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Abstract

This paper presents a spatio-temporal query language use-
ful for video interpretation and event recognition. The lan-
guage is suited to describe configurations of objects mov-
ing on a plane. To demonstrate its applicability it has been
tested on the output of a tracker working on a car traffic
scene. The results of two example sets of queries are shown
in two videos generated from the trackers data output. The
first selects a ghost from the tracking data and the second
shows how to find queues of cars in the road traffic scene
without prior knowledge of lanes.

1. Introduction

Today a considerably large amount of vision research is
focused on detection, recognition and tracking of humans
or vehicles. Many successful approaches are purely data
driven, while others use stronger models. While detection,
recognition and tracking might be solved in a purely data
driven manner, image understanding or video interpretation
is dependent on more conceptual a priori knowledge built
into a vision system. Representing knowledge of a picture
or a sequence of pictures by qualitative relations is com-
mon in natural language. Relations can be used to describe
spatial or temporal knowledge explicitly in a vision sys-
tem. Qualitative relations are especially useful if no pre-
cise quantitative data is available or appropriate (e.g.: con-
tent description of a video). This paper introduces a spatio-
temporal query language based on qualitative relations. It is
explained how the relations are generated from the trackers
output data to bridge the gap from quantitative sensor data
to symbolic concepts.

1.1. Related Work

To handle the huge amount of data from a sequence of im-
ages an internal knowledge representation scheme is needed

to reduce the amount of data and finally build a concep-
tual representation of the processed video stream. In the
past two kind of approaches have been proposed to tackle
this problem. The first kind of approach uses probabilistic
methods to represent knowledge from an image sequence
in Hidden Markov Models, Bayesian Belief Networks or
Neural Networks (see e.g.: [3], [2]) and might be a natural
approach for many people in the computer vision commu-
nity, since video processing is very sensitive to noisy im-
ages. The second kind of approach is based on a declara-
tive a priori representation of knowledge (see e.g: [14], [6])
and might be the more natural approach for people from
the artificial intelligence community. In [13] the authors re-
port to use classical filtering techniques to obtain coherent
data, that can be associated with symbolic values. Which
approach to choose may depend on the concrete vision ap-
plication and the task to perform. This paper uses a declar-
ative, explicit knowledge representation formalism.

Declarative knowledge representation goes back at least
to [11] where networks of constraints are investigated to en-
code knowledge for vision applications. A lot of progress
has been achieved since then, some of it thanks to the
tremendous increase of memory capacity and computa-
tional speed. Younger work in AI explored knowledge rep-
resentation schemes for space and time in the field of Qual-
itative Spatial and Qualitative Temporal Reasoning. The
benefit of these knowledge representation schemes is due
to the fact, that they encode infinitly many cases into a set
of finitly many relevant ones. Some recent work in Quali-
tative Spatio-Temporal Reasoning examines the complexity
of combined spatio-temporal knowledge representation for-
malisms [8] and investigates the use of qualitative spatio-
temporal representations and abduction in an architecture
for Cognitive Vision [4].

In the past cognitive systems, represented knowledge
explicitly using chronicles [6] a temporal representation
scheme for time, events and actions. Inspired by this ap-
proach, scenarios [13] have been used to declare spatio-
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temporal knowledge in vision applications. Another recent
vision system used rules and facts in a fuzzy metric temporal
horn logic [7].

1.2. Overview
This paper shows how a qualitative spatio-temporal query
language is built and how it can be used in a vision ap-
plication. In section 2 the language is introduced by a
choosen set of qualitative relations representing spatio-
temporal knowledge of a trackers data output. Section 3
explains the basis algorithm for evaluating queries in the
spatio-temporal language, followed by section 4, which il-
lustrates the use by two concrete examples. Section 5 con-
cludes the paper summarizing the gained results. Finally
the effect from the two example query sets shown in section
4 can be viewed in two computer generated videos.

2. The Query Language
The vocabulary of the query language consists of unary and
binary relations modeling qualitatitive knowledge of dis-
tances, orientations, velocities and intervals of time.

The non-temporal relations bind object variables in their
arguments. Object variables refer to a trajectory generated
by the tracker. Each trajectory is given by a position on
the ground plane (x, y)(t) (refering to the objects centroid),
an orientation θ(t) and a velocity v(t) for each frame t the
object is tracked in the video. Evaluating a relation that
binds object variables, leads to a sequence of successive
frames from the video, where the qualitative relations holds.
These sequences of successive time points are called ’inter-
vals of time’ in the ongoing text, neglecting the misuse of
the word in a strict mathematical sense. The temporal rela-
tions shown in section 2.2 relate intervals of time.

Logical conjunctives are used to express conjuntions and
disjunctions of relations as usual. They can be used for both
kind of relational expressions: non-temporal and temporal.

2.1. Binary Spatial Relations
In literature spatial knowledge representation schemes are
manifold due to the variety of concepts that matter: direc-
tion, orientation or topology, just to mention some of the
most important. Topology is of special interest for vision
applications since it is perspective invariant. In [12] the au-
thors introduce the RCC-8 axioms, which can be used to
represent topological knowledge of regions. The calculus
can be used to model topological knowledge for regions ei-
ther in the 2D image or the 3D world. Similarities of qual-
itative calculi are based on the fact that most of them are
substructures of relational algebras [10], [5] in the sense of
Tarski [15].

Expressive spatial relations for the tracking data from a
video are relations for distance and orientation. Knowledge

on orientation always refers to a reference direction. Since
the camera perspective in general might change from ap-
plication to application we only consider orientational re-
lations in the egocentric view from a tracked objects point
of view. All distances considered relate two tracked objects
by their centroid. Figure 1 gives the idea how spatial rela-
tions separate the plane surrounding the tracked object on
one view.
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Figure 1: The Model for Spatial Relations

Since the spatial distance relations are not bound to the
world coordinate’s origin and the orienatational relations
are not bound to a global reference direction the vocabu-
lary is reusable for different kind of applications. In other
words the proposed set of relations is not bound to a specific
camera perspective or specific static objects in the observed
scene. On the other hand knowledge can only be expressed
by tracked objects related towards each other explicitly.

2.2. Binary Temporal Relations
In [1] the author introduced 13 binary relations to represent
knowledge on temporal intervals. The formalism is wide
spread and broadly accepted to represent temporal knowl-
edge in various domains.
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Figure 2: Binary Temporal Relations for Intervals of Time

Figure 2 shows pictoral examples of the binary relations
which are used in the query language for two intervals I
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and J of time. Converse relations are given by exchang-
ing I and J : after, is met by, is started by,
is finished by, is overlaped by, contains.
The full set of 13 relations is a pairwise mutally disjoint set.
Since the modeled temporal domain is discrete (a camera
observes the world frame by frame) the operational seman-
tics is different, than in the original Allen Interval Algebra
[1], which is defined on a continous temporal domain. More
details on the operational semantics for spatial and temporal
relations used can be found in [9].

2.3. Unary Relations for Velocity
The difference of moving or static objects oftenly matters to
make meaning in natural language. The proposed query lan-
guage takes this into account by subdividing the measured
velocities of a tracked object into three possible classes:
still, slow and fast.

2.4. Grounding the symbolic vocabulary
Temporal relations do not need to be grounded since
they refer to relational expressions composed by terms
of space, velocity and logical conjunctions. These
relational expressions are grounded using hard thresh-
olds: Distances are subdivides by 3 thresholds which
gives a set of 4 classes: equal(X,Y), close(X,Y),
medium(X,Y), far(X,Y), orientations are described
by 4 classes refering to a pair of objects in the ref-
erence system of the object which is bound in the
second argument. The 4 orientational relations are
given by: in front of(X,Y), behind of(X,Y),
right of(X,Y) and left of(X,Y). Unary relations
for velocity are given by: still(X), slow(X) and
fast(X).

3. Evaluation of a query
In the current version of the implemented system each query
is given by a tree. Each node in the tree represents a rela-
tion. Childs of a tree node are the relations arguments. The
binary spatial relations and the unary relations for velocities
are bound to object variables as arguments. Binary tempo-
ral relations take terms build from spatial relations, relations
on velocity and logical conjunctives as arguments. Tempo-
ral binary relations can be combined using logical conjunc-
tives as well. Evaluating the query starts with generating
all possible object variable bindings which is combinatory
in the number of tracked objects. For each possible bind-
ing the tree is evaluated starting from the leafs of the tree
(spatial and velocity expressions) propagating the resulting
intervals of time to the parent nodes. If finally the root node
is evaluated and the resulting set of temporal intervals is not
empty the query holds for each frame covered by the inter-
vals on the bound objects.

4. Experiments and Results
The original video sequence consist of 2060 frames grabbed
at a rate of 20 frames per second. 25 objects are tracked.
Each object trajectory is given by a tuple (x, y, θ, v)(t) for
each frame t where the object is tracked.

4.1. System Overview
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Figure 3: Sytem Architecture (Main Components)

Figure 3 shows the main components of the used system.
Starting from the video intput stream the Object Tracker ex-
tracts trajectories of cars from the observed scene. The Fact
Generator generates the grounded symbolic relations from
the trajectory data for each pair of objects in the case of the
binary and each object of the unary relations. The ground-
ing of relations is currently done in a preprocessing step.
Queries are evaluated in the Query Evaluator bottom up as
explained in 3. Ground instances of non-temporal relations
used in the Query Evaluator are produced by the Fact Gen-
erator. The results from query evaluation are sent to the
Modelviewer. The Modelviewer renders the scene from the
car trajectories in a 3D model. Each car tracked is shown as
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a sphere with a diameter of 5m in the 3D model. The de-
fault color of each sphere is a medium blue. To illustrate the
results of queries, all objects X selected by a query expres-
sion are colored in a unique marker color different from the
default color for each frame, where the query expression
holds. If two or more query expressions hold at the same
frame for the same object X, the color of the first matching
query is assigned. The resulting constructed 3D scene over
all frames is written to the video output to show the effect of
the spatio-temporal query languages expressions over time.

4.2. Parameters for the Qualitative Relations

As explained in 2.4 the qualitative relations built by the fact
generator in the preprocessing step are grounded on hard
thresholds. Figure 4 shows the used

Distance
equal [0m, 1m[
close [1m, 5m[
medium [5m, 15m[
far [15m,∞m[

Velocity
still [0m/s, 1m/s[
slow [1m/s, 3m/s[
fast [3m/s,∞m/s[

Orientation
in front of ] − 18◦,+18◦[
behind of ] + 135◦,+180◦] ∪ ] − 180◦,−135◦[
right of [−135◦,−18◦]
left of [+18◦,+135◦]

Figure 4: Parameters used for Symbol Grounding

values for the thresholds. A car at a speed of less than 1m/s
is considered as still standing since still standing objects
move due to sensor noise. The front opening angle is cho-
sen to be small to associate pairs of objects on one lane to
a single queue. The angle for behind of a car is broader
to select ghost cars with the formula from 6, which might
change their orientation after tracking is lost.

4.3. Selecting Ghosts from the Traffic Scene

No matter how good a tracker works, it will hardly be 100%
accurate. When tracking is lost but enough evidence is
found a tracker might get stuck on a hypothesis for an ob-
ject that already left the place. In the first result video this
happens due to partial occlusion: the big car number 2 oc-
cludes car number 1, which can be seen in the left side of
figure 7, afterwards when the queue of cars starts to move
tracking is lost.

Figure 5: Tracker and Query Results in Frame 1548

When a car is lost from tracking it is not possible to detect
this based on the trajectory data output of the tracker, un-
less another car runs through the lost object from behind to
the front as shown in 5. A sequence of successive frames
where a still standing car X is run over by another car A
can be expressed by a conjunction in terms of the spatio-
temporal query language as shown in the first formula in
figure 6. The second more general case describes a se-
quence, where car A runs into a still standing car X from
behind. Since the equal distance threshold is only 1m we
might conclude in both cases, that the still standing object
X is a ghost based on the fact that cars are rigid objects.
The video generated from this example query set shows the
results of both queries: all cars X matching the first expres-
sion are marked red, for the interval of time where the ex-
pression holds. Cars X which match the second expression
are marked orange in the generated video. Figure 5 is this a
representative snapshot grabbed from this video. Since the
first expression is always marked first by the modelviewer
and the second is more general than the first, a car X will
always be marked red for intervals of time, where both for-
mula hold. The most general case, which makes a ghost
selectable based on the assumption that no pair of objects
can be at the same place at the same time and ghosts do not
move can be described by {still(X),equal(A,X)} in
terms of the query language.

I: { still(X), behind_of(A,X), close(A,X) }
J: { still(X), equal(A,X) }
K: { still(X), in_front_of(A,X), close(A,X) }
I meets J, J meets K

I: { still(X), behind_of(A,X), close(A,X) }
J: { still(X), equal(A,X) }
I meets J

Figure 6: Set of Queries for selecting Ghosts from the
Tracking Data
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4.4. Selecting Queues from the Traffic Scene

Figure 7: Tracker and Query Results in Frame 1260

With the relations defined on the trajectory data, it is possi-
ble to build queues from head and tail describing the align-
ment of objects over intervals of time. An example for this
is shown in figure 7. The set of formula shown in figure 8
was used to generate the second example video. The im-
age on the right of figure 7 was grabbed from this video.
First queue tails are marked in green, then queue heads are
marked in red. All objects not marked as head or tail of a
queue are colored based on the thresholds for velocity: dark
blue for still standing, a medium blue for slow and a light
blue for fast moving objects.

{ still(X), still(A), in_front_of(X,A),
behind_of(A,X), close(A,X) | medium(A,X) }

{ still(X), still(A), in_front_of(A,X),
behind_of(X,A), close(A,X) | medium(A,X) }

{ still(X) }
{ slow(X) }
{ fast(X) }

Figure 8: Set of Queries for selecting Queues from the
Tracking Data

To see the effect of the query set over time its strongly rec-
ommended to watch the generated videos.

4.5. Runtime and Memory Consumption
The selected unary and binary relations fit well to give
meaning in the expamples. In other domains other sets of
relations might be of interest. Therefore the focus of the
implementation was on reusability and extendability of the
query evaluation mechanism and the query language itself.
The spatio-temporal query language was implemented in
Java. While evaluating a query: no symmetry of relations
is exploited, no constraint propagation method is used for
speed up, no sophisticated methods from computational ge-
ometry were applied to calculate the symbol grounding for
the binary spatial relations and no strategy on the ordering

of literals of the constraint expressions was used. The im-
plementation used a straight forward bottom up query eval-
uation on all possible bindings for the object variables.

The reference machine used a Athlon 1.6 GHz CPU. The
preprocessing, runs in O(n2), where n is the number of
tracked objects. It takes 2400ms–2500ms to compute on
the reference machine. (An exact runtime is hard to give
due to memory manegement in the java virtual machine,
which causes varying runtimes executing the same code on
the same data. All observed runtimes, felt into this upper
and lower bound). Memory consumption of the preprocess-
ing step can be described by the number of produced unary
and binary relations holding for an interval of time. 1777
unary and binary relations where produced, each of them
stores 2 integers (start and end frame where the relation
holds) of memory. The memory consumption is quadratic
in the number of tracked objects due to the fact that the re-
lations generated are binary relations over a finite set of ob-
jects.

Thanks to preprocessing that grounds the symbolic vo-
cabulary on all pairs of object variables, the evaluation of a
query takes only a little amount of time. Each query from
the two given example sets, takes less than 120ms to com-
pute. This result is not astonishing, since the queries from
the two examples sets are built from conjunctions contain-
ing not more than 2 unbound object variables.

Summing up runtime and memory consumption results it
can be said, that using the given set of queries on a video of
100 seconds with a framerate of 20 frames per second is al-
ready possible in realtime on a current standard PC without
sophisticated implementation techniques for query evalua-
tion on a limited set of objects tracked (in the shown exam-
ples 25 during the 100 seconds). Increasing the number of
object variables in a query will cause a combinatory explo-
sion of the runtime.

5. Summary and Conclusions
The number of objects tracked in a frame will always be
limited, since the picture itself is limited in its size. This
leads to two interesting open questions concluding the re-
marks on runtime and memory consumptions:

• What relational expressions do actually need more
than 2 objects, that are related without being able to
express an equivalent expression with a conjunction of
2 expressions?

• Which applications do actually need to store more than
a small set of tracked objects over a period of time to
build the intended meaning of a video input stream?

Positive answers to both questions will lead to an increase
of runtime for query evaluation. 3 or 4 different object vari-
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ables in a query might still be reasonable for a limited set of
objects.

Based on given a priori knowledge changing configura-
tions of objects over time can be expressed by the spatio-
temporal query language. The language can be used to build
a conceptual representation of the video or generate events
from spatio-temporal configurations of objects tracked in
a video stream. Only very small spatio-temporal formula
were necessary in the given examples. All parameters are
plausible based on common-sense knowledge in physics
and geometry, they are easy to guess and do not have to
be too precise to make good results. The vocabulary chosen
is simple and close to natural language, which helps to de-
sign a set of queries for a given task. False positives from
tracking can be identified by constellations, that are physi-
cally impossible. Using the proposed spatio-temporal query
language to assist an object tracker might improve tracking,
since small expressions are fast to evaluate and represent
common-sense knowledge of geometry and physics in qual-
itative terms. Due to the fact that no geometry of the sur-
rounding environment was taken into account, the language
is reusable by other applications.
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