic, the higher the number of
refinement iterations is, the faster grows the preprocessing time with growing
values of b. In terms of runtime, the number of refinement iterations definitely
is the better parameter to invest extra computation time. Most notably, C6 is
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not solved with less than 4 refinement iterations. Then again, refining too much
apparently is not a good idea either. First, observe that with increasing number
of refinement iterations we get a consistent increase of the preprocessing time.
With only a few exceptions, the number of explored search states consistently
decreases a little when stepping from r = 0 to r = 1 and decreases sharply
when stepping from r = 1 to r = 4. It increases sharply when stepping from
r = 4 to r = 7. In terms of runtime, the decrease in search space size does not
pay off due to the longer preprocessing time in C1–C4. It does pay off in C5–C8

when the search spaces explode.
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Table B.4. Preprocessing runtime results for greedy search with the hPAR and hPsyn heuristics.
The columns headed with 0, 1, 4 and 7, give the number of refinement steps r used for hPAR. The
first column gives the used splitting bound b, i. e., the maximum number of automata per PDB.
Dashes indicate out of memory (> 4 GByte).

total runtime in s preprocessing in s
hPAR hPsyn hPAR hPsyn

0 1 4 7 0 1 4 7
C1

1 0.4 0.5 0.6 0.7 0.3 0.2 0.3 0.6 0.6 0.2
2 0.7 1.5 3.3 3.4 1.2 0.6 1.4 3.3 3.3 1.0
3 1.0 2.2 7.2 24.6 8.6 0.9 2.1 7.1 24.5 7.8
4 7.2 21.9 112.6 862.5 617.9 7.0 21.8 112.5 862.2 571.5

C2

1 0.6 0.7 0.8 0.8 0.5 0.2 0.3 0.6 0.7 0.3
2 1.0 1.8 3.6 3.6 1.3 0.7 1.6 3.5 3.5 1.1
3 1.2 2.5 7.7 26.2 9.4 0.9 2.2 7.6 26.0 8.3
4 1.3 3.0 9.8 34.2 15.3 1.1 2.7 9.7 34.0 13.6

C3

1 0.8 0.9 0.8 0.8 0.4 0.2 0.4 0.7 0.7 0.3
2 1.1 2.0 3.8 3.8 1.4 0.7 1.6 3.7 3.7 1.2
3 1.4 2.7 8.1 27.0 9.3 1.0 2.4 8.0 26.7 8.3
4 1.5 3.2 10.1 35.2 15.3 1.1 2.8 10.0 35.0 13.6

C4

1 5.0 5.2 1.4 1.4 0.9 0.3 0.5 0.9 0.9 0.4
2 3.6 4.7 4.5 4.5 1.9 0.8 1.9 4.1 4.2 1.5
3 4.0 5.7 9.9 32.0 20.2 1.1 2.9 9.5 30.4 17.7
4 4.2 6.2 11.8 40.7 39.1 1.3 3.3 11.4 39.1 34.7

C5

1 54.4 51.5 7.8 7.8 3.2 0.4 0.6 1.1 1.1 0.6
2 29.7 45.0 7.2 7.2 3.5 0.9 2.1 4.6 4.6 1.8
3 30.2 46.1 13.2 46.0 26.5 1.3 3.1 10.3 32.4 19.9
4 30.4 46.9 15.8 53.5 49.2 1.5 3.7 14.0 42.4 40.1

C6

1 – – 28.9 28.7 21.8 0.4 0.0 1.2 1.2 0.5
2 – – 22.7 22.9 16.6 0.0 2.2 5.0 5.0 1.8
3 – – 28.2 211.1 78.5 0.0 3.3 11.0 34.6 29.1
4 – – 44.9 208.2 98.3 2.0 5.1 19.9 64.3 43.9

C7

1 – – – – 386.1 0.4 0.0 0.0 0.0 0.6
2 – – 174.2 167.9 158.9 1.0 2.4 5.4 5.3 1.8
3 – – 194.2 – 567.0 1.5 0.0 11.8 0.0 37.4
4 – – 257.9 – 637.0 2.1 5.5 21.3 0.0 60.9

C8

1 – – – – 329.4 0.4 0.8 1.4 1.3 0.6
2 – – 204.0 203.0 120.2 0.0 2.6 5.8 5.8 1.8
3 – – 296.9 – 336.2 1.5 3.8 12.5 37.7 45.7
4 – – 263.9 – 555.4 2.2 5.7 22.0 69.7 201.6
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Preprocessing for the hcoi and hA Heuristics

C.1 Preprocessing for the hcoi Heuristic

The results in Table C.1 are obtained with UPPAAL/DMC’s greedy search in
conjunction with the hcoi heuristic. Recall that Qian et al.’s COI-based method
to construct abstraction sets is parametrized [87]. Their method starts with the
symbols that are mentioned in the target formula. This set of symbols forms
layer 0. Then, iteratively, new layers are constructed, where layer n + 1 arises
from layer n by including any symbol y that does not occur in a layer n′ ≤ n,
and that may be involved in modifying the status of a symbol x in layer n.
The abstraction set is then chosen based on a user defined cut-off value d. The
resulting abstraction set contains exactly all the symbols in layers n > d.

If d increases then the preprocessing time also increases, with a few excep-
tions. This is not surprising, since for larger values of d, fewer symbols are
abstracted and thus the abstract state space becomes larger. In our examples, for
values greater than 4, the abstract state space equals the original state space. For
values of d greater than 3, it is not possible to construct a PDB for the larger
C examples, because the entire reachable abstract state space of these examples
does not fit in 4 GByte of memory. Regarding the number of explored states
and length of the detected error trace, it can be observed that the larger d is, the
fewer states are explored and the shorter is the detected error trace. Again this
is not surprising, since with increasing d, the heuristic becomes more informed.
Obviously, for our benchmarks, the best value for d is 3. For smaller values, the
resulting heuristic is not well informed. For larger values, preprocessing for the
examples C6–C9 runs out of memory.
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Table C.1. Results for greedy search with hcoi . The numbers in the first row gives the cut-off
value d. Dashes indicate out of memory (> 4 GByte).

total runtime in s preprocessing time in s
Exp. 1 2 3 4 1 2 3 4

M1 0.2 0.1 2.2 3.5 0.0 0.0 2.1 3.4
M2 0.7 0.1 8.2 15.1 0.0 0.0 7.8 14.6
M3 0.9 1.1 8.6 14.5 0.0 0.0 7.6 14.0
M4 2.2 2.4 33.2 59.3 0.0 0.1 30.3 57.5
N1 0.5 17.1 19.5 19.8 0.0 15.3 19.1 19.4
N2 2.9 89.3 106.3 106.9 0.0 75.9 104.8 105.5
N3 3.7 90.4 103.5 104.4 0.0 81.2 102.1 103.0
N4 20.0 454.7 557.5 541.2 0.0 393.3 552.1 535.9
C1 0.2 2.3 0.9 0.8 0.1 2.0 0.8 0.8
C2 0.5 3.3 2.4 2.4 0.1 2.7 2.4 2.4
C3 0.7 4.3 3.3 3.3 0.0 3.6 3.3 3.2
C4 6.3 15.9 29.8 29.5 0.1 9.5 29.3 29.0
C5 61.2 83.9 268.5 268.4 0.1 24.7 265.5 265.3
C6 – – 270.5 – – – 267.5 –
C7 – – 269.6 – – – 265.6 –
C8 – – 238.1 – – – 235.3 –
C9 – – – – – – – –

explored states trace length
Exp. 1 2 3 4 1 2 3 4

M1 11284 3632 4461 249 168 118 77 55
M2 59667 11196 22172 517 475 117 101 62
M3 85629 80269 47705 476 588 113 92 67
M4 216938 200585 138147 1052 418 321 81 74
N1 13902 27446 242 242 158 135 56 56
N2 93467 174640 503 503 623 119 59 59
N3 104104 126301 534 534 492 127 64 64
N4 422499 607512 1217 1217 241 146 65 65
C1 23173 21316 130 130 64 71 54 54
C2 75111 72810 187 187 76 85 54 54
C3 101049 97089 197 197 74 149 54 54
C4 1023058 982003 474 474 85 248 56 56
C5 9156066 8524179 2673 2673 123 373 57 57
C6 – – 9027 – – – 57 –
C7 – – 178513 – – – 70 –
C8 – – 28678 – – – 57 –
C9 – – – – – – – –
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C.2 Preprocessing for the hA Heuristic

In this section we provide a brief overview of the preprocessing time needed
for our Russian Doll approach. Table C.2 gives the results for A∗ and greedy
search obtained with the hA heuristic. The number of explored states and the
length of the detected error trace only presented for convenience, but they are
not discussed here. For a discussion see Sec. 7.3.

Note that for both search methods, the same PDB is constructed, i. e., the
preprocessing time for both search methods is the same. It turns out that the
preprocessing time for each C example is done in less than one second. For
A∗ search, also the actual search takes at most one second. This also holds for
greedy search, except for the bigger C examples. Here, the runtime of the actual
search clearly dominates the preprocessing time. From the results of the M and
N examples it can be observed that most of the total time is spend during the
preprocessing. This holds for A∗ as well as greedy search, except for the A∗

results of N4.

Table C.2. Results for A∗ and greedy search with the hA heuristic. Abbreviations: runtime: total
time including any preprocessing, prep.: preprocessing time. The memory limit was 4 GByte.

explored states runtime in s prep. in s trace length
Exp. A∗ greedy A∗ greedy A∗ greedy

M1 190 249 3.4 3.2 3.0 47 55
M2 4417 495 3.7 3.5 3.3 50 76
M3 11006 993 3.9 3.4 3.2 50 53
M4 41359 3577 4.6 3.5 3.4 53 105
N1 345 242 19.8 19.4 19.0 49 56
N2 3811 470 13.2 13.1 12.8 52 63
N3 59062 1787 16.3 11.7 11.3 56 70
N4 341928 10394 40.6 7.7 7.2 59 80
C1 130 130 0.9 0.8 0.8 54 54
C2 89813 56894 1.3 0.9 0.5 54 127
C3 197 290 0.8 0.9 0.8 54 56
C4 1140 1163 0.9 0.8 0.8 55 57
C5 7530 39837 1.1 1.1 0.8 56 75
C6 39436 80878 1.2 1.4 0.9 56 64
C7 149993 697104 1.7 5.1 0.9 56 64
C8 158361 1180067 1.9 8.2 0.9 56 97
C9 127895 2250288 1.7 15.2 0.9 57 108
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