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Abstract —Teleoperation is a difficult task, particularly
when controlling robots from an isolated operator station. In
general, the operator has to solve ”nearly blindly” the problems
of mission planning, target identification, robot navigation, and
robot control at the same time. The goal of the proposed
system is to support teleoperated navigation with real-time
mapping. We present a novel scan matching technique that re-
considers data associations during the search, enabling robust
pose estimation even under varying roll and pitch angle of the
robot enabling mapping on rough terrain.

The approach has been implemented as an embedded sys-
tem and extensively tested on robot platforms designed for
teleoperation in critical situations, such as bomb disposal.
Furthermore, the system has been evaluated in a test maze by
first responders during the Disaster City event in Texas 2008.
Finally, experiments conducted within different environments
show that the system yields comparably accurate maps in real-
time when compared to higher sophisticated offline methods,
such as Rao-Blackwellized SLAM.

Keywords: SLAM, Mapping, HRI, Teleoperation, Op-
erator Assistance

I. Introduction

Teleoperation is a difficult task, particularly when con-
trolling robots from an isolated operator station. This is
particularly the case when the target area is hazardous
to human beings and therefore robots can only be con-
trolled from a safety zone. In general, the operator has to
solve in an unknown environment the problems of mission
planning, target identification, robot navigation, and robot
control, at the same time. For untrained operators, control
and target identification are already challenging on their
own. The goal of the proposed system is to support
teleoperated navigation with real-time mapping, and by
this, leaving more freedom to operators for performing any
other task.

During the last decades a rich set of solutions for build-
ing maps from 2D laser range data have been proposed.
Lu and Milios [1997] presented the IDC algorithm that
can be applied in non-polygonal environments. Cox [1990]
proposed a method particularly suited for polygonal en-
vironments for matching range readings with a priori
given line mode, and Gutmann [2000] presented a method
combining it with IDC. A robust grid-based method has
been presented by Hähnel [2005] that aligns scans on a
grid map successively build over time.

In contrast to scan matching methods, higher sophis-
ticated methods, such as FastSlam [Montemerlo et al.,
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Fig. 1. Test setting during DisasterCity, Texas, 2008: (a) Test
maze inclined by 15◦ and additionally covered with rolls and ramps
(obscured during experiments), (b) Responders teleoperating the
robot with assistive mapping. (c) Map generated online during tele-
operation.

2002], and GMapping [Grisetti et al., 2005], have been
introduced. These methods are capable of correcting the
entire map at once when loop-closures, i.e., re-visits of
places, have been detected. However, in most cases they
have to be applied offline on recorded sensor readings. Ol-
son et al. [2006] presented an optimization approach that
applies stochastic gradient descent for resolving relations
in a network efficiently. Extensions of this work have been
presented by Grisetti et al. [2007b; 2007a] Most approaches
to graph-based SLAM such as the work of Olson et al.,
Grisetti et al., and others, assume that the relations are
given.

Although existing methods are capable of dealing with
sensor noise, they do require reasonable pose estimates,
e.g., such as from wheel odometry, as an initial guess for
the mapping system. However, wheel odometry has shown
to be unreliable given an unpredictable amount of wheel
slip, which is particularly the case when navigating robots
on rough terrain. Furthermore, methods performing loop-



closures are mostly not applicable in real-time since their
computational needs can unpredictably increase within
unknown environments.

The system introduced in this paper aims on the ap-
plication scenario of realistic teleoperation. Under certain
constraints, such as low visibility and rough terrain, first
responder teleoperation leads to very noisy and unusual
data. For example, due to environmental structures and
failures in control, laser scans are frequently taken under
varying roll and pitch angle, making it difficult to reliably
find correspondences from successive measurements. In
contrast to many ”artificially” generated data logs, logs
from teleoperation only seldom contain loops.

Most existing methods work after the principle of min-
imizing the squared sum of error distances between suc-
cessive scans by searching over scan transformations, i.e.,
rotations and translations. Scan point correspondences
are decided once before the search starts based on the
Euclidean distance. In contrast to other methods, the
proposed approach re-considers data associations during
the search, which remarkably increases the robustness of
scan matching on rough terrain. The algorithm processes
data from laser range finder and gyroscope only, making
it easily applicable on different robot platforms, and more
importantly, independent of faulty readings from wheel
odometry.

The mapping system has been implemented as a fan-less
embedded system which can easily be attached to different
robot types. The system has been extensively tested on
robot platforms designed for teleoperation in critical situ-
ations, such as bomb disposal. Furthermore, the system
has been evaluated in a test maze by first responders
during the Disaster City event in Texas 2008. Experiments
conducted within different environments show that the
system yields comparably accurate maps in real- time
when compared to higher sophisticated offline methods,
such as Rao-Blackwellized SLAM.

The remainder of this paper is structured as follows.
In Section II the mapping algorithm, and in Section III
the implementation of the mapping system are described.
Results from experiments with different robots and en-
vironments are shown in Section IV. In Section V the
conclusion is presented.

II. Voting-based Scan Matching

In this section a two-step processing of laser and gyro
data for incrementally tracking the robot’s trajectory is
described. Given a sequence of scans {St, St−1, St−2, ...},
where each scan is defined by a set of cartesian points S :{
si = (xi, yi)

T | i = 0...n− 1
}

relative to the robot center,
and a sequence of gyro readings {ψt, ψt−1, ψt−2, ...}, the
relative transformation τ = (∆x,∆y,∆θ)T of the robot
pose within the last time interval ∆t is computed. Note
that the concatenation of all computed transformations
yields an estimate of the true robot trajectory which in

turn can be used to integrate scans on a grid map yielding
the result presented in Figure 1 (c).

By the first step an initial guess of τ is computed by
incrementally aligning successive scans. By the second
step this initial guess is utilized for finding the final
transformation of the current scan with respect to the
history of scan observations. By considering the history
of observations, local misalignments that occurred during
the first step can be corrected.

A. Incremental scan alignment

Scans are preprocessed by a scan reduction filter in
order to minimize both sensor noise and computation
time of the algorithm. This is carried out by clustering
scan points that are within a certain Euclidean distance
δ from a common cluster center. In our implementation a
cluster radius of δ = 5cm has been selected. Note that in
contrast to simply reducing the resolution of the scanner,
cluster-based filtering preserves relevant structure of the
environment since all measurements are taken into account
for computing cluster centers.

Scan alignment is taking place as shown by Algorithm 1.
The procedure takes as inputs the current scan observation
and the change of the gyro angle ∆ψ observed between
the current and previous scan (line 1). The current scan
is rotated backwards with respect to the gyro change,
and then further transformed according to the result of
a voting-based search procedure.

The search procedure considers the set of transforma-
tions T generated by the function genTrans(∆t) (line 4).
This function randomly samples a transformation from a
set of discretized transformations. The selection prefers
transformations, i.e. selects them with higher probability,
which are close to transformations that have been selected
in the past. This is carried out by maintaining a short-term
history of transformations, which is updated online after
each estimation step. The idea is motivated from the fact
that within a fixed time frame (depending on the data
rate of the laser scanner) only a limited amount of motion
change can be achieved due to inertia forces. For example,
in case of a continuous fast forward motion of the robot,
backward transformations are unlikely to be selected by
this function.

The function matchRadius (.) returns the Euclidean
distance within which scan points are considered as being
matched. According to the sensor model of the scanner, the
returned distance depends on the spot size of the beam,
and by this, on the beam’s range. For example, longer
point distances are returned for further ranges since they
are accompanied with a larger beam diameter when hitting
an object.

Although implementing three nested loops, the proce-
dure turned out to be remarkably performant in practice.
We determined experimentally that due to the break
conditions in average less than 20% of all beams are
considered by the algorithm. Note that the search over



Algorithm 1: Voting-based scan matching
Input: Scan S, gyro change ∆ψ
Output: Transformation τ = (∆x,∆y,∆θ)T

Data: Reference Scan R← ∅
// Rotate S by gyro change ∆ψ:
foreach si ∈ S do1

si ← si

„
cos−∆ψ − sin−∆ψ
sin−∆ψ cos−∆ψ

«
;

2
end3

// Generate set of transformations T:
T ← genTrans (time(S)− time(R))) ;4

// Find best transformation τbest:
bestV ote← 0 ;5
τbest ← ∅ ;6
foreach τj ∈ T do7

foreach si ∈ S do8

si ← si

„
cos ∆θ − sin ∆θ
sin ∆θ cos ∆θ

«
+ (∆x,∆y)T ;

9
foreach ri ∈ R do10

if distance (si, ri) < matchRadius (range (si))11
then

votej ← votej + 1 ;12
break ;13

end14
end15
if votej + remaining (S) < bestV ote then16

break ;17
end18

end19
if votej > bestV ote then20

bestV ote← votej ;21
τbest ← τj ;22

end23
R← S ;24

end25

// Return best transformation found
return τbest;26

possible data associations increases the robustness of the
matching significantly.

B. Grid-based scan matching

The scan alignment described above provides a good ini-
tial guess of the robot transformation. However, more ro-
bustness is achieved by matching scans against a history of
observations. This is carried out by grid-based scan match-
ing, as described in Hähnel [2005]. The technique deter-
mines from a history of scan observations St, St−1, ..., St−n

and transformations τt, τt−1, ..., τt−n, computed by the
first step, the estimated robot pose x̂t relative to the start
location.

At each sensor observation St, a local grid map
m̂ (x̂t−n:t−1, St−n:t−1) is constructed from the previous n
scans and pose estimates. The map is then convoluted with
a Gaussian kernel in order to accelerate the scan alignment
search procedure.

Given current transformation τt and scan observation
St, the new pose estimate xt is then computed by maxi-
mizing the scan alignment on the grid map:

x̂t = argmax
xt

{p (St|xt, m̂ (x̂t−n:t−1, St−n:t−1)) · p (xt|τt, xt−1)} ,
(1)

where p (xt|τt, xt−1) denotes the probability that the robot
is located at xt given the transformation computed by step
1. Finally, new pose xt and scan St are added to the history
buffer.

III. Implementation

The goal of the proposed mapping system is to enable
online mapping on commercial robot platforms during
first responder teleoperation. For achieving this goal, the
mapping system has to be embeddable on these platforms,
wherefore three requirements have to be fulfilled: First, the
device has to be small enough to fit onto the platform.
Second, the device has to be waterproof, i.e. based on
a fan-less CPU. Third, the device has to communicate
via the existing communication link of the robot, which
is typically an analog video transmitter. The mapping

(a) (b)
Fig. 2. Implementation of the mapping system as an embedded
system: The black-box ”SensorHead”. (b) The box integrated on the
Telemax robot

system has therefore been implemented as an embedded
system (see Figure 2 (a)). The black box, which we named

”SensorHead“, processes sensor readings from an internal
IMU and an externally attached laser range finder (LRF).
The unit is directly powered from the power supply of
the robot (either 24 V or 48 V). Note that no other
connections, e.g. from wheel encoders, are required.

Robots designed for teleoperation are typically forward-
ing video signals from cameras either via a radio link or
tethering. Thus, the main output of the box is a video
signal that can directly be fed into the on-board video
system of the robot and then being transmitted to the
operator console. Figure 2 (b) depicts the integration of
the SensorHead on a Telemax robot with operator console
displaying the generated map and current position.

The SensorHead contains a 3.5” Wafer-Atom board
equipped with a 1.6 GHz Intel Atom CPU, and 2 GB
memory, a 64 GB solid state disk, a Xsens MTi Inertial
Measurement Unit (IMU), and a video converter. Online
computed maps can additionally be received via Wireless-
LAN.

IV. Experiments

The mapping system has been evaluated on several
robot platforms, e.g., Telemax (Telerob GmbH), Talon Re-
sponder (Foster-Miller), Matilda (Mesa Robotics), Pioneer
AT (ActiveRobots), and a Kyosho Twin Force R/C car. In
this section results from experiments conducted on these
platforms will be presented.



A. First Responder Evaluation at DisasterCity
The first responder evaluation during DisasterCity was

organized by the National Institute of Standards and Tech-
nology (NIST). Within time slots of 15 minutes multiple
teams consisting of two first responders had to localize and
report hazmat symbols that were deployed in a maze-like
structure beforehand (see Figure 1 (a)). On the one hand
there were teams exploring the maze by manual mapping,
and on the other hand, teams that utilized the output of
our mapping system at the operator console, as shown in
Figure 1 (b).

To navigate robots through the maze was a challenging
task due to an overall inclination of 15◦ and additional rolls
and ramps (either 10◦ or 15◦ inclined) that covered the
maze entirely. Furthermore, the maze was obscured. Thus,
hazmat symbols and the structure of the maze had to
be recognized by the responders via the robot’s on-board
cameras and lights illuminating the scene. Due to this
extraordinarily harsh conditions, some responders even
failed to simultaneously detecting targets, and controlling
the robot. Consequently, they had major difficulties to
localize within the maze just by observing the video stream
transmitted from the robot, leading frequently to situa-
tions where regions had been explored twice. In contrast,
some responders demonstrated efficient maze navigation,
e.g., for searching hazmat symbols, or quickly exiting the
maze from any given location, by using the proposed
mapping system.

Finally, our system repeatedly mapped the maze (see
Figure 1 (c)) under extremely harsh conditions: Unexpe-
rienced responders drove the robot at maximal velocity
over rolls and ramps causing jumps and heavy collisions.
Although robust robot platforms have been used for the
evaluation (e.g. Talon and Matilda), experiments had to be
restarted at least five times because the teleoperated robot
had been turned over or major malfunctions occurred.

B. Quantitative Evaluation
The second experiment consist of a quantitative eval-

uation of our approach (DCMapping) compared to rao-
blackwellized particle filtering (RBPF) utilizing loop clo-
sures for improving the map [Grisetti et al., 2005]. More
specifically, we run the GMapping implementation which
is freely available on the Internet [Stachniss et al., 2007].
GMapping requires data from wheel odometry in order to
compute the map. Since our log files do not contain wheel
odometry, GMapping has been run with the output of the
first level of the scan processing described in Section II.
We will first describe our evaluation methodology and then
provide results from various different experiments.

1) Metric Evaluation: We based our evaluation on the
estimated robot trajectory x1:T , where xi is the robot pose
at timestep i from 1 to T . Let x∗1:T be the reference poses
of the robot, ideally the true locations. We use a measure
based on the relative displacement δi,j between poses to
perform comparisons. We define δi,j = xi 	 xj , where

⊕ is the standard motion composition operator and 	
its inverse. Instead of comparing x to x∗ (in the global
reference frame), we do the operation based on δ and δ∗

as

ε(δ) =
∑
i,j

(δi,j 	 δ∗i,j)
2. (2)

A more detailed description can be found in our previous
work [Burgard et al., 2009].

(a) (b)

(c) (d)
Fig. 3. Comparison of results on the Imtek dataset. The left side
shows the map generated by scan matching (a) and the translational
error plotted by relation (c). On the right side the map by RBPF
(b) is shown with the corresponding error plot (d). The maps are
overlaid with the graph formed by the given relations. Both error
plots show a remarkable cluster towards the end. Rectangles mark the
corresponding relations in the plot and the map. All marked relations
are also drawn in red in the map.

Although we do not need true locations x∗ anymore,
we still need the true displacements δ∗. We use a two
step approach to derive those in an assisted manner: First,
we run a SLAM algorithm under manual supervision on
the raw data to estimate a trajectory, that is globally
consistent, and derive initial displacement candidates δi

i,j

from that. Next, every candidate δi
i,j = xi	ixj is manually

verified. In this step a human expert will be presented the
two laserscans at timestep i and j displaced by 	i. The
expert can accept or reject the displacement for the final
displacements δ∗i,j and in the case of an accept it is pos-
sible to manually adjust 	i to reflect 	∗. Although work
intensive, we believe, that without manual intervention or
other external sources it is impossible to generate reliable
results.

One advantage of this metric is that it allows us to
compare algorithms in individual situations. An example
of a difficult environment with long hallways and glass
walls is shown in Figure 3. The plots show the error
plotted by relation and large clusters are visible for both
the RBPF and DCMapping. We identified the relations in
those clusters and marked the corresponding relations in
the resulting maps. The clusters clearly identify the weak



TABLE I

Quantitative results of different approaches/datasets on

the translational error.

Translational error DCMapping RBPF (50 part.)
m (abs) / m2 (sqr)

082er
abs. errors 0.072 ± 0.066 0.115 ± 0.122
squared errors 0.01 ± 0.024 0.028 ± 0.074
Maximum abs. error 0.73 1.06

aces
abs. errors 0.121 ± 0.335 0.068 ± 0.078
squared errors 0.127 ± 0.719 0.011 ± 0.035
Maximum abs. error 2.803 0.646

tu-darmstadt
abs. errors 0.228 ± 0.643 0.122 ± 0.146
squared errors 0.465 ± 2.513 0.036 ± 0.188
Maximum abs. error 5.942 1.921

tu-graz
abs. errors 0.054 ± 0.044 0.112 ± 0.186
squared errors 0.005 ± 0.009 0.047 ± 0.312
Maximum abs. error 0.318 2.515

imtek
abs. errors 0.42 ± 0.942 0.25 ± 0.416
squared errors 1.063 ± 4.152 0.235 ± 2.073
Maximum abs. error 8.463 6.998

intel-lab
abs. errors 0.136 ± 0.132 0.07 ± 0.082
squared errors 0.036 ± 0.068 0.012 ± 0.033
Maximum abs. error 0.8 0.687

mit-killian
abs. errors 3.71 ± 12.046 7.505 ± 26.137
squared errors 158.832 ± 639.92 739.314 ± 3112.13
Maximum abs. error 60.17 153.087

telemax hardcore
abs. errors 0.108 ± 0.136 0.274 ± 0.276
squared errors 0.03 ± 0.109 0.152 ± 0.314
Maximum abs. error 1.334 1.694

hangar
abs. errors 0.207 ± 0.443 0.291 ± 0.527
squared errors 0.239 ± 1.215 0.362 ± 1.648
Maximum abs. error 3.044 3.646

dc-maze
abs. errors 0.173 ± 0.199 1.490 ± 2.230
squared errors 0.070 ± 0.164 7.179 ± 13.600
Maximum abs. error 0.967 7.180

point in the map that originates from the robot returning
after driving a long hallway without features. DCMapping
is here unable to close the loop fully and this shows in a
shearing effect. The RBPF can close the loop. There are
less relations with a lower magnitude in its cluster as they
only originate from length errors and the slight bend of
the corridor.

2) Results: Experiments have been carried out on two
types of log files and have been executed on a Intel
Core2Duo 2.6GHz. On the one hand we evaluated logs
that have been recorded during teleoperated exploration
of building structures. These are the 082er log, recorded in
a cellar, the tu-darmstadt log, recorded in a long hallway
of the Darmstadt university, the tu-graz log, recorded in
a cluttered office environment of the Graz university, the
imtek log, recorded in three interconnected buildings of
the Freiburg university, the telemax-hardcore log, recorded
in a cellar while driving over ramps and rolls, the hangar
log, recorded in a hangar like structure, and the dc-maze
log, recorded at DisasterCity in Texas. On the other hand
we evaluated logs that are typically used by the SLAM
community and online available. These are aces, intel-

TABLE II

Quantitative results of different approaches/datasets on

the rotational error.

Rotational error DCMapping RBPF (50 part.)
deg (abs) / deg2 (sqr)

082er
abs. errors 1.334 ± 1.571 1.563 ± 1.877
squared errors 4.245 ± 9.923 5.964 ± 13.904
Maximum abs. error 10.558 12.501

aces
abs. errors 2.518 ± 3.368 1.675 ± 2.133
squared errors 17.678 ± 72.465 7.351 ± 19.952
Maximum abs. error 45.015 14.842

tu-darmstadt
abs. errors 0.667 ± 0.886 0.558 ± 0.674
squared errors 1.231 ± 3.875 0.765 ± 2.477
Maximum abs. error 7.628 6.794

tu-graz
abs. errors 1.13 ± 1.205 1.354 ± 1.44
squared errors 2.727 ± 6.551 3.906 ± 10.847
Maximum abs. error 9.09 15.092

imtek
abs. errors 0.899 ± 1.28 1.041 ± 1.476
squared errors 2.445 ± 7.737 3.26 ± 10.363
Maximum abs. error 9.352 10.457

intel-lab
abs. errors 3.661 ± 6.048 2.494 ± 3.63
squared errors 49.968 ± 182.194 19.395 ± 95.383
Maximum abs. error 47.267 50.908

mit-killian
abs. errors 2.043 ± 3.781 4.592 ± 14.08
squared errors 18.463 ± 79.961 219.299 ± 875.622
Maximum abs. error 38.678 71.114

telemax hardcore
abs. errors 1.38 ± 1.395 2.339 ± 2.791
squared errors 3.849 ± 8.708 13.251 ± 30.709
Maximum abs. error 9.129 14.778

hangar
abs. errors 3.67 ± 4.096 2.434 ± 2.696
squared errors 30.222 ± 93.017 13.183 ± 42.161
Maximum abs. error 40.089 21.584

dc-maze
abs. errors 4.568 ± 3.649 17.306 ± 20.294
squared errors 34.148 ± 55.194 710.284 ± 1051.333
Maximum abs. error 20.300 59.889

lab, and mit-killian. Note that the latter logs contain
comparably many situations where the robot re-entered
previously explored regions, i.e., enabling loop closures by
the algorithm. Figure 4 depicts the result of DCMapping
for some of the maps.

The evaluation presented in Table I and Table II shows
that DCMapping and RBPF are yielding in average com-
parably equal good results. This is surprising since RBPF
needs much more time to compute the corrected map
than DCMapping, which provides results in real-time. For
example, we measured for RBPF on the embedded system
described in Section III a run time of 330 minutes when
processing the 82er log. In contrast, DCMapping took 6
minutes (real-time), which is about 55 times faster. Note,
that particularly when closing larger loops, the computa-
tion time of RBPF increases drastically. Differences can be
found, on the one hand, on maps containing larger loops,
such as aces, intel-lab, and imtek, where RBPF shows its
strength in closing loops, and on the other hand, telemax-
hardcore and maze where DCMapping clearly shows ro-
bustness against extremely faulty laser range readings
from rolls and ramps.
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Fig. 4. Maps generated with DCMapping: (a) aces, (b) tu-darmstadt,
(c) hangar, and (d) 082er. The red line indicates the path taken by
the robot.

V. Conclusion

We introduced a mapping system for assisting navi-
gation tasks of first responders teleoperating a robot on

difficult terrain. The system has been intensively evaluated
in diverse environments, and has also been tested by first
responders. The presented results show that the quality
of generated maps is close to that generated by computa-
tional costive algorithms. Moreover, the system has been
considered as advantageous for teleoperation by most first
responders testing it in the field.

We showed that DCMapping yields map accuracy com-
parable to RBPF, however, by requiring remarkably less
CPU resources. We assume that combining both RBPF
and DCMapping will lead to the best performance. For
example, data preprocessed online by DCMapping for nav-
igation can further be processed by RBPF for generating
accurate maps. By this, the advantages of both, e.g., the
robustness regarding faulty measurements of DCMapping,
and the loop closure capabilities of RBPF, can effectively
be combined. In future work we will consider this idea.
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