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Abstract

A lot of effort in Qualitative Reasoning had been spent
in the RCC-8 calculus. This paper proposes a calculus
named OCC (Occlusion Calculus) closely related to Gal-
ton’s LOS-14 calculus, that is more expressive in a vision
context. The OCC relations qualitatively describe configu-
rations from two convex objects in the projective view from
a 3D scene. To set OCC on a mathematical ground an ax-
iomatisation of the derived relation calculus is given. Since
OCC only focuses on one qualitative aspect of space it is
sketched, how and when different calculi can be combined
to assemble a knowledge base for a cognitive vision system
on a conceptual level.

1 Introduction

This work is part of the COGVISYS (http://
cogvisys.iaks.uni-karlsruhe.de/mainpage.html) project.
A major goal of the project is to demonstrate the usefulness
of explicit knowledge representation in computer vision
applications. Part of this work is the development of a query
language for a knowledge base on spatio-temporal config-
urations. The formalism should be as domain-independent
as possible by preserving the most of its expressiveness. It
is envisioned to build a query language comparable to SQL
for a cognitive vision system.

Relations are a common way to represent knowledge
taken from a picture or a sequence of pictures explicitly.
The visual content of pictures is described using relations
in the language. Relations are useful to describe spatial or
temporal knowledge, especially when no quantitative mea-
sure is needed or appropriate. Another interesting fact is the
possibility to deduce new knowledge based on old. When-
ever two observations are made a third observation has to
be consistent if it is ’related’. Here is an example for this
in a temporal domain: If A happened before B and B oc-
cured before C, A took place before C, since a linear order
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Figure 1. The RCC-8 Basis Relations

of time is commonly assumed. This sort of deduction, can
be processed in compositional reasoning.

Qualitative Calculi like the region connection calculus
(RCC-8) [9] or the Interval Algebra (IA) [1] and especially
the CSP problems defined using these calculi to build a con-
straint language (e.g. [10]) are a topic of AI research for
quite a time. From the picture of the RCC-8 basis relations
in figure 1) the reader might gain the idea, that a calculus
like RCC-8 can be used to represent relationships between
objects in a vision scene. The idea is probably not bad,
but a closer look at the RCC-8 calculus reveals, that due
to its topological nature it cannot be used to describe vi-
sual occlusion. Visual occlusion might be a key phenom-
ena for a cognitive vision system since humans use infor-
mation gained by occlusion to derive knowledge from the
observed scene. Galton [3] proposed the geometrically mo-
tivated Lines of Sights Calculus (LOS-14) and pointed out
its potential usefulness for vision applications. Following
this ideas [2] proposed the ROC-20 calculus generalizing
the LOS-14 calculus by relations for mutual occluding obe-
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Figure 2. The OCC Basis Relations



jects. This might be useful, if the objects in a 3D scene are
not convex. A spatio-temporal calculus called TeRCC-8 is
investigated in [4].

The approach given in this paper focuses on a ”subset”
shown in figure 2 (a better definition for it will be given in
section 3) of the Lines of Sights Calculus. Following Gal-
ton’s ideas an axiomatic theoretic background on relation
algebras is given. This shows a general method to generate
new calculi from known old ones. All formal definitions
needed to understand the work are given in the text, being
illustrated by examples from the developed combined cal-
culus.

The following sections are organized as follows: Section
2 gives the basic definitions for finite concrete relational al-
gebras illustrated by two examples. A gentle introduction
to the field of relations and graphs can be found in [11],
where [8] is a vastly exhaustive book on relation algebras.
Relation algebras should not be confused with the algebraic
formulation of operators on relational databases. The gen-
eralization of binary constraint satisfaction problems to re-
lation algebras is the topic of [7].

Section 3 shows methods to build combined relation al-
gebras for the aimed application. In section 4 we illustrate
the usefullness of the considered theorems on concrete re-
lational algebras to construct the Occlusion Calculus. The
neighbourhood structure shown in figure 9 gives hints to
make this calculus more expressive if it is used in a tem-
poral context. Concluding this paper there will be a brief
outlook of directions on further research.

2 Concrete Relation Algebras

One way to represent knowledge on relationships be-
tween objects (e.g.: blobs segmented from pictures, a de-
tected event at an instance of time, the cardinal direction of
a moving object, the spatial configuration described quali-
tatively by up, down, left and right, the connection of visi-
ble surfaces from a rotating object in 3D space ...) is using
relations. Modelling knowledge with relations is a promis-
ing approach for cognitive vision application: Relations can
map infinitly many cases to a finite structure representing
symmetries on a conceptual layer and qualitative knowl-
edge, where no quantitative measure is accessible or appro-
priate. Like probably most other approaches, this is not the
only holy stone of wisdom.

If objects are elements from a set a formal definition for
a relation can be given in a merly set theoretic term by:

Definition (Binary Relation):
Let
�

be a set. A subset � of the cartesian product
�����

is
called a binary relation on V.

A Relation is called binary homogen relation, if it is based
on the cartesian product of a single set

�����
, heterogen if

it is based on a product of diffrent sets
���	�

. A ternary
relation binds three arguments and a relation on more than
three arguments can be defined as well. In the following text
we only make use of binary homogen relations and refer to
them simply as relation.

If
�

is a set of regions based on a dyadic predicate
���
������
of connection between two regions, a set of rela-

tions � can be defined by the intersection of the inner, outer
and border of the two regions. The set of relations shown
in figure 1 is called the RCC-8 calculus [9]. Each binary
relation can be characterised by a function:

Definition (Characteristic Function of a Relation):
Let

������ �

and � a (binary) relation on
�

. Then

����� ����� �"!$#&% ��
����'�(� �) % ��
����'�	*� �
is called the characteristic function of � .

For finite sets of elements ( + � +-,/. ) all relations de-
fined on

�
can be written as a 0 � 0 matrix of boolean val-

ues from � � . Where a one at line



and column
�

stands
for

 � � , which is the infix notation of � �1
����'� holds for��
������2� �3���

. There is a duality between graphs and rela-
tions, since the matrix of a relation can be interpreted as an
adjacency matrix for a graph, where the set of elements

�
are the edges and the set of vertices is implicitly given by the
matrix. In this case knowledge can be encoded efficiently
using boolean matricies.

The union, intersection and composition of relations can
be defined in merely set theoretic terms by:

Definition (Union, Intersection, Negation, Composition):
Let

����4��5�� �

and � �76 be relations von
�

.

�98 6 �;: < ��
����'�=� �?> �1
@�7�'�(�A6(B�9C 6 �;: < ��
����'�=� �?D �1
@�7�'�(�A6(B� �;: < ��
����'� + �1
����'��*� � B�FE 6 �;: < ��
��G5��(� ����� + H ��� � ��1
����'�(� �?D �I�4�G5��(�A6(B
For every relation � a converse relation �	J is properly de-
fined by:

Definition (Converse Relation, Symmetric Relation):
Let

������ �

and � a relation on
�

. Then

� J �K:L< ��
��7�'� + �1�4��
M�(� � B
is called the converse relation of � . A relation that is self-
convers

� � : � J � is called symmetric.

The relations N3O , P-Q , N 
 and R	S in figure 1 are symmet-
ric. TUT�R is converse to T�T�R J , VAT�T�R is converse to
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VATUT�R J and vice versa. The notation J for converse rela-
tions was chosen, because of its similarity to matrix transpo-
sition in linear algebra. In the finite case the boolean matrix
of the converse relation can be obtained by transposition.

The next definition gives a more precise definition, when
a set of relations is exhaustive to describe all possible cases
for two elements taken from the set

�
.

Definition (Cover):
A set of relations � :L< ��� B ����� is called a cover (of

�2� �
),

iff:
�
�����
� � : �����	�

If a set of relations � is a cover of
���3�

at least one re-
lation ��� holds for any pair of objects from

�
. A further

refinement of a cover is defined by:

Definition (Relational Partition):
A set of relations � :L< � � B ����� is called a relational parti-
tion, iff:

1. � is a cover of
�	���

2. ��
2C ��� :�
������:�� % � � � ���
(pairwise jointly disjunct) .

Exactly one relation from a relational partition � holds for
each pair of objects taken from the ground set

�
. A union of

relations holds if at least one relation holds for two objects.
Relations itself can be treated as elements from an algebra.
Since algebras are closed on their operations and unions and
intersections are operations on relations, the closure of a set
of relations is defined by:

Definition (Closure of a Set):
Let � be a set of relations. Then the set ��� containing all
combinations of unions and intersections from relations � � ,
is called the closure of � .

Relations are itself subsets from the cartesian product. If
a set of relations is finite, the closure of a set of relations
is a power set of the set of its smallest elements build by
intersections, that are not the empty set. These relations are
called atomic. A set of atomic relations builds a base for a
finite concrete relation algebra:

Definition (Concrete (finite) Relation Algebra):
A closure � � of a set of relations on

�
, is called an con-

crete (finite) relation algebra (on
�

), iff � � is closed under
negation, conversion and composition. The relation algebra�

is denoted by the tuple
� : � � � � 8 � C � E � � � J � .

Since a concrete relation algebra is defined on a set of rela-
tions � � , which is a closure of � , every concrete relation
algebra is isomorphic to a power set of its atoms. In the

finite case the cardinality of � � is a power of 2. Further-
more every finite concrete relation algebra has a finite set of
atomic relations:

Definition (Basis of a Concrete Relation Algebra):
A set of atomic relations � is called a basis of a Relation
algebra

�
(on
�

), iff � is a relational partition of
��� �

and
it is closed under conversion.

Another nice property of finite concrete relation algebras is:

Theorem (uniqueness, exhaustiveness of basis relations):
All elements from a finite relation algebra � � can be written
as union from the basis elements in � :

� 6 � � � � 6 : ��� 8 ���=8 � �!� 8 ��"< ��� B ���$#%�'&)()()( & "+* � � �

The last theorem leads to an important consequence. Since
every element from a finite relation algebra can be written
by basis elements all compositions can be calculated from
the basis elements, according to the rule:� �,� 8 ��� � E(��- : �,� E(��-=8 ��� E(��-
Composition tables allows fast computation by table
lookup. Each composition can be seen as a deduction of
knowledge in the following way: If � holds for the two el-
ements

�1
����'�
from

���(�
, and

6
holds for

�I�4�G5��
, then ��E 6

must hold for
��
��G5��

. Up to this point all definitions given
were abstract. The following two paragraphs, will give two
examples of finite concrete relation algebras.

The Point Algebra (PA): Interpretations of the point alge-
bra are well known. An Interpretation of PA can be given by
a dense linear ordered but infinite set [6] of elements where
the three operators are defined on. Given two numbers from
the set of real numbers . , PA’s composition table shows
in figure 3, what relation


 � 5 might hold if

 � � and

� � 5
holds (


 � � is denoted on the rows,
� � 5 on the columns):

The reader might wonder why / with the ordinary opera-

: , 0
: : , 0
, , , , � : � 0
0 0 , � : � 0 0

Figure 3. The PA Composition Table

tors : � , � 0 denoted by /21 � /43 � /45 is not an interpreta-
tion of PA. Reconsider the definition of the composition for
relations. If two succsessive numbers from / are chosen the
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composition is not closed, since

choose

 : # % 5 :�� % � : / 3 % 6 : / 5

� � E 6 : < �1
��G5�� + H ��� / � � # �7�'�(� / 3 D �I�4� � �=� / 5 B
� � E 6 : 
 �� < / 1 � / 3 � / 5 B

leads to contradiction.

The Containment Algebra (CA): Like RCC-8, RCC-5 re-
lations express the relation between two regions. If borders
are not taken into account, the set of RCC-8 basis relations
can be merged to 5 relations. These resulting basis rela-
tions are shown in figure 4. The composition of all RCC-5

PP

PO

PP^T

DREQ

Figure 4. The RCC-5 Basis Relations

basis relations is shown in figure 5. RCC-5 is an example
of a finite concrete relation algebra; it is closed under com-
position, converse, negation, and disjunction. The algebra
is purely defined on containment, therefore it is sometimes
named containment algebra (CA). An important subset of

N O P � R	S R�R R�R J
N3O N O P � R	S R�R R�R J
P � P�� � P�� , P�� , P��R	S , R	S ,R�R R�RR	S R	S P � , � R	S , P�� ,R	S , R�R R	S ,R�R J R�R JR�R R�R P � P�� , R�R �R	S ,R�RR�R J R�R J P � , R	S , N3O , R�R JR	S , R�R J R�R ,R�R J R�R J
Figure 5. The RCC-5 Composition Table

the RCC-5 algebra is:

� �;: N OP �;: P �S �;: N O 8 R	S98 R�R 8 R�R J

R �K: N3O 8�R�RR J �K: N3O 8�R�R J
The given subset is a cover but no basis, since S � R and R J
all contain N3O and the intersection of them is not the empty
set. Let � denote the universal Relation ( � :�� ����� ��� ).
Then a composition of the set can be calculated from ba-
sis relations < N3O � P�� � R	S � R�R � R�R J B . It is shown in the
table 6.

� P S R R J� N3O P�� N3O , N3O , N3O ,R	S , R�R R�R JR�R ,R�R�JP P�� � P � , P�� , P��R	S , R	S ,R�R R�R
S N3O , P�� , � N3O , �R	S , R	S , R	S ,R�R , R�R J R�R ,R�R J R�R JR N3O , P�� � N3O , �R�R R�R
R�J N3O , P�� , N3O , N3O , N3O ,R�R J R	S , R	S , R�R , R�R JR�R J R�R , R�R JR�R J

Figure 6. Composition Table for the set< � � P � S � R � R J B

3 Combining Concrete Relation Algebras

The point algebra has 3 relations that can be used to rep-
resent knowledge on a partially ordered dense set like .
with . 1 � . 3 � . 5 . CA (RCC-5) can be used to represent
containment. Both algebras are very general and can be
used with different operational semantics on different sets
of object. Further more finite concrete relation algebras can
be combined to form new finite concrete relation algebras.
The direct product of two finite concrete relation algebras
builds a finite concrete relation algebra on tuples. Formally
this can be denoted by:

Theorem (Direct Product of Concrete Relational Algebras):
Let � be a basis for a relation algebra

�
on
�

and � be a
basis for a relation algebra � on

�
, where

�
	 � : 
 ,
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then

� � � �;:
�� � �

����� & � ��� � � � � ��� �G� � � 8 � C � � � E � J���
is a relation algebra on

�(� �
, where composition, intersec-

tion and union are declared componentwise for the tuples� � � � � � � .
The knowledge of basis elements is sufficient, to construct
the direct product. The new relations from the product al-
gebra can be calculated from the old ones, since the new
base is build from the old ones. A composition table can be
calculated from the known algebras as well, using the rule� ��� ��6 
 � E � �	� ��6 � � : � ���@E(�
� ��6 
 E 6 � �

RCC-8 and RCC-5 are closely related algebras. With the
help of the following two definitions we can give a precise
description of the kind of relationship:

Definition (Coarser and Finer Sets of Relations):
Let � and � be two sets of relations on

�
. Then � is called

a finer set of relations than � , iff:

� ��� � � HM�	� � � � �����F�
� �
� is called a coarser set of relations than � , iff:

� ��� � � HM�	� � � � ����
F�
� �
Since the basis from RCC-5 is a coarser set of relations,
than the basis of RCC-8 and both structures are closed to
all operation of a relation algebra the following definition is
motivated to have the common name for it:

Definition (Subalgebra):
Every subset of the set of relations from a finite relation
algebra

�
that is closed under union, intersection, negation

and conversion is a called a subalgebra of
�

For finite concrete relation algebras there is a simple way to
find subalgebras, since some of them can be constructed by
a coarser basis:

Theorem (Coarser Relation Algebra):
Let � � a finite relation algebra with basis � : < � � B ����� .
Then�
����� ��� � �	� � � J� � � J�
��� � ����8 �	� � � J� 8 � J����� �

is a finite relation algebra.

More generally every picture from a homomorphic function
on � � is a finite concrete relation algebra as well, therefore
we got two ways to express the same.

Theorem:
Every coarser relation algebra of a finite concrete relation
algebra is a subalgebra.

4 Constructing the Occlusion Calculus

Up to this point the relation algebras were given without
a declarative semantics of their operators useful for vision
applications. The following approach shows its usefulness
if the semantics of the operators are given. A spatial con-
figuration of two convex objects in 3D space as seen by an
observer from his fixed point of view can be described qual-
itatively by relations. If

�
is the set of pairwise non inter-

secting convex objects in a 3D metrical space, the set of re-
lations � which form a basis can be defined by the contain-
ment of the projective pictures as seen from the observer.
This is an interpretation of RCC-5. Let pic

� S�� � be the 2D
picture of Object S�� projected to � � . The Interpretation for
the RCC-5 relations is:

N3O � � pic
� S � � : pic

� S � �P�� � � pic
� S � � 	 pic

� S � � : 

R	S � � pic

� S � � 	 pic
� S � � �� <�
 � pic

� S � � � pic
� S � �7BR�R � � pic

� S � � � pic
� S � �R�R J � � pic

� S�� � 
 pic
� S�� �

The operators on the Point Algebra are used according to
the fact, which object occludes the other (possibly the depth
information is gained by stereo vision or by strong models
of the objects shapes, which allows to determine depth or-
dering for each pair of objects). Cases of intersections from
pictures < R	S � R�R � R�R J B of objects at the same ’depth’ are
not possible by the precondition of non intersecting in 3D
space. In this case the empty set is in the product. We get
an algebra of relations, that describes the phenomena of oc-
clusion. The approach chosen is very similar to [3], but
there are slight differences in the calculation and the result-
ing composition table. Figure 7 show the construction table
of the new basis relations of OCC from RCC-5 and PA’s ba-
sis relations. The OCC basis relations are shown in 2, the

N O P�� R	S R�R R�R J: � P 
 
 
, � J P S � � J
0 � P S J � � J

Figure 7. The combined relational partition for
OCC

resulting composition table is shown in figure 8.

5 Conclusion and further work

Calculi like RCC-8, RCC-5, IA, PA, OCC and TeRCC-8
are far too general to be useful for vision applications just
on itself. A major benefit and at the same time the major
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Figure 8. The OCC Basis Relations

drawback is the minimum amount of knowledge on one or
two qualitative aspects of space, time, direction or speed
of the modelled objects. OCC exploits only a very basic
assumptions of a 3D scene: relative containment of the pro-
jected pictures from the objects in the scene and their rela-
tive distance towards each other. Therefor it can be used to
generate correct hypothesis qualitatively from vision scenes
independent of the point of view, exact shape of objects, and
their quantitative distances relative to each other.

Only combinations from multiple hypothesis refined
with combinations of such algebras or other calculi can
bridge the gap to an overall explanation of a vision scene.
Since it is a high goal to assemble a domain-independent
knowledge base for a cognitive vision system, the focus of
this work was, to find the building blocks of knowledge rep-
resentation for vision scenes. The expressiveness of the de-
rived calculus is very poor, but the way it is constructed
shows, that it is a building block to represent constraints in
a wide variety of vision domains.

In a next step a spatio-temporal calculus will be devel-
oped, to make use of additional constraints, already in sight
by the neighbourhood diagram shown in figure 9. Applying
the assumption of continous movement, not all transitions
between these qualitative spatial configurations are possi-
ble. The arcs in the neighbourhood diagram show the pos-
sible transitions, that can be refined if size constraints are
also given.

The nice thing about these calculi is, that they will sort
up quite general hypothesis in pictures provable correct on

O

D

F

I

B^T

B

F^TO^T

Figure 9. The OCC Neighbourhood Diagram

the underlying model. The probably bad thing, might be
their inappropriateness to false positive. An extension by a
stochastical interpretation of relations similar to [5] might
help to fix this potential problem.
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