
Adapting an AI Planning Heuristic for Directed Model
Checking

Sebastian Kupferschmid1, Jörg Hoffmann2, Henning Dierks3, and
Gerd Behrmann4

1 University of Freiburg, Germany, kupfersc@informatik.uni-freiburg.de
2 Max Planck Institute for CS, Saarbrücken, Germany, hoffmann@mpi-inf.mpg.de

3 OFFIS, Germany, dierks@offis.de
4 Aalborg University, Denmark, behrmann@cs.aau.dk

Abstract. There is a growing body of work on directed model checking, which
improves the falsification of safety properties by providing heuristic functions
that can guide the search quickly towards short error paths. Techniques of this
kind have also been made very successful in the area of AI Planning. Our main
technical contribution is the adaptation of the most successful heuristic function
from AI Planning to the model checking context, yielding a new heuristic for di-
rected model checking. The heuristic is based on solving an abstracted problem
in every search state. We adapt the abstraction and its solution to networks of
communicating automata annotated with (constraints and effects on) integer vari-
ables. Since our ultimate goal in this research is to also take into account clock
variables, as used in timed automata, our techniques are implemented inside UP-
PAAL. We run experiments in some toy benchmarks for timed automata, and in
two timed automata case studies originating from an industrial project. Compared
to both blind search and some previously proposed heuristic functions, we consis-
tently obtain significant, sometimes dramatic, search space reductions, resulting
in likewise strong reductions of runtime and memory requirements.

1 Introduction

When model checking safety properties, the ultimate goal is to prove the absence of
error states. However, to do so one has to explore the entire state space of the appli-
cation under consideration. It is therefore essential to use an efficient representation
and implementation of that state space. Prominent examples of such implementations
are the SPIN (e.g. [15]) and UPPAAL (e.g. [1]) tools. SPIN handles the Promela lan-
guage, describing systems of communicating processes. UPPAAL handles networks of
extended timed automata, which is a formalism with less complex communication than
Promela, but where the processes can be annotated with real-valued clock variables.
Both languages also feature integer variables.

Enumerating the entire state space is often not feasible in practise. A potentially
much easier task is to only try to detect error states, i.e., to falsify the safety property. An
error may be found by exploring only a small fraction of the search space. Algorithms
that are good at detecting errors can be used for debugging purposes. They can even
be good for proving an application error-free, because they can be used to handle the

2 Sebastian Kupferschmid, Jörg Hoffmann, Henning Dierks, and Gerd Behrmann

intermediate iterations in the abstraction refinement life cycle, i.e. those iterations in
which spurious error states exist.

There are two main issues to be addressed: first, the search space size, i.e. the num-
ber of search states that need to be considered before the error state is found; and second,
the length of the detected path to the error state. The search space size determines the
scalability of the search. Short error paths are preferred for debugging; in abstraction
refinement, they provide better information about what aspects of the abstraction should
be refined. Ideally, one wants an optimal, i.e. a shortest possible, path to an error.

Both search space size and error path length can be addressed by the order in that
the search states are explored. One defines a heuristic function h, a function that maps
states to integers, estimating the state’s distance to the nearest error state. The search
then gives a preference to states with lower h value. There are many different ways of
doing the latter, of which we consider the wide-spread methods A∗ search and greedy
search. In the former, search nodes s are explored by increasing value of c(s) + h(s)
where c(s) is the length of the search path on that s was reached. If h is admissible,
i.e., if it never overestimates the real distance to the nearest error state, then A∗ is
guaranteed to return an optimal error path. In greedy search, search nodes are explored
by increasing value of h(s). This gives no guarantee on the length of the detected error
path, but tends to explore less search states in practise.

The application of heuristic search to model checking was pioneered a few years ago
by Edelkamp et al [9, 10], christening this research direction directed model checking,
and inspiring various other approaches of this sort, e.g. [7, 12, 19]. The main difference
between all the approaches is how they define and compute the heuristic function: How
does one estimate the distance to an error state? Different definitions make all the
difference because no heuristic can work well in all examples, and the best one can
hope to do is to define a range of heuristics that cover (work well in) an as large as
possible range of examples.

Edelkamp et al [9, 10] work in the context of SPIN. They propose to base the dis-
tance estimation on the graph-distances within each single process. For process i, let
d(i) be the distance of i’s start location to its target location, when ignoring all edge
guards (if there is no target location, set d(i) := 0). Then an admissible heuristic func-
tion, called dL, is defined as maxid(i), and a non-admissible heuristic function, called
dU , is defined as

∑
i d(i). We implemented these heuristic functions in UPPAAL, tak-

ing the d(i) to be the graph distances in the individual automata.
Note that dL and dU are rather crude approximations of the system semantics.

They completely ignore communication and integer variables. Our main contribution
in this paper is an approximation technique that does not do that. The approximation
is more costly – i.e., computing the heuristic function takes more runtime than what
is needed for dL and dU – but, as we will see, this often pays off in terms of much
smaller search spaces. We obtain our approximation by adapting the most successful
heuristic method [5, 14] from the area of AI Planning, where heuristic search has been
overwhelmingly successful in the past decade, in particular winning all the planning
competitions (e.g. [11, 14, 20]).

The heuristic method is based on what AI people call a relaxation, which is the same
as the model checking term abstraction: an over-approximation. The abstraction tech-

Adapting an AI Planning Heuristic for Directed Model Checking 3

nique used is, however, quite different from what one usually uses in model checking,
due to the very different way of using the abstracted task. Namely, the heuristic val-
ues are generated by solving the abstract problem in every search state, and taking the
length of the abstract solution as the distance estimate. To be able to solve the abstract
problem in every search state, of course the abstraction has to be very coarse. In our
particular case, the abstraction assumes that every state variable, once it has obtained a
value, keeps that value forever. Which means, in the abstraction the “value” of any vari-
able at any time point is not a member but a subset of the variable’s domain. The subsets
grow monotonically as abstract transitions are taken. We prove that, like in the planning
context, solving the abstract problem optimally, i.e., finding an optimal abstract error
path, and thereby computing an admissible heuristic function, is still NP-hard, even if
the addressed formalism allows only parallel automata with communication. For paral-
lel automata with communication and integer variables, we define two polynomial-time
methods for approximating the length of an optimal abstract error path. We call the re-
sulting heuristic functions hL and hU . The former is a lower bound on the length of an
optimal abstract error path, the latter is an upper bound on that length; hL is admissible,
hU is not.

Our heuristics are implemented inside the UPPAAL system, since our goal in this
research is to speed up model checking of (networks of extended) timed automata.
Ultimately, of course, we want to develop heuristics that also take into account the
clock variables. We are currently investigating that direction; it is highly non-trivial in
our context due to the nature of our abstraction. Since timed transitions are continuous,
the value subset of a clock x will be [0,∞) as soon as one reaches a location without an
invariant limiting x; we discuss this in more detail below. As said, so far we can offer
heuristics that take into account communication and integer variables. To the best of our
knowledge, no similar heuristics were developed in any other area of model checking
(the differences to the existing other heuristics are outlined in the related work section).

In the standard versions of UPPAAL, the search order can be fixed to either depth-
first (DF) or breadth-first (BF).5 We test our implementation in networks of extended
timed automata. We consider a few toy examples, and two realistic case studies coming
from an industrial project. We evaluate the performance of different UPPAAL config-
urations finding optimal error paths, and of UPPAAL configurations finding (possibly)
sub-optimal error paths. The former are BF, and A∗ with hL or dL; the latter are ran-
domised DF, and greedy search with hL, hU , dL, and dU (remember that dL and dU

were defined by Edelkamp et al [10]). Of the optimal configurations, BF and A∗ with
dL perform roughly similarly except in the toy examples; A∗ with hL brings a moderate
runtime advantage, but much smaller search spaces, enabling success in one more ex-
ample due to the lower memory usage. For the (potentially) sub-optimal configurations,
our results are much stronger. While the dL and dU search orders bring hardly any ad-
vantage over DF in our industrial case studies, both hL and hU yield dramatic search
space reductions, and with that better runtimes and the ability to solve more examples.

5 There is also a version doing heuristic search [3], but for that the user has to provide the heuris-
tic function manually, in difference to our fully-automatic technology. Note that a successful
manual heuristic specification requires inside knowledge on the side of the user, and careful
tuning.

4 Sebastian Kupferschmid, Jörg Hoffmann, Henning Dierks, and Gerd Behrmann

At the same time, the error paths found with hL and hU are orders of magnitude shorter
than those found with DF, dL, and dU .

The next section briefly gives our notations. Sections 3 and 4 formally define the
abstraction used, and the algorithms computing the heuristic functions, respectively.
Section 5 describes our empirical results, Section 6 discusses related work. Section 7
closes the paper. Most proofs are replaced in the text by short proof sketches; the full
proofs are available in a technical report [17].

2 Notations

We assume the reader is roughly familiar with timed automata and their commonly used
extensions. We give a brief description of the particular formalism treated in our current
implementation. We use (a slight variation of) the terminology and notation given by
Behrmann et al [2].

We treat networks of timed automata with binary synchronisation and integer vari-
ables. For the sake of presentation herein, we restrict atomic expressions over integer
variables to variables, variable increments/decrements, or constants. That is, we allow
only comparisons like v ≤ v′ or v = c, and assignments like v := v′, v := c or
v := v ± 1. Our implementation in fact deals with arbitrary linear expressions over the
variables; for the sake of readability, we omit these and only explain the extensions in
the text. As mentioned earlier, the heuristic function so far completely ignores the clock
variables (the reasons for this are explained in Section 3.2). We therefore don’t give
formal notations for these variables. Our notations are as follows. The timed automata
share a set A of actions, and a set V of integer variables. Each v ∈ V has a domain
dom(v). Each automaton i has a location set L(i), a start location l0(i), and a set of
edges E(i). Each edge is annotated with an action a ∈ A, with a guard g, and with an
effect f . The guard is a conjunction of conditions of the form x ./ y where x, y ∈ Z∪V
and ./∈ {<,≤, =,≥, >, 6=}. The effect is a list of assignments of the form v := v′,
v := c or v := v ± 1, where v, v′ ∈ V and c ∈ Z. Each variable v occurs on the
left hand side of at most one such assignment. The semantics are defined as obvious.
Transitions are asynchronous and triggered by an edge annotated with a special void
action, or synchronous and triggered by two edges with inverse actions.

The safety properties we can verify take the form of (negated) edge guards plus
location vectors, i.e., our implementation can check whether there exists a reachable
state in that the automata are in specified locations, and that satisfies a conjunction of
conditions x ./ y. We call the former the target locations, and the latter the target
formula. A path of transitions is called a solution if it leads from the start state to a state
complying with target locations and target formula.

3 Abstraction

We introduce the abstraction method, called monotonicity abstraction, underlying our
implemented heuristic function. We first give a high-level description of the abstraction
in a generic way, then we define it as currently used in the context of networks of
automata.

Adapting an AI Planning Heuristic for Directed Model Checking 5

Before we start, let us remark that the monotonicity abstraction was first invented
in AI Planning for a formalism called STRIPS, under the name “ignoring delete lists”
[5]. In STRIPS, the “delete lists” are effect instructions that make a boolean variable
FALSE. This simplifies the problem because, in STRIPS, variables are only ever re-
quired to be TRUE. The monotonicity abstraction we describe below is a generalisation
of this abstraction approach. We remark that the generalisation is not published in the
AI Planning literature; it is, in spirit, somewhat similar to the framework presented in
[8].

3.1 The Monotonicity Abstraction

The abstraction is based on the simplifying assumption that every state variable, once
it obtained a value, keeps that value forever. The value of a variable is no longer an
element, but a subset of its domain. That subset grows monotonically over transition
applications – hence the name of the abstraction.

In a little more detail, in general a transition system (a planning task, a system of
timed automata, a piece of program code, etc.) can be viewed as given by a set of state
variables, a set of transition rules, a start state, and a target formula. The transition rules
have a guard – a formula out of some class of valid (non-temporal) formulas – and an
effect – an instruction how the variable values change when the rule is applied. States
are value assignments to the variables, the target formula is a valid formula. A solution
is a path of transitions that, when applied to the start state, ends in a state that satisfies
the target formula.

Under the monotonicity abstraction, the semantics of a transition system as above
are changed as follows. States now map each variable to a subset of its domain. The start
assignment contains the single value assigned by the start state. A formula evaluates to
TRUE in a state if there exists a variable value vector in the state so that the formula
evaluates to TRUE when inserting these values. Executing an effect instruction becomes
a set union operation, where the new value of each variable x is its old value (a domain
subset) plus the new value assigned by the effect. If the effect outcome depends on
variables, then all possible value vectors for these variables are used, each yielding a
value for x.

E.g., say we have one integer variable v, and one transition with guard v = 0
and effect v := v + 1. The start state is v = 0, and the target formula is v = 2.
Obviously, there is no solution. There is, however, a solution in the abstraction. The
start assignment is {0}. After one transition, this becomes {0, 1}. Since the transition
guard is abstracted to ∃c ∈ s(v) : c = 0, the transition can be applied a second time,
and we get the state {0, 1, 2}: the new values obtained for v are 1 (inserting 0 into the
effect right hand side) and 2 (inserting 1). In this state the abstract target formula, taking
the form ∃c ∈ s(v) : c = 2, evaluates to TRUE.

It is not difficult to see that the monotonicity abstraction induces an over-approxima-
tion of the real transition system: every solution path in the real system corresponds to
a solution path in the abstract system. We will state this formally below, for our abstrac-
tion of timed automata. In many cases, deciding solution existence is a polynomial-time

6 Sebastian Kupferschmid, Jörg Hoffmann, Henning Dierks, and Gerd Behrmann

problem under the abstraction, making it feasible to solve the abstract problem in every
search state.6

3.2 The Monotonicity Abstraction in Timed Automata

Before we give our definitions, consider at a higher level of abstraction what happens
if we apply the above abstraction to a system of timed automata. Under the abstraction,
each automaton will (potentially) be in several locations in a state. The integer variables
will have several possible values in a state. The clock variables will only accumulate
new values. Transitions will be applicable as soon as one of the possible value vectors
satisfies the guard.

Thinking a little more about the clocks, one sees that they are likely to trivialise
very quickly under the abstraction. The reason for that are the timed transitions: as time
passes, the clocks accumulate all the passing time points. After waiting from time point
u to time point u + d, the new clock value subsets contain the entire interval [u, u + d].
So in a location with invariant I , the clock value subsets immediately gather all values
up to the upper bound specified by I . Now, all clock values are 0 initially. Since time
passes continually, therefore the clock value subsets will always have the form [0, max]
(where max is the latest time point yet reached), containing no information other than
max. As soon as a location with empty invariant is reached, max will become infinite,
i.e., the clock value subsets will be the entire time line.

For the above, reasoning about clock values under the abstraction is not likely to
contribute useful information, unless additional techniques are used. We outline an idea
for such additional techniques in Section 7. For now, we ignore the clocks altogether
(inside the heuristic function). While this is undesirable, as said our empirical results
demonstrate that taking (abstract) account of automaton locations, synchronisation, and
integer variables can yield useful search guidance.

Our definitions are straightforward and read as follows. We denote abstract con-
structs with a superscribed + to indicate the additivity of the abstraction. An abstract
state s+ assigns each automaton i a location subset s+(i) ⊆ L(i). Each integer vari-
able v is assigned a value set s+(v) ⊆ dom(v). Formulas (conjunctions of conditions)
are abstract by, “locally”, existentially quantifying the variables in each condition sep-
arately. E.g. a formula v ./1 v′ ∧ v ./2 c is abstracted to ∃c1 ∈ s+(v), c′1 ∈ s+(v′) :
c1 ./1 c′1 ∧ ∃c2 ∈ s+(v) : c2 ./2 c. That is, we allow achievement of each condition
in separate. When, “globally”, quantifying the variables over the entire formula, one
gets an NP-complete constraint problem, so there is no way around making further ab-
stractions. We chose to do local quantification mainly because it is very simple and can
be implemented efficiently. Also, it comes in handy also for linear arithmetic. When
allowing linear arithmetic between integer variables, checking even a single condition
∃x̄ : f(x̄) = c is NP-hard. This isn’t usually a problem since the number of variables in
the expressions (f(x̄)) is typically small, up to four maybe.7 However, the total number

6 Under certain conditions, checking satisfaction of a formula becomes NP-hard in the abstrac-
tion, due to the additional existential quantification. In particular, this is the case in our context
of timed automata. We make an additional simplification to get around this, see the explanation
below.

7 Also, one can handle the expressions in an incremental way, see Section 4.

Adapting an AI Planning Heuristic for Directed Model Checking 7

of variables in a conjunction of expressions can become quite big. So it is convenient to
address the single expressions in separate.

An assignment v := c results in s+(v) := s+(v) ∪ {c}. An assignment v := v′

results in s+(v) := s+(v) ∪ s+(v′). An assignment v := v + 1 results in s+(v) :=
s+(v) ∪ {c + 1 | c ∈ s+(v)}, v := v − 1 results in s+(v) := s+(v) ∪ {c − 1 | c ∈
s+(v)}. Values not contained in dom(v) are removed from the result. An asynchronous
transition of automaton i from location l to l′ is enabled if l ∈ s+(i), and the respective
abstract edge guard holds in s+. The effect assignments are executed as above, and
s+(i) := s+(i)∪{l′} is set. A synchronous transition of automaton i from location l(i)
to l′(i), and of automaton j from location l(j) to l′(j), is enabled if l(i) ∈ s+(i), l(j) ∈
s+(j), and both respective abstract edge guards hold in s+. The effect assignments are
executed as above, and s+(i) := s+(i) ∪ {l′(i)}as well as s+(j) := s+(j) ∪ {l′(j)}
are set.

When the start state is s0, s+
0 is given by s+

0 (i) = {s0(i)}, and s+
0 (v) = {s0(v)}.

A path of successively enabled transitions from s0 is a abstract solution if it ends in a
state s+ in which the abstract target formula holds.

Proposition 1. Given a network of timed automata with binary synchronisation and
integer variables, a start state, target locations, and a target formula. If t1, . . . , tn is a
solution then t1, . . . , tn is also an abstract solution.

Proof Sketch: The variable values achieved by t1, . . . , tn in the abstraction subsume
the values achieved in reality.

By Proposition 1, every solution in the real search space is also contained in the
abstract search space. So the length of an optimal abstract solution is an admissible
heuristic function. We will come back to this below.

Consider Figure 1 as an example. The top automaton needs to go through repeated
circles. More precisely, if the bottom automaton has n locations, then the real solution
takes 2(n− 1) steps, half of which are synchronized between both automata. However,
an abstract solution can be obtained in only n steps: the top automaton goes to the right
once, and can then go to the left n times in sequence since its right location remains in
the reached location subset.

a? a?

a!

Fig. 1. A simple example where hL and hU deliver bad heuristic values.

We can decide in polynomial time if there exists an abstract solution or not.

8 Sebastian Kupferschmid, Jörg Hoffmann, Henning Dierks, and Gerd Behrmann

Theorem 1. Let TASolEx+ denote the following problem. Given a network of timed au-
tomata with binary synchronisation and integer variables, a start state, target locations,
and a target formula. Is there a abstract solution?

TASolEx+ is in P.

Proof: A polynomial solution algorithm is described in Section 4.

The polynomial solution algorithm forms the basis of our heuristic functions: for a
heuristic function, what we want to know is not primarily if there is an abstract solu-
tion, but what the length of an abstract solution is (if there is one). Abstract solutions
may contain arbitrarily many useless transitions, and we want to know what an optimal
abstract solution is. We call the length of such a solution, for a state s, h+(s). Unfortu-
nately, computing h+ is still hard.

Proposition 2. Let TASolMin+ denote the following problem. Given a network of timed
automata with binary synchronisation, a start state, a target formula, and an integer b.
Is there an abstract solution of length at most b?

TASolMin+ is NP-hard.

Proof Sketch: By a straightforward reduction of 3SAT, using one automaton per clause
and variable.

Note that one does not even need integer variables in the proof to Proposition 2. The
desired admissible heuristic function h+, based on our abstraction, can not be computed
efficiently. So, in practise, we will have to approximate h+. We introduce two approxi-
mation techniques in the next section, one computing a lower bound, and one computing
an upper bound. Both are implemented as heuristic functions inside UPPAAL.

4 Approximating h+

Our heuristic functions map search states to integers. For each state s during search,
we are facing the following situation. We are given a network of timed automata, target
locations, and a target formula. The start state is s. We want to approximate the length
of an optimal abstract solution.

Both approximations are based on a forward-chaining algorithm that generalises
algorithms proposed in the context of numeric planning [13]. The algorithm is a forward
fixpoint computation. It determines in polynomial time if there is a abstract solution, by
building a data structure called abstract transition graph, short ATG. The ATG is a
layered graph encoding reachability information. Pseudo-code is given in Figure 2.

The ATG is a sequence of location sets Lk(i) and of variable value sets Vk(v): the
graph layers. The algorithm builds these in an incremental way, so that their contents
increase monotonically over k. Satisfaction of a formula, and enabled transitions, are
defined in the obvious manner analogous to abstract states. In each iteration of the algo-
rithm, for every enabled transition the respective new values are put into the sets. For the
example from Figure ??, if the top automaton has locations t1 (left) and t2 (right), and

Adapting an AI Planning Heuristic for Directed Model Checking 9

k := 0, L0(i) := {s(i)} for all i, V0(v) := {s(v)} for all v
while target locations are not in Lk, or Vk does not model abstract target formula do

Lk+1(i) := Lk(i) for all i, Vk+1(v) := Vk(v) for all v
for all transitions t enabled by Lk and Vk do

Lk+1(i) := Lk+1(i) ∪ {l(i)′} where t goes to l(i)′ in automaton i
if t synchronously also goes to l(j)′ in automaton j then

Lk+1(j) := Lk+1(j) ∪ {l(j)′}
endif
if v := c is an effect of t then Vk+1(v) := Vk+1(v) ∪ {c} endif
if v := v′ is an effect of t then Vk+1(v) := Vk+1(v) ∪ Vk(v′) endif
if v := v + 1 is an effect of t then Vk+1(v) := [min(Vk(v)),∞] endif
if v := v − 1 is an effect of t then Vk+1(v) := [−∞, max(Vk(v))] endif

endfor
if Lk+1(i) = Lk(i) for all i, and Vk+1(v) = Vk(v) for all v then

minlayer :=∞, stop
endif
k := k + 1

endwhile
minlayer := k

Fig. 2. Building an abstract transition graph (ATG).

the bottom automaton has locations b1, . . . , bn (from left to right), then L0(top) = {t1},
L0(bottom) = {b1}, L1(top) = {t1, t2}, and L1(bottom) = {b1}; for 2 ≤ k ≤ n, we
get Lk(top) = {t1, t2} and Lk(bottom) = {b1, . . . , bk}. In Ln(bottom) we have the
target location and the algorithm stops.

The treatment of v := v + 1 and v := v − 1 effects is slightly more complicated,
using a sort of “shortcut” to avoid the repeated incremental increasing (decreasing) of
a variable up to (down to) a needed value n (which could take a number of iterations
exponential in the representation of n). Setting a border of a Vk(v) interval to ∞ is
interpreted as telling us that arbitrarily high/low values can now be reached for v, by
applying the respective effect.

It is important to note that the Vk(v) sets can always be represented using only a
number of values polynomial in the size of the input task, i.e. one does not need to
explicitly enumerate all values in the reachable interval. If one of the bounds is infi-
nite, one just records that plus the value at which the continuous region ends. In more
detail, one can represent Vk(v) by an ordered list of possible values, plus a marker at
the lowest and highest value, indicating if or if not below/above the bound there is an
infinite region inside Vk(v). The values in the explicitly stored list can originate from
v := c assignments only, so their number is bounded by the number of such assign-
ments in the input. It should be self-explanatory how this representation corresponds to
the pseudo-code given in Figure 2. The representation of each Lk(i) and Vk(v) is poly-
nomial. Satisfaction of an abstract formula in Lk and Vk can be tested in polynomial
time processing the – at most binary – single conditions in the formula in turn; a condi-
tion on variables v and v′ can be tested by, at most, processing the product of Vk(v) and
Vk(v′). Finally, after a polynomial number of iterations, Lk and Vk will not change any-

10 Sebastian Kupferschmid, Jörg Hoffmann, Henning Dierks, and Gerd Behrmann

more, or reach the respective full sets of locations/values. So altogether the algorithm
terminates in polynomial time. It encodes admissible reachability information.

Lemma 1. Given a network of timed automata with binary synchronisation and integer
variables, a start state, target locations, and a target formula. If there is an abstract
solution of length n, then the algorithm in Figure 2 stops successfully in an iteration
minlayer ≤ n.

Proof Sketch: When building the ATG without stopping criteria, the abstract solution
t1, . . . , tn is a sub-sequence of the ATG, i.e., tk is enabled by Lk−1 and Vk−1. The
effects of tk are over-approximated and contained in Lk and Vk.

In particular, if the ATG terminates unsuccessfully, then there is no abstract solu-
tion. It is easy to see that, if the targets are reached in layer minlayer, then an abstract
solution can be constructed as the sequence, for k = 0, . . . , minlayer− 1, of all transi-
tions enabled by Lk and Vk. So altogether the ATG is a polynomial procedure deciding
existence of an abstract solution, and Theorem 1 follows.

Extending the ATG to deal with linear arithmetic over the integer variables does not
require a lot of deep thought, but results in rather unreadable algorithm specifications.
As said, testing ∃x̄ : f(x̄) = c is NP-hard for linear expressions f(x̄), but the number of
variables in x̄ is typically small. Our main algorithmic trick to deal with the expressions
efficiently is an incremental computation. If, at some point during building the ATG,
we want to know whether ∃x̄ : f(x̄) = c is true based on the current value subsets
(Vk), then we can refer back to the last time we asked that same question, and just
take account of how the value subsets have changed since then. In fact, we just keep
a flag at each expression occuring in the input, saying if or if not the expression can
be satisfied yet. Every time the value subset of a variable occuring in the expression
changes (grows), we see whether that change serves to satisfy the expression; if so, we
set the flag. Checking guard satisfaction in the ATG then simply means to refer to the
flags. Similarly, one can deal with linear expression effect right hand sides, v := f(x̄).
We just enumerate the set of value tuples for x̄, referring back to the previous version of
that set. Typically, just one or two variables in f(x̄) have gathered new values since the
last evaluation of f(x̄). It suffices to enumerate these changes and extend the old tuple
set correspondingly. The only thing that becomes complicated is the “infinity shortcut”
used in Figure 2 to encode arbitrarily many applications of simple increments (and
decrements) of the form v := v+1 (v := v−1). If, for example, the effect is v := v+v′

where Vk−1(v′) = {2, 5}, then the “shortcut” would have to be Vk+1(v) := Vk(v) ∪
{c + 2a + 5b | c ∈ Vk(v), a, b ∈ N}. Obviously, this gets quite complicated for general
effects v := f(x̄), so we did not implement a shortcut there and always just insert the
new values that can be reached with a single step, paying the prize of multiple ATG
layers for multiple effect applications; usually this is benign. Note that the incremental
approach can be implemented for (almost) arbitrarily complicated expressions, not only
linear ones.

Let us focus again on how to approximate h+. As said, we compute a lower bound
as well as an upper bound. We call the lower bound hL, and the upper bound hU . By
Proposition 1, a lower bound on h+ is the minlayer value determined by the ATG

Adapting an AI Planning Heuristic for Directed Model Checking 11

algorithm. We set hL(s) to that value as computed by the ATG for s. Regarding an
upper bound, note that, with the above, the number of all transitions enabled at layers
k = 0, . . . ,minlayer − 1 provides such a bound. However, this bound is likely to be
far too generous, counting transitions that are reachable but not needed to achieve the
targets. We therefore use a more involved method to determine our upper bound hU . The
method basically selects, at each layer k = 0, . . . ,minlayer−1, a subset of the enabled
transitions, so that the sequence of the selected transitions is still an abstract solution.
This is done by a backward-chaining procedure on the ATG. For space reasons, and
since the details are not overly important here, we don’t describe the procedure in detail
and refer to the TR [17]. The selected abstract solution is not necessarily optimal, and
we set hU to its length. Both hU and hL have the value∞ in case there is no abstract
solution (implying with Proposition 1 that there is no real solution either).

Figure 3 gives another example. In the start state, all automata are in the bottom
location. The error state is to reach the top left locations. In each automaton except
the first one, one has two choices, one of which leads into a dead end (a state from
which the error can not be reached), since the required communication signal won’t
be available anymore. Built for the start state, each layer k of the ATG corresponds
exactly to the locations that can be reached within k steps – in particular, the top left
location in the kth automaton from the left. So minlayer = n, and hL = hU = n is the
precise error state distance. If, during search, a wrong decision was made in automaton
i, then the top left location in i does not appear in the ATG, and the heuristic value
is ∞. So all dead ends are excluded from the search space. In contrast, dL = 2 and
dU = 2n− 1 for the start state, and no dead ends are detected. Another example where
hL and hU are precise is, e.g., a situation that requires (only) to repeatedly increment
an integer variable. Intuitively, hL and hU are good at detecting long sequences of
transitions that build upon each other to achieve some target, and at finding out that
such a sequence is not available. What they are not good at is to see that the same thing
has to be done multiple times8 – under the monotonicity abstraction, everything needs
to be done at most once. A bad situation was given earlier in Figure ??, where the top
automaton needs to go through repeated circles, while hL and hU act as if a single circle
is sufficient.

an!

a(n−1)?a(n−1)?

a(n−1)?

an? an?

an?

a2!

a1?a1?

a1?

a2! an!

a1!

Fig. 3. A simple example where hL and hU deliver the precise error state distance.

8 When repeatedly incrementing a variable, every increment has a different effect.

12 Sebastian Kupferschmid, Jörg Hoffmann, Henning Dierks, and Gerd Behrmann

5 Results

We ran experiments on an Intel Xeon 3.06 Ghz system with 4 GByte of RAM. As
said, our configurations finding optimal error paths are UPPAAL’s standard BF, and
A∗ search with hL or dL. Our sub-optimal configurations are UPPAAL’s standard ran-
domised DF, short rDF (which is by far the most efficient standard method across many
examples, including ours), and greedy search with any of hL, hU , dL, and dU .

t S M l
Exp a c v rDF hL hU rDF hL hU rDF hL hU rDF hL hU

FA
5 5 5 1 0.0 0.0 0.0 526 27 34 3 1 1 161 9 9

FA
10 10 10 1 0.4 0.0 0.0 6371 42 54 7 1 1 1096 9 9

FA
15 15 15 1 1.3 0.0 0.0 20010 57 74 10 1 1 2356 9 9

FB
5 5 5 1 0.0 0.0 0.0 356 612 74 2 1 1 114 13 18

FB
10 10 10 1 0.5 0.8 0.0 7885 55866 274 7 11 1 1363 29 33

FB
15 15 15 1 3.8 40.3 0.0 58793 1.5e+6 599 18 75 1 6956 367 48

FC
5 5 5 2 0.0 0.0 0.0 63 22 23 1 1 1 23 7 7

FC
10 10 10 2 0.0 0.0 0.0 205 37 38 1 1 1 37 7 7

FC
15 15 15 2 0.0 0.0 0.0 692 52 53 1 1 1 83 7 7

M1 3 4 11 0.8 0.1 0.2 29607 5656 14679 7 1 9 1072 169 120
M2 4 4 13 3.1 0.3 0.8 118341 30742 67398 10 11 11 3875 431 142
M3 4 4 13 2.8 0.2 0.8 102883 18431 75976 9 10 11 3727 231 158
M4 5 4 15 12.7 0.8 2.5 543238 76785 230466 22 13 16 15K 731 185
N1 3 7 11 1.9 0.5 0.8 41218 16335 25577 7 10 10 1116 396 157
N2 4 7 13 9.3 2.4 3.8 199631 88537 134444 13 13 13 4775 990 241
N3 4 7 13 8.4 0.6 4.0 195886 28889 143969 12 11 13 3938 324 228
N4 5 7 15 40.9 5.1 19.2 878706 240366 758167 39 20 31 18K 1671 282
C1 5 3 12 0.8 0.2 0.2 25219 2339 3021 7 9 10 1056 95 87
C2 6 3 14 1.0 0.3 0.5 65388 5090 7484 8 10 10 875 86 100
C3 6 3 15 1.1 0.5 0.6 85940 6681 8259 10 10 10 760 109 101
C4 7 3 17 8.4 2.5 3.8 892327 40147 65781 43 11 13 1644 125 140
C5 8 3 19 72.4 13.2 16.7 8.0e+6 237600 333692 295 21 23 2425 393 218
C6 9 3 21 – 10.1 94.7 – 207845 8.7e+6 – 20 223 – 309 1000
C7 10 3 23 – 169 836 – 2.7e+7 9.2e+7 – 595 2.1G – 1506 4630
C8 10 3 24 – 14.5 932 – 331733 9.8e+7 – 23 2.3G – 686 16K
C9 10 3 25 – 1198 – – 1.3e+8 – – 2.5G – – 18K –

Table 1. Experimental results for the sub-optimal configurations rDF, greedy search with hL, and
greedy search with hU . Abbreviations: a number of automata, c number of clocks, v number of
variables, t runtime in seconds, S search space size (number of visited states, “e+x” means ·10x),
M peak memory used in MByte (“G” GByte), l length of detected error path (“K” thousand).
Dashes indicate out of memory.

In the sub-optimal configurations, we use a bitstate hashing technique. This is a ta-
ble with N entries, containing heuristic values, indexed by hash values of search states.

Adapting an AI Planning Heuristic for Directed Model Checking 13

Initially all table entries are empty. If the table entry for a new search state already con-
tains a value, then that value is returned. Otherwise, the heuristic value is computed and
stored in the table. This is a greedy method to bound the number of calls of the heuristic
computation. After some limited experimentation, we set N to 256,000 in the reported
experiments.9

t S M l
Exp a c v dL dU dL dU dL dU dL dU

FA
5 5 5 1 0.0 0.0 80 80 1 1 21 21

FA
10 10 10 1 0.0 0.0 130 130 1 1 21 21

FA
15 15 15 1 0.0 0.0 180 180 1 1 21 21

FB
5 5 5 1 0.0 0.0 1300 23 1 1 58 7

FB
10 10 10 1 24.7 0.0 1.5e+6 38 81 1 42K 7

FB
15 15 15 1 37.2 0.0 1.5e+6 53 277 1 112K 7

M1 3 4 11 0.4 0.5 31927 39288 10 10 1349 1695
M2 4 4 13 2.8 40.0 203051 3.4e+6 17 150 7695 183K
M3 4 4 13 2.2 1.5 174655 130580 14 14 5690 5412
M4 5 4 15 6.8 65.7 579494 6.0e+6 33 445 25K 668K
N1 3 7 11 1.6 1.3 42931 36858 10 10 1803 1601
N2 4 7 13 9.1 124 264930 5.1e+6 20 289 9279 366K
N3 4 7 13 4.8 77.4 134798 2.6e+6 19 218 11K 127K
N4 5 7 15 49.4 181 1.5e+6 6.7e+6 74 234 41K 127K
C1 5 3 12 0.2 0.2 19263 19628 10 10 977 987
C2 6 3 14 0.5 0.4 68070 60618 12 12 1501 830
C3 6 3 15 0.7 0.6 97733 86474 14 14 1238 856
C4 7 3 17 6.3 5.6 979581 854090 47 45 4510 1906
C5 8 3 19 61.7 58.6 8.8e+6 8.3e+6 306 306 12K 8943
C6 9 3 21 – – – – – – – –

Table 2. Experimental results for greedy search with dL and dU . Abbreviations as in Table 1.

The tool executable and our benchmark examples are available for download from
http://www.informatik.uni-freiburg.de/˜kupfersc/spin/. The data for
the sub-optimal configurations are in Table 1 (rDF, hL, and hU) and Table 2 (dL and
dU). The data for the optimal configurations are in Table 3. Below, we first explain the
examples used, then we discuss the results.

We use three variants of the Fischer protocol for mutual exclusion. The examples
are “FX

i ” in the tables, where X is A, B, or C, and i is the number of parallel automata.
The error condition is that at least two of the automata are in a certain location simul-
taneously. We made the error possible by weakening one of the temporal conditions in

9 For very small values of N , around 10,000, we observed many “outliers”, i.e., examples where
search took several orders of magnitude shorter or longer when using the bitstate hashing. For
larger N values, the behaviour becomes more stable, and most of the time gives a speedup
factor of around 2 to 10 in our examples.

14 Sebastian Kupferschmid, Jörg Hoffmann, Henning Dierks, and Gerd Behrmann

the automata (from “>” to “≥”). The variants differ in the way they encode the error
condition. Variant A adds additional automata with synchronisation. Variant B selects
and specifies two of the automata for the error condition. Variant C introduces a variable
specifying the number of automata in the error location.

t S M l
Exp a c v BF hL dL BF hL dL BF hL dL

FA
5 5 5 1 0.0 0.0 0.0 1467 207 1457 6 1 1 9

FA
10 10 10 1 0.5 0.0 0.6 37942 2022 37922 8 1 8 9

FA
15 15 15 1 7.8 0.3 7.8 348827 9187 348797 31 10 32 9

FB
5 5 5 1 0.0 0.0 0.0 362 138 242 1 1 1 7

FB
10 10 10 1 0.0 0.0 0.0 5422 1768 2352 1 1 1 7

FB
15 15 15 1 0.6 0.2 0.2 34307 8648 10437 7 11 6 7

FC
5 5 5 2 0.0 0.0 na 362 130 na 1 1 na 7

FC
10 10 10 2 0.0 0.0 na 5442 755 na 1 1 na 7

FC
15 15 15 2 0.6 0.0 na 34307 2255 na 7 1 na 7

M1 3 4 11 0.8 0.3 0.8 50001 24035 50147 7 7 7 50
M2 4 4 13 3.1 1.4 3.4 223662 101253 223034 11 10 10 51
M3 4 4 13 3.3 1.6 3.4 234587 115008 231357 11 10 10 53
M4 5 4 15 13.6 6.4 14.5 990513 468127 971736 29 22 25 54
N1 3 7 11 5.2 3.2 5.6 100183 59573 99840 9 9 8 50
N2 4 7 13 25.6 15.1 25.5 442556 273235 446465 18 15 15 53
N3 4 7 13 26.4 16.7 27.2 476622 301963 473117 17 15 15 53
N4 5 7 15 120 77.4 119 2.0e+6 1.3e+6 2.0e+6 65 39 45 56
C1 5 3 12 0.3 0.7 0.3 35325 17570 35768 7 9 7 55
C2 6 3 14 0.9 1.7 1.0 109583 46495 110593 10 12 10 55
C3 6 3 15 1.2 2.1 1.3 143013 53081 144199 11 13 11 55
C4 7 3 17 10.8 16.9 12.2 1.4e+6 451755 1.4e+6 78 49 51 56
C5 8 3 19 114 128 123 1.2e+7 3.4e+6 1.2e+7 574 322 377 57
C6 9 3 21 – 1328 – – 3.2e+7 – – 2.7G – 57

Table 3. Experimental results for our optimal configurations, i.e., BF, A∗ search with hL, and A∗

search with dL. Abbreviations as in Table 1, na means not applicable.

The other examples in the tables are from two more realistic case studies. Examples
“Mi” and “Ni”, i = 1, . . . , 4, come from a study called “Mutual Exclusion”. This
study models a real-time protocol to ensure mutual exclusion of states in a distributed
system via asynchronous communication. The protocol is described in full detail in
[6]. By increasing an upper time bound in the model we got a flawed specification
that we transformed into its timed automata semantics by applying various abstractions
techniques. The resulting models do not have many automata but a non-trivial amount
of clocks and variables.

Examples “Ci”, i = 1, . . . , 9, come from a case study called “Single-tracked Line
Segment”. This study stems from an industrial project partner of the UniForM-project

Adapting an AI Planning Heuristic for Directed Model Checking 15

[16] and the problem is to design a distributed real-time controller for a segment of
tracks where trams share a piece of track. A distributed controller was modeled in
terms of PLC-Automata [6, 16], an automata-like notation for real-time programs. The
PLC-Automata were translated into timed automata with the tool Moby/RT [18]. The
property to be checked requires that never both directions are given permission to enter
the shared segment simultaneously. This property is ensured by 3 PLC-Automata of
the whole controller. We injected an error by manipulating a delay such that the asyn-
chronous communication between these automata is faulty. In Moby/RT abstractions
are offered for the translation into the timed automata. The given set of PLC-Automata
had eight input variables and we constructed nine models with decreasing size by ab-
stracting more and more of these inputs.

The results in Tables 1 and 2 clearly demonstrate the potential of our heuristic func-
tions. Consider Table 1 first. Except in FB

i (where hL behaves very badly), and FC
i

(where no approach needs any time), the heuristic searches consistently find the error
paths much faster. Due to the reduced search space size and memory requirements, they
can solve more of the large Ci examples. At the same time, they find much, by orders
of magnitude, shorter error paths in all cases. In FB

i , hL does worse than hU because
its heuristic value does not improve if only one of the two target automata moves closer
to its destination: the ATG becomes shorter only if both get closer. The somewhat odd
behaviour of hL in C8, where search is a lot faster than in C9, is an outlier caused by
the bitstate hashing (outliers suggest a direction for future work discussed in Section 7).

Considering Table 2, we observe that, using dL and dU in greedy search, except
in the Fischer variants the search space sizes and runtimes one gets are similar to that
of rDF, in most cases somewhat worse. The error paths are longer (up to two orders
of magnitude) than those found by rDF, except in Fischer variant A. The heuristics
can’t handle Fischer variant C – the target condition is not expressed in terms of target
locations – which is, for that reason, left out of the table. In variant B, similarly to hL,
dL fails quickly. In variant A, due to the construction both dL and dU are constantly 1,
and the search spaces are identical to those of a non-randomised DF.

The results for the optimal configurations, Table 3, demonstrate that hL also has
some potential to improve the finding of optimal error paths, if to a lesser extent than
in the sub-optimal setting. A∗ with hL has the smallest search spaces in all cases, and
the best runtimes in all cases except the large Ci examples, of which it can solve more
than the other configurations due to the lower memory requirements. The dL heuristic,
on the other hand, most of the time yields performance very similar to that of BF. None
of the configurations could solve C7, C8, or C9.

6 Related Work

The published approaches to directed model-checking all differ from ours either in that
the heuristic has to be provided by the user, or in that the heuristic is based on a very
different kind of reasoning.

Bloem et al. [4] describe a mechanism how to model check ECTL and ACTL formu-
las. The method computes least and greatest fixpoints by under and over approximations
based on hints provided by the user. Apart from relying on the user, this method differs

16 Sebastian Kupferschmid, Jörg Hoffmann, Henning Dierks, and Gerd Behrmann

from ours in that it can treat more general formulas, and does not do a heuristic search.
Behrmann et al [3] have studied priced timed automata. Transitions are labelled with
prices, and a heuristic estimates the remaining costs. Behrmann et al achieved good re-
sults in an application for which they hand-coded the heuristic; they don’t provide an
automatic computation.

Yang and Dill [21] use Hamming distance to drive a heuristic search. This is gen-
erally a much cruder approximation than our ATG-based heuristics (with the advantage
of taking much less time to compute). We implemented the Hamming distance heuristic
in UPPAAL, and found it to not work well in our examples: roughly similar to dL and
dU in the Fischer examples, by far the worst heuristic (much worse runtime results) in
the Mi, Ni, and Ci examples. Groce and Visser [12] introduce two heuristics, inspired
by the area of testing, for model checking Java programs. The heuristics do not try to
target an error formula but instead drive the search to cover yet unexplored branches
in the program. Edelkamp et al [10] introduced heuristics to improve error detection
with SPIN. As discussed earlier, we implemented these heuristics (dL and dU) in UP-
PAAL and found them to not work very well in our context. Qian and Nymeyer [19]
introduced the use of “pattern database” heuristics based on abstractions generated by
ignoring some of the state variables. This is a very different abstraction technique than
ours, which keeps all variables, and, instead, simplifies their semantics.

In parallel to ours, related work is done by Dräger et al [7]. A paper is submitted to
this same conference. The two pieces of work are conducted (and submitted) separately
because, like in the works listed above, the techniques used to generate the heuristic
functions are fundamentally different. While we approach from an AI Planning per-
spective, Dräger et al modify established abstraction methods from Verification. While
we developed combined treatments of communication and integer variables, their focus
so far is (almost) exclusively on finding good approximations of communication, par-
ticularly of cyclic patterns. Treating integer variables in Dräger et al’s approach appears
non-trivial, and has not yet been done. Their approximation works by, in a pre-process,
iteratively “merging” a pair of automata, i.e., by computing their product and then merg-
ing locations until there are at most N locations left, where N is an input parameter. The
resulting heuristic has, in difference to ours, no trouble with the communication struc-
ture depicted in Figure ?? (Section 4) – however, when merging locations one runs the
risk to lose the distinction between dead ends and non dead ends in Figure 3. Indeed, in
that example, UPPAAL excels with our heuristics but doesn’t scale with Dräger et al’s;
in Towers of Hanoi – an example containing excessively many repetitions in its solution
– the picture is exactly inverse. As more realistic examples, we shared the Mi, Ni, and
Ci benchmarks. While these have communication structures more like Figure ??, they
also rely heavily on integer variables. The results for the two different heuristics are
roughly comparable. There are advantages for hL in the Mi and Ni benchmarks, and
advantages for Dräger et al’s heuristic in the Ci benchmarks except C6, C7, and C8.
Investigating combinations of the two approaches – e.g., using our approach to treat
integers in Dräger et al’s approach – is future work.

Adapting an AI Planning Heuristic for Directed Model Checking 17

7 Conclusion

We have introduced methods for automatically generating two heuristic guidance func-
tions in UPPAAL. We have shown the functions’ potential for yielding more reliable
finding of error states, by reducing the number of search states that need to be consid-
ered, as well as guiding the search to short error paths.

The most pressing research topic right now is how to take clock variables into ac-
count in the heuristic computation. As said, a straightforward treatment is very unlikely
to yield any useful information. We think there is hope in, when building the ATG,
distinguishing between the clock value subsets that can be reached at the individual
automaton locations. Due to location invariants restricting the passage of time, the in-
tervals possible at individual locations are more restricted than the “global” reachable
interval. Particularly, constraints on how one clock value can change due to a transition
often transfer to all other clocks as well since for them time elapses in the same way.
(As a simple example, if one steps from l to l′ and x ≤ 5 is an invariant for l′, then
we know that the maximum reachable value for any clock is at most 5 larger than it
was in l.) In a similar fashion, we hope to make the treatment of integer variables more
informed by distinguishing between the value subsets that can be reached at individual
locations.

In the long term, we want to explore the following two directions. First, the “out-
liers” – instances solved in extremely short time – observed with very small hash tables
in bitstate hashing suggest that randomised local search with restarts might be suitable.
Such methods do gradient descents on the search space surface, with random perturba-
tions, until either a solution is reached or a termination criterion (e.g. path length bound
exceeded) holds, and a restart is made. We take the existence of outliers to indicate
that there is a good enough chance for such gradient descents to find shallow solutions.
Second, we believe there is hope in generating heuristic functions based on predicate
abstractions: these could take the clocks into account very naturally.

Acknowledgments

This work was partly supported by the German Research Council (DFG) as part of the
Transregional Collaborative Research Center “Automatic Verification and Analysis of
Complex Systems” (SFB/TR 14 AVACS). See http://www.avacs.org/ for more
information.

References

[1] Gerd Behrmann, Johan Bengtsson, Alexandre David, Kim G. Larsen, Paul Pet-
tersson, and Wang Yi. UPPAAL implementation secrets. In Proceedings of the 7th
International Symposium on Formal Techniques in Real-Time and Fault Tolerant
Systems, 2002.

[2] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on UPPAAL,
2005. Department of Computer Science, Aalborg University, Denmark.

http://www.avacs.org/

18 Sebastian Kupferschmid, Jörg Hoffmann, Henning Dierks, and Gerd Behrmann

[3] Gerd Behrmann and Ansgar Fehnker. Efficient guiding towards cost-optimality
in UPPAAL. In Proceedings of the 7th International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems, pages 174–188. Springer-
Verlag, 2001.

[4] Roderick Bloem, Kavita Ravi, and Fabio Somenzi. Symbolic guided search for
CTL model checking. In Proceedings of the 37th conference on Design automa-
tion, pages 29–34. ACM Press, 2000.

[5] Blai Bonet and Héctor Geffner. Planning as heuristic search. Artificial Intelli-
gence, 129(1–2):5–33, 2001.

[6] Henning Dierks. Comparing model-checking and logical reasoning for real-time
systems. Formal Aspects of Computing, 16(2):104–120, May 2004.

[7] Klaus Dräger, Bernd Finkbeiner, and Andreas Podelski. Directed model checking
with distance-preserving abstractions. In 13th International SPIN Workshop on
Model Checking of Software (SPIN 2006), 2006.

[8] Stefan Edelkamp. Generalizing the relaxed planning heuristic to non-linear tasks.
In S. Biundo, T. Frühwirth, and Günther Palm, editors, KI-04: Advances in Artifi-
cial Intelligence, pages 198–212. Springer-Verlag, 2004.

[9] Stefan Edelkamp, Alberto Lluch-Lafuente, and Stefan Leue. Directed explicit
model checking with hsf-spin. In Proceedings of the 8th International SPIN Work-
shop on Model Checking of Software (SPIN 2001), pages 57–79, 2001.

[10] Stefan Edelkamp, Alberto Lluch-Lafuente, and Stefan Leue. Directed explicit-
state model checking in the validation of communication protocols. International
Journal on Software Tools for Technology, 2004.

[11] Alfonso Gerevini, Alessandro Saetti, and Ivan Serina. Planning through stochas-
tic local search and temporal action graphs. Journal of Artificial Intelligence Re-
search, 20:239–290, 2003.

[12] Alex Groce and Willem Visser. Model checking Java programs using structural
heuristics. In Proceedings of the 2002 ACM SIGSOFT international symposium
on Software testing and analysis, pages 12–21, New York, NY, USA, 2002. ACM
Press.

[13] Jörg Hoffmann. The Metric-FF planning system: Translating “ignoring delete
lists” to numeric state variables. Journal of Artificial Intelligence Research,
20:291–341, 2003.

[14] Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation
through heuristic search. Journal of Artificial Intelligence Research, 14:253–302,
2001.

[15] G. Holzmann. The Spin Model Checker - Primer and Reference Manual. Addison-
Wesley, 2003.

[16] Bernd Krieg-Brückner, Jan Peleska, Ernst-Rüdiger Olderog, and Alexander Baer.
The UniForM Workbench, a universal development environment for formal meth-
ods. In Jeannette M. Wing, Jim Woodcock, and Jim Davies, editors, FM’99 – For-
mal Methods, volume 1709 of Lecture Notes in Computer Science, pages 1186–
1205. Springer-Verlag, 1999.

[17] Sebastian Kupferschmid, Jörg Hoffmann, Henning Dierks, and Gerd Behrmann.
Adapting an AI planning heuristic for directed model checking. Technical Re-
port 222, Albert-Ludwigs-Universität Freiburg, Institut für Informatik, Freiburg,

Adapting an AI Planning Heuristic for Directed Model Checking 19

Germany, 2006. available at http://www.informatik.uni-freiburg.
de/tr/2006/Report222/.

[18] Ernst-Rüdiger Olderog and Henning Dierks. Moby/RT: A tool for specification
and verification of real-time systems. Journal of Universal Computer Science,
9(2):88–105, 2003.

[19] Kairong Qian and Albert Nymeyer. Guided invariant model checking based on
abstraction and symbolic pattern databases. In 10th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS-04),
pages 497–511. Springer-Verlag, 2004.

[20] Benjamin Wah and Yixin Chen. Subgoal partitioning and global search for solving
temporal planning problems in mixed space. International Journal of Artificial
Intelligence Tools, 13(4):767–790, 2004.

[21] C. Han Yang and David L. Dill. Validation with guided search of the state space.
In Proceedings of the 35th annual conference on Design automation, pages 599–
604. ACM Press, 1998.

http://www.informatik.uni-freiburg.de/tr/2006/Report222/
http://www.informatik.uni-freiburg.de/tr/2006/Report222/

	Introduction
	Notations
	Abstraction
	The Monotonicity Abstraction
	The Monotonicity Abstraction in Timed Automata

	Approximating h+
	Results
	Related Work
	Conclusion

