
Real-time Localization and Elevation Mapping within
Urban Search and Rescue Scenarios

Alexander Kleiner
Institut für Informatik
University of Freiburg

79110 Freiburg, Germany
kleiner@informatik.uni-freiburg.de

Christian Dornhege
Institut für Informatik
University of Freiburg

79110 Freiburg, Germany
dornhege@informatik.uni-freiburg.de

Abstract

Urban Search And Rescue (USAR) is a time critical task. Rescue teams have
to explore a large terrain within a short amount of time in order to locate
survivors after a disaster. One goal in Rescue Robotics is to have a team of
heterogeneous robots that explore autonomously, or partially guided by an in-
cident commander, the disaster area. Their task is to jointly create a map of
the terrain and to register victim locations, which can further be utilized by
human task forces for rescue. Basically, the robots have to solve autonomously
in real-time the problem of Simultaneous Localization and Mapping (SLAM),
consisting of a continuous state estimation problem and a discrete data associ-
ation problem. Extraordinary circumstances after a real disaster make it very
hard to apply common techniques. Many of these have been developed under
strong assumptions, for example, they require polygonal structures, such as
typically found in office-like environments. Furthermore, most techniques are
not deployable in real-time.

In this paper we propose real-time solutions for localization and mapping,
which all have been extensively evaluated within the test arenas of the National
Institute of Standards and Technology (NIST). We specifically deal with the
problems of vision-based pose tracking on tracked vehicles, the building of
globally consistent maps based on a network of RFID tags, and the building of
elevation maps from readings of a tilted Laser Range Finder (LRF). Our results
show that these methods lead under modest computational requirements to
good results within the utilized testing arenas.

1 Introduction

Urban Search And Rescue (USAR) is a time critical task. Rescue teams have to explore
a large terrain within a short amount of time in order to locate survivors after a disaster.
In this scenario, the number of survivors decreases drastically by each day, due to hostile
environmental conditions and injuries of victims. Therefore, the survival rate depends sig-



nificantly on the efficiency of rescue teams. The idea behind Rescue Robotics is to adopt
technologies from robotics for the direct support of rescue teams in the field. The main goal
is to have a team of heterogeneous robots that explore autonomously, or partially guided
by an incident commander, the disaster area. Their task is to jointly create a map of the
terrain and to register victim locations, which can further be utilized by human task forces
for rescue. Basically, the robots have to solve autonomously in real-time the problem of
Simultaneous Localization and Mapping (SLAM), consisting of a continuous state estima-
tion problem and a discrete data association problem. The state estimation problem, on the
one hand, is hard due to the extremely unreliable odometry measurements usually found on
robots operating within harsh environments. The data association problem, i.e. to recog-
nize locations from sensor data, on the other hand, is challenging due to the unstructured
environment, e.g. arbitrarily shaped debris from building collapse, and bad visibility condi-
tions due to smoke and fire. These extraordinary circumstances make it very hard to apply
common techniques from robotics. Many of these techniques have been developed under
strong assumptions, for example, they require polygonal structures, such as typically found
in office-like environments. Furthermore, most existing techniques are not deployable in
real-time. In this paper we propose real-time solutions for localization and mapping, which
all have been extensively evaluated within the test arenas of the National Institute of Stan-
dards and Technology (NIST) (Jacoff et al., 2001). We specifically deal with the problems
of vision-based pose tracking on tracked vehicles, the building of globally consistent maps
based on a network of RFID tags, and the building of elevation maps from readings of a
tilted Laser Range Finder (LRF).

SLAM algorithms require a good estimate of the robot’s pose, which is typically generated
from the wheel odometry, e.g. measured by shaft encoders mounted on the robot’s wheels, or
from a scan matching algorithm applied to LRF measurements. However, wheel odometry
becomes arbitrarily inaccurate if the robot has to drive on slippery ground or even has to
climb over obstacles. Scan matching can only reliably be applied if the scanner continuously
captures features, such as lines from corners and walls, which are not necessarily present
in unstructured environments. We propose two approaches for the pose tracking problem,
one for wheeled robots and one for tracked-robots, respectively. On the one hand, we have
developed a wheeled robot with over-constrained odometry, i.e. four shaft-encoders instead
of two, for the detection of slippage of the wheels. On the other hand, we solve the problem
on tracked robots by utilizing a consumer-quality camera and an Inertial Measurement Unit
(IMU), which provides estimates of the three Euler angles yaw, roll, and pitch. The basic idea
is to continuously track salient features with the KLT feature tracker (Tomasi and Kanade,
1991) over images taken by the camera, and to calculate from the tracked features difference
vectors that indicate the robot’s motion. Here it suffices to determine only translations from
the images, since rotations are measured by the IMU. Vectors that are affected by rotations
are filtered out in advance. From the filtered set of vectors the translation of the robot is
determined based on the individual voting of single translation vectors. Each vector votes
for one of the possible translations according to a trained tile coding classificator (Sutton and
Barto, 1998). It is assumed that the robot moves according to its heading and the under-
lying surface, i.e. it does not translate sidewards, downwards, and upwards. Furthermore,
revolutions of the tracks are limited to constant velocities, either forward, backward, or none.

Data association, i.e. to recognize places that have been visited before, is a challenging prob-



lem after a disaster. Firemen at 9/11 reported that they had major difficulties to orientate
themselves after leaving collapsed buildings. The arbitrary structure of the environment,
and limited visibility conditions due to smoke, dust, and fire, prevent an easy distinction
of different places. This problem is also relevant to standard approaches for SLAM, which
recognize places by associating vision-based and LRF-based features. Therefore, we pro-
pose to solve the problem of data association by the active distribution and recognition of
RFID tags. RFID tags have a worldwide unique number, and thus offer an elegant way
to label and to recognize locations within harsh environments. Their size is already below
0.5mm, as shown by the µ-chip from Hitachi (Hitachi, 2003), and their price is lower than
13 Cents (AlienTechnology, 2003). Passive RFID tags do not require to be equipped with
a battery since they are powered by the reader if they are within a certain distance. Their
reading and writing distance, which depends on the employed communication frequency, can
be assumed to be within a range of meters.

Besides the solution of the data association problem, the RFID-technology based approach
comes with three further advantages: First, in a multi-robot exploration scenario, maps from
multiple robots can easily be merged to one consistent map by utilizing found correspon-
dences from RFID tags registered on those maps. Furthermore, they can be utilized for a
communication-free coordination of these robots (Ziparo et al., 2007). Second, RFID tags
that have been put into the environment can be used in a straightforward manner by humans
to follow routes towards victim location, i.e. they do not need to localize themselves within
a metric map. Third, RFID tags can be used by human task forces to store additional user
data, such as the number of victims located in a room or an indication of a hazardous area.

The basic idea behind the proposed RFID-based SLAM is to build successively a graph
G = (V,E) consisting of vertices V and edges E, where each vertex represents a RFID tag,
and each edge (Vi, Vj) ∈ E represents an estimate of the relative displacement (∆x,∆y,∆θ)T

with covariance matrix Σ(∆x,∆y,∆θ) between the two RFID tags associated with the two
vertices Vi and Vj, respectively. The relative displacement between two tags is estimated by
a Kalman filter, which integrates pose corrections from the robot’s pose tracking module,
e.g. based on visual-odometry, an Inertia Measurement Unit (IMU), and laser-based scan-
matching. RFID tags are actively deployed by the robot at adequate locations, as for example
narrow passages that are likely to be passed. We utilized the algorithm of Lu and Milios (Lu
and Milios, 1997) for calculating globally consistent maps from the online constructed RFID
graph.

Pose tracking and data association lead to a consistent trajectory of the robot. This trajec-
tory is typically taken as a basis for subsequently integrating readings from the LRF into
an occupancy grid map (Moravec, 1988), leading to a two-dimensional map representation
of the environment. However, in the disaster response context, 2D grid maps are not an
adequate representation of the environment. In this context, robots are confronted with
3D structures, such as ramps and stairs, which they have to overcome. We propose a fast
method for building elevation maps, which allows mapping in real-time, e.g. to build the
map while the robot is in motion. Height values are estimated by a Kalman filter that inte-
grates readings from a 35◦ downwards tilted LRF, with respect to the robot’s full 3D pose,
represented by six Degrees Of Freedoms (DOFs). The 3D pose of the robot is continuously
tracked from the pitch and yaw angles measured by the IMU, and also continuously updated



from height observations that have been registered on the map. Due to the integration of
the full 3D pose, the method allows to create elevation maps while the robot traverses a
three-dimensional surface, as for example while driving over ramps and stairs.

The remainder of this paper is structured as follows. In Section 2 we discuss related work. In
Section 3 we introduce the sensors and experimental platforms utilized for the evaluation of
the introduced methods. In the Sections 4, and Section 5 we describe the approaches for pose
tracking on wheeled robots and tracked robots, respectively. The RFID technology-based
SLAM approach is introduced in Section 6 and the real-time building of elevation maps is
described in Section 7. Finally, we provide results from real world experiments in Section 8
and conclude in Section 9.

2 Related Work

The approach of visual odometry has extensively be studied in the past. Corke and col-
leagues introduced a solution for a planar rover equipped with an omni-directional vision
system (Corke et al., 2004). In contrast to our work, which also aims at indoor application,
they assume that the robot operates in an open space, as it is usually the case on planetary
analog environments. Nister and colleagues presented a system for visual odometry that
works with both mono and stereo vision (Nister et al., 2004). Their results generally show
that the data processing of a stereo system leads to a highly accurate estimate of the robot’s
pose, which has also been confirmed by other researchers’ work (Helmick et al., 2004; Milella
and Siegwart, 2006). The usage of a stereo system has generally the advantage that the
depth information of features tracked by the vision system can be utilized for computing the
velocity of the robot. Results proposed in this paper show that with the simplified kinemat-
ics of tracked robots, a single but lightweight camera solution can also lead to sufficiently
accurate pose estimates.

Hähnel and colleagues (Hähnel et al., 2004) successfully utilized Markov localization for lo-
calizing a mobile robot in an office environment. Their approach deals with the problem of
localization within a map previously learned from laser range data and known RFID posi-
tions, whereas the work presented in this paper describes a solution that performs RFID-
based localization and mapping simultaneously while exploration. Also sensor networks-
based Markov localization for emergency response has been studied (Kantor et al., 2003).
In this work existing sensor nodes in a building are utilized for both localization and for
the computation of a temperature gradient from local sensor node measurements. Bohn and
colleagues examined localization based on super-distributed RFID tag infrastructures (Bohn
and Mattern, 2004). In their scenario tags are deployed beforehand in a highly redundant
fashion over large areas, e.g. densely integrated into a carpet. They outline the applica-
tion of a vacuum-cleaner robot following these tags. Miller and colleagues examined the
usability of various RFID systems for the localization of first responders within different
building classes (Miller et al., 2006). During their experiments persons where tracked with
a Dead Reckoning Module (DRM) while walking through a building. They showed that the
trajectories can be improved by utilizing the positions of RFID tags detected within the
building. While these map improvements have been carried out with only local consistency,
the approach presented in this work yields a globally consistent map improvement.



Elevation maps are indispensable, particularly for robots operating within unstructured en-
vironments. They have been utilized on wheeled robot platforms (Pfaff et al., 2005; Wolf
et al., 2005), on walking machines (Krotkov and Hoffman, 1994; Gassmann et al., 2003), and
on car-like vehicles (Thrun et al., 2006; Ye and Borenstein, 2003). These methods differ in
the way how range data is acquired. If data is acquired from a 3D scan (Pfaff et al., 2005;
Krotkov and Hoffman, 1994), it usually suffices to employ standard error models, which
reflect uncertainty from the measured beam length. Data acquired from a 2D LRF, e.g.
tilted downwards, requires more sophisticated error models, such as the compensation of
pose uncertainty (Thrun et al., 2006), and handling of missing data by map smoothing (Ye
and Borenstein, 2003). Furthermore, full 3D data processing is usually not always possible in
real-time, instead it requires the robot to wait until the full 3D scan is taken. In contrast to
previous work, our approach deals with the problem of building elevation maps in real-time
and with respect to the full 6 DOF pose of the robot.

3 Experimental platform

The work proposed in this paper has been extensively tested on two different robot platforms,
a 4WD (four wheel drive) differentially steered robot for the autonomous team exploration
of large office-like areas, and a tracked robot for climbing 3D obstacles. Figure 1(a) shows
the tracked Lurker robot, which is based on the Tarantula R/C toy. Although based on a
toy, this robot is capable of climbing difficult obstacles, such as stairs, ramps, and random
stepfields. This is possible due to its tracks, which can operate independently on each side,
and the “Flippers” (i.e. the four arms of the robot), which can be freely rotated by 360◦. We
heavily modified the base in order to enable autonomous operation. First, we added a 360◦

freely turnable potentiometer to each of the two axes for measuring the angular position of
the flippers. Second, we added touch sensors to each flipper, allowing the robot to measure
force when touching the ground or an object. Furthermore, the robot is equipped with a
3-DOF Inertial Measurement Unit (IMU) from Xsens, allowing drift-free measurements of
the three Euler angles yaw, roll, and pitch, and two Hokuyo URG-X004 Laser Range Finders
(LRFs), one for scan matching, and one for elevation mapping, which can be tilted in the
pitch angle within 90◦. For feature tracking, as proposed in Section 5, we utilized a Logitech
QuickCam Pro 4000 web cam (Logitech, 2006).

Figure 1(b) shows the Zerg robot, a 4WD differentially steered platform, which has been
completely hand-crafted. The 4WD drive provides more power to the robot and therefore
allows to drive up ramps and to operate on rough terrain. Each wheel is driven by a Pitman
GM9434K332 motor with a 19.7:1 gear ratio and a shaft encoder. The redundancy given by
four encoders allows to detect heavy slippage and situations in which the robot gets stuck, as
we will show in Section 4. In order to reduce the large odometry error that naturally arises
from a four-wheeled platform, we also utilized an Inertial Measurement Unit (IMU) from
XSens. Moreover, the robot is equipped with a Thermal-Eye infrared thermo camera for
victim detection, and also with a Hokuyo URG-X004 LRF. Localization experiments have
been carried out with Ario RFID chips from Tagsys with a size of 1.4 × 1.4cm, 2048Bit
RAM, and a response frequency of 13.56MHz. For the reading and writing of these tags,
we employed a Medio S002 reader, likewise from Tagsys, which operates within a range



(a) (b) (c)

Figure 1. Robots designed for rescue scenarios: (a) The Lurker robot, and (b) the Zerg robot. (c) The team of
robots waiting for the mission start during the RoboCup competition in Osaka 2005 (Pictures a,c were taken by
Raymond Sheh, and Adam Jacoff, respectively).

of approximately 30cm while consuming less than 200mA. The antenna of the reader is
mounted in parallel to the ground. This allows to detect any RFID tag lying beneath the
robot. The active distribution of these tags is carried out by a self-constructed actuator based
on a metal slider that can be moved by a conventional servo. The slider is connected with
a magazine that maximally holds around 100 tags. Each time the mechanism is triggered,
the slider moves back and forth while dropping a single tag from the magazine.

4 Wheel odometry-based pose tracking

The two-dimensional pose of the robot can be represented by the vector l = (x, y, θ)T . In
order to represent uncertainties, the pose is modeled by a Gaussian distribution N (µl,Σl),
where µl is the mean and Σl a 3 × 3 covariance matrix (Maybeck, 1979). Robot motion
is measured by the odometry and given by the traveled distance d and angle α, likewise
modeled by a Gaussian distribution N(u,Σu), where u = (d, α) and Σu is a 2× 2 covariance
matrix expressing odometry errors. The pose at time t can be updated from input ut as
follows:

lt = F (lt−1, ut) =

 xt−1 + cos(θt−1)dt

yt−1 + sin(θt−1)dt

θt−1 + αt

 , (1)

Σlt = ∇FlΣlt−1∇F T
l +∇FuΣu∇F T

u , (2)

where Σu =

(
dσ2

d 0
0 ασ2

α

)
(3)

and ∇Fl and ∇Fu are partial matrices of the Jacobian matrix ∇Flu.

If the robot operates on varying ground, as for example concrete or steel sporadically covered
with newspapers and cardboard, or if it is very likely that the robot gets stuck within obsta-
cles, odometry errors are not Gaussian distributed anymore, but are dependent on the par-
ticular situation. Therefore, we designed the Zerg robot with an over-constrained odometry
for the detection of slippage of the wheels by utilizing four shaft-encoders, one for each wheel.
From these four encoders we recorded data while the robot was driving on varying ground,
and labeled the data sets with the classes C = (slippage, normal). This data was taken to
learn a decision tree (Quinlan, 2003) with the inputs I = (∆vLeft,∆vRight,∆vFront,∆vRear),
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Figure 2. Odometry measurements from a 4WD robot, each dashed line corresponds to one of the four wheel veloc-
ities. The black arrows indicate the true situation, e.g. driving forward, slippage, etc., and the red line corresponds
to the automatic classification into slippage (800) and normal (0), given the four wheel velocities.

representing the velocity differences of the four wheels, respectively. As depicted in Figure
2, the trained classifier reliably detects this slippage from the velocity differences. Given the
detection of slippage, the odometry measurement of the traveled distance d is set to zero
and the robot’s pose is updated according to Equation 3, however, with dσ2

d replaced by the
term σ2

d, within covariance matrix Σu, in order to increase uncertainty in translation, also if
d cannot be measured. Note that the rotation update stays unmodified since the traveled
angle α is measured by the IMU and thus not influenced by slippage of the wheels.

4.1 Pose improvement by laser-based scan matching

Pose tracking from odometry data can be further improved by utilizing range measurements
from the LRF. We utilize an incremental scan matching method (Hähnel, 2005) for pose
tracking and fuse the result from both the scan matcher and odometry with a Kalman filter.
The scan matching technique determines from a sequence of previous scan observations
zt, zt−1, ..., zt−n subsequently for each time point t an estimate of the robot’s pose kt. This
is carried out by incrementally building a local grid map from the n most recent scans and
estimating the new pose kt of the robot by maximizing the likelihood of the scan alignment
of the latest scan zt in the current map. The robot pose N (lt,Σlt) is fused with the pose of
the scan matcher N (kt,Σkt) by:

lt+1 =
(
Σ−1

lt
+ Σ−1

kt

)−1 (
Σ−1

lt
lt + Σ−1

kt
kt

)
(4)

Σlt+1 =
(
Σ−1

lt
+ Σ−1

kt

)
(5)

Scan matching-based pose tracking leads to good results if the scanner captures sufficient
features in the environment, such as walls and corners. However, if the LRF has a restricted
field of view, e.g. a range limit at four meters in case of the Hokuyo LRF utilized in our
system, scanning leads to a large number of far readings, i.e. measurements at maximum
range, and hence an insufficient amount of features. We solve this problem by increasing the
variance Σkt of the scan matcher with respect to the number of detected far readings, which
leads to an increase of the influence of the odometry estimate within update Equation 5. A
series of experiments has shown that the result of scan matching can reliably be fused as
long as the amount of far readings does not exceed 20% of the scan.



5 Visual odometry-based pose tracking

Figure 3 depicts 3D structures, such as stairs (Figure 3(a)) and random stepfields (Fig-
ure 3(b)), as they are typically found within the test arenas from NIST. On such obstacles,
tracks are very likely to slip during locomotion, and thus the measurement of their revolu-
tions is not sufficient for tracking the robot’s pose. Also pose tracking from LRF data is
much harder since 2D LRFs insufficiently reflect the environmental structure, e.g. minor
variations in the vehicle’s roll might lead to major variations in the range measurements
obtained from the LRF.

(a) (b)

Figure 3. The Lurker robot during the RoboCup Rescue competition in Osaka. (a) climbing stairs, and (b) searching
for victims in a large random stepfield (Pictures b was taken by Adam Jacoff).

In this section we describe a solution to pose tracking on tracked robots for allowing au-
tonomous and semi-autonomous behavior on complex obstacles, as shown in Figure 3, as
well as SLAM on tracked vehicles. We assume that the robot most likely moves according
to its heading and the underlying surface, i.e. it does not translate lateral, downwards,
and upwards. We also assume that the IMU provides sufficiently accurate estimates of the
three Euler angles yaw, roll, and pitch. Furthermore, revolutions of the tracks are limited to
constant velocities, either forward, backward, or none.

The tracking is carried out by subsequently processing images from a consumer-quality
monocular camera. The basic idea is to continuously track salient features with the KLT
feature tracker (Tomasi and Kanade, 1991) over multiple images taken by the camera and to
calculate from the tracked features difference vectors that indicate the robot’s motion. Since
we estimate rotations by the IMU and thus are only interested in determining translations
from the images, vectors that are affected by rotations are filtered out in advance. From the
filtered set of vectors the true translation of the robot is determined based on the individual
voting of single translation vectors. Each vector votes for one of the possible translations
according to a previously trained tile coding classificator (Sutton and Barto, 1998).

In general, an image sequence can be described by a discrete valued function I(x, y, t), where
x, y describe the pixel position and t describes the time. We assume that features detected
in an image also appear in the subsequent image, however translated by d = (ξ, η)T :

I(x, y, t+ τ) = I(x− ξ, y − η, t) (6)



Usually, a feature tracker determines this translation by minimizing the squared error ε over
a tracking window. For brevity we define I(x, y, t + τ) as J(x) and I(x − ξ, y − η, t) as
I(x− d), leading to the following error measure with a weighting function w (Tomasi and
Kanade, 1991).

ε =

∫
W

[I(x− d)− J(x)]2wdx (7)

To facilitate the process of feature tracking, the selection of appropriate features, i.e. features
that can easily be distinguished from noise, is necessary. Hence, features that show light-dark
changes, e.g. edges, corners, and crossings, are selected with high probability by the KLT
feature tracker. In Figure 4, examples of KLT’s adaptive feature selection and the tracking
over a series of images are shown. For our purpose we use an implementation of the KLT
tracker by Stan Birchfeld (Birchfeld, 1996).

(a) (b) (c) (d)

Figure 4. KLT feature tracking: (a,b) Features (red dots) are adaptively selected within images. (c) Feature
tracking over two subsequent images. The vectors between two corresponding features, shown by red lines, indicate
the movement of the camera. (d) The tracking over a series of five images.

5.1 Tracking over a series of images

Our main goal is to determine the robot’s forward or backward movement. However, when
traversing obstacles, the robot’s motion is not an exclusively forward or backward motion.
It is overlaid with noise that originates from slippage of the tracks and shaking of the robot’s
body due to rough terrain, leading to jitter effects. Since the above described effects usually
do not accumulate over time, and hence can be reduced, our method generates trackings
over multiple frames, rather than performs single frame trackings only. This is achieved by
saving single trackings between two subsequent images in a buffer, up to a maximal amount.
If trackings of the same feature coexist over more than two images, their corresponding
translation vectors di, di+1, ..., dk are replaced by a single translation vector dik, consisting of
the vector sum of all trackings between di and dk. The summed translation vector is more
robust compared to single trackings, since it averages out irregular jitter effects. We assign
a weight wik = |k − i| to each tracking in order to reward trackings over multiple frames 1.

5.2 Filtering of Rotations

Since we focus on the translation estimation from image sequences, rotations have to be
filtered out in advance. However, due to the high latency time of the employed camera system

1Note that these weights are used during the voting process, which will be described in Section 5.3.



(a web cam connected via USB 1.1), this can only be accurately achieved on the image data
directly, rather than by combining image data with rotation angles from the IMU sensor.
Given a feature tracking between two images of the form (xi, yi) → (xj, yj), which includes
a rotation around the point rx, ry with angle α, one can derive a corresponding rotation free
tracking (xi, yi) → (x′j, y

′
j) after the following equation, with given rotation matrix R (.):

(x′j, y
′
j) = (rx, ry) +R(−α) · (xj − rx, yj − ry) (8)

Therefore, in order to perform the filtering of rotations, one has to determine the rotation
center (rx, ry) and rotation angle α. Rotating points of different radii describe concentric
circles around the rotation center. When considering two feature trackings whose features
are lying on a circle, one can see that the perpendicular bisectors of the two lines, respectively
connecting start- and endpoint of each feature tracking, subtend in the rotation center, as
shown in Figure 5(a).

(a) (b) (c) (d)

Figure 5. (a) The perpendicular bisectors (green) of the tracking vectors (red) subtend at the center of the circle
(magenta). (b) Example of the Monte Carlo algorithm: The perpendicular bisectors (green) point to the center of
rotation (magenta). Red dots depict the sampled intersection points. (c,d) Example of the rotation correction while
the robot changes the angles of its front flippers. The feature vectors before (c) and after (d) the correction.

Algorithm 1: Sample up to n possible centers of rotation
Input: A set of feature trackings: T
Output: A set of calculated intersection points: C

C = ∅;
for i = 0; i < n; i++ do

t1 ← selectRandomFeatureTracking(T);
t2 ← selectRandomFeatureTracking(T);
s1 ← calculatePerpendicularBisector(t1);
s2 ← calculatePerpendicularBisector(t2);
(cut, det) ← calculateIntersectionPoint(s1, s2);
if det < minDeterminant then

continue ;
end
C ← C ∪ cut;

end

We exploit this property with a Monte Carlo algorithm for estimating the true center of
rotation (see Figure 5(b)). First, up to n possible centers of rotation are sampled from the
set of feature trackings T by algorithm 1. Second, all sampled centers of rotation are put
into a histogram, whereas the final center is determined by the histogram’s maximum.

Furthermore, one has to determine the rotation angle, which can be done by calculating
the vector cross product. Given a feature tracking (xi, yi) → (xj, yj) rotated around (rx, ry)
by α, one can calculate the cross product by considering the start- and endpoint of the



feature trackings as endpoints of vectors starting at the rotation center. Suppose vi =
(xi− rx, yi− ry)

T and vj = (xj − rx, yj − ry)
T are vectors derived from tracking images I and

J, respectively. Then, the angle between these vectors α = ∠(vi, vj) can be calculated from
the cross product as follows.

vi × vj = ||vi|| · ||vj|| · sin(α) (9)

Given the rotation center (rx, ry) from the previous estimation, one can determine the true
rotation angle α by averaging over rotation angles from all single feature trackings. Finally,
it is necessary to prevent the algorithm from being executed on rotation-free sequences. This
is achieved by only adding a center of rotation to the histogram, if it is located within the
bounding box of the image. Center of rotations that are far from the bounding box are
most likely due to quasi-parallel feature translations, which in turn indicate a rotation-free
movement. If the number of centers of rotation is below a threshold λ, the transformation
of Equation 8 is not applied. We determined experimentally λ = 10.

5.3 Classification

From the set of filtered translation vectors, one can determine the robot’s translation. How-
ever, the projection from translation vectors of the vision system to the robot’s translation
depends on the intrinsic parameters of the camera, e.g. focal length and lens distortion,
and on the extrinsic parameters of the camera, e.g. the translation and rotation relative to
the robot’s center. This projection can either be determined analytically or by a mapping
function. Due to the assumption of a simplified kinematic model, we decided to learn this
mapping with a function approximator described in this section.

5.3.1 Learning classification probabilities

The learning is based on data collected and automatically labeled during teleoperation runs
under mild conditions, i.e. without heavy slippage. During a second phase, the data labeling
has been verified on a frame to frame basis. This procedure allows the efficient labeling of
thousands of trackings since single images contain several features. Each labeled tracking is
described by the class assignment c ∈ C and the vector v = (x, y, l, α)T , where x, y denotes
the origin in the image, l denotes the vector length and α denotes the vector heading.
As already mentioned, class assignments are concerning the robot’s translation, e.g. C =
{forward, backward, ...}. Given the labeled data, tile coding function approximation is used
for learning the probability distribution

P (c | x, y, l, α). (10)

Tile coding is based on tilings which discretize the input space in each dimension. Shape
and granularity of these discretizations can be adjusted according to the task. For example,
the discretizations regarding the origin x, y has been designed coarser due to minor local
differences regarding the correlation with the class assignment. Furthermore, tilings are
overlaid with a randomized offset in order to facilitate generalization. During learning, each
tile is updated according to:

wi+1 = wi + α · (pi+1 − wi), (11)



where wi is the weight stored in the tile, pi ∈ {0, 1} is the class probability, and α is the
learning rate, which is set to α = 1

m
, where m is the number of total update steps, in order

to ensure normalized probabilities.

5.3.2 Classification by voting

Based on the probability distribution in equation 10, each vector vi votes individually for a
class assignment ci with respect to its location, length and heading:

ci = argmax
c∈C

P (c | xi, yi, li, αi) (12)

Let cki = I (ci = k) be the class indicator function, which returns 1 if ci = k and otherwise
0. Then, the final classification a can be decided based on the maximal sum of weighted
individual votes from each vector:

a = argmax
k∈C

N∑
i=1

cki · wi (13)

Note that wi increases according to the number of times the underlying feature has success-
fully been tracked by the feature tracker described in Section 5.1.

5.4 Generating odometry data

In order to determine the distance d traveled between two images I and J , we assume a
constant translational velocity vT of the robot 2. Given time stamp tj and ti of image I and
J , respectively, d can be calculated by:

d =


vT · (tj − ti) if class = forward

−vT · (tj − ti) if class = backward

0 otherwise

(14)

Finally, from the yaw angle θ of the IMU and the robot’s last pose (xold, yold, θold)
T we

calculate the new pose of the robot:

(xnew, ynew, θnew)T = (xold + d · cos(θ), yold + d · sin(θ), θ)T (15)

A more detailed description of this approach is found in (Dornhege and Kleiner, 2006).

6 RFID Technology-based SLAM

SLAM consists of a state estimation problem and a data association problem. The techniques
described so far solve the state estimation problem by continuously tracking the pose of
the robot. However, as commonly known, these methods suffer from the problem of error
accumulation, i.e. the quality of the pose estimate will decrease according to the length
of the traveled trajectory. This problem is typically solved by recognizing (associating)
environmental structures, such as features extracted from range scans and color images that

2Note that this value could also be automatically adjusted according to the vehicles current set-velocity.



have been observed on the trajectory before. However, particularly within the context of
disaster response, data association from range scans and color images can only limitedly be
applied. Fireman reported that even for them the recognition of previously visited places is
extremely hard, which is due to limited visibility caused by smoke, fire, or dust, and also
due to the lacking of recognizable features, such as corridors and doorways.

RFID tags have a world-wide unique encoded number and thus provide an elegant way to
mark places with bounded uncertainty in perception. The basic idea of the proposed ap-
proach is to actively distribute these tags in the environment, i.e. to place them automatically
on the ground, and to measure the relative distances between them. Figure 6 (a) depicts
the hand-crafted RFID deploy device and Figure 6 (b) shows the utilized RFIDs. From
the correspondences of recognized RFID tags and the measured distances from the robot’s
trajectory, a globally consistent map is calculated according to the method introduced by
Lu and Milios (Lu and Milios, 1997). This method can be illustrated by considering the
analogy to a spring-mass system (see Figure 6(c)). Consider the locations of RFIDs as
masses and the measured distances between them as springs, whereas the uncertainty of a
measurement corresponds to the hardness of the spring. Then, finding a globally consistent
map is equivalent to finding an arrangement of the masses that requires minimal energy.

(a)

(b)
(c)

Figure 6. RFID technology-based SLAM: (a) The RFID tag deploy device. (b) The utilized RFID tags. (c) The
spring-mass analogy to the generated RFID graph. Vertices represent RFIDs (masses) and edges between them
represent measured distances with covariances (springs).

The proposed method successively builds a graph G = (V,E) consisting of vertices V and
edges E, where each vertex represents an RFID tag, and each edge (Vi, Vj) ∈ E repre-

sents a measurement d̂ij of the relative displacement (∆x,∆y,∆θ)T with covariance matrix
Σ(∆x,∆y,∆θ) between the two RFID tags associated with the two vertices Vi and Vj, respec-
tively. The relative displacement between two tags is estimated by a Kalman filter, which
integrates pose corrections from the robot’s wheel odometry, an Inertia Measurement Unit
(IMU), and laser-based scan-matching as described in Section 4. If the robot passes a tag,

the Kalman Filter is reset in order to estimate the relative distance d̂ij to the subsequent
tag on the robot’s trajectory.

We denote the true pose vectors of n + 1 RFID nodes with x0, x1, . . . , xn, and the function



calculating the true distance between a pair of nodes (xi, xj) as measurement function dij.

The noisy measurement of the distance between two nodes (xi, xj) is denoted by d̂ij =
dij + ∆dij. We assume that the error ∆dij is normally distributed and thus can be modeled
by a Gaussian distribution with zero mean and covariance matrix Σij. Our goal is to find

the true locations of the xij given the set of measurements d̂ij and covariance matrices Σij.
This can be achieved with the maximum likelihood concept by minimizing the following
Mahalanobis-distance:

x = arg min
x

∑
i,j

(dij − d̂ij)
T Σ−1

ij (dij − d̂ij), (16)

where x denotes the concatenation of poses x0, x1, . . . , xn. Moreover, we consider the graph
as fully connected, and if there does not exist a measurement between two nodes, the inverse
covariance matrix Σ−1

ij is set to zero. Note if the robot’s pose is modeled without orientation
θ, e.g. because measurements from the IMU are sufficiently accurate, the optimization
problem can be solved linearly by inserting dij = xi − xj in Equation 16:

x = arg min
x

∑
i,j

(xi − xj − d̂ij)
T Σ−1

ij (xi − xj − d̂ij). (17)

Since measurements are taken relatively, we assume without loss of generality that x0 = 0
and x1, · · · , xn are relative to x0. In order to solve the minimization problem analytically,
Equation 17 can be rewritten in matrix form:

x = arg min
x

(d̂− hx)TΣ−1(d̂− hx), (18)

where hx denotes the measurement function in matrix form with h as an index function
whose elements are {1,−1, 0} and x as the concatenation of pose vectors. Furthermore, d̂

denotes the concatenation of observations d̂ij, and Σ−1 denotes the inverse covariance matrix

of d̂ij, consisting of the inverse sub-matrices Σij. Finally, the minimization problem can be
solved by:

x = (hTΣ−1h)−1hTΣ−1d̂ . (19)

and covariance of x can be calculated by:

cx = (hTΣ−1h)−1 (20)

Equation 19 can be solved in O (n3) if the covariances Σij are invertible. In practice, we
assume that measurements are independent from each other, consequently the Σij are given
as diagonal matrices. Moreover, since many nodes in the graph are unconnected, most Σ−1

ij

are set to zero. Therefore, Σ is a sparse matrix and can in general be inverted efficiently.
In order to utilize Equation 19 for the correction of the orientation angle θ, measurement
equation dij has to be linearized by a Taylor expansion (Lu and Milios, 1997). Since the
linearization leads to errors, the procedure has to be applied iteratively. We noticed during
our practical experiments that five to six iterations are sufficient.

In case the robot detects the same RFID tag consecutively, it is necessary to account for
the spacial expansion of the utilized RFID antenna. We use an antenna with an expansion
of approximately 20 × 3cm, mounted parallel to the ground. RFID tags beneath the robot
within this expansion are successfully detected. Unfortunately, it is not possible to tell the
exact position of the detection within this range. However, in the average case, RFIDs are



detected within the antenna’s center. Therefore, we model the distance between identical
tags by d̂ii = (0, 0,∆θ) and covariance matrix ΣAntenna, which reflects the shape of the
antenna and the orientation of the robot, i.e. it has a low uncertainty into the robot’s
direction, and a high uncertainty orthogonal to it. See (Kleiner et al., 2006) for a more
detailed description of this approach.

7 Building Elevation Maps in real-time

In this section we describe a Kalman filter-based approach for building elevation maps by
integrating range measurements from a LRF tilted downwards, whereas the map is incre-
mentally built in real-time, e.g. while the mobile robot explores an uneven surface. The
necessity of computing elevation maps in real time is to enable the robot to plan its trajec-
tory continuously on the incrementally constructed map during execution.

An elevation map is represented by a two-dimensional array storing for each global location
(xg, yg) a height value h with variance σ2

h. In order to determine the height for each location,
endpoints from the LRF readings are transformed from robot-relative distance measurements
to global locations, with respect to the robot’s global pose, and the pitch (tilt) angle of the
LRF (see Figure 7). This section is structured as follows. In Section 7.1 we describe the
update of single cell values relative to the location of the robot, in Section 7.2 we show the
filtering of the map with a convolution kernel and in Section 7.3 we describe an algorithm
for the estimation of the robot’s 3D pose from dead reckoning and map observations.

Figure 7. Transforming range measurements to height values.

7.1 Single cell update from sensor readings

Our goal is to determine the height estimate for a single cell of the elevation map with a
Kalman filter (Maybeck, 1979), given all height observations of this cell in the past. We
model height observations zt by a Gaussian distribution N

(
zt, σ

2
zt

)
, as well as the current

estimateN
(
ĥ (t) , σ2

ĥ(t)

)
of each height value. Note that the height of cells cannot be observed

directly, and thus has to be computed from the measured distance d and LRF pitch angle
α. Measurements from the LRF are mainly noisy due to two error sources. First, the
returned distance depends on the reflection property of the material, ranging from very
good reflections, e.g. white sheet of paper, to nearly no reflections, e.g. black sheet of paper.
Second, in our specific setting, the robot acquires scans while navigating on rough terrain.
This will lead to strong vibrations on the LRF, causing an oscillation of the laser around



the servo-controlled pitch angle. Consequently, we represent measurements from the LRF
by two normal distributions, one for the measured distance N(µd, σd), and one for the pitch
angle N(µα, σα).

The measurements from the LRF are transformed to robot-relative locations (xr, yr). First,
we compute the relative distance dx and the height z of each measurement according to the
following equation (see Figure 7):(

dx

z

)
= Fdα

(
d
α

)
=

(
d cosα

hR − d sinα

)
, (21)

where hR denotes the height of the LRF mounted on the robot. Second, from distance dx

and the horizontal angle β of the laser beam, the relative cell location (xr, yr) of each cell
can be calculated by:

xr = dx cos β (22)

yr = dx sin β (23)

Equation 21 can be utilized for computing the normal distributed distance N(µdx , σdx), and
height N(µz, σz), respectively. However, since this transformation is non-linear, Fdα has to
be linearized by a Taylor expansion at µdx , µz:(

µdx

µz

)
= Fdα

(
d
α

)
(24)

Σdxz = ∇FdαΣdα∇F T
dα (25)

with ∇Fdα =

(
cosα −d sinα
− sinα −d cosα

)
(26)

and Σdα =

(
σ2

d 0
0 σ2

α

)
(27)

Then, the height estimate ĥ can be updated from observation zt, taken at time t, with the
following Kalman filter:

ĥ (t) =
1

σ2
zt

+ σ2
ĥ(t−1)

(
σ2

zt
ĥ (t− 1) + σ2

ĥ(t−1)
zt

)
(28)

σ2
ĥ(t)

=
1

1
σ2

ĥ(t−1)

+ 1
σ2

zt

, (29)

Equation 28 cannot be applied if the tilted LRF scans vertical structures since they lead
to different height measurements for the same map location. For example, close to a wall
the robot measures the upper part, far away from the wall the robot measures the lower
part. We restrict the application of the Kalman Filter by the Mahalanobis distance. If the
Mahalanobis distance between the estimate and the new observation is below a threshold c,
the observation is considered to be within the same height. We use c = 1, which has the
effect that all observations with a distance to the estimate that is below the variance σ2

ĥ
, are

merged. Furthermore, we are mainly interested in the maximum height of a cell, since this is
exactly what elevation maps represent. These constraints lead to the following update rules



for cell height values:

ĥ (t) =


zt if zt > ĥ (t) ∧ dM

(
zt, ĥ (t)

)
> c

ĥ (t− 1) if zt < ĥ (t) ∧ dM

(
zt, ĥ (t)

)
> c

1
σ2

zt
+σ2

ĥ(t−1)

(
σ2

zt
ĥ (t− 1) + σ2

ĥ(t−1)
zt

)
else,

(30)

and variance σ2
ĥ(t)

with:

σ2
ĥ(t)

=


σ2

zt
if zt > ĥ (t) ∧ dM

(
zt, ĥ (t)

)
> c

σ2
ĥ(t−1)

if zt < ĥ (t) ∧ dM

(
zt, ĥ (t)

)
> c

1
1

σ2
ĥ(t−1)

+ 1

σ2
zt

else,

(31)

where dM denotes the Mahalanobis distance, defined by:

dM

(
zt, ĥ(t)

)
=

√√√√√(
zt − ĥ(t)

)
σ2

ĥ(t)

2

. (32)

The cell update introduced so far assumes perfect information on the global pose of the robot.
However, since we integrate measurements from the robot while moving in the environment in
real-time, we have to account for positioning errors from pose tracking that do accumulate
over time 3. We assume that the positioning error linearly grows with the accumulated
distance and angle traveled. Hence, observations taken in the past lose significance with
the distance the robot traveled after they were made. This can be reflected in the Kalman
update by increasing the uncertainty of former height estimates according to the accumulated
distance and angle:

σ2
ĥ(t)

= σ2
k̂(t)

+ σ2
dd(t− k) + σ2

αα(t− k), (33)

where t denotes the current time, k denotes the time of the last height measurement at the
same location, d(t− k) and α(t− k) denotes the traveled distance and angle within the time
interval t − k, and σ2

d, σ
2
α are variances that have to be determined experimentally. Since

it would be computational expensive to update the variances of all grid cells each time the
robot moves, updates according to Equation 33 are only carried out on variances before
they are utilized for a Kalman update with a new observation. The traveled distances can
efficiently be generated by maintaining the integral functions Id(t) and Iα(t) that provided
the accumulated distance and angle for each discrete time step t , respectively. Then, for
example, d(k−t) can be calculated by Id(k)−Id(t). The integrals are represented by a table,
indexed by time t with a fixed discretization, e.g. ∆t = 1s.

7.2 Map filtering with a convolution kernel

The limited resolution of the LRF occasionally leads to missing data in the elevation map, e.g.
conspicuous by surfaces holes. Furthermore, the effect of “mixed pixels”, which frequently

3Note that global localization errors in the map can also be reduced by data association, i.e. by re-computing the
elevation map based on a corrected trajectory, which, however, can usually not be applied in real-time.



happens if the laser beam hits edges of objects, whereas the returned distance measure is
a mixture of the distance to the object and the distance to the background , might lead
to phantom peaks within the elevation map (Ye and Borenstein, 2003). Therefore, the
successively integrated elevation map has to be filtered.

In computer vision, filtering with a convolution kernel is implemented by the convolution of
an input image with a convolution kernel in the spatial domain, i.e. each pixel in the filtered
image is replaced by the weighted sum of the pixels in the filter window. The effect is that
noise is suppressed and the edges in the image are blurred at the same time. We apply the
same technique on the elevation map in order to reduce the errors described above. Hence,
we define a convolution kernel of the size of 3× 3 cells, whereas each value is weighted by its
certainty and distance to the center of the kernel. Let h(x + i, y + j) denote a height value
relative to the kernel center at map location (x, y), with i, j ∈ {−1, 0, 1}. Then, the weight
for each value is calculated as follows:

wi,j =


1

σ2
h(x+i,y+j)

if |i|+ |j| = 0
1

2σ2
h(x+i,y+j)

if |i|+ |j| = 1
1

4σ2
h(x+i,y+j)

if |i|+ |j| = 2

(34)

Consequently, the filtered elevation map hf can be calculated by:

hf (x, y) =
1

C

∑
i,j

h(x+ i, y + j)wi,j, (35)

whereas C =
∑
wi,j.

7.3 3D Pose estimation

So far we have shown an incremental procedure for updating elevation map cells relative to
the coordinate frame of the robot. In order to update map cells globally, the full 3D pose
of the robot has to be considered, which is described by the vector l = (x, y, h, θ, φ, ψ)T ,
where θ denotes the yaw angle, φ denotes the pitch angle, and ψ denotes the roll angle,
respectively. We assume that IMU measurements of the three orientation angles are given
with known variance. The position (x, y, h) is estimated by dead reckoning, which is based
on the pitch angle and traveled distance measured by scan matching. However, since scan
matching estimates the relative displacement δ on the 3D surface, displacement δ has to be
projected onto the plane, as depicted by Figure 8. Given the input u = (θ, φ, δ)T , represented

by the Gaussian distribution N(µu, σu), the projected position l = (xp, yp, hp)T , represented
by the Gaussian distribution N (µl,Σl), can be calculated as follows:

xp
t

yp
t

hp
t

 = Flu


xp

t−1

yp
t−1

ht−1

φ
θ
δ

 =

xp
t−1 + δ cos θ cosφ
yp

t−1 + δ sin θ cosφ
hp

t−1 + δ sinφ

 (36)

Σlu = ∇FluΣlu∇F T
lu (37)

Σlu = ∇FlΣl∇F T
l +∇FuΣu∇F T

u , (38)



Figure 8. Dead reckoning of the projected Cartesian position (xp, yp, hp) from yaw angle θ, pitch angle φ, and
traveled distance δ.

where

∇Fl =

1 0 0
0 1 0
0 0 1

 , (39)

∇Fu =

−δ cos θ sinφ −δ sin θ cosφ cos θ cosφ
−δ sin θ sinφ δ cos θ cosφ sin θ cosφ

δ cosφ 0 sinφ

 , (40)

Σu =

σ2
φ 0 0
0 σ2

θ 0
0 0 σ2

δ

 , (41)

Σl =

 σ2
xp σ2

xpyp σ2
xphp

σ2
xpyp σ2

yp σ2
yphp

σ2
xphp σ2

yphp σ2
hp

 (42)

Equation 36 allows to predict the current height of the robot. However, due to the accumu-
lation of errors, the accuracy of the height estimate will continuously decrease. Therefore, it
is necessary to update this estimate from direct observation. For this purpose, we utilize the

height estimate
(
ĥ (t) , σ2

ĥ(t)

)
at the robot’s position from Equation 30 and 31, respectively.

Then, the new estimate can be calculated by inserting
(
ĥ (t) , σ2

ĥ(t)

)
and the predicted height

estimate (hp, σ2
hp) into the Kalman filter shown by Equation 28.

The global location (xg, yg) of a measurement, i.e. the elevation map cell for which the height

estimate ĥ (t) will be updated, can be calculated straightforward by:

xg = xr + xp (43)

yg = xr + xp (44)

8 Experimental results

In this section we provide results from both simulated and real-robot experiments. All real-
robot experiments have been carried out on the robot platforms described in Section 3 within



testing arenas that are equal or similar to those proposed by NIST. In Sections 8.1 and 8.2
results from wheeled pose tracking and visual odometry-based pose tracking, respectively, are
shown. In Section 8.3 we provide results from a RFID technology-based SLAM experiment
in a cellar environment, and in Section 8.4 results from elevation mapping during the Rescue
Robotics Camp 2006 in Rome, are presented.

8.1 Results from wheel odometry-based pose tracking

(a) (b)

Figure 9. Zerg robot during the final of the Best in Class autonomy competition at RoboCupRescue 2005 in Osaka:
(a) slipping on newspapers and (b) the autonomously generated map. Red crosses mark locations of victims which
have been found by the robot.

Figure 9 depicts the Zerg robot during the final of the “Best in Class Autonomy” competition,
held in the NIST arena for Urban Search and Rescue (USAR) (Jacoff et al., 2001) during
RoboCup 2005. In that scenario robots had to explore an unknown area within 20 minutes
autonomously, to detect all victims, and finally to deliver a map sufficient for human teams
to locate and rescue the victims. Conditions for exploration and SLAM were intentionally
made difficult. For example, the occurrence of wheel spin was likely due to newspapers and
cardboards covering the ground, which was partially made of steel and concrete. Stone bricks
outside the robot’s FOV caused the robot to get stuck, and walls made of glass caused the
laser range finder to frequently return far readings. As shown in Figure 9, the system was
able to cope with these difficulties and also to build a map reliably, augmented with victim
locations detected by the robot. Finally, the system won the autonomy competition in 2005.

8.2 Results from visual odometry-based pose tracking

The approach of visual odometry has been extensively tested on both the tracked robot
Lurker, operating on 3D obstacles, and the wheeled robot Zerg, operating on flat surfaces.
The 2D setting has the advantage that results from the visual odometry system can directly
be compared with ground truth data. We determine position ground truth from shaft encoder
and IMU-based dead reckoning, as well as LRF-based scan matching. Ground truth on 3D
obstacles was measured manually.

Table 1 gives an overview on the measured mean and standard deviation of the relative



distance error from visual odometry and wheeled odometry on both robot platforms. Since
the method has been mainly developed for tracked vehicles, the Zerg kinematics has been
modified in order to be similar to that of the evaluated tracked vehicle, i.e. to allow only
a subset of possible velocities, which are in case of the Lurker robot: stop, forward, and
backward. The results clearly show that on the Zerg platform the visual odometry reaches

Run Trav. dist. [m] Vis. odo. [cm/m] Wh. odo. [cm/m]

lab 1 (2D) 91.53 7.82± 1.84 6.17± 1.54
lab 2 (2D) 73.72 8.25± 2.46 7.59± 1.94
cellar (2D) 98.40 10.72± 4.68 11.77± 4.42
ramp (3D) 6.36 13.28± 9.2 -

palette (3D) 2.37 22.08± 8.87 -

Table 1. Relative error of the visual odometry and wheeled odometry compared to ground truth data (either manually
measured for 3D runs or estimated from odometry and scan matching for 2D runs).

an accuracy comparable to the conventional odometry and thus could possibly replace it. In
the cellar environment, the visual odometry turned out to be even superior, which can be
explained by the higher degree of wheel slippage that we noticed within this environment.
Figures 10 (a) and (b) depict the accumulation of the distance error of both the visual
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Figure 10. The accumulating distance error of the visual odometry method compared to ground truth data: (a)
measured in the robotic lab, a 5m× 5m squared area, (b) measured in a cellar of 15m× 50m. Results from driving
forward and backward on a ramp (c), and climbing over a wooden palette (d). The blue curve indicates the manually
measured ground truth, and the green curve indicates the distance estimated by visual odometry, respectively.



odometry and wheeled odometry, within the lab and cellar environment, respectively. The
real advantage of the visual odometry, however, reveals if the robot operates on 3D obstacles.
The results in Table 1 indicate that the introduced method, when applied while operating
on 3D obstacles, provides usable measurements of the robot’s motion. Figures 10 (c) and
(d) depict the accumulation of the distance error during locomotion over 3D obstacles. The
results indicate that, in case of tracked robots, the tile coding classification and voting
applied to a simple kinematic model lead to sufficiently accurate results. From log files it
has been determined that during the cellar run 87% (96%), the ramp run 81% (93%), and
the palette run 94% (99%) of the classifications detected the correct motion of the robot,
whereas numbers in brackets denote the voting-based improvement. While processing an
image resolution of 320 × 240 on a IntelPentiumM, 1.20GHz, we measured an average
processing time of 24.08±0.64ms for the complete processing without KLT feature tracking.
This leads, together with the feature tracker, to a maximal frame rate of 5.34± 1.17Hz. If
processing an image resolution of 160 × 120, the complete processing without KLT feature
tracking needs 8.68 ± 0.3ms and allows a total frame rate of 17.27 ± 1.81Hz. Experiments
proposed in this paper were carried out with the higher resolution. However, experiments
with the lower resolution showed that this results lead to a comparable accuracy.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11. Lurker robot performing vision-based pose tracking while overcoming 3D obstacles: (a,e) the 3D obstacles,
(b,f) the perspectives from the front camera, (c,g) the features and classified directions generated from a side camera,
and (d,h) the grid maps generated at these locations, respectively.

Finally, we conducted a SLAM experiment on the Lurker robot by utilizing the visual odom-
etry together with the scan matching algorithm. In this experiment the LRF sensor was
automatically controlled by the measured pitch orientation of the robot in order to stay
continuously within a horizontal position. This allows the LRF to perceive the environment
independently from the robot’s orientation, i.e. to return the same laser scan at the same
location also if the orientation differers. The result is shown by the image series in Figure 11
(a-h). In (a) and (e) an overview on both obstacles is given, and in (b) and (f) the according
perspective from the robot. Note that in (b) and (f) also the automatically adjustment of the
LRF to the robot’s pitch angle can be seen. Figure 11 (c,g) depicts the generated features,
and Figure 11 (d,h) shows the generated maps, at the corresponding positions, respectively.



As shown by the “black wall” in front of the robot (Figure 11 (d)), there are situations
in which the 2D LRF cannot provide sufficient evidence on the robot’s motion. In this
particular case measurements of the laser are nearly independent of the robot’s location on
the ramp, whereas the visual odometry (see Figure 11) (c) provides clear motion evidence.
Note that the map representation shown in (d) and (h) does not suffice for the particular
task since it does not distinguish between measurements of different height values at same
location, i.e. parts of the map (d) have been deleted in the map (h). This problem can be
solved by utilizing elevation maps, as shown in Section 7.

8.3 Results from RFID technology-based SLAM

The proposed method for RFID-based SLAM has extensively be tested with data generated
by a simulator (Kleiner and Buchheim, 2003) as well as on the Zerg robot platform. The
simulated robot explored three different building maps, a small map, normal map, and large
map of the sizes 263m2, 589m2 1240m2, respectively, while automatically distributing RFID
tags in the environment. Figures 12 (a-c) show the averaged results from 100 executions
of RFID-based SLAM on the three maps at five different levels of odometry noise. We
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Figure 12. (a) - (c) Result from applying RFID-based SLAM at different levels of odometry noise on (a) the small
map (263m2), (b) the normal map (589m2), and (c) the large map (1240m2).

measured a computation time of 0.42 seconds on the small map, 2.19 seconds for the normal
map, and 13.87 seconds for the large map, with a Pentium4 2.4GHz. The small map after
and before the correction is shown in Figure 13 (b,d). For this result, the robot distributed
approximately 50 RFID tags.

In another experiment we collected data from a real robot autonomously exploring in a cellar
for 20 minutes while detecting RFID tags on the ground. The robot continuously tracked
its pose as described in Section 4. As depicted by Figure 13 (a,c), the non-linear method
successfully corrected the angular error. The correction was based on approximately 20
RFID tags.

8.4 Results from elevation mapping

Elevation mapping has been evaluated on a Lurker robot that was driving through a test
arena consisting of rolls and ramps. The arena has been installed by NIST during the Rescue
Robotics Camp 2006 in Rome. During all experiments the robot was equipped with a IMU



(a) (b)

(c) (d)

Figure 13. (a,c) Result from RFID-based SLAM on a robot driving in a cellar: (a) the noisy map and (c) the
corrected map. (b,d) Result from applying the non-linear mapper to data generated in the simulation. (a) The small
map with odometry noise and (b) the corrected map.

sensor, a side camera for visual odometry, and two LRFs, one for scan matching, and one
for elevation mapping. The latter sensor has been tilted downwards by 35◦.

Figure 14 depicts the Kalman filter-based pose estimation of the robot, as described in
Section 7.3. For this experiment, conditions have been made intentionally harder. Map
smoothing has been turned off, which had the effect that missing data, due to a limited
resolution of 2D scans, lead to significant holes on the surface of the map. Furthermore,
we added a constant error of −2◦ to pitch angle measurements of the IMU. As shown in
Figure 14, the Kalman filter was nevertheless able to deal with these errors, and finally
produced a trajectory close to ground truth.

(a) (b)

Figure 14. Evaluation of the efficiency of the Kalman filter for estimating the robot’s height. (a) Height values
predicted from the IMU (red line) are merged with height values taken from the generated map (blue line). Errors
from inaccuracies in the map, as well as a simulated continuously drift error of the IMU sensor are successfully
reduced (green line). (b) Merged trajectory compared to ground truth (grey ramp).

Figure 15 and 16 show the final result from applying the proposed elevation mapper during



(a) (b) (c)

Figure 15. Elevation mapping during the Rescue Robotics Camp 2006 in Rome: (a) The arena build-up by NIST,
(b) The corresponding digital elevation model (DEM), build by the lurker robot, going from white (low altitude)
to black (hight altitude). (c) The variances of each height value, going from pink (hight variance) to yellow (low
variance).

Figure 16. Elevation mapping during the Rescue Robotics Camp 2006 in Rome: 3D perspective.

the Rescue Robotics camp. Figure 15 (a) depicts an overview on the arena, and Figure 15
(b) shows the calculated height values, whereas the height of each cell is indicated by a gray
value, as darker the cell, as bigger the elevation. Figure 15 (c) depicts the variance of each
height cell, going from pink (hight variance) to yellow (low variance), whereas the current
position of the robot is indicated by a blue circle in the lower left corner. As more far away
cell updates on the robot’s trajectory, as lower their variance (see Section 7.1). Figure 16
shows a 3D visualization of the generated elevation map. Structures, such as the long ramp
at the end of the robot’s trajectory, and the stairs, can clearly be identified. We measured on
a AMD64X23800+ a total integration time (without map smoothing) of 1.88±0.47ms for a
scan measurement with 683 beams, including 0.09±0.01ms for the 3D pose estimation. Map
smoothing has generally the time complexity of O (N2M), where N is the number of rows
and column of the map and M the size of the kernel. We measured on the same architecture
34.79 ± 14.84ms for smoothing a map with N = 300 and M = 3. However, this can be
significantly be improved during runtime by only smoothing recently modified map cells and



their immediate neighbors within distance M .

(a) (b)

Figure 17. Comparing elevation mapping based on scan matching only (a) and scan matching combined with visual
odometry (b). Scan matching without visual odometry support does not correctly reflect the true length of the ramp,
insufficient motion evidence causes the map to be partially compressed.

The last experiment demonstrates the influence of visual odometry on elevation mapping.
Figure 17 depicts two elevation maps of the same ramp, on the one hand, with support of
visual odometry, and on the other hand, without. Mapping based on scan matching only,
yields a compressed map since in this environment 2D laser scans do not provide sufficient
information on the motion of the robot, whereas the map generated based on visual odometry
reveals the true size of the ramp.

9 Conclusion

We proposed solutions to the problems of vision-based pose tracking on tracked vehicles,
the building of globally consistent maps based on a network of RFID tags, and the building
of elevation maps from readings of a tilted Laser Range Finder (LRF). The experimental
results showed that these methods lead under modest computational requirements to good
results within the testing arenas proposed by NIST for Urban Search and Rescue. Although
challenging for methods currently developed in robotics, the NIST benchmark does not yet
capture the whole magnitude of problems that robots encounter after a real disaster. Here
the plan is to continuously increase the difficulty year by year in order to promote stepwise
research in the field of Rescue Robotics. Currently, methods from robotics for Urban Search
and Rescue are just in the beginning, and up to now, robots that have been deployed after
a real disaster were mainly teleoperated by human beings.

We showed that RFID-based SLAM allows the fast generation of maps without explicit need
for communication. This has the advantage that, particularly in the context of disaster
response, this method can also be applied if communication is disturbed by building debris
and radiation. The practical advantage is that human rescue teams can easily be integrated
into the search. They can receive data from the RFIDs with a PDA and thus localize them-
selves within the map and also leave information, related to the search or to victims, behind.
Furthermore, they can easily reach victims, which have been found by the robots, by fol-
lowing plans consisting of RFID tags and directions. The idea of labeling locations with
information that is important to the rescue task, has already be applied in practice. During
the disaster relief in New Orleans in 2005, rescue task forces marked buildings with informa-



tion concerning, for example, hazardous materials or victims inside the buildings. A more
detailed description can be found in a document published by the U.S Dep. of Homeland
Security (of Homeland Security, 2003). The autonomous RFID-based marking of locations
is a straight forward extension of this concept. In future work we will evaluate the usabil-
ity of our method for localizing first responders equipped with a Personal Dead Reckoning
Module (PDRM), which consists of an IMU sensor and a acceleration measurement based
step counter.

We believe that elevation maps provide the right trade-off between computational complexity
and expressiveness. We have shown that they can be reliably generated in real-time while the
robot is continuously in motion. In future work we will deal with the classification of map
cells according to whether they are drivable, climbable, or impassable (obstacle negotiation).
Furthermore, we will close the loop by adding a planner component, allowing the robot to
autonomously explore the environment by choosing actions according to the classified terrain
complexity.
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