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Abstract In this paper, we address the problem of creating an obg&@nchmark for
evaluating SLAM approaches. We propose a framework fowyaireg the results of a SLAM
approach based on a metric for measuring the error of thected trajectory. This metric
uses only relative relations between poses and does natralglobal reference frame. This
overcomes serious shortcomings of approaches using al gkfbeence frame to compute
the error. Our method furthermore allows us to compare SLAPpra@aches that use different
estimation techniques or different sensor modalitiesesaltcomputations are made based
on the corrected trajectory of the robot.

We provide sets of relative relations needed to compute aifrienfor an extensive
set of datasets frequently used in the robotics communiitg.r€lations have been obtained
by manually matching laser-range observations to avoiéttas caused by matching algo-
rithms. Our benchmark framework allows the user to easifyare and objectively compare
different SLAM approaches.
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1 Introduction

Models of the environment are needed for a wide range of mlagiplications including
transportation tasks, guidance, and search and rescumihg@anaps has therefore been a
major research focus in the robotics community in the lasades. Robots that are able to
acquire an accurate model of their environment are regadédlfilling a major precondi-
tion of truly autonomous agents.

In the literature, the mobile robot mapping problem undesepancertainty is often
referred to as theimultaneous localization and mappi(§LAM) or concurrent mapping
and localization(CML) problem[Smith and Cheeseman, 1986; Dissanayeikal, 2000;
Gutmann and Konolige, 1999;&Hnelet al, 2003; Montemerleet al., 2003; Thrun, 2001;
Leonard and Durrant-Whyte, 199 BLAM is considered to be a complex problem because
to localize itself a robot needs a consistent map and forisnguhe map the robot requires a
good estimate of its location. This mutual dependency antomgose and the map estimates
makes the SLAM problem hard and requires searching for disolin a high-dimensional
space.

Whereas dozens of different techniques to tackle the SLA&blem have been pre-
sented, there is no gold standard for comparing the reduttifferent SLAM algorithms. In
the community of feature-based estimation techniquesarekers often measure the dis-
tance or Mahalanobis distance between the estimated lakdimeation and the true location
(if this information is available). As we will illustrate ithis paper, comparing results based
on an absolute reference frame can have shortcomings. brelaeof grid-based estimation
techniques, people often use visual inspection to compagesrar overlays with blueprints
of buildings. This kind of evaluation becomes more and madifecdlt as new SLAM ap-
proaches show increasing capabilities and thus large snginments are needed for eval-
uation. In the community, there is a strong need for methddwimg meaningful compar-
isons of different approaches. Ideally, such a method ialglepf performing comparisons
between mapping systems that apply different estimatiohnigues and operate on dif-
ferent sensing modalities. We argue that meaningful coispas between different SLAM
approaches require a common performance measure (métis)metric should enable the
user to compare the outcome of different mapping approaches applying them on the
same dataset.

In this paper, we propose a novel technique for comparingthput of SLAM algo-
rithms. We aim to establish a benchmark that allows for dbjely measuring the perfor-
mance of a mapping system. We propose a metric that openaliesmorelative geometric
relations between poses along the trajectory of the robat.approach allows for making
comparisons even if a perfect ground truth information isawailable. This enables us to
present benchmarks based on frequently used datasets riobtbigcs community such as
the MIT Killian Court or the Intel Research Lab dataset. Theadvantage of our method
is that it requires manual work to be carried out by a human khaws the topology of
the environment. The manual work, however, has to be donearde for a dataset and
then allows other researchers to evaluate their methodly.dasthis paper, we present
manually obtained relative relations for different datagbat can be used for carrying out
comparisons. We furthermore provide evaluations for tealts of three different mapping
techniques, namely scan-matching, SLAM using Rao-Blatlkaed particle filter[Grisetti
et al, 2007b; Stachnissat al., 20078, and a maximum likelihood SLAM approach based on
the graph formulatiofGrisettiet al., 2007c; Olson, 2048

The remainder of this paper is organized a follows. First,digeuss related work in
Section 2 and present the proposed metric based on relatat@ons between poses along



the trajectory of the robot in Section 3. Then, in Section d 8ection 5 we explain how to

obtain such relations in practice. In Section 6, we briefgcdss how to benchmark if the
tested SLAM system does not provide pose estimates. NeRgdtion 7 we provide a brief

overview of the datasets used for benchmarking and in Se8twee present our experiments
which illustrate different properties of our method and vikeedenchmark results for three
existing SLAM approaches.

2 Related Work

Learning maps is a frequently studied problem in the rokditerature. Mapping tech-
nigues for mobile robots can be classified according to tliedying estimation technique.
The most popular approaches are extended Kalman filters {HKEonard and Durrant-
Whyte, 1991; Smittet al, 1994, sparse extended information filtdE&usticeet al., 2005a;
Thrun et al,, 2004, particle filters[Montemerloet al, 2003; Grisettiet al, 20074, and
least square error minimization approachies and Milios, 1997; Freset al, 2005; Gut-
mann and Konolige, 1999; Olscet al, 2004. For some applications, it might even be
sufficient to learn local maps onfjHermosilloet al, 2003; Thrun and colleagues, 2006;
Yguelet al, 2007.

The effectiveness of the EKF approaches comes from thelfatthiey estimate a fully
correlated posterior about landmark maps and robot poses. Weakness lies in the strong
assumptions that have to be made on both, the robot motioelraod the sensor noise. If
these assumptions are violated the filter is likely to dieddylier et al, 1995; Uhlmann,
1995.

Thrunet al.[2004 proposed a method to correct the poses of a robot based on-the i
verse of the covariance matrix. The advantage of sparsedediénformation filters (SEIFs)
is that they make use of the approximative sparsity of therination matrix. Eusticet
al. [20053 presented a technique that more accurately computes thiebeunds within
the SEIF framework and therefore reduces the risk of becgpmerly confident.

RMS Titanic: conservative covariance estimates for SLAM Titternational Journal of
Robotics Research,

Dellaert and colleagues proposed a smoothing method cajleate root smoothing and
mapping (SAM)Dellaert, 2005; Kaesat al, 2007; Ranganathaat al., 2007. It has several
advantages compared to EKF-based solutions since it lwetters the non-linearities and
is faster to compute. In contrast to SEIFs, it furthermo@vigles an exactly sparse factor-
ization of the information matrix. In addition to that, SAMrt be applied in an incremental
way [Kaesset al, 2007 and is able to learn maps in 2D and 3D.

Frese's TreeMap algorithifiFrese, 200B6can be applied to compute nonlinear map es-
timates. It relies on a strong topological assumption omiag to perform sparsification of
the information matrix. This approximation ignores smailfrees in the information matrix.
In this way, Frese is able to perform an updat@iflogn) wheren is the number of features.

An alternative approach to find maximum likelihood maps is #pplication of least
square error minimization. The idea is to compute a netwérgoostraints given the se-
qguence of sensor readings. It should be noted that our agipfomevaluating SLAM meth-
ods presented in this paper is highly related to this fortiadeof the SLAM problem.

Lu and Milios[1997 introduced the concept of graph-based or network-basedvSLA
using a kind of brute force method for optimization. Theipegach seeks to optimize the
whole network at once. Gutmann and Konol[d®99 proposed an effective way for con-
structing such a network and for detecting loop closuredenttinning an incremental es-



timation algorithm. Ducketet al. [2004 propose the usage of Gauss-Seidel relaxation to
minimize the error in the network of relations. To make thelem linear, they assume
knowledge about the orientation of the robot. Fresal.[2005 propose a variant of Gauss-
Seidel relaxation called multi-level relaxation (MLR).dpplies relaxation at different res-
olutions. MLR is reported to provide very good results in @avironments especially if the
error in the initial guess is limited.

Olsonet al.[2004 presented an optimization approach that applies stochgistiient
descent for resolving relations in a network efficientlytéhsions of this work have been
presented by Grisetéit al. [2007c; 2007hMost approaches to graph-based SLAM such as
the work of Olsoret al, Grisettiet al,, Freseet al,, and others focus on computing the best
map and assume that the relations are given. The ATLAS framelBosseet al, 2003,
hierarchical SLAM[Estradzet al, 2009, or the work of Nichteret al.[2004, for example,
can be used to obtain the constraints. In the graph-basedingappproach used in this
paper, we followed the work of Olsd2004 to extract constraints and appli€@risetti et
al., 2007¢ for computing the minimal error configuration.

Activities related to performance metrics for SLAM methpdsach as the work de-
scribed in this paper, can roughly be divided into three megdegories: First, competition
settings where robot systems are competing within a defimebdlgm scenario, such as
playing soccer, navigating through a desert, or searchingi€tims. Second, collections of
publicly available datasets that are provided for comgpaigorithms on specific problems.
Third, related publications that introduce methodologied scoring metrics for comparing
different methods.

The comparison of robots within benchmarking scenariostsasght-forward approach
for identifying specific system properties that can be galimad to other problem types.
For this purpose numerous robot competitions have beeatédtin the past, evaluating
the performance of cleaning robdBPFL and IROS, 2002robots in simulated Mars envi-
ronmentdESA, 2008, robots playing soccer or rescuing victims after a disg®eboCup
Federation, 2009 and cars driving autonomously in an urban diearpa, 200¥. However,
competition settings are likely to generate additionakediue to differing hardware and
software settings. For example, when comparing mappingieak in the RoboCup Rescue
domain, the quality of maps generated using climbing robatsgreatly differ from those
generated on wheel-based robots operating in the planthdfomore, the approaches are
often tuned to the settings addressed in the competitions.

Benchmarking of systems from datasets has reached a rattteretevel in the vision
community. There exist numerous data bases and perfornmaeasures, which are avail-
able via the Internet. Their purpose is to validate, for eplemimage annotatiofiTorralba
et al, 2007, range image segmentatifiHooveret al, 1994, and stereo vision correspon-
dence algorithm§Scharstein and Szeliski, 200Z'hese image databases provide ground
truth data[ Torralbaet al., 2007; Scharstein and Szeliski, 200®ols for generating ground
truth [Torralbaet al, 2007 and computing the scoring metriScharstein and Szeliski,
2004, and an online ranking of results from different meth¢8sharstein and Szeliski,
2004 for direct comparison.

In the robotics community, there are some well-known wedssiroviding datasefsioward
and Roy, 2003; Bonariret al., 2004 and algorithmgStachnist al,, 20074 for mapping.
However, they neither provide ground truth data nor reconga#gons on how to compare
different maps in a meaningful way.

Some preliminary steps towards benchmarking navigatitutisas have been presented
in the past. Amigongt al. [2007 presented a general methodology for performing exper-
imental activities in the area of robotic mapping. They ss8igd a number of issues that



should be addressed when experimentally validating a mgppiethod. For example, the
mapping system should be applied to publicly available ,dadsameters of the algorithm
should be clearly indicated (and also effects of their wamies presented), as well as param-
eters of the map should be explained. When ground truth dateaiilable, they suggest to
utilize the Hausdorff metric for map comparison.

Wulf et al.[200§ proposed the idea of using manually supervised Monte Cartml-
ization (MCL) for matching 3D scans against a reference mapy suggested that a refer-
ence map be generated maps from independently created GAPwdach can be obtained
from the land registry office. The comparison between geednaap and ground truth has
been carried out by computing the Euclidean distance antk alifference of each scan,
and plotting these over time. Furthermore, they providadddrd deviation and maximum
error of the track for comparisons. We argue that compahiegbsolute error between two
tracks might not yield a meaningful assertion in all casedlestrated in the initial exam-
ple in Section 3. This effect gets even stronger when thetnoiadkes a small angular error
especially in the beginning of the dataset (and when it do¢saturn to this place again).
Then, large parts or the overall map are likely to be consistbe error, however, will be
huge. Therefore, the method proposed in this paper favarpadsons between relative
poses along the trajectory of the robot. Based on the setelb&tween which pose relations
are considered, different properties can be highlighted.

Balaguetet al.[2007 utilize the USARSIm robot simulator and a real robot platidor
comparing different open source SLAM approaches. They detrated that maps resulting
from processing simulator data are very close to thosetiegdfom real robot data. Hence,
they concluded that the simulator engine could be used fstesyatically benchmarking
different approaches of SLAM. However, it has also been shitat noise is often but not
always Gaussian in the SLAM contd8tachnis®t al, 20078. Gaussian noise, however, is
typically used in most simulation systems. In addition @tffBalagueet al.do not provide
a quantitative measure for comparing generated maps vwatingrtruth. As with many other
approaches, their comparisons were carried out by visspkiction.

The paper presented here extends our viBrkgardet al,, 2009 with a more detailed
description of the approach, a technique for extractingti@hls from aerial images, and a
significantly extended experimental evaluation.

3 Metric for Benchmarking SLAM Algorithms

In this paper, we propose a metric for measuring the perfoceaf a SLAM algorithrmot

by comparing the map itself but by considering the poseseofahot during data acquisi-
tion. In this way, we gain two important properties: First, ibalks us to compare the result
of algorithms that generate different types of metric mgpesentations, such as feature-
maps or occupancy grid maps. Second, the method is invddahe sensor setup of the
robot. Thus, a result of a graph-based SLAM approach workimgaser range data can be
compared, for example, with the result of vision-based $la&M. The only property we
require is that the SLAM algorithm estimates the trajectoiryhe robot given by a set of
poses at which observations are made. All benchmark conipugawill be performed on
this set.
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Fig. 1 This figure illustrates a simple example where the metric in Hgild. The light blue circles show the
reference positions of the robft } while the dark red circles show the estimated positions ofdhet{x; }.
The correspondence between the estimated locations andahedgtruth is shown with dashed lines, and
the direction of motion of the robot is highlighted with armwn the situation shown in the upper part, the
robot makes a small mistake at the end of the path. This resudtsinall error. Conversely, in the situation
illustrated on the bottom part of the figure the robot makes dl emar of the same entity, but at the beginning
of the travel, thus resulting in a much bigger global error.

3.1 A Measure for Benchmarking SLAM Results

Letx;1 be the poses of the robot estimated by a SLAM algorithm frone tstep 1 td'. Let
Xi.1 be the reference poses of the robot, ideally the true latsitia straightforward error
metric could be defined as

T
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where® is the standard motion composition operator ands inverse. Letd j = Xj © X;
be the relative transformation that moves the nadmtox; and accordinglyy’; = xj © .
Eq. 1 can be rewritten as
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We claim that this metric is suboptimal for comparing theutesf a SLAM algorithm.
To illustrate this, consider the following 1D example in winia robot travels along a straight
line. Let the robot make a translational erroreafuring the first motiond, » = 6y, + €, and
perfect estimates at all other points in tidig,1 = &', fort > 1. Thus, the error according
to Eq. 2, will beT - e, sinced, ;> is contained in every pose estimate far 1. If, however,
we estimate the trajectory backwards starting foanio x; or alternatively by shifting the
whole map bye, we obtain an error oé only. This indicates, that such an error estimate
is suboptimal for comparing the results of a SLAM algorith&ee also Figure 1 for an
illustration.

In the past, the so-called NEES measure proposé8anShalonet al, 2001 as

.
g(xur) = Z\(Xt*ﬁ)TQt(Xt*ﬁ), 3)

t=

has often been used to evaluate the results of a SLAM app(eagt Eusticeet al, 200501).
Here Q; represents the information matrix of the poge The NEES measure, however,



suffers from a similar problem as Eq. 1 when compugintn addition to that, not all SLAM
algorithms provide an estimate of the information matrig #rus cannot be compared based
on Eq. 3.

Based on this experience, we propose a measure that canidedeformation energy
that is needed to transfer the estimate into the ground.tititts can be done — similar
to the ideas of the graph mapping introduced by Lu and M{li97 — by considering
the nodes as masses and connections between them as sphimgsour metric is based on
the relative displacement between robot poses. Instead of compariag* (in the global
reference frame), we do the operation based amdd* as

£(6) = 3 transd, & &)+ roN(d .81, @
8]

whereN is the number of relative relations amdns(-) androt(-) are used to separate
and weight the translational and rotational components.sWggest that both quantities
be evaluated individually. In this case, the error (or tfammation energy) in the above-
mentioned example will be consistently estimated as thgleirotational error no matter
where the error occurs in the space or in which order the daieocessed.

Our error metric, however, leaves open which relative dispinents j are included in
the summation in Eq. 4. Using the metric and selecting eatare two related but different
problems. Evaluating two approaches based on a differéof selative pose displacements
will obviously resultin two different scores. As we will slvan the remainder of this section,
the setd and thusd* can be defined to highlight certain properties of an algorith

Note that some researchers prefer the absolute error (gbsalue, not squared) instead
of the squared one. We prefer the squared one since it dérorasthe motivation that the
metric measures the energy needed to transform the estimmajectory into ground truth.
However, one can also use the metric using the non-squan@drestead of the squared one.
In the experimental evaluation, we actually provide botlues.

3.2 Selecting Relative Displacements for Evaluation

Benchmarks are designed to compare different algorithmthd case of SLAM systems,
however, the task the robot finally has to solve should defiegequired accuracy and this
information should be considered in the measure.

For example, a robot generating blueprints of buildingsuthoeflect the geometry of
a building as accurately as possible. In contrast to thatbatmperforming navigation tasks
requires a map that can be used to robustly localize itseltarwompute valid trajectories
to a goal location. To carry out this task, it is sufficient inghcases that the map is topolog-
ically consistent and that its observations can be localiycimed to the map, i.e. its spatial
structure is correctly representing the environment. Vilert® a map having this property
as being locally consistent. Figure 3 illustrates the cphoélocally consistent maps which
are suited for a robot to carry out navigation tasks.

By selecting the relative displacemesis used in Eqg. 4 for a given dataset, the user can
highlight certain properties and thus design a measureviduating an approach given the
application in mind.

For example, by adding only known relative displacementa&en nearby poses based
on visibility, a local consistency is highlighted. In caandt to that, by adding known rela-
tive displacements of far away poses, for example, proviteen accurate external mea-
surement device or by background knowledge, the accurattyeadverall geometry of the



mapped environment is enforced. In this way, one can incatp@dditional knowledge (for
example, that a corridor has a certain length and is strgiigiat the benchmark.

4 Obtaining Reference Relations in Indoor Environments

In practice, the key question regarding Eq. 4 is how to ddterthetrue relative displace-
mentsbetween poses. Obviously, the true values are not availeloieever, we can de-
termine close-to-true values by using the information rded by the mobile robot and
the background knowledge of the human recording the datashich, of course, involves
manual work.

Please note, that the metric presented above is indepeoidbietactual sensor used. In
the remainder of this paper, however, we will concentrateaiots equipped with a laser
range finders, since they are probably the most popular seims@botics at the moment.To
evaluate an approach operating on a different sensor ntydadie has two possibilities to
generate relations. One way would be to temporarily mouaserlrange finder on the robot
and calibrate it in the robot coordinate frame. If this is possible, one has to provide
a method for accurately determining the relative displaa®s between two poses from
which an observation has been taken that observes the sainhud {hee space.

4.1 Initial Guess

In our work, we propose the following strategy. First, onegto find an initial guess about
the relative displacement between poses. Based on the &dgevbf the human, a wrong ini-
tial guess can be easily discarded since the human “knowsstthcture of the environment.
In a second step, a refinement is proposed based on manuattida.

4.1.1 Symeo System

One way for obtaining good initial guesses with no or onlyyviw interactions can be
the use of the Symeo Positioning System LPRSBmeo GmbH, 2008 It works similar to

a local GPS system but indoors and can achieve a localizatioaracy of around 5cm to
10cm. The problem is that such a system designed for indusipplications is typically
not present at most robotics labs. If available, howevés itell suited for a rather accurate
initial guess of the robot’s position.

4.1.2 Initial Estimate via SLAM Approaches

In most cases, however, researchers in robotics will havevBalgorithms at hand that can
be used to compute an initial guess about the poses of thé talibe recent years, several
accurate methods have been proposed to serve as such agpeeSe¢tion 2). By manually
inspecting the estimates of the algorithm, a human can gaedipe, or discard a match and
also add missing relations.

It is important to note that the output is not more than anahguess and it is used to
estimate the visibility constraints which will be used ie thext step.
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4.2 Manual Matching Refinement and Rejection

Based on the initial guess about the position of the roboa fgiven time step, it is possible
to determine which observations in the dataset should havered the same part of the
space or the same objects. For a laser range finder, this siy lea achieved. Between
each visible pair of poses, one adds a relative displaceim@na candidate set.

In the next step, a human processes the candidate set to&i@wirong hypotheses by
visualizing the observation in a common reference framés fidguires manual interaction
but allows for eliminating wrong matches and outliers withrhprecision, since the user is
able to incorporate his background knowledge about the@mvient.

Since we aim to find the best possible relative displacenveatperform a pair-wise
registration procedure to refine the estimates of the observregistration method. It fur-
thermore allows the user to manually adjust the relativeedfbetween poses so that the
pairs of observations fit better. Alternatively, the pain &ee discarded.

This approach might sound labor-intensive but with an apate user interface, this
task can be carried out without a large waste of resourcegxXample, for a standard dataset
with 1,700 relations, it took an unexperienced user appnakely four hours to extract the
relative translations that then served as the input to ther ealculation. Figure 2 shows a
screen-shot of the user interface used for evaluation.

It should be noted that for the manual work described aboweesdnd of structure in
the environment is required. The manual labor might be vargl fin highly unstructured
scenes.

4.3 Other Relations

In addition to the relative transformations added uporbilisy and matching of observa-
tions, one can directly incorporate additional relatiogsutting from other sources of infor-
mation, for example, given the knowledge about the lengtadrridor in an environment.
By adding a relation between two poses — each at one side obthidor — one can incor-
porate knowledge about the global geometry of an enviromi#his is available. This fact
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is, for example, illustrated by the black dashed line in Fégaithat implies a known distance
between two poses in a corridor that are not adjacent. Fgplets the corresponding error
identified by the relation.

In the experimental evaluation, we will show one examplesiarh additional relations
used in real world datasets. In this example, we utilizetieata derived from satellite image
data.

5 Obtaining Reference Relations in Outdoor Environments

The techniques described in the previous section can betas#utain a close-to-ground-
truth for indoor environments. In outdoor scenarios howetve2 manual validation of the
data is usually less practical due to the reduced structuteltee large size. In wide open
areas it may be difficult for a human operator to determinetidrea potential alignment
between laser scans is good or not due to the limited randeeafdanner. Furthermore the
poor structure of the environment makes this procedure &aed when the laser senses a
high number of obstacles.

GPS is commonly used to bound the global uncertainty of aclehioving outdoors.
Unfortunately, GPS suffers from outages or occlusions abahobot relying on GPS might
encounter substantial positioning errors. Especiallyrban environments, GPS is known
to be noisy. Even sophisticated SLAM algorithms cannoyfadmpensate for these errors
as there still might be lacking relations between obseraatcombined with large odometry
errors that introduce a high uncertainty in the currenttpmsif the vehicle.

As an alternative to GPS, it is possible to use aerial imageégtermine relations close
to the ground truth. We investigated this approach in owiptes work[Kimmerleet al,,
2009 and we show that this solution yields a better global coestst of the resulting map,
if we consider the prior information. Satellite images ofdtons are widely available on
the web by popular tools like Google-Earth or Microsoft L-izarth. This data can be used
as prior information to localize a robot equipped with a 3Belarange finder.

The overall approach is based on the Monte-Carlo locatindfiamework{ Dellaertet
al., 1994. The satellite images are captured from a viewpoint sigaifily different from
the one of the robot. However, by using 3D scans we can eXfadhformation which is
more likely to be consistent with the one visible in the refeme map. In this way, we can
prevent the system from introducing inconsistent priooinfation.

In the following, we explain how we adapted Monte Carlo Lazation (MCL) to oper-
ate on aerial images and how to select points from 3D scares¢ottsidered in the observa-
tion model of MCL. This procedure returns a set of candidab®t locations(~ From those
positions, we then select a subset of pairs of locations fubich to compute the reference
displacements ; to be used in the metric.

5.1 Monte Carlo Localization

To estimate the poseof the robot in its environment, we consider probabilisticdlization,
which follows the recursive Bayesian filtering scheme. Tag klea of this approach is to
maintain a probability densitg(x; | z11,Uoz—1) of the locationx of the robot at time: given



11

L. L-.__JT_.- - e e Rl

4 e

2

~ 1% £l
(@) (d)

Fig. 3 Example of the performance measure on maps generated usingmliffensor setups. The relations
between close-by positions are determined by a human assesteehlignment procedure performed on scans
acquired at close-by locations. The long dashed line reptes relation added by manually measuring the
relative distance at two locations of the robot: (a) theneriee map obtained from the relative measurements,
(b) the reference map superimposed with the network of relatigasurements, (c) a map obtained by scan
matching using a 4 meters range sensor, with the superimpolsgidme(this map is still usable for navi-
gating a robot), (d) a map obtained by cropping the range ofé¢imsor to 3 meters. Whereas the quality of
the rightmost map is visibly decreased, it is also adequateofost navigation since it preserves a correct
topology of the environment (all doorways are still visibdg)d it correctly reflects the local spatial structure
of the corridor. Therefore, it is locally consistent, but igtobally consistent as (a). See also Figure 4 for
corresponding error plots.
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Fig. 4 This figure shows the behavior of the error metric for the maparfd (d) in Figure 3. On the left we
plot the error introduced by the individual relations. Thght plot is a magnification of the left one in the
region corresponding to the manually introduced relationskethon the images with the dashed line. This
results in a substantial increase of the glabaf SLAM results under comparison.
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Fig. 5 (a) A Google Earth image of the Freiburg camp(s. The corresponding Canny image. Despite the
considerable clutter, the structure of the buildings amdvitrtical elements are clearly visible.

all observationg; + and all control inputsigt_1. This posterior is updated as follows:

P(X | Z11,Uot-1) = (5)
a-p(z |xt)-/p(xt | U—1,%—1) - P(X—1) dX%_1.

Here,a is a normalization constant which ensures @t | ¢, Upt—1) SUMS up to one over
all x. The terms to be described in Eq. 5 are the prediction mp@el| t_1,%_1) and the
sensor modep(z | % ). One contribution of this work is an appropriate computat the
sensor model in the case that a robot equipped with a 3D ramg®soperates in a given
birds-eye map.

MCL is a variant of particle filteringDoucetet al., 2001 where each particle corre-
sponds to a possible robot pose and has an assigned weigthe belief update from
Eq. 5 is performed according to the following two alterngtsteps:

1. Inthe prediction step, we draw for each particle with vaeig' a new particle according
towl! and to the prediction model(x | Ut_1,%_1).

2. In the correction step, a new observat®ris integrated. This is done by assigning a
new weightw!! to each particle according to the sensor mquig | x;).

Furthermore, the particle set needs to be re-sampled angal the assigned weights to
obtain a good approximation of the pose distribution witmédinumber of particles.

So far, we have described the general framework of MCL. Imidae section, we will
describe the sensor model for determining the likelihp@a | x;) of perceiving the 3D scan
z from a given robot positior; within an aerial image. For convenience, we will drop the
time indext in the remainder of this section.

5.2 Sensor Model for 3D Range Scans in Aerial Images

The task of the sensor model is to determine the likelihp@d| x) of a readingz given
the robot is at pose. In our current system, we apply the so called endpoint model
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likelihood fields[Thrunet al, 2004. Let Z be the endpoints of a 3D scanThe endpoint
model computes the likelihood of a reading based only onitartes between a scan point
# re-projected onto the map according to the poséthe robot and the point in the malp
which is closest ta€as:

p(z|x) = f([|2—dl,.... | &~ d¥|). (6)

If we assume that the beams are independent and the senseiswormally distributed we
can rewrite Eq. 6 as

(@-di)

f2t=d',....[2¢=d" ) O []e & . @)
J

Since the aerial image only contains 2D information aboesitene, we need to select a
set of beams from the 3D scan, which are likely to result incttires that can be identified
and matched in the image. In other words, we need to trandfoththe scan and the image
into a set of 2D points which can be compared via the functioh

To extract these points from the image we employ the standarghy edge extraction
procedurdCanny, 1988 The idea behind this is that if there is a height gap in théaher
image, there will often also be a visible change in intengityhe aerial image and we
assume that this intensity change is detected by the edgectah procedure. In an urban
environment, such edges typically correspond to bordenoafl, trees, fences or other
structures. Of course, the edge extraction procedurengtutot of false positives that do
not represent any actual 3D structure, like street markipngss borders, shadows, and other
flat markings. All these aspects have to be considered byetigos model.

A straightforward way to address this problem is to seleatlzsst of beamgX from
the 3D scan which will then be used to compute the likelihddie beams which should
be considered are the ones which correspond to significaiattiess along the direction
of the 3D scan. For vertical structures, a direct matchirtgvben the extracted edges and
the measurements of a horizontal 2D laser range scanneegaertormed, as discussed by
Frih and Zakhof2004. If a 3D laser range finder is available, we also attempt tachat
variations in height that are not purely vertical structiike trees or overhanging roofs.
This procedure is illustrated by the sequence of imagesgarEi6.

In the current implementation, we considered variationkaight of 0.5m and above
as possible positions of edges that could also be visibleeratrial image. The positions
of these variations relative to the robot can then be matelgathst the Canny edges of the
aerial image in a point-by-point fashion, similar to the afiig of 2D-laser scans against
an occupancy grid map. Additionally, we employ a heurigiidétect when the prior is not
available, i.e., when the robot is inside of a building or@inaverhanging structures. This is
based on the 3D perception. If there is a ceiling which leadsihtge measurements above
the robot no global relations from the localization are gnéted, since we assume that the
area the robot is sensing is not visible in the aerial image.

Figure 7 shows an example trajectory estimated with thikrtieie (in red) and the
GPS positions (in blue). As can be seen, the estimates are awourate than the GPS
data. Thus the improved guess facilitates the manual vatidic of the data. Note that the
approach presented here is used to obtain the candidat®msléor outdoor datasets. A
human operator has to accept or decline all relations foyrttidapproach.
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(d) (e)

Fig. 6 (a) A 3D scan represented as a point clo(lt). The aerial image of the scen) The Canny edges
extracted from (b)(d) A view from the top, where the gray value represents the maxieight per cell. The
darker the color the lower the heigli¢) Extracted height variations from (d).

6 Benchmarking for Algorithms without Trajectory Estimates

A series of SLAM approaches estimate the trajectory of thetas well as a map. However,
in the context of the EKF, researchers often exclude an agtirof the full trajectory to
lower the computational load. To facilitate evaluation @oeld store the current pose for
each processing step and use it to build a trajectory. Thidgdiead to good results if only
local accuracy is considered. However, global correctappearing later in run-time are not
represented correctly.
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Fig. 7 Trajectory estimated using satellite images versus GPS datéa@ on the image of the ALU-FR
campus.

We see two solutions to overcome this problem: (a) depermfirthe capabilities of the
sensor, one can recover the trajectory as a post procedspgisen the feature locations
and the data association estimated by the approach. Thieguce could be quite easily
realized by a localization run in the built map with givenalassociation (the data asso-
ciation of the SLAM algorithm). (b) in some settings thisaséigy can be difficult and one
might argue that a comparison based on the landmark losatsomore desirable. In this
case, one can apply our metric operating on the landmarkidmsainstead of based on the
poses of the robot. In this case, the relatidfiscan be determined by measuring the relative
distances between landmarks using, for example, a higlelyrate measurement device.

The disadvantage of this approach is that the data assotiagtween estimated land-
marks and ground truth landmarks is not given. Dependingherkind of observations, a
human can manually determine the data association for dasdmation of an evaluation
datasets as done by Frd2609. This, however, might get intractable for SIFT-like featsir
obtained with high frame rate cameras. Note that all metrieasuring an error based on
landmark locations require such a data association as.gtethermore, it becomes impos-
sible to compare significantly different SLAM systems ustifferent sensing modalities.
Therefore, we would recommend the first option to evaluatlertigjues such as EKF.

7 Datasets for Benchmarking

To validate the metric, we selected a set of datasets regnegalifferent kinds of environ-

ments from the publicly available datasets. We extractéative relations between robot
poses using the methods described in the previous sectionwhbually validating every

single observation between pairs of poses.
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Fig. 8 Maps obtained by the reference datasets used to validateetsic. From top to bottom and left to
right: MIT Killian Court (Boston), ACES Building (Austin)intel Research Lab (Seattle), MIT CS Building
(Boston), building 079 University of Freiburg, and the Uanisity Hospital in Freiburg. The depicted map
of the University Hospital was obtained by using the backgrbinformation extracted from the satellite
images.
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As a challenging indoor corridor-environment with a nomi#l topology including
nested loops, we selected the MIT Killian Court datdsgfinite Corridor) and the dataset
of the ACES building at the University of Texas, AusfinAs a typical office environment
with a significant level of clutter, we selected the datadabwlding 079 at the Univer-
sity of Freiburg, the Intel Research Lab datakeand a dataset acquired at the CSAIL at
MIT. For addressing outdoor environments, we recorded adeaset at the park area of
the University Hospital, Freiburg. To give a visual impiiessof the scanned environments,
Figure 8 illustrates maps obtained by executing statdefart SLAM algorithmgGrisetti
et al, 2007b; 2007c; Olson, 2008All datasets, the manually verified relations, and map
images are available online at:
http://ais.informatik.uni-freiburg.de/slaneval uati on/

8 Experimental Evaluation

This evaluation is designed to illustrate the propertiesusfmethod. We selected three pop-
ular mapping techniques, namely scan matching, a Rao-Bkltiked particle filter-based
approach, and a graph-based solution to the SLAM problenpesakssed the datasets dis-
cussed in the previous section.

We provide the scores obtained from the metric for all coratiams of SLAM approach
and dataset. This will allow other researchers to compaeg twn SLAM approaches
against our methods using the provided benchmark datdeetsldition, we also present
sub-optimally corrected trajectories in this section tosiirate how inconsistencies affect
the score of the metric. We will show that our error metric &lvsuited for benchmarking
and this kind of evaluation.

8.1 Evaluation of Existing Approaches using the ProposettiMe

In this evaluation, we considered the following mappingrapphes:

Scan Matching: Scan matching is the computation of the incremental, opep toaxi-
mum likelihood trajectory of the robot by matching cons@@uscandLu and Milios,
1994; Censi, 2006 In small environments, a scan matching algorithm is gelyesaf-
ficient to obtain accurate maps with a comparably small cdatfmnal effort. However,
the estimate of the robot trajectory computed by scan magctsi affected by an in-
creasing error which becomes visible whenever the robaoiteeg in known regions
after visiting large unknown areas (loop closing or placésigng).

Grid-based Rao-Blackwellized Particle Filter (RBPF) for S AM: We use the RBPF
implementation described ifGrisetti et al, 2007b; Stachnisst al, 20074 which is
available onlindStachnisst al,, 20074. It estimates the posterior over maps and tra-
jectories by means of a particle filter. Each particle caritieown map and a hypothesis
of the robot pose within that map. The approach uses an igfdpnoposal distribution
for particle generation that is optimized to laser rangadiat the evaluation presented
here, we used 50 particles. Note that a higher number of ssmpdy improve the per-
formance of the algorithm.

1 Courtesy of Mike Bosse
2 Courtesy of Patrick Beeson
3 Courtesy of Dirk Haehnel
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Table 1 Quantitative results of different approaches/datasetthertranslation error as well as the corre-
sponding standard deviation and the maximum efrecan matching has been applied as a preprocessing

step to improve the odometry.

Translational error Scan Matching| RBPF (50 part.)| Graph Mapping
m (abs) /m? (sqr)
Aces
Eq. 4 using absolute errors 0.173+ 0.614 | 0.060+ 0.049 0.044+ 0.044
Eq. 4 using squared errors 0.407+ 2.726 | 0.006+ 0.011 0.004+ 0.009
Maximum absolute error of a relatior 4.869 0.433 0.347
Intel
Eq. 4 using absolute errors 0.220+ 0.296 | 0.070+ 0.083 0.031+ 0.026
Eq. 4 using squared errors 0.136+ 0.277 | 0.011+ 0.034 0.002+ 0.004
Maximum absolute error of a relatior) 1.168 0.698 0.229
MIT Killian Court
Eq. 4 using absolute errors 1.651+ 4.138 | 0.122+ 0.386 0.050+ 0.056
Eq. 4 using squared errors 19.85+ 59.84 | 0.164+ 0.814 0.006+ 0.029
Maximum absolute error of a relatior] 19.467 2513 0.765
MIT CSAIL
Eq. 4 using absolute errors 0.106+ 0.325 | 0.049+ 0.049 0.004+ 0.009
Eq. 4 using squared errors 0.117+ 0.728 | 0.005+ 0.013 | 0.0001+ 0.0005
Maximum absolute error of a relatiot) 3.570 0.508 0.096
Freiburg bldg 79
Eq. 4 using absolute errors 0.258+ 0.427 | 0.061+ 0.044 0.056+ 0.042
Eq. 4 using squared errors 0.249+ 0.687 | 0.006+ 0.02¢ 0.005+ 0.011
Maximum absolute error of a relatior) 2.280 0.856" 0.459
Freiburg Hospital
Eq. 4 using absolute errors 0.434+1.615 | 0.637+ 2.638 0.143+ 0.180
Eq. 4 using squared errors 2.79+18.19 | 7.367+38.496 | 0.053+0.272
Maximum absolute error of a relatiof) 15.584 15.343 2.385
Freiburg Hospital, only global relations (see text)
Eq. 4 using absolute errors 13.0+ 11.6 12.3+ 11.7 11.6+11.9
Eq. 4 using squared errors 305.4+518.9 | 288.8+626.3 276.1+516.5
Maximum absolute error of a relatior) 70.9 65.1 66.1

Graph Mapping: This approach computes a map by means of graph optimiZaGicsetti
et al, 20074. The idea is to construct a graph out of the sequence of nerasmts. Ev-
ery node in the graph represents a pose along the trajeetkey by the robot and the
corresponding measurement obtained at that pose. Thessstaskpuare error minimiza-
tion approach is applied to obtain the most-likely configioraof the graph. In general,
it is non-trivial to find the constraints, often referred ®the data association problem.
Especially in symmetric environments or in situations viétige noise, the edges in the
graph may be wrong or imprecise and thus the resulting mapyelds inconsistencies.
In our current implementation of the graph mapping systemfallowed the approach
of Olson[2009 to compute constraints.

For our evaluation, we manually extracted the relationsfladlatasets mentioned in the
previous section. The manually extracted relations ardadle online, see Section 7. We
then carried out the mapping approaches and used the @attegjectory for computing the
error according to our metric. Please note, that the ermmpeded according to our metric
(as well as for most other metrics too) can be separatedvi@dmponents: a translational
error and a rotational error. Often, a “weighting-facta’lised to combine both error terms
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Table 2 Quantitative results of different approaches/datasete®rotational error as well as the correspond-
ing standard deviation and the maximum erfascan matching has been applied as a preprocessing step to
improve the odometry.

Rotational error Scan Matching| RBPF (50 part.)| Graph Mapping
deg(abs) /dedf (sqr)
Aces
Eq. 4 using absolute errors 1.2+15 1.2+1.3 0.4+04
Eq. 4 using squared errors 3.7+ 10.7 3.1+7.0 0.3+ 0.8
Maximum absolute error of a relatior) 12.1 7.9 35
Intel
Eq. 4 using absolute errors 1.7+ 4.8 3.0£53 1.3+4.7
Eq. 4 using squared errors 25.8+170.9 36.7+ 187.7 24.0+ 166.1
Maximum absolute error of a relatior) 4.5 34.7 6.4
MIT Killian Court
Eq. 4 using absolute errors 23+45 0.8+ 0.8 0.5+ 0.5
Eq. 4 using squared errors 25.4+ 65.0 09+ 1.7 0.9+0.9
Maximum absolute error of a relatior) 21.6 7.4 5.4
MIT CSAIL
Eq. 4 using absolute errors 1.4+ 45 06+1.2t 0.05+ 0.08
Eq. 4 using squared errors 22.3:111.3 1.9+17.3 0.01+ 0.04
Maximum absolute error of a relatior) 26.3 18.2 0.8
Freiburg bldg 79
Eq. 4 using absolute errors 1.7+21 0.6+ 0.6 0.6+ 0.6
Eq. 4 using squared errors 7.3+ 145 0.7+ 2.0 07+17
Maximum absolute error of a relatiof) 9.9 6.4 5.4
Freiburg Hospital
Eq. 4 using absolute errors 1.3+ 3.0 1.3+23 09+2.2
Eq. 4 using squared errors 10.94+ 50.4 7.1+422 5.5+ 46.2
Maximum absolute error of a relatior) 27.4 28.0 29.6
Freiburg Hospital, only global relations (see text)
Eq. 4 using absolute errors 6.3+5.2 55+5.9 6.3+6.2
Eq. 4 using squared errors 66.1+ 101.4 64.6+ 144.2 77.2+154.8
Maximum absolute error of a relatior) 27.3 35.1 38.6

into a single number, see, for examdBfaff et al, 2004. In our evaluation, however, we
provide both terms separately for a better transparendyeofesults.

We processed all benchmark datasets from Section 7 usiragjgbgthms listed above.
A condensed view of each algorithm’s performance is givethieyaveraged error over all
relations. In Table 1, we give an overview on the translaia@rror of the various algo-
rithms, while Table 2 shows the rotational error. Compatimg algorithms can be done by
comparing the values given in the tables, namely the maximwor as well as the average
error. It can be seen that the more advanced algorithms BRaskwellized particle filter
and graph mapping) usually outperform scan matching. Ehimainly caused by the fact
that scan matching only locally optimizes the result and inttoduce topological errors
in the maps, especially when large loops have to be closedsthction between RBPF
and graph mapping seems difficult as both algorithms perfeethin general. On average,
graph mapping seems to be slightly better than a RBPF for mgpip should also be noted
that for the outdoor dataset (Freiburg hospital), the RBRIpper was not able to close the
large loop and therefore was substantially worse than thetgmapper.

To visualize the results and to provide more insights abiwitietric, we do not provide
the scores only but also plots showing the error of eachioalain case of high errors in
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a block of relations, we label the relations in the maps. HBriables us to see not only
where an algorithm fails, but can also provide insights ashg it fails. Inspecting those
situations in correlation with the map helps to understémdproperties of algorithms and
gives valuable insights on its capabilities. For three it a detailed analysis using these
plots is presented in Section 8.2 to Section 8.4. The ovargllysis provides the intuition
that our metric is well-suited for evaluating SLAM approash

8.2 MIT Killian Court

The MIT Killian Court dataset has been acquired in a largeodndenvironment, where
the robot mainly observed corridors lacking structures #sugpport accurate pose correc-
tion. The robot traverses multiple nested loops — a chaflespecially for the RBPF-based
technique. We extracted close to 5,000 relations betwearbypeoses that are used for
evaluation. Figure 9 shows three different results and ¢meesponding error distributions
to illustrate the capabilities of our method. Regions in thep with high inconsistencies
correspond to relations having a high error. The absenc@goifisant structure along the
corridors results in a small or medium re-localization eofthe robot in all compared ap-
proaches. In sum, we can say the graph-based approachfoutpethe other methods and
that the score of our metric reflects the impression of a husbant map quality obtained by
visually inspecting the mapping results (the vertical s in the upper part are supposed
to be parallel).

8.3 Freiburg Indoor Building 079

The building 079 of the University of Freiburg is an example &n indoor office environ-
ment. The building consists of one corridor which conndugsindividual rooms. Figure 10
depicts the results of the individual algorithms (scan tmiaig, RBPF, graph-based). In the
first row of Figure 10, the relations having a translatiomabegreater than 0.15 m are high-
lighted in blue.

In the left plot showing the scan matching result, the refatiplotted in blue are gen-
erated when the robot revisits an already known region. & helations are visible in the
corresponding error plots (Figure 10 first column, secordithird row). As can be seen
from the error plots, the relations with a number greaten th®00 have a larger error than
the rest of the dataset. The fact that the pose estimate oftio¢ is sub-optimal and that the
error accumulates can also be seen by the rather blurry nteghansome walls occur twice.
In contrast to that, the more sophisticated algorithms,elaRBPF and graph mapping, are
able to produce consistent and accurate maps in this emvéon Only very few relations
show an increased error (illustrated by dark blue relajions

8.4 Freiburg University Hospital

This dataset consists of 2D and 3D laser range data obtaiitecdbme statically mounted
SICK scanner and one mounted on a pan-tilt unit. The robostessed through a park area
that contains a lot of bushes and which is surrounded by ingiéd Most of the time, the
robot was steered along a bike lane with cobble stone pavefiea area is around 500 m
by 250 m in size.



21

e

E 20 E 3 E 0.8
& 15 ] 214 & o6
(3] o 2 | )
g 10 g g o4
k=) k=) 2 .
g 5 g1 ¢ < 021,
4] 4] NS 4] .
E l E T AL A E ;
=1 0 5 : . b s o :
0 1000 2000 3000 0 1000 2000 3000 4000 500¢ 0 1000 2000 3000 4000 500¢
relation # relation # relation #

—_ _ 10 _ 10
j=2) j=2) j=2)
s 2 s )
8 8 8
@ & 5 s 5
g 10 g . 8
=} =} =}
[=2} [=2} [=2]
j= c c
[ 5 S

o et n 0 0

0 1000 2000 3000 4000 500( 0 1000 2000 3000 4000 500( 0 1000 2000 3000 4000 500¢
relation # relation # relation #

Fig. 9 This figure illustrates our metric applied to the MIT KillianoGrt dataset. The reference relations
are depicted in light yellow, while the relations marked ia tilots are shown in dark blue. The left column
shows the results of pure scan-matching, the middle columnethétrof a RBPF-based technique with 50
samples, and the right column shows the result of a graph-tsgedach. The regions marked in the map
correspond to regions in the error plots having high errare B its inability of dealing with loop closures
scan matching has a high error when revisiting known regidosiever, the absence of significant structure
along the corridors for scan registration is an issue foh blo¢ graph-based and the RBPF approach. All in
all, the graph-based approach outperforms the other methods.

Figure 11 depicts the three mapping results, one obtainédsean matching (left), one
with the RBPF (middle), and one with the graph mapper (righthe quality of all maps
is lower than the quality of the map depicted in Figure 8. Tdéeeson for that is that while
building the map in Figure 8, we also used the satellite indaga which was not available
for the algorithms under evaluation.

Based on the error plots in Figure 11 as well as the overalkesgepicted in the tables,
we can see that graph mapping outperforms the RBPF and sdahingga The RBPF was
not able to close the large loop and therefore performedasita scan matching. However,
note that in most parts of the map, the results of the scanhmaémnd RBPF are comparable
to the one of graph mapping. Significant differences can lsemied in the areas labeled as
1 and 3. Here, the two approaches fail to build a consisteptwidach is the reason for the
significantly higher overall error.

In the area labeled as 4, the results of all algorithms yiedtching errors. In that area,
the robot makes a 180 degree turn and looks towards the opkrapsa where almost
no structure that would allow for pose correction is visibl@erefore, none of the tested
algorithms was able to build a perfect map here.
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Fig. 10 This figure shows the Freiburg Indoor Building 079 datasathecolumn reports the results of one
approach. Left: scan-matching, middle: RBPF and right a glssed algorithm. Within each column, the
top image shows the map, the middle plot is the translationat ard the bottom one is the rotational error.

Note that for this dataset, we present two alternative detslations. One using only
local relations based on the sensor range. In addition, exéqe a set where the relations are
generated for pairs of randomly sampled poses. This setdhewsed if global consistency
is desired. A comparison between the two data sets can bésEiguire 12. The histograms
count relations based by the difference in the time indi¢éseoconnected poses. As can be
seen from the left image, using local relations based onéghe® range leads to a peaked
histogram, since the relations only cover a small time frafxtglitional minor peaks occur
if the robot re-visits a region. In contrast, the set of fielag used to evaluate the global
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Fig. 11 Maps and error plots of the Freiburg University HospitalcE@olumn reports the results of one
approach. Left: scan-matching, middle: RBPF and right a glasted algorithm. The second row depicts
the created maps. The first row shows close-ups of areas ia thaps. The error plots in the middle are
regarding translation and on the bottom regarding rotafibere are corresponding areas marked in the plots

and the maps.

relation #

translational error [m]

angular error [deg]

16

14

12

10

8

: 4
4

201 2 3
-

0 500 10001500200025003000
40 relation #
35
30 4
25
20
15
10 | b
sl
0 i #

0 500 10001500200025003000
relation #



24

1000

100

count
count

10

e

1 0
0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
# sensor readings between poses # sensor readings between poses

Fig. 12 Comparison of local relations with global relations basedtmir histograms. The abscissa shows
the number of sensor readings between the two positions ila@ore(a bin size of 10 was chosen). On the
left side the histogram for the local relation set is showhilevthe right side displays the global relations.

consistency of the map is less peaked. Here, the relatiafemnty sub-sample all available
pairwise combinations of robot poses.

8.4.1 Utilizing Additional Relations

To illustrate that it is possible to incorporate additiorelhtions as claimed in Section 4.3,
we added in a further experiment the satellite image datalwhias used to obtain the
close-to-true pose information for the Freiburg hospitdlese additional relations favor
approaches that are able to generate global consistentysadeisired for robots that, for
example, build blueprints.

The resulting scores for such a setting are given in the ¢tag$ of Table 1 and Table 2,
respectively. As expected, the error in case of the evalnaticluding global relations is
higher.

8.5 Summary of the Experiments

Our evaluation illustrates that the proposed metric prewid ranking of the results of map-
ping algorithms that is likely to be compatible with a rankbtained from visual inspection
by humans. Inconsistencies yield increased error scanee §i the wrongly mapped areas
the relations obtained from manual matching are not met. iByalizing the error of each
relation as done in the plots in this section, one can idemé&gions in which algorithms
fail and we believe that this helps to understand where anddifferent approaches have
problems to build accurate maps.

We furthermore encourage authors to evaluate their algngtased on multiple datasets
and not just using a single in order to illustrate the gelityraf the method and not being
optimized for a single dataset.

9 Conclusion
In this paper, we have presented a framework for analyziegabults of SLAM approaches

that allows for creating objective benchmarks. We prop@seettric for measuring the error
of a SLAM system based on the corrected trajectory. Our mases only relative relations
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between poses and does not rely on a global reference franiseovercomes serious short-
comings of approaches using a global reference frame to atentipe error. The metric even
allows for comparing SLAM approaches that use differertrtion techniques or different
sensor modalities.

In addition to the proposed metric, we provide robotic detmsogether with relative
relations between poses for benchmarking. These relatiams been obtained by manu-
ally matching observations and yield a high matching aagurd/e present relations for
self-recorded datasets with laser range finder data as wéliraa set of log-files that are
frequently used in the SLAM community to evaluate approaclhe addition, we provide
an error analysis for three mapping systems including twdeno laser-based SLAM ap-
proaches, namely a graph-based approach as well as systethdraa Rao-Blackwellized
particle filter. We believe that our results are a valuablechenark for SLAM researchers
since we provide a framework that allows for objectively adnparably easy analyzing
the results of SLAM systems.
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