
Autonomous Agents and Multi-Agent Systems manuscript No.
(will be inserted by the editor)

Hierarchical Visibility for Guaranteed Search in
Large-Scale Outdoor Terrain

A. Kleiner · A. Kolling · M. Lewis · K.
Sycara

Received: date / Accepted: date

Abstract Searching for moving targets in large environments is a challenging
task that is relevant in several problem domains, such as capturing an invader in
a camp, guarding security facilities, and searching for victims in large-scale search
and rescue scenarios. The guaranteed search problem is to coordinate the search of
a team of agents to guarantee the discovery of all targets. In this paper we present
a self-contained solution to this problem in 2.5D real-world domains represented by
digital elevation models (DEMs). We introduce hierarchical sampling on DEMs for
selecting heuristically the close to minimal set of locations from which the entire
surface of the DEM can be guarded. Locations are utilized to form a search graph
on which search strategies for mobile agents are computed. For these strategies
schedules are derived which include agent paths that are directly executable in
the terrain. Presented experimental results demonstrate the performance of the
method. The practical feasibility of our approach has been validated during a field
experiment at the Gascola robot training site where teams of humans equipped
with iPads successfully searched for adversarial and omniscient evaders. The field
demonstration is the largest-scale implementation of a guaranteed search algorithm
to date.

A. Kleiner
Computer Science Dep., Univ. of Freiburg, Georges-Koehler-Allee 52, 79110 Freiburg, Germany
E-mail: kleiner@informatik.uni-freiburg.de

A. Kolling
School of Inf. Sciences, Univ. of Pittsburgh, 135 N. Bellefield Ave., Pittsburgh, PA 15260
E-mail: andreas.kolling@gmail.com

M. Lewis
School of Inf. Sciences, Univ. of Pittsburgh, 135 N. Bellefield Ave., Pittsburgh, PA 15260
E-mail: ml@sis.pitt.edu

K. Sycara
Robotics Institute, Carnegie Mellon Univ., 500 Forbes Ave., Pittsburgh, PA 15213
E-mail: katia@cs.cmu.edu

2 A. Kleiner et al.

1 Introduction

Searching for moving targets in large environments is a challenging task that is
relevant in several problem domains, such as capturing an invader in a camp,
guarding security facilities, and searching for victims in large-scale search and res-
cue scenarios. These applications require the coordination of a team of searchers
to guarantee the detection of all targets, a problem usually referred to as guar-
anteed search. Guaranteed search makes two worst-case assumptions: first, the
motion model of targets is unknown and hence targets are assumed to travel with
unbounded speed. Second, targets are acting adversarial and are omniscient. Al-
though these assumptions are very restrictive and typically used in pursuit-evasion
scenarios, they are also essential in cooperative scenarios where either benevolent
agents act accidentally adversarial or little is known about the targets themselves.
Whenever the target is assumed to be omniscient and moving at unbounded speed
most approaches make use of the concept of contamination. Contamination simply
refers to the possibility of an unseen target being present at a location. The goal of
the guaranteed search problem hence is to coordinate agents to clear environments
from all contamination while using as few searchers as possible.

Demonstrations and applications of guaranteed search for real world scenarios
face a number of challenges. For one much of the prior work on guaranteed search
does not extend to large agent teams, and is limited to two-dimensional envi-
ronments [39], or certain types of idealized sensors such as unlimited range target
detection [18]. Overall, very little work has been done so far for 2.5D or 3D guaran-
teed search problems [33]. Graph-based approaches for guaranteed search with an
emphasis on robotics [19,29,31] promise better scalability, but face another prob-
lem. Namely, the construction of an appropriate graph representation from a map,
often given as a grid map computed from sensor data. Strategies computed on this
graph then have to be translated back into assigned paths for agents with proper
timing in their execution. These difficulties have so far prevented comprehensive
applications of guaranteed search in the real world.

In this paper we present a comprehensive and novel computational solution for
finding guaranteed search schedules in 2.5D real-world environments represented
by elevation maps. This is carried out by extracting a search graph from the eleva-
tion map, computing a strategy requiring the fewest agents on this graph, and then
computing for each step of the strategy an assignment of agents to vertices of the
search graph to reduce travel time. Figure 1 gives an overview of the main parts of
the system. Search graphs are extracted by a hierarchical sampling method that
heuristically selects strategic locations with large detection sets. These detection
sets are areas around a location on which targets are detectable by an agent at the
respective location. The goal is to approximate the close to minimal set of loca-
tions from which the entire area of the DEM (digital elevation model) is covered.
We compute overlaps between these detection sets in order to determine which
regions can mutually guard their boundaries. The set of selected locations and
edges extracted according to their overlaps, form the search graph on which clear-
ing strategies are computed for the agent teams. For that purpose we introduce a
variation of the Guaranteed Search with Spanning Trees (GSST) algorithm [19].
The strategy is executed by selecting for each agent at each time step an appro-
priate strategic location. Within the constraints of the clearing strategy we assign

Hierarchical Visibility for Guaranteed Search in Large-Scale Outdoor Terrain 3

Elevation Map Map Classification Detection Set
Computation

Graph Construction

vy

v5v4

vx

v1 v2 v3

λ((vy,v1))

Strategy Computation

τ2

τ4

τ3

a1
a2
a3
a4

τ1
0

0
2

2 τ2

τ4

τ3

τ1

0

1

0

t0 t2t1

Task AllocationPath Planning & Distributed
Real-World Execution

Fig. 1 Overview on the main parts of the system: From the classified elevation map a search
graph is constructed from which a graph strategy and task assignments are computed. The
task assignment assigns at each time step an area to be observed to each agent. Agents reach
their target areas by path planning on the elevation map.

agents to locations in order to reduce the time needed to clear the environment.
Locations are reached by path planning on the elevation map.

The use of strategic locations does not impose constraints nor does it require
direct access to control inputs. This allows human searchers as well as robots to
participate in the search. As shown by our experimental results, this enables the
direct application of the system in the field. The practical feasibility of our ap-
proach has been validated during a field experiment at the Gascola robot training
site, where teams of humans equipped with iPads successfully searched for adver-
sarial and omniscient evaders. The Gascola robot training site is a wilderness area
belonging to the Carnegie Mellon University in Pittsburgh and is mainly used for
outdoor robotic experiments.

The remainder of this paper is organized as follows. In Section 2 the problem is
stated formally. The approach presented in this paper is described in Sections 3, 4,
and 5. Section 3 describes the generation of search graphs from elevation maps,
Section 4 describes the algorithm for finding guaranteed search strategies, and
Section 5 describes a method to assign agents at each step of the strategy to target
locations while minimizing execution time.. The system that has been designed for
evaluating our approach in real-world environments is presented in Section 6, and
results are given in Section 7. In Section 8 related work is discussed and we finally
conclude in Section 9.

2 Problem Description

We consider a 2.5D map represented by a height function h : H → R+. The domain
H is continuous and H ⊂ R2 which for all practical purpose can be approximated
by a 2D grid map that contains in each discrete grid cell the corresponding height

4 A. Kleiner et al.

value. We write E ⊂ H for the free space in which robots can move and assume that
it is connected, i.e. regardless of deployment, robots are always able to move to
any other feasible point in E . All points not in E are considered as non-traversable
obstacles. The problem is to move a number of robots equipped with a target de-
tection sensor through E to detect all targets that are potentially located therein.
Targets are assumed as omniscient, and to move at unbounded speeds on contin-
uous trajectories within E . Additionally, targets have a minimum height ht that
can influence their visibility.

alast

visible

detectable

sensor

h(p�) + ht

h(p�)

h(p) + hr

Fig. 2 An illustration how to compute detection sets for Algorithm 1.

Let D(p) ⊂ H, the detection set of a point p ∈ H, be the set of all points
in H on which a target is detectable by a robot located at p. In general, D(p)
depends on the sensor model, height of the sensor hr relative to h(p) and height
of targets ht. We consider a limited range three-dimensional and omni-directional
sensor. A target at p′ ∈ H is detectable by a robot at p if at least one point on the
line segment from {p′, h(p′)} to {p′, h(p′) + ht} embedded in R+ is visible from
{p, h(p) + hr} at distance sr (see Figure 2 for an illustration). Notice while H is
considered as discretized into grid cells, height values and thus the z-component
of the line segments are in R+.

Here ht can be understood as the minimum height of any target for which we
seek to guarantee a detection with the pursuit strategy. Notice that this is simply
straight line visibility for a 3D embedding of the elevation map. Yet, even with such
a simple detection model it is not guaranteed that D(p) is simply-connected nor
that it is connected. This applies even if the free space of the environment in which
robots and targets can move is simply-connected, and also when E = H. In this
sense, our pursuit-evasion problem on elevation maps already captures significant
complications that also arise in 3D pursuit-evasion.

The inclusion of target and sensor heights allows us to answer a variety of
questions relating to hr,ht. As ht increases, the size of detection sets D(p) increases
as well. With ht = 0 we simply have targets visible whenever the ground on which
they are located is visible. For practical applications this means that we can inform
the user about the specific number of robots needed for a search given the minimal
height of targets and searchers.

Hierarchical Visibility for Guaranteed Search in Large-Scale Outdoor Terrain 5

3 Search Graph Construction

In this section we describe the process of generating E by classifying elevation maps
into traversable terrain. We then describe our method for computing detection
sets D(p) for locations p ∈ E . Then, we introduce two methods for generating the
vertices V of search graph G = (V,E) from E by subsequently selecting locations
pi+1 and then incrementing i to i+ 1 until E \

⋃i
j=1D(pj) is the empty set. The

locations pi will each be identified with exactly one vertex vi ∈ V and we shall
use vi in the context of G and pi when referring to vi’s location in E . The two
introduced methods are a random sampling procedure, first presented in [1], and a
hierarchical method performing a depth-first search on multiple resolutions of the
original map. Finally, we introduce two approaches for computing edges E of G.
The first method considers edges between any two detection sets that overlap and
introduces the concept of a shady edge. The second method significantly reduces
the number of edges and only considers overlaps between detection sets that are
strictly necessary to avoid re-contamination.

3.1 Height Map Classification

Free space E , representing the area in which agents can freely move, is constructed
by an elevation map classification procedure. Elevation maps are widely available
on the Internet as digital elevation models (DEMs), e.g. from USGS [48], at a
resolution of up to 1 meter. Higher resolutions can be achieved by traversing the
terrain with a mobile robot [25].

We classify elevation maps into traversable and non-traversable terrain. The
classification is carried out according to the motion model of the robot since dif-
ferent robot platforms have different capabilities to traverse terrain. For example,
whereas wheeled platforms, such as the Pioneer AT, require even surfaces to nav-
igate, tracked platforms, such as the Telemax robot, are capable of negotiating
stairs and slopes up to 45◦. Humans are capable to negotiate steeper slopes, and
also stairs. These specific parameters are taken into account by the classifier de-
scribed in the following. Notice that during our experiments the motion model of
humans has continuously been used.

The procedure used for terrain classification is based on fuzzy features [13].
While simpler methods can also be used for classifying traversable terrain, such
as computing the terrain slope for each map cell according to local neighbors, the
framework presented in [13] has the advantage that it can easily be extended to
more complex terrain features such as stairs, which finally allows us to deal with
a wide range of motion models.

For each cell of the elevation map representative features are created that dis-
criminate different structure elements from the environment. We choose to use
fuzzified features, which are generated by functions that project parameters, as
for example, the height difference between cells, into the [0, 1] interval. In con-
trast to binary {0, 1} features, fuzzification facilitates the continuous projection of
parameters, as well as the modeling of uncertainties. Fuzzification is carried out
by combining the functions SUp(x, a, b) (Equation 1) and SDown(x, a, b) (Equa-

6 A. Kleiner et al.

tion 2), where a and b denote the desired range of the parameter.

SUp(x, a, b) =

0 if x < a
x−a
b−a if a ≤ x ≤ b
1 if x > b

(1)

SDown(x, a, b) = 1− SUp(x, a, b) (2)

For example, the features Flat Surface, and Ramp Angle are build from the param-
eters δhi, denoting the maximum height difference around a cell, and αi, denoting
the angle between the normal vector ni and the upwards vector (0, 1, 0)T , as shown
by Equation 3 and Equation 4, respectively.

δhi = max
j is neighbor to i

|hi − hj | (3)

αi = arccos
(

(0, 1, 0)T · ni

)
= arccos

(
niy

)
(4)

For example, for a tracked platform we define these features by: Flat Surface =
SDown(δhi, 0.0m, 0.8m), and Ramp Angle = SUp(αi, 10◦, 25◦)·SDown(αi, 25◦, 40◦).
The latter describes a trapezoid function in which, depending on the input angle,
either SUp or SDown returns the output value. Each time the elevation map
is updated, the classification procedure applies fuzzy rules on the latest height
estimates in order to classify them into regions, such as flat ground, and steep
wall.

Inference is carried out by the minimum and maximum operation, representing
the logical and and or operators, respectively, whereas negations are implemented
by 1−x, following the definition given in the work of Elkan [14]. After applying the
rule set to each parameter, the classification result is computed by defuzzification,
which is carried out by choosing the rule yielding the highest output value.

3.2 Detection Set Computation

In order to construct a graph G we need to be able to compute detection sets
for locations p ∈ E . The detection set for location p is computed by casting rays
radially from p in that all cells within the maximum range are visited, and to
determine for each ray which points in E are detectable as shown by Algorithm 1
(see Figure 2 for an illustration). The computation is carried out by generating
with the Bresenham algorithm [6] for each ray the set L of grid cells belonging
to the line segment that starts in p with length sr and direction dir. This set is
successively traversed with increasing distance from p. For each cell p′ ∈ E slopes
αtmin and αtmax connecting p with the maximum (map elevation plus target
height) of p′ and minimum (map elevation) of p′, are computed. Grid cells are
added to detection set D as long as these slopes are monotonic increasing.

Hierarchical Visibility for Guaranteed Search in Large-Scale Outdoor Terrain 7

Algorithm 1 Detection Set From(p, dir,D)

L ← set of grid cells on the line segment of length sr in direction dir from p ordered by
distance to p.
αlast ← −∞
for p′onL do

αtmax ← h(p′)+ht−h(p)−hr
‖p−p′‖ // Compute slope between p’ and p.

if αtmax ≥ αlast then
D ← D ∪ p′ // Add cell to detection only when slope monotonically increases.

end if

αtmin ← h(p′)−h(p)−hr
‖p−p′‖

if αtmin ≥ αlast then
αlast ← αtmin

end if
end for

Algorithm 2 Random V ertex Construction()

i← 0, V ← ∅
while E \

⋃i
j=1D(pj) 6= ∅ do

pick any pi+1 ∈ E \
⋃i

j=1D(pj)
V ← V ∪ pi+1, i← i+ 1

end while
return V

3.3 Random Vertex Sampling

In this section we present a first attempt to solve 2.5D pursuit-evasion by creating
a graph by random sampling that captures the visibility information in the envi-
ronment heuristically. The goal of this method is to sample a set of locations from
which the entire area can be observed. The graph is directly embedded into the
map and each vertex is associated to a location which can be used as a goal point
for planning the motion of the robots assigned to it.

We randomly select points from free space E , i.e., the space of all traversable
cells, as follows. First, pick p1 from E and then subsequently pick another pi+1,
i = 1, 2, . . . from E \

⋃i
j=1D(pi) and increment i until E \

⋃i
j=1D(pi) is the empty

set. This ensures that a target on any point in E can be detected from some point
pi. Finally, this procedure samples m points from E , where each point corresponds
to a vertex in set V of graph G. Algorithm 2 sketches this procedure in pseudo
code. Figure 3 shows a few examples of such vertices and their respective detection
sets. In principle, this construction does not differ significantly from basic attempts
to solve an art gallery problem for complete coverage or for 2D pursuit-evasion
scenarios in which graphs are constructed at random. The main difference are the
detection sets D(p) which we shall later use to construct edge set E to complete
the graph G = (V,E).

3.4 Hierarchical Vertex Sampling

The main advantage of random sampling is that one does not have to compute
the detection set for the majority of the points in E , but only for those that are

8 A. Kleiner et al.

(a) (b)

Fig. 3 (a) Height map representation where grey levels correspond to height values. (b) Sam-
pled vertices (small circles) with overlapping detection sets (each depicted by a different color).

selected as graph nodes. Randomly selected locations, however, are not necessarily
those from which larger parts of the map can be observed. They could be located in
valleys or between elevated walls, thus having occluded and limited sight. A better
approach rather selects locations with good visibility, for example, mountain peaks
or bell towers located on the map. The overall goal is to obtain the minimal set
of locations needed to cover the entire area with the corresponding detection sets.
This problem is generally known as the set cover problem and is one of Karp’s 21
problems shown to be NP-complete [23]. In our setting already the computation of
detection sets can be time consuming, especially, when many detection sets have to
be computed in order to identify the largest one. To tackle this problem we present
a greedy algorithm that selects the next best set by hierarchical sampling on low-
resolution copies of the original map. As shown by Algorithm 3, the hierarchical
vertex sampling is carried out by generating a set of L low-resolution copiesM =
(M1, ...,ML) of the elevation map, where Ml denotes the map copy at level l with
resolution rl = r0

1
2l , and r0 denotes the resolution of the original. For example,

M0 denotes the original map and ML denotes the copy at the highest level. Height
cells at lower resolutions are generated from higher resolutions by assigning the
maximum of the height values from the four corresponding cells on the lower level.
Figure 4 depicts the generation of two low resolution maps at level 1 and 2 from
the original map.

Likewise as shown for the random sampling procedure, the idea is to succes-
sively sample locations pi from E and to remove their detection set D(pi). But
instead of randomly sampling points we identify those with the largest detection
set by a depth-first search on the hierarchy of M. As shown by Algorithm 3, the
search starts at the highest level L, i.e. lowest resolution of the hierarchy, by com-
puting for each point pL its detection set D(pL). From these sets the location with
the maximum detection set pmax

L = argmaxpL
|D(pL)| is selected. After locating

the maximum set on the highest level L, the search continues on lower levels in a
depth-first search manner. This is carried out by computing the selection set Sl−1

consisting of location pmap
l−1 that corresponds to pmax

l from the higher level, plus
further locations found around this location within a small neighborhood radius ε.
In principle, it suffices to select ε in that all cells selected on l−1 are exactly cover-

Hierarchical Visibility for Guaranteed Search in Large-Scale Outdoor Terrain 9

Fig. 4 Hierarchical simplification of elevation maps for computing detection sets. Level 0
represents the original map storing at each grid cell a height value. At higher levels height
values are computed by combining the height values of the four grid cells of their predecessor
level by the max() operator.

Algorithm 3 Hierarchical V ertex Construction()

i← 0, V ← ∅
while E 6= ∅ do

compute low-resolution copies M = (M1, ...,ML)
for all pL ∈ML do

compute detection set D(pL)
end for
pmax
L ← argmaxpL∈ML

|D(pL)|
l← L
while l ≥ 0 do
pmap
l−1 ⇐ pmax

l // mapping from pmax
l to the next lower level cell

Sl−1 ← ε-neighborhood pmap
l−1

for all pl−1 ∈ Sl−1 do
compute detection set D(pl−1)

end for
pmax
l ← pmax

l−1 ← argmaxpl−1∈Sl−1
|D(pl−1)|

l← l − 1
end while
E ← E \D(pmax

0)
vi ⇐ pmax

0 // associating graph vertex vi with map cell pmax
0

V ← V ∪ vi, i← i+ 1
end while
Return V

ing pmax
l from the higher level l. However, in order to compensate for quantization

errors we used ε = 4 during our experiments. From the set Sl−1 the best candidate
of level l−1 is selected by computing pmax

l−1 = argmaxpl−1∈Sl−1
|D(pl−1)|. This pro-

cedure is continued until level 0 is reached and thus location pmax
0 on the original

map with maximal detection set is found. Then, D(pmax
0) is removed from E . As

shown by Algorithm 3, hierarchyM is recomputed from the reduced set E at each
iteration of the outer while loop and thus also reflects modifications that occurred
to E . The hierarchical sampling continues until the entire map has been covered.
Figure 5 depicts the result of random sampling versus hierarchical sampling on
the Village map, which is an artificially generated map of a smaller village located
on a hill (see Figure 13 on page 24 in the experimental results section). Hierar-

10 A. Kleiner et al.

chical sampling leads to significantly simpler graph representations than random
sampling while keeping the entire area covered.

(a) (b)

Fig. 5 Example graphs on the Village map generated (a) by random sampling, and (b) by
hierarchical sampling.

Notice that even though we are selecting vertices with larger detection sets
this is still a heuristic and by no means guarantees better strategies. Yet, we shall
show in Section 7 that we indeed get a significant improvement when applying the
method to diverse types of environments. Once all vertices are sampled we can
proceed by adding edges between these vertices, which will be addressed in the
subsequent two sections.

3.5 Shady Edge Computation

The edges of G should capture the neighborhood relationships between the de-
tection sets D(pi) and thereby describe how detection sets can guard each oth-
ers boundaries. In a 2D scenario the detection sets would be guaranteed to be
connected, but in 2.5D they can be more complex. Consider the boundary of
D(pi) written δD(pi). We are interested in vertices that can guard, i.e. avoid re-
contamination, of D(pi) if a robot is placed on them. Clearly, all vertices whose
detection set intersects with δD(pi) can prevent targets from passing through
aforementioned intersections. Hence, we are considering vertices vj so that δD(pi)∩
D(pj) 6= ∅, j 6= i. In this case a robot on vj can guard part of δD(pi). For conve-
nience let us write Gi,j := δD(pi) ∩D(pj) 6= ∅ and call it the guard region of vi
from vj . From this guard region we shall now construct two types of edges, regular
and shady. To distinguish the types we define the following condition:

shady(vi, vj) :=

{
1 ∃vj′ ∈ V, j′ 6= j, i : Gi,j (Gi,j′

0 otherwise.
(5)

For now suppose edges have a direction and are written [vi, vj] from vi to vj .
The first type, a regular edge, is created from vi to vj , i 6= j, iff Gi,j 6= ∅ and
shady(vi, vj) = 0. In colloquial terms vi and vj get a regular edge if and only
if Gi,j 6= ∅ and there is no third vertex vj′ whose guard region of vi completely

Hierarchical Visibility for Guaranteed Search in Large-Scale Outdoor Terrain 11

Algorithm 4 Shady Edge Construction(V, P)

Er, Es ← ∅, Er,dir, Es,dir ← ∅
// Determine all directed regular and shady edges between all vertices.
for i = 1 to m do

for j = 1 to m do
I ← δD(pi) ∩D(pj) // Compute guard region.
if I 6= ∅ then

if shady(vi, vj) then
Es,dir ← Es,dir ∪ {[vi, vj]}

else
Er,dir ← Er,dir ∪ {[vi, vj]}

end if
end if

end for
end for
// Transform the directed graph into an undirected one where regular edges dominate shady
edges.
for [vi, vj] ∈ Er,dir do
Er ← Er ∪ (vi, vj)
Es,dir ← Es,dir \ {[vi, vj], [vj , vi]} // Remove dominated shady edges

end for
for [vi, vj] ∈ Es,dir do
Es ← Es ∪ (vi, vj) // Add shady edge

end for
Return Es, Er

covers the guard region of vi from vj . The second type, a so called shady edge,
is created from vi to vj iff Gi,j 6= ∅ and shady(vi, vj) = 1. In this case there is
a third vertex that completely covers the guard region. Hence if Gi,j 6= ∅, then
we have an edge [vi, vj] that is either shady or regular. To get a graph without
directional edges, written (vi, vj), we simply add an edge if we have either [vi, vj]
or [vj , vi] with regular edges dominating shady edges. Write E = Er ∪ Es for the
set of undirected edges where Er are the regular and Es are the shady edges.
Algorithm 4 presents the above in details with pseudo-code.

The intuition behind creating two types of edges is as follows. If a robot is
placed at pi, i.e. vertex vi, it sees all targets in D(pi) and hence clears it. The robot
can only be removed without causing re-contamination if it can be guaranteed that
no target can pass through δD(pi). We will show that this is satisfied when all
vertices that are neighbors of vi via regular edges are either clear or have a robot on
them. The remaining edges that are not strictly necessary are shady edges which
capture the remaining intersections between detection sets that are dominated by
larger intersections from regular edges 1.

1 One should note that this is a conservative approach and one could also use multiple shady
edges to cover the same area of one regular edge. The problem here is that the graph-searching
algorithms are not capable of such a generalized notion of preventing re-contamination. In
order to accommodate this one would need to specify which sets of neighbors suffice to guard
the boundary of a detection set and there may be multiple such sets.

12 A. Kleiner et al.

3.6 Sparse Edge Computation

A more conservative approach is to add edges between any two overlapping de-
tection sets only when the same part of the intersection is not covered by another
detection set of a third vertex whose detection set is larger than either one of the
two other vertices. More precisely, two vertices vi, vj receive an edge [vi, vj] if and
only if ∃x ∈ Gi,j s.t. x /∈ D(vj′) for all D(vj′) strictly larger than D(vj) or D(vi).
This approach reduces the number of needed edges drastically. It is equivalent to
creating a partition from all detection sets in which larger sets dominate smaller
ones. Notice that a partition in this case is a union of non-overlapping subsets of
detection sets that cover all of E . In colloquial terms, with this approach each cell
will belong to exactly one detection set and its vertex.

We will show empirically in Section 7 that this reduction has a positive impact
on the strategy computation.

4 Strategy Computation

The search graph G constructed in Section 3 represents strategic locations in E as
vertices and their neighborhood relations as edges. The goal of this section is to
describe an algorithm that coordinates the movements of agents in order to clear
E with as few agents as possible. For this purpose we denote vertices occupied
by agents as guarded, and define contamination on G. The relation between G
and E is straightforward: Placing agents on vertices vi in G corresponds to agent
movements towards associated way point locations pi in E .

Definition 1 (Vertex Contamination) A vertex v ∈ G is cleared if it is guarded.
It is recontaminated if it is not guarded and there exists a path on G consisting of
regular edges and unguarded vertices between v and a contaminated vertex v′. If
all v ∈ G are cleared then G is cleared.

Such a contamination definition is common in graph-searching, with the ex-
ception that it only spreads via regular edges and that we only consider vertices.
Another important difference is how we will define strategies, i.e. the sequences of
moves that clear G.

Definition 2 (Strategy) A strategy S consist of ns steps. Step i starts at time
ti ∈ R and ti < ti+1. Each step consist of the following moves:

1. At time ti available agents that are not guarding vertices can be placed onto
new vertices.

2. At time t′i, ti < t′i < ti+1, agents guarding vertices can be removed.
3. At time t′′i , t

′
i < t′′i < ti+1, contamination spreads.

A strategy that clears an initially fully contaminated G with the minimum number
of agents guarding at any time t is a minimal strategy.

This definition reflects the fact that an agent removed from a vertex cannot
be reused immediately since it has to move through E before it can guard another
vertex. Furthermore, we do not allow so called sliding moves which are common
in graph-searching. In our context such a move would allow an agent to guard a

Hierarchical Visibility for Guaranteed Search in Large-Scale Outdoor Terrain 13

vertex and then slide along an edge to a neighboring vertex, guarding and clearing
it. The problem is that such a move is not atomic2 in E . It takes time for an
agent to travel between vertices and during this time we cannot guarantee that
the contamination from the new vertex spreads to the previously guarded vertex.
This is hard to guarantee even in a 2D scenario but almost impossible in 2.5D.

In order for the above to be useful for clearing E we now address the relationship
between clearing G and E . Contamination on the graph is more conservative than
in E , i.e. we are going to show that if we compute a strategy with k agents that
clears the graph then we can clear E also with k agents. A strategy SE in E is
defined identical to those on graphs but with vertices replaced by their locations.
Hence placing an agent on v ∈ G is to place an agent onto its associated position
p ∈ E which clears D(p) ⊂ E. Likewise executing a strategy S on G represents
executing a strategy SE in E by visiting all associated locations.

To make the following results consistent with the sparse edge computation we
introduce the associated detection set D̄(p) ⊆ D(p) for a vertex v. In colloquial
terms, D̄(p) is the area in E that the agent on vertex v is responsible for. For the
sparse edge computation, suppose we have v1, . . . , vn ranked by the size of D(pi)
in decreasing order. Now, D̄(pi) := D(pi) \

⋃i−1
j=1D(pj). If we are not using sparse

edge computation, then D̄(pi) := D(pi), i.e. an agent is fully responsible for the
entire detection set.

Lemma 1 If during the execution of a strategy S we have v ∈ G cleared then
D̄(p) ⊂ E is cleared for SE .

Proof: Clearly, when an agent is placed on v to clear it in a step of a strategy, D̄(p)
is also cleared. Hence, we have to show that if v remains cleared at subsequent
steps then so does D̄(p). We shall achieve this with an inductive argument across
steps of the strategy.

Let v be a vertex whose agent gets removed at step s and let s be the first
step that removes an agent. Suppose (by assumption of the lemma) v does not get
recontaminated at step s at time t′′s .

Consider δD̄(p) where δ denotes the boundary of a set in E . If all regular
neighbors of v are guarded, then δD̄(p) is detectable since δD̄(p) ⊂

⋃
v′∈Er(v)

D(p′)

and hence D̄(p) remains clear. We have

δD̄(p) ⊂
⋃

v′∈Er(v)

D(p′) (6)

by construction of regular edges3.
This simple argument can also be applied to a set of vertices as follows. Let

Nunguarded ⊂ V be all unguarded neighbors reachable via regular and unguarded
paths from v. By definition of re-contamination if any of these neighbors is con-
taminated then so is v. Hence all vertices in Nunguarded are cleared. Furthermore,
all regular neighbors of Nunguarded in V \Nunguarded are guarded. Let Nguarded

be all guarded vertices at step s at time t′′s . Therefore, δ
(⋃

v′∈Nunguarded
D̄(v′)

)
⊂

2 In the sense that multiple re-contamination events in E can occur in the meantime.
3 This is straightforward to see by supposing the contrary, i.e. δD̄(p) \

⋃
v′∈Er(v)

D(p′) 6= ∅
in which case the point x ∈ δD̄(p)\

⋃
v′∈Er(v)

D(p′) has to lead to a regular edge by definition

14 A. Kleiner et al.

⋃
v′∈Nguarded

D(v′) and hence no contamination in E can enter
⋃

v′∈Nunguarded
D̄(v′).

Hence if v is clear at step s at time t′′s then so is D̄(p).

Continuing this argument by induction for subsequent steps proves the claim
since for every subsequent step s+ 1 we can assume that if v is clear then D̄(p) is
clear for all v from Nunguarded from step s. �

Theorem 1 If S clears G then SE clears E.

Proof: The theorem follows directly from the lemma and the fact that E ⊆⋃n
i=1 D̄(pi), i.e. if all vi are clear, all D̄(pi) are clear and hence E is clear. �

So if we compute a strategy S for G and execute its corresponding SE in E
we clear E and detect all targets therein. In the following section we address the
problem of computing strategies for our graph version of the problem.

4.1 Algorithm

Our resulting problem on G is very similar to the prior edge-searching problem
as defined by Parson [38] and the variant with node contamination used in [19].
In fact, we can adapt algorithms from [2] and [19] to compute connected strate-
gies without re-contamination. Recall that a connected strategy requires that all
cleared vertices form a connected sub-tree. Such strategies have the practical ad-
vantage that the cleared area is relatively compact, although it may not necessarily
be connected in E . In contrast, non-connected strategies allow placement of agents
far from the currently cleared area and hence can lead to long paths through con-
taminated areas. The algorithm from [2] was originally developed to handle a case
in which multiple agents are required to clear a single vertex. However, it turns
out not to be optimal for this purpose [11, 30]. Yet, for the simpler unweighted
case the resulting connected strategies are in fact optimal monotone and connected
strategies on trees. In [24] it was shown how to use a labeling-algorithm similar
to [2] and adapt it to strategies on graphs by trying many spanning trees. This
procedure can be asymptotically optimal for the graph given that enough spanning
trees and strategies on each spanning tree are tried.

The key differences between edge-searching and our variant is that we disallow
sliding moves, apply our contamination between removal and placement of agents
and are only concerned with contamination on vertices. So let us assume that we
converted G into a tree by selecting a spanning tree T . For now let us also ignore
the difference between shady and regular edges and defer its discussion to Section
7. The following describes the adaptation of the label-based algorithm from [2].

We define a directional label for every edge e = (vx, vy). For the direction
from vx to vy we write λvx(e). This label represents the number of agents needed
to clear the sub-tree rooted at vy and created by removing e. It is computed as
follows: If vy is a leaf then λvx(e) = 1. Otherwise let v1, . . . , vm be the m =
degree(vy) − 1 neighbors of vy different from vx. Define ρi := λvy ((vy, vi)) and
order all v1, . . . , vm with ρi descending, i.e. ρi ≥ ρi+1. The team of robots now
clears the sub-trees that are found at each vi in the order vm, . . . , v1. Notice that
this is the optimal ordering given that the strategy has to be connected and without
re-contamination. This leads to an overall cost that we associated to λvx(e). In

Hierarchical Visibility for Guaranteed Search in Large-Scale Outdoor Terrain 15

original edge searching in [2] we would have λvx(e) = max{ρ1, ρ2 + 1}. In our
modified version this equation becomes:

λvx(e) =

{
ρ1 + 1 if ρ1 = 1
max{ρ1, ρ2 + 1} otherwise

(7)

Where we assume that ρ2 = 0 if m = 1. The change results from the fact that the
guard on vy can be removed only after the first vertex of the last sub-tree, i.e. v1,
is cleared. This is only a concern when ρ1 = 1, i.e. v1 is a leaf. Otherwise, if ρ1 > 1,
the guard can be removed right after v1 is guarded and used subsequently in the
remaining sub-tree beyond v1, not leading to a higher cost than in edge-searching.
For edge-searching the guard on vy can instead be moved into v1 via a sliding
move to clear it which leads to lower cost for clearing leaves. From this it follows
that on the same tree the edge-searching strategies and our modified variant can
only differ by one agent. Figure 6 depicts the label computation.

λvx(e)e

vx

vy

vx

vy
λvy ((vy, v1))

vx

v1 v2 v3 v4 v5

vy

clearclearclearclear

a) b) c)

v1 v2 v3 v4 v5v1 v2 v3 v4 v5

Fig. 6 An illustration of the label computation. Part a) shows an agent placed at vy followed
by part b) in which the team starts clearing the sub-trees until in part c) they enter the
last sub-tree. White vertices are contaminated, light grey vertices are guarded, and dark grey
vertices are cleared.

Once all labels are computed we can determine the best starting vertex and
from there a sequence in which all vertices have to be cleared. This can be done
in a straightforward manner by simply following clearing sub-trees recursively and
ordered by ρ as described above. The result is a sequence of vertices that represents
the strategy. Notice that for any strategy that places multiple agents at one time
step we can find an equivalent strategy (i.e. one that clears vertices in the same
order with the same number of agents) that places exactly one agent per time
step. Hence it suffices to consider strategies that place only one agent per step.

Our formulation allows us to use the idea from the anytime algorithm, called
GSST, from [19] which tries multiple spanning trees T to improve the strategy for
the graph. For this we generate a number of spanning trees for our graph G and
compute a strategy for each. These we convert to strategies on the graph by leaving
agents at their position whenever a cycle edge leads to a contaminated vertex.
Hence, the cycle edges which were not part of the spanning tree can potentially
lead to an increase in the number of agents required for the graph strategy since
they force agents to remain at a vertex for longer. An agent can only leave a vertex
in the graph once all its neighbors in the graph are cleared. In order to execute
the strategy on the graph one might need additional agents. Fig. 7 illustrates this.
In the worst case one will even need as many agents more as there are cycles

16 A. Kleiner et al.

Algorithm 5 Compute Strategy(G, trees)

max cost←∞ // number of needed agents
for i = 1 to trees do

Generate a spanning tree T from G
Compute strategy ST on T
Convert ST to a strategy SG on G
if cost(SG) < max cost then
best strategy ← ST ,max cost← cost(SG)

end if
end for
Return best strategy

in the graph. Finally, we select the converted graph strategy that requires the
fewest robots. Algorithm 5 sketches this idea in pseudo code. Results presented
in Section 7 confirm that this method works well in practice and with graphs
constructed from real environments. Notice that other labeling procedures, such
as random labels from [19], could also be used instead of the optimal labeling for
the tree.

a) b) c) d)

e) f) g) h)

Fig. 7 An illustration of the conversion of tree strategies to graphs. Steps a) to d) show a
strategy on the tree with agents as black dots and cleared vertices in grey. Steps e) to g) show
the strategy on the corresponding graph with one additional cycle edge. This edge causes the
agent on the top vertex to stay longer at its location until the neighbor is also cleared. This
requires three instead of two agents.

5 Task Assignment

Given a pursuit-evasion strategy that requires k agents, written a1, . . . , ak, we
will now compute an assignment of the guarding tasks to agents and attempt to
minimize the time it takes for all agents to execute the strategy. In our case a
connected strategy is given by a sequence of vertices that need to be guarded. Let
us write v1, . . . , vn for this sequence. Once a vertex has no contaminated neighbors
anymore its guarding agent is free to move to another vertex without incurring re-
contamination. This occurs precisely when the last neighboring vertex is guarded

Hierarchical Visibility for Guaranteed Search in Large-Scale Outdoor Terrain 17

and thereby cleared from contamination. We can hence generate a task τi for every
i = 1, . . . , n that starts at step i and terminates after some step j ≥ i, i.e. the
agent is released at step j when task τj is started. In principle this conversion can
be applied to other types of pursuit-evasion strategies such as Graph-Clear [31]
which involves actions other than guarding as well as actions on edges.

We shall now define a task τi := (li, di) as a tuple of a location li that cor-
responds to the location of vertex vi on map H and di which is the step until li
needs to be occupied. Here the cost for executing τi, and thus the time needed
for reaching vertex location li, is computed by A* planning on the elevation map
with respect to the current location of the assigned agent. The sequence of tasks
is entirely determined by our strategy, but the assignment of agents to these tasks
is not.4

To complete a task τ = (l, d) an agent a needs to arrive at location l and
occupy it until we reach step d. Step d is completed once all locations lj , j ≤ d
have been reached (although some of the agents may already be released from
these locations). Once step d is completed, agent a can continue moving towards
another task location. Some task locations are thus occupied in parallel since
multiple agents may be waiting for their release. By construction the total number
of agents occupying task locations will not exceed k. Figure 8 illustrates the new
task sequence arising from a strategy.

τ1 τ2 τ3 τ4

Fig. 8 A sequence τ1, τ2, τ3, . . . of tasks arising from a strategy, where circles denote tasks and
edges towards a diamond denote task dependencies (i.e. mutual guarding constraints) which
determine when agents on the associated locations can be removed. For example, at step 3
location l1 from task τ1 = {l1, d1 = 3} can be released because then location l3 of task τ3 has
been reached by an agent. Hence, the agent from l1 may be used for τ4 during next step 4.

The overall execution time for the strategy is determined by the speed at which
agents can travel to the locations of their assigned tasks with each agent’s time at
the location depending on other agents. Let us now briefly formalize the problem.

Definition 3 (Task Assignment) A task assignment is a surjective function
A : {τ1, . . . , τn} → {a1, . . . , ak} with the following property: if A(τi) = A(τj) for
some j > i then di < j.

In colloquial terms, this definition just ensures that every agent has at least
one task and that an agent cannot be assigned to another task before it is released.

4 Note that there are pursuit-evasion problems and algorithms that immediately assign an
agent to an action, but to our knowledge there are none that consider the number of agents
as well as execution time with an underlying path planner.

18 A. Kleiner et al.

To formalize the contribution of travel time let us write a(t) for the location of
agent a at time t. Further, write T : E × E → R+ to represent a path planner (in
our experiments in Section 7 this will be an A* planner) that returns the time it
takes for an agent to travel between two locations in E written T (l, l′). Let ti be
the time at which step i is completed. We can now define ti inductively via t0 := 0
and

ti+1 := ti + T (A(τi+1)(ti), li+1). (8)

Notice that the term T (A(τi+1)(ti), li+1) may well be 0 if the agent A(τi+1)(ti)
is already on li+1 at time ti. In fact, with a larger number of agents we should
expect this to occur frequently as agents are moving in E simultaneously. Figure 9
shows three steps that finish at the same time, i.e. t3 = t4 = t5.

a1

a2

a3

a4

l1
l2

l3

l5

l4

t1t0 t2
t3
t4

t5

wait until release

travel time

release

li reached location

Fig. 9 Agents a1, a2, a3 and a4 move to locations l1, l2, l3 and l4 respectively. Step 1 is
completed once a1 reaches l1. Other agents may already be at their assigned locations at this
time. At step 2 agent a1 is released and proceeds to l5. Since a3 and a4 have already reached
their task locations at t2 we have t2 = t3 = t4. Agent a2 is released once a1 reaches l5 and so
on.

Obviously, the above assumes that agents actually move towards their next
assigned tasks immediately after release. For an agent a let A|a := {τ |A(τ) = a}
be the set of all tasks assigned to a, ordered with their index ascending as before.
For convenience let us write A|a = {τa1 , τa2 , . . . , τana

} where na = |A|a|. At time t0
every agent a immediately moves towards their first task τa1 = (la1 , d

a
1) following the

planner and needing T (a(t0), la1) time units and at every subsequent release they
move immediately towards the next assigned task location. We can now formalize
our main problem:

Definition 4 (Minimal Assignment) Given a fixed T a sequence of tasks
τ1, . . . , τn and agents a1, . . . , ak let the minimal assignment Amin be such that:

Amin = argminA{tn} (9)

To compute a task assignment A it is helpful to compress the notation. Instead
of the sequence of tasks we now consider sets of tasks whose locations all have to
be reached before another task is released. This is useful because between releases
we have a constant number of agents available and a constant number of tasks that

Hierarchical Visibility for Guaranteed Search in Large-Scale Outdoor Terrain 19

all have to reached before new agents become available. In order to distinguish the
notation we add a˜when referring to the compressed strategy.

Let us write t̃0, t̃1, . . . , t̃ñ, for the times at which at least one agent is released.
At t̃0 all agents are free and can be assigned to tasks. Write F̃0 = {1, . . . , k}, . . . , F̃ñ

for the set of free agents after the step completing at t̃i. Let T̃i be all tasks that
have an agent on their location at time t̃i, i = 1, . . . , ñ.

This compressed notation gives us an immediate first insight. Namely, to mini-
mize the time difference t̃i− t̃i−1 we have to solve a Linear Bottleneck Assignment
Problem (LBAP) and match some agents from Fi−1 to the new tasks T̃i \ T̃i−1,
i = 1, . . . , ñ. The cost of an assignment between a free agent a and a task τ = (l, d)
is simply given by the difference between tarrival−t̃i−1 where tarrival is the earliest
time, as determined by T , at which a can be at l, i.e. tarrival = tlast+T (a(tlast), l)
where tlast is the time at which a became released and hence free. Using this we
can build a cost matrix c(a, τ) to capture the cost of each possible assignment.
Note that |Fi−1| ≥ |T̃i\ T̃i−1| and we have to add an idle task τ0 so that the LBAP
would assign some robots to a dummy task τ0 that the agent simply ignores when
moving to the next location. From here on any LBAP algorithm can be applied
to minimize t̃i − t̃i−1 and for t̃i this would give us the minimum possible value,
given that t̃i−1 was fixed. But this does not guarantee that tn = t̃n is minimal and
brings us directly to the main problem which is best illustrated with the following
example.

Suppose we have four agents a1, a2, a3 and a4 and T̃1 = {τ1, τ2} with τ1 =
{l1, 2}, τ2 = {l2, 4} and T̃2 = {τ3, τ4} with τ3 = {l3, 4}, τ4 = {l4, 4}. Fig 10 shows
the locations of the agents and l1, . . . , l4 and two different assignments for F̃0 on
T̃1 that in turn allow a different assignment for F1 onto T̃2. The assignments are
also shown in Figure 11. It is easy to see that an optimal solution to the LBAP for
F̃0 on T̃1 leads to an overall worse solution. In colloquial terms, we can sacrifice
some time in an assignment at one step and instead choose to give an idle task
to an agent that will travel to its tasks for a subsequent assignment and thereby
improving it. This can lead to overall less time spent, i.e. a smaller tn.

The dependency between subsequent assignments is due to the fact that some
robots can be assigned to tasks for future steps if previous steps do not utilize
all agents. If at every step the number of tasks is equal to the number of agents,
then the repeated solving of the linear bottleneck assignment problem (LBAP)
will yield an optimal solution. Otherwise, from a global perspective, the repeated
computation of locally optimal LBAP solutions is a greedy algorithm.

Figure 11 shows the assignment of agents to tasks in a familiar manner for
LBAP problems in the form of consecutive bipartite graphs. Repeated assignment
problems are also known as multi-level assignment problems and one variant that
has some resemblance to our problem is presented in [9]. Unfortunately it is NP-
complete and we conjecture that this may be the case for our minimal assignment
as well. A detailed exposition is, however, beyond the scope of this paper and for
our purposes the presented approach to solve multiple LBAPs is sufficient and in
Section 7.4 we shall see that this already leads to a significant improvement over
a naive approach, i.e. a random assignment, and enables the search of a large real
environment with a reasonable search time. Note that for practical purposes agents
can also be assigned at each step of the compressed schedule in polynomial time
by the method presented in [22]. Other methods are presented in the survey [8].

20 A. Kleiner et al.

l2l1

l3 l4

a1 a2

a3

a4

a) b) c) d)

vertex location

agent

6

4

11 5

4

2 2

33

11

Fig. 10 Each part a)-d) shows four locations and agents executing part of a strategy with
more vertices than shown here and requiring at least four robots. Part a) and b) show one
assignment in which agents a1 and a2 move to l1 and l2, the optimal assignment to minimize
t̃1. After t̃1 agent a1 is released and at this point assigning a2 and a3 is the optimal assignment
to minimize t̃2 given that t̃1 is fixed. Part c) and d), however, show an assignment that leads
to a larger t̃1 but smaller t̃2.

However, this assignment is sub-optimal in terms of execution time since it ignores
dependencies of subsequent steps in the schedule.

a1

a2

a3

a4

t̃1 t̃2

τ1

τ2

τ0

τ0

τ3

τ4

τ1

τ0

a1

a2

a3

a4

t̃1 t̃2

τ1

τ2

τ0

τ0

τ3

τ4

τ1

τ0

1

1
4

5

0

0

0

0

0

2

2

0

1

1

t̃0 t̃0
Fig. 11 Two task assignments visualized as graphs that correspond to Figure 10. The agent
assigned to τ1 has to remain there until release while τ2 can be reassigned in the second
level LBAP. The consecutive LBAP solution for both levels shown on the left is, however, not
optimal for t̃2.

Hierarchical Visibility for Guaranteed Search in Large-Scale Outdoor Terrain 21

6 Real-World Interface

Few of the prior work on searching for moving targets or pursuit-evasion has ever
been tested in real world applications, especially not in large and realistic envi-
ronments. One main obstacle is the integration of all aspects of the problem from
mapping up to the computation and coordinated execution of search strategies. In
this section we describe a system that integrates all solutions to these problems
presented here and in previous work. As output, the system provides paths on
elevation maps for guiding searchers through large outdoor environments. Using
an annotated elevation map, a graph representation is constructed as described
in Section 3 while taking into account additional obstructions for visibility due
to cluttered terrain. On this graph, first, a strategy according to the algorithm
presented in Section 4 and, second, a corresponding task assignment and schedule
following the procedure described in Section 5 are computed. The schedule is then
transferred to all agents for executing it online in the terrain.

For demonstrating our system we used human agents equipped with mobile
devices (iPads) on which we programmed a custom Objective-C application. All
devices were communicating via a mobile phone connection (third generation)
and all data was logged at a central server. The interface of the application is
shown in Figure 12. All searching agents had information about the instructions
of all other searching agents and their locations by exchanging GPS data at two
second intervals. The evading agents, i.e. targets, were also given a device each
to simulate omniscient evaders. They were omniscient because they were able
to see on their devices in real-time locations of all the searchers but also other
evading agents. When searching agents saw an evader they logged the encounter
by tagging the respective area on the map via the interface. All agents received
a warning signal if their GPS indicated that they were close to terrain that was
classified as non-traversable. Once agents reached their assigned locations for an
execution step, the system informed other agents about the progression by sending
a message. Subsequently, agents were assigned to their new tasks automatically
by the system.

7 Experimental Results

In this section we present results from applying and evaluating our graph construc-
tion approach for the computation of pursuit-evasion strategies on elevation maps.
First, in Section 7.1 we are investigating the performance of the graph construc-
tion based on random sampling on three example maps. We further investigate
the question of whether shady edges can be ignored or whether there are instances
in practice for which considering shady edges leads to better connected strategies.
Second, in Section 7.3 the impact of hierarchical sampling and sparse edges is
examined on large-scale maps. Finally, in Section 7.4 results from deploying the
system in the field, the Gascola outdoor area around Pittsburgh, are presented.

22 A. Kleiner et al.

Agent Selection

Step Slider

Detection Set

Goal Location

Start Location

Suggested Path

Fig. 12 The iPad interface for all agents. Additionally each agent receives real-time locations
and plans of other searchers that are directly displayed on the device. Evading agents receive
the same information but additional also information about other evaders.

7.1 Random Sampling with Shady Edges

In this section we will clarify the role of shady edges for the computation of strate-
gies on graphs and address issues first raised in [1]. Recall the definition of regular
edges, Er, and shady edges, Es, from Section 3.5. Both types of edges capture some
aspects of the neighborhood relations between detection sets. From our formula-
tion of the graph model in Section 4 and Eq. 6 from Lemma 1 we know, however,
that regular edges suffice to guard the boundary of an associated detection set.
Hence, shady edges only capture visual proximity but are not strictly necessary
for avoiding re-contamination in E . But visual proximity can be important for con-
nected strategies. The advantage of connected strategies is that the set of cleared
vertices is connected which translates to a rather compact cleared area in E . By
considering shady edges the number of possible connected strategies can increase
and possibly include one that is better than connected strategies based only on
regular edges. For non-connected strategies, it is obvious that we only have to con-
sider regular edges since agents are not constraint to guard only vertices that are
adjacent to already guarded vertices. In this case, edges only matter for contam-
ination and not to constrain movement. The question how to treat shady edges
was first raised in [1] and investigated experimentally. Combining our work from
Section 4 with Algorithm 5 we now resolve the issue more precisely.

Hierarchical Visibility for Guaranteed Search in Large-Scale Outdoor Terrain 23

Consider Algorithm 5 from Section 4. Recall that it computes strategies on a
generated spanning tree T and then converts these to graph strategies by having
agents guard a vertex until all its neighbors in G are cleared. From this it fol-
lows that the connectedness requirement can only have an impact on T since the
strategy is already required to be connected on T (which translates to connect-
edness in G). Hence shady edges can only have a possibly positive impact when
included in T . During the conversion of the strategy from T to G they should not
be considered since they can only worsen the strategy on G by requiring agents to
guard vertices longer. So we can answer the question whether shady edges should
be considered during the conversion to the negative and thereby superseding the
experimental verification from [1] which showed that treating regular and shady
edges equally leads to worse strategies. The key observation is that shady edges
are not required in Eq. 6.

The consideration of shady edges for constructing T , however, needs to be
verified experimentally. Excluding them from T would additionally constrain the
motion of robots between vertices whose detection sets overlap and are hence
within visual proximity. This leads us to define the following two variants for the
strategy computation. For variant sdy we generate random depth-first spanning
trees considering all edges from E. For variant reg we only consider regular edges
for the spanning tree. For both variants we compute strategies on the spanning
tree T as presented in Section 4 and convert them to strategies on G as follows.
Robots continue guarding a vertex not only until all neighbors in T are cleared
but until all neighbors considering edges from Er are cleared. Hence, shady edges
have no significance for the conversion and only in variant sdy they can be part
of T .

Some of the experimental results from prior work in [1] did in fact address
the question whether sdy or reg leads to generally better strategies. In [1] this was
denoted as a bias in the spanning tree generation and in what follows we will adapt
the relevant results from [1] to our context. The experiments were carried out by
randomly sampling vertices on three maps depicted in Figure 13. The resolution of
(a) and (b) is 0.1 units/pixel, and 10 units/pixel for (c). Sensing ranges mentioned
below are always measured in the same units. The elevation of each cell in the map
is given by its grey level and ranges from 0 to 10 units with 0 represented as white
and 10 as black. Traversability classification is always based on the model of an
all-terrain robot. Due to the random components of the algorithm, which are the
random sampling of the graph structure and the strategy computation based on
choosing from multiple random spanning trees, all presented results are averaged
across 100 randomly generated graphs.

Table 1 summarizes the results for the comparison between reg and sdy for
different number of spanning trees used for the computation of strategies. A stan-
dard T-test with associated p-value was conducted to compare the best strategies
for both variants across the 100 randomly sampled graphs on the Sample map.
When fewer, i.e. 100, spanning trees were generated the two variants performed
significantly different p < 0.0001. The average number of robots needed for reg
was 6.94 ± 0.56 while sdy required 7.6 ± 0.61. Generating more spanning trees
reduced this difference and the means became more similar and with 10,000 span-
ning trees they are statistically not significantly different, p = 0.2442. The best
strategy across all graphs was always identical and the choice of variant had no

24 A. Kleiner et al.

(a) (b) (c)

Fig. 13 Height maps for testing: (a) Sample map with a three-way canyon, three plateaus
with each having its own ramp and several concave sections (843x768 cells). (b) Map of a small
village with surrounding hills (798x824 cells). (c) Map of a mountain area located in Colorado,
US (543x699 cells).

trees variant min max mean p− value
100 reg 6 9 6.94 ± 0.56 < 0.0001
100 sdy 6 9 7.6 ± 0.61

1,000 reg 5 8 6.65 ± 0.43 0.0007
1,000 sdy 5 9 7.01 ± 0.66
10,000 reg 5 8 6.64 ± 0.45 0.2442
10,000 sdy 5 8 6.75 ± 0.43

Table 1 The results from experiments with sr = 30, hr = 1 and ht = 1. The last column
shows the p− value from a standard T-test between two subsequent rows.

impact on the number of agents ultimately required to clear the graph. These
experiments indicate that if one can generate large numbers of spanning trees one
can safely ignore the difference between reg and sdy. When fewer spanning trees
are generated the bias towards regular edges in reg allows the algorithm to test
better spanning trees earlier. In general, the larger the graph the more spanning
trees would be required to reach adequate performance and in this case the bias
towards regular edges could lead to improvements. If one tests many or possibly
all spanning trees then sdy performs equally well with the added possibility that
it can find good spanning trees amongst those with shady edges.

Further experiments from [1], carried out with the now superseded variant that
considers shady edges equal to regular edges, revealed the effects of modifying the
number of spanning trees, sensing range and target and sensor heights. A first set
of tests was conducted on the Sample map from Figure 13(a). For each randomly
sampled graph the best strategy was computed based on 100, 1, 000, and 10, 000
randomly generated depth-first spanning trees, similar to [19]. Across all spanning
trees the one leading to the best strategy was selected, i.e., the one needing the
least amount of robots. The results are presented in Table 2. Only for the smallest
sensing range sr = 10 the difference in the number of spanning trees had an effect
on the best strategy found, whereas for all other cases 100 spanning trees sufficed.
This effect can be well explained by the fact that smaller sensing ranges lead to
more vertices and thus larger graphs that in turn lead to more potential spanning
trees that have to be considered. Figure 14 depicts the execution of a strategy
computed on the Sample map.

Hierarchical Visibility for Guaranteed Search in Large-Scale Outdoor Terrain 25

sr spanning trees min max mean
10 100 15 22 18.7± 2.4
10 1,000 14 20 16.8± 1.6
10 10,000 13 18 15.6± 1.1
30 100 6 11 8.5± 0.9
30 1,000 6 10 8.0± 0.7
30 10,000 6 9 7.7± 0.6
50 100 6 11 8.0± 1.2
50 1,000 6 11 7.7± 0.9
50 10,000 6 11 7.7± 1.0
70 100 5 11 7.9± 1.0
70 1,000 5 10 7.7± 0.9
70 10,000 5 10 7.6± 1.0

Table 2 Impact of varying range and number of spanning trees on the Sample map from
Figure 13 with hp = 1.0 and ht = 1.0 from [1].

sr hr ht min max mean
10 1 1 16 22 19.2± 1.7
30 1 1 9 17 12.1± 2.7
50 1 1 8 15 11.8± 2.1
70 1 1 8 16 11.7± 2.4
50 0.5 0.5 11 21 15.5± 3.4
50 0.5 1 10 17 12.8± 2.2
50 1 0.5 9 18 14.5± 2.6

Table 3 Impact of varying range, searcher and target height on the Village map from Fig-
ure 13.

An increase of the sensing range from 10 to 30 reduced the number of needed
robots significantly. However, any further increase had only marginal impact. Ap-
parently a gain in sensing range is mitigated by the number of occlusions. With
many occlusions an increase in sensing range is less likely leading to improvements.

The effect of varying sensing range was also confirmed by experiments con-
ducted on the Village map shown in Figure 13(b). As shown by Table 3 varying
the sensing range from 10 to 30 leads to a steep decrease in the number of robots,
whereas further changes had only marginal effects. Since this map has a consid-
erable elevation structure we also tested the effect of varying searcher and target
heights hr and ht. A reduction of ht from 1 to 0.5 required 9 instead of 8 for
the same sensing range and hr = 1. A reduction of hr from 1 to 0.5 required 10
instead of 8 for the same sensing range and ht = 1. Reducing both, ht and hr
to 0.5 needed 11 instead of 8 robots. This shows that the effect of changing hr
can be quite different from the effect of changing ht, i.e. these two values are not
symmetric even though an increase in either will lead to larger detection sets.

The results of tests on all three maps with sensing ranges from 10 to 70 are
presented in Figure 15 (a). Most notably, as the sensing range increases in maps
Sample map and Village the number of robots decreases, but in map Colorado it
first improves slightly and then gets worse. This is likely due to the more complex
structure of Colorado. In this case an increased sensing range does not yield a

26 A. Kleiner et al.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 14 A strategy for the Sample map from Figure 13 with 6 robots. Detection sets are
marked red and cleared areas not under observation are marked green. At step 0 on the upper
left all robots are at their deployment location at the bottom left on the map. The pictures
show steps 0, 1, 3, 5, 6, 7, 10 and 12 from left to right and top to bottom. At each step the path
of the last robot moving is drawn. At step 1 the first robot moves to a plateau and after step 5
the robots cleared half the map. In step 6 all 6 robots are required to avoid re-contamination
of the graph. In step 8 the first cleared but unobserved part of the environment appears until
in step 12 the entire environment is cleared.

much larger detection set, but a detection set with a more complex boundary
due to many more occlusions. This complex boundary leads to more edges in
the graph. These edges together with the constraints of no re-contamination and
connectedness make clearing the environment more difficult. This is supported by
Figure 15 (b) that shows an increase of the number of edges for Colorado but not
for the other maps as the sensing range increases. We will see in Section 7.3 that
a modification of the graph generation algorithm can relax the effect of increasing
graph complexity for complex environments.

Hierarchical Visibility for Guaranteed Search in Large-Scale Outdoor Terrain 27

^

^

^ ^

^

10 20 30 40 50 60 70

4
6

8
10

12
14

Sensing range

N
um

be
r

of
 r

ob
ot

s

*

*

*

* *

+

+

+

+

+

+
^
*

Colorado
Village
Sample Map

+
+ + + +

10 20 30 40 50 60 70

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Sensing range

N
um

be
r

of
 e

dg
es

/v
er

tic
es + +

+

+
+

*

*
* * *

*

*

* * *

^

^ ^ ^ ^

^

^

^
^ ^

+
^
*

#vertices
#edges
Colorado
Village
Sample Map

Fig. 15 (a) A plot of the number of robots needed for the best strategy at a given sensing
range for all three maps. (b) A plot of the average number of vertices and edges for all three
maps.

7.2 Comparing the Heuristic Solution with the Optimal Solution

One problem with evaluating the quality of the constructed graphs is that the
graph strategies we compute by considering random spanning trees are not neces-
sarily optimal. But as demonstrated in [19] on very small graphs it is possible to
enumerate all spanning trees and perform an exhaustive computation of all strate-
gies in order to determine the optimal one. This allows for the comparison of the
quality of graphs directly by considering the optimum strategy. Since in the worst
case, for complete graphs with n vertices, the number of spanning trees is nn−2

we can only perform such a comparison on very small graphs. For this purpose
we created two low-resolution versions of the Sample map (53 X 48 pixels) and
the Village map (41 X 46 pixels). On these low resolution maps the generated
graphs generally have less than ten vertices. Notice that much of the structure of
the Village map, i.e. the actual village in the center, is lost at this low resolution
and the map becomes much simpler.

In Figure 16 the distributions of the costs of strategies on 10 million graphs
constructed with random sampling is shown for both maps. The least amount of
agents needed for the low-resolution versions of the Sample map (Figure 16(a))
and Village map (Figure 16(b)) are 3 and 2, respectively. When constructing a
graph with hierarchical sampling (once) and computing the optimal strategy, the
exact same result has been returned. For the Village map it is quite unlikely (2.8%)
to find a graph yielding the best solution when deploying random sampling and
thus the hierarchical construction indeed finds graphs that yield good strategies.

Now a second question is whether the strategies computed by considering only a
limited set of spanning trees are close to the optimum strategy for each graph. This
question was also addressed in [19] and the test therein revealed that the optimal
solution was found in fact when sampling only ten spanning trees for a graph with
3604 possible spanning trees. In our case, the graph constructed with hierarchical

28 A. Kleiner et al.

58.6%

8.8%
0.1%

 0%

 20%

 40%

 60%

 80%

 100%

1 2 3 4 5 6

F
re

q
u

en
cy

 Number of Agents

0.0% 0.0%

32.6%

2.5% 0.02%
 0%

 20%

 40%

 60%

 80%

 100%

1 2 3 4 5 6

F
re

q
u

en
cy

 Number of Agents

0.0% 2.8%

53.4%

41.3%

(a) (b)

Fig. 16 Distribution agents needed for clearing the graph of solutions returned by random
sampling when evaluating the entire set of spanning trees on low-resolution versions of the (a)
Sample map and (b) Village map. The x-axis denotes the number of agents needed for clearing
the graphs.

18.6%

 0%

 20%

 40%

 60%

 80%

 100%

4 5

F
re

q
u

en
cy

 Number of Agents

81.4%

0.2%
 0%

 20%

 40%

 60%

 80%

 100%

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

F
re

q
u

en
cy

 Number of Agents

17.6%
11.4%

25.8% 25.4%

11.1%
5.9%

2.6%

(a) (b)

Fig. 17 Distribution of the number of agents needed for graph clearing when executing differ-
ent strategies from enumerated spanning trees: on the full-resolution versions of the (a) Sample
map and (b) Village map.

sampling on the full resolution version of the Sample map leads to a graph with
9596856 (9.5 ∗ 106) spanning trees, computed using Kirchoff’s theorem [47]. The
distribution of the best strategies for each spanning tree is shown in Figure 17(a).
All spanning trees lead to a strategy using either 4 or 5 agents. Hence, randomly
sampling in this space of spanning trees is very likely going to return the optimal
solution of 4 agents. Note that the full resolution version has greater detail and
hence needs one more agent than the low resolution version.

For the full-resolution version of the Village map the graph constructed with
hierarchical sampling has 1072 spanning trees. This renders the computation of
the optimal solution impossible. Figure 17(b) depicts the distribution of the costs
after enumerating the first 20 million spanning trees. Note that since we are using
Char’s algorithm to enumerate spanning trees as in [19] we are not guaranteed a
representative sample of spanning trees. Despite the fact that the graph of the full
resolution Village map is considerably more complex due to the structures inside
the village we still get a relatively balanced distribution and sampling 100,000
spanning trees will very likely return at least one with the same number of agents
than the best out of 20 million.

Hierarchical Visibility for Guaranteed Search in Large-Scale Outdoor Terrain 29

7.3 Hierarchical Sampling and Sparse Graphs

(a) (b) (c)

(d) (e) (f)

Fig. 18 Large-scale maps for testing hierarchical sampling: (a) DEM generated after the Haiti
earthquake, (b-d) data from USGS, (b) Twinfalls (c) RapidCity (d) Grand Canyon, (e) map
generated from LiDAR data of the Campus of the University of Freiburg, (f) DEM of the
Gascola robot evaluation site.

In this section we evaluate random sampling (Section 3.3) versus hierarchical
sampling (Section 3.4), and edge generation from Section 3.5, using the reg variant
that only considers regular edges in the spanning tree, versus sparse edge gener-
ation (Section 3.6). Strategies on the graphs were computed by considering each
time 100, 000 random spanning trees.

For this evaluation more challenging maps shown in Figure 18 were taken for
the experiments: (a) LiDAR data point cloud with 1 m resolution that was col-
lected in response to the Haiti earthquake. The data was collected by the Center
for Imaging Science at Rochester Institute of Technology (RIT) and Kucera Inter-
national, and funded by the Global Facility for Disaster Recovery and Recovery
(GFDRR) hosted at the World Bank [20]. (b-d) are DEM data from USGS [48]
at 10 m resolution. (e) LiDAR data acquired on the campus of the University of
Freiburg using a wheeled robot equipped with a SICK LMS laser range scanner
mounted on a pan-tilt unit [43]. The pan-tilt unit was used to acquire a 360 degree
view of the surroundings. (f) High resolution (1 m) DEM data of the Gascola robot
evaluation site of the Carnegie Mellon University (Pittsburgh). All maps have been

30 A. Kleiner et al.

map name variant #V #E min max mean

Gascola

spa+hie 53 111 7 8 7.8± 0.4
reg+hie 53 114 9 10 9.9± 0.4
spa+rnd 157 359 12 18 14.9± 1.4
reg+rnd 157 580 29 39 33.4± 2.1

Freiburg

spa+hie 110 344 15 18 16.5± 0.8
reg+hie 110 455 22 25 24.2± 0.7
spa+rnd 924 2952 N/A N/A N/A
reg+rnd 921 16655 N/A N/A N/A

Haiti

spa+hie 193 892 30 37 34.5± 1.4
reg+hie 193 1222 43 53 49.2± 2.0
spa+rnd 2315 12503 299 367 331.0± 16.5
reg+rnd 2318 71985 1115 1429 1292.6± 84.5

Grand Canyon

spa+hie 241 872 33 39 35.9± 1.4
reg+hie 241 1140 46 55 50.7± 2.4
spa+rnd 1551 6297 191 256 222.1± 11.6
reg+rnd 1554 22376 514 623 579.8± 21.7

Rapid City

spa+hie 89 446 22 24 23.0± 0.6
reg+hie 89 747 35 39 37.1± 0.8
spa+rnd 681 3485 80 104 92.0± 5.4
reg+rnd 684 19842 347 428 393.1± 19.7

Twin Falls

spa+hie 75 288 13 15 14.0± 0.5
reg+hie 75 418 21 24 22.9± 0.6
spa+rnd 694 2879 55 73 64.8± 4.5
reg+rnd 698 12595 271 339 294.4± 14.7

Table 4 Comparing the ,,number of agents needed” when using random graph sampling (rnd),
hierarchical graph sampling (hie), regular edge generation (reg), and sparse edge generation
(spa). The experiment has been carried out with sr = 100, hr = 1.8 and ht = 1.8.

pre-classified by the method describe in Section 3.1, based on the model of an all
terrain robot.

Table 4 summarizes the results, where random sampling is denoted by rnd,
hierarchical sampling by hie, regular edge generation by reg, and sparse edge gen-
eration by spa. All presented results for random graph sampling were averaged
across 100 computations. The results clearly indicates that hierarchical sampling
outperforms random sampling, as well as sparse edge generation outperforms reg-
ular edge generation, i.e., hierarchical sampling with sparse edge generation leads
to strategies requiring the least amount of robots.

Figure 19 depicts the computation times required for graph sampling and strat-
egy computation on the tested maps with sparse edge generation and regular edge
generation on a IntelCore(TM)2 Quad CPU @ 3.00GHz with 4GB RAM. Depicted
results are averaged over 100 runs. The computation of strategies requires notably
more time on regular edge graphs than on sparse edge graphs. Hierarchical sam-
pling requires constantly more time than random sampling, however, facilitates
on every map a faster computation of the strategy once a graph has been found.
For some maps, the total computation time is higher when using hierarchical sam-
pling. However, this increase seems to be acceptable when considering the strategy
improvement documented by Table 4.

Hierarchical Visibility for Guaranteed Search in Large-Scale Outdoor Terrain 31

H
IE

R
N

D

H
IE

R
N

D

H
IE

R
N

D

H
IE

R
N

D

H
IE

R
N

D

T
im

e
[h

]
Computation Time needed for Sparse Graphs (SPA)

Gascola T.Falls Haiti R.City Freiburg G.Canyon

Strategy

Sampling

 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

H
IE

R
N

D

(a)

H
IE

R
N

D

H
IE

R
N

D

H
IE

R
N

D

H
IE

R
N

D

H
IE

R
N

D

T
im

e
[h

]

Computation Time needed for Regular Graphs (REG)

Gascola T.Falls Haiti R.City Freiburg G.Canyon

Strategy

Sampling

 0.0

 2.0

 4.0

 6.0

 8.0

 10.0

 12.0

 14.0

H
IE

R
N

D

(b)

Fig. 19 Comparing computation times of random sampling (RND) and hierarchical sampling
(HIE) on the tested maps. While the computation times for hierarchical sampling increase with
increasing complexity of the map, strategies are faster computed due to simpler structures of
the sampled graphs.

7.4 Field-Experiment Gascola

In this section we present results from applying the best strategy found with
hierarchical sampling and sparse edge generation for the Gascola outdoor area.
The elevation map of Gascola shown in Figure 18(f) has a resolution of 1m per
pixel. The entire area of the site is approximately 700,000 m2. The lowest point in

32 A. Kleiner et al.

the map is set to 0m elevation and the highest point is at 122m. Gascola has a lot
of seasonal shrubs and other vegetation that influence visibility and movement of
agents. We therefore surveyed the terrain a week prior to the deployment of agents
and added the annotations seen in Figure 20 (a). Collecting detailed elevation maps
is a considerable effort and these annotations allow us to accommodate short term
changes in the terrain. Note that large-scale elevation maps containing vegetation
and building structures can be obtained by airborne or satellite-based synthetic
aperture radar (SAR) devices yielding resolutions of up to 10 centimeters. The
Haiti map shown by Figure 18 (a), for example, has been generated after the
earthquake in Haiti 2010 in order to analyze the extend of destruction of man-
made and natural structures.

(a) (b)

Fig. 20 (a) Map of the Gascola area outside of Pittsburgh with additional annotation: clut-
tered terrain, mostly shrubs and debris (green), steep areas that are none-traversable by agents
(red), non-admissible areas defining the perimeter of the experiment (black). (b) Height map
of the Gascola area showing the generated graph for computing strategies (black vertices and
white edges) with according detection sets (different colors).

We selected a strategy requiring eight agents computed on the graph shown
in Figure 20 (b), where detection sets associated with each vertex (and real world
position) are shown with different colorings. These detection sets where uploaded
to the mobile devices in order to inform agents about the detection sets they are
responsible for. We then computed the execution time using our procedure from
Section 5, using the algorithm from [22], yielding an assignment that takes 175
minutes to execute with a walking speed of 1.1 meter per second (approximately
4 km/h). In order to determine the impact of our procedure on execution time
we compared it to 10,000 random assignments. These random assignments simply
assign free agents randomly to new tasks at each step. Here we get a solution
with a mean execution time of 349.3 ± 34.0 minutes and with a maximum at
491.6 and minimum at 236.4. Hence the improvement is significant and can save
our searchers in the field in Gascola a whole hour of search time. Obviously, the

Hierarchical Visibility for Guaranteed Search in Large-Scale Outdoor Terrain 33

problem deserves further study and experimentation on more maps. It should
also be noted that instead of using an LBAP solution at each level we can solve
the general assignment problem and thereby minimize the sum of all travel times
instead of the maximum. This could be useful for applications in which energy
conservation is more important and some of the execution time can be sacrificed.

All participants, eight searchers and two evaders, received a 15 minute instruc-
tion on how to use the application. The two evaders were given a head-start of
another 15 minutes. They were instructed to make use of the available information
on all searchers as best as possible to try to avoid being captured. Most agents
were instantly able to follow the suggested paths and reach their locations. Two
agents, however, had considerable difficulty at first to orient themselves and each
one got lost once causing a delay of the execution but never leading to a breach
between the boundary of contaminated and cleared space. After the first hour,
however, all agents were comfortable following the instructions as the execution
proceeded further. The experiment continued until the first iPads ran out of bat-
tery power. The searchers managed to execute two thirds of the entire strategy
during this time and to catch every evader at least once.

 40.455

 40.456

 40.457

 40.458

 40.459

 40.46

 40.461

 40.462

 40.463

 40.464

-79.79 -79.788 -79.786 -79.784 -79.782 -79.78

L
a

ti
tu

d
e

Longitude

Pursuer 1-8
Evader 1
Evader 2
Detection

 40.455

 40.456

 40.457

 40.458

 40.459

 40.46

 40.461

 40.462

 40.463

 40.464

-79.79 -79.788 -79.786 -79.784 -79.782 -79.78

L
a

ti
tu

d
e

Longitude

Pursuer 1-8
Evader 1
Evader 2
Detection

(a) (b)

 40.455

 40.456

 40.457

 40.458

 40.459

 40.46

 40.461

 40.462

 40.463

 40.464

-79.79 -79.788 -79.786 -79.784 -79.782 -79.78

L
a

ti
tu

d
e

Longitude

Pursuer 1-8
Evader 1
Evader 2
Detection

 40.455

 40.456

 40.457

 40.458

 40.459

 40.46

 40.461

 40.462

 40.463

 40.464

-79.79 -79.788 -79.786 -79.784 -79.782 -79.78

L
a

ti
tu

d
e

Longitude

Pursuer 1-8
Evader 1
Evader 2
Detection

(c) (d)

Fig. 21 Snapshots of the GPS log from all searchers and evaders during the Gascola exper-
iment after (a) 0.5 hour, (b) 1 hour, (c) 2 hours, and (d) 3 hours. Shown are all searcher
trajectories (green), evader trajectories (purple and blue), and evader detections (red).

Figure 21 depicts snapshots of the GPS data recorded during the execution of
the strategy. The purple evader was caught three times by three different agents
attempting to move into the cleared areas undetected. The blue evader, however,
managed to run behind the area controlled by one of the guards at the top of the

34 A. Kleiner et al.

map and successfully breached the perimeter. The GPS log clearly shows that the
searcher in charge abandoned his area without instructions. This issue illustrates
the necessity for thoroughly instructing the searchers when applying the system.
The blue evader was, however, subsequently detected by another agent.

The main conclusions to draw from this field demonstration is foremost the
feasibility of such an integrated system. Secondly, we observed that a team of
human agents is by no means a homogeneous team. Each agent has different walk
speeds and capabilities in following the instructions. Furthermore, the outdoor
environment had changed due to rainfall, and some of the precomputed paths
were in fact blocked. This had no effect on the guarantee of the strategy but did
delay execution since alternative paths had to be found by the affected searchers.
These two issues, heterogeneity and dynamic changes in the environment, clearly
outline problems for further study.

8 Related Work

Searching for moving targets is a general type of problem that has been considered
in a variety of research areas ranging from robotics, control theory, sensor networks,
computational geometry, up to graph theory. Most these areas emphasize different
aspects of the problem and make different assumptions on the environment, tar-
gets, robots and sensors. For example, target locations may be unknown, known,
sensed locally, or predictable. Target behavior may be probabilistic, deterministic,
or adversarial with the target either having no knowledge, sensing locally, or be-
ing omniscient. Similarly, sensors can be local or global, have limited or unlimited
range, be noisy or perfect. Environments may be graphs, 2d obstacle grids, poly-
gons, or elevation maps. But the goal is generally to determine coordinated motion
strategies for one or more agents that guarantees the detection of all targets in
the given environment. This sets the problem apart from other popular areas such
as the art gallery problem and its many variants [41], as well as coverage prob-
lems [7,10]. In the following we shall present a small selection of this related work
with particular emphasis on approaches that share our assumptions with regard
to target behavior, i.e. unbounded speed, adversarial, and omniscient.

One of the more prominent areas relating to moving target search is known as
visibility-based pursuit-evasion. This type of problem, with early variants proposed
in [45], considers the detection of a worst-case target that moves arbitrarily fast
and is omniscient with an unlimited range sensors. These worst-case targets are
generally represented by contamination, i.e. the possibility of a target being present
at a location.

Much of the work on visibility-based pursuit-evasion is concerned with two-
dimensional environments. In [18] it was shown that determining the number
of robots needed for an environment is NP-hard. For single robots, however, a
number of algorithms have been developed. Most notably, [39] presents an on-line
algorithm for a point pursuer moving in an unknown, simply-connected, piecewise-
smooth planar environment. The algorithm is capable of searching for targets with
a robot equipped with a sensor that only measured depth-discontinuities and could
move only according to simple motion primitives (wall-following and along depth-
discontinuities). Control was assumed to be imperfect with bounded errors. Similar
to prior work their approach builds a navigation graph based on its motion prim-

Hierarchical Visibility for Guaranteed Search in Large-Scale Outdoor Terrain 35

itives and critical events. These critical events are determined from the geometry
of the environment and capture how the space visible by the robot changes as it
moves. These critical events occur when the sensed gaps appear, disappear, merge,
or split. Since each gap represents one connected and currently not visible part
of the environment the environment can be considered cleared once all gaps are
known to be cleared as well. Gaps are cleared whenever they appear, with the
exception of all gaps at the beginning which are contaminated. Cleared gaps that
merge remain clear and contaminated gap merging with cleared gaps result in a
contaminated gap. In order to guarantee the detection of the target, the robot has
to find a motion strategy so that every starting gap disappears at least once and
only cleared gaps remain. To compute such a strategy the algorithm superimposes
information states, i.e. whether gaps are contaminated or not, on the navigation
graph and then searches for a strategy that leads to an all cleared stated.

Another approach was developed by Tovar et al. [46], who considered bounded
speeds for evader and pursuer. The setting is again a simply-connected polygonal
environment. The extra information about speed adds significant ,,power” to the
algorithm, enabling it to compute solutions in cases where previous approaches
failed. It involves the computation of a reachability set (generally an intractable
problem).

Modifying the evader and pursuer speed ratio relates the problem to the infinite
evader speed for visibility-based problems or the 0-speed for coverage problems.
One key aspect is the fact that with bounded speeds re-contamination can be
modeled, i.e. previously visible regions are not instantaneously recontaminated,
but depending on the distance to the contaminated regions, they will only recon-
taminate after a certain time has passed. There are still open questions in this
direction when considering further assumptions on the motion of the evader. A
difficulty of the approach is to describe how the recontaminated regions, so called
fans, evolve with time.

The main problem with visibility based approaches is that they are difficult to
extend to large robot teams and large environments, especially complex 2.5D or
3D environments. An elaborate algorithm for two searchers is available in [42] and
coordination becomes exceedingly difficult with larger teams. A report by Lazeb-
nik [33] discusses the challenges of extending the ideas from 2D visibility-based
pursuit-evasion to 3D. Especially the concept of critical events becomes difficult
to tackle. One reason for this is that the unseen parts of the environment, i.e.
shadow spaces, are not connected anymore, even in simply-connected environ-
ments. Another reason is that while the critical events in 2D can be determined
via computing bi-tangents and inflectional tangents in 3D one needs to resort to
more complex structures such as the aspect graph [26]. Constructing this graph
for polyhedral scenes with n faces is Θ(n9) While certainly interesting from a the-
oretical perspective, much further work is required to allow us to employ such an
approach in practice, especially since extensions to large teams of robots would be
even more daunting than they already are in 2D.

One of the areas that promises scalability to larger robot teams and environ-
ments is graph-based pursuit-evasion. Also here a number of variants have been
considered and the field is vast. The variant most closely related is that of guaran-
teed graph searching which considers omniscient and arbitrarily fast targets that
have to detected on a vertex or edge of a graph. Again, contamination is often used
to represent the possibility that a target is located somewhere in the graph. An

36 A. Kleiner et al.

annotated bibliography on guaranteed graph searching is presented in [16]. The
goal of guaranteed graph searching is generally to compute a strategy for multiple
agents that guarantees target detection while using the least possible number of
agents. The variant of graph searching related closest to our paper is known as
edge-searching. In edge-searching a graph is initially fully contaminated and can
be cleared by moving searchers along its edges. Such moves clear edges and con-
tamination is prevented from spreading through all vertices that are guarded by at
least one searcher. An early result regarding the complexity of this problem is given
in [34] where it was shown that edge-searching is NP-hard. The question whether
re-contamination can improve strategies and hence whether the problem is in NP
was addressed in [32] and [4]. Therein it was shown that re-contamination does not
matter and one can always find an optimal strategy that avoids re-contamination,
also known as monotone. In [2] the edge-searching problem was generalized to
require multiple searchers in order to clear an edge or guard a vertex. Further-
more, the authors consider types of strategies that are contiguous, i.e. strategies
for which the cleared edges and vertices of the graph always form a connected
sub-graph, also known as connected strategies. The presented algorithm to com-
pute such connected and monotone strategies on trees is, however, not optimal
as demonstrated in [30] and [11] due to some flaws in the proofs. In [11] it is
also proven that the weighted edge-searching is NP-complete on trees and that
there exists a polynomial on tree with bounded degree. It is important to note
that connected search is not monotone, i.e. imposing that no re-contamination is
allowed when computing connected strategies can lead to strategies that require
more agents. An example of this is constructed in [49]. Yet, for practical applica-
tions both of these properties, monotonicity and connectedness, are very useful.
Monotonicity ensures that areas are only cleared once, which can reduce time and
cost while connectedness ensures that there is a safe area through which robots
can travel or deploy a communication network.

Applications of graph-based pursuit-evasion algorithms for a robotic applica-
tion have been discussed in [19, 29, 31]. In this context graphs that have contam-
ination on nodes rather than on edges are used. In the problem from [31], called
Graph-Clear, multiple agents may be required to clear vertices and contamination
is prevented from spreading by placing robots on edges. So instead of guarding
vertices and clearing edges, as in edge-searching, in Graph-Clear edges are guarded
and vertices are cleared. This model turns out to be quite different from weighted
edge-searching in as much as [11] showed that weighted edge-searching is NP-hard
on trees while Graph-Clear can be solved in polynomial time on trees [31]. The
work related most closely to our application of graph-searching is [19]. Therein, as
in edge-searching, only one agent is required to guard and clear a vertex. Agents
can move from one vertex to a neighboring vertex by sliding along an edge and
thereby clearing the new vertex. Note that this move does not expose the origi-
nating vertex to re-contamination from the new vertex during the sliding move.
Due to the similarity of this search to edge-searching the label-based approach
from [2] is applied and additional variants with different labeling rules are intro-
duced. Since these algorithms work on trees the GSST algorithm first generates a
spanning tree, then computes a strategy on this tree which is then converted back
to the original graph. The performance of this approach has been tested in [19]
with experiments on several graphs and we adopt the same general approach with
regard to generating strategies on the graph. Additionally, in [24] it was shown

Hierarchical Visibility for Guaranteed Search in Large-Scale Outdoor Terrain 37

that optimal monotone and connected search strategies of a graph form a spanning
tree. In other words, the optimal monotone and connected strategy could be found
by considering all spanning trees and all valid strategies on these. We shall also
briefly refer to this result but in general the enumeration of all spanning trees is
only possible for very small environments in the range of less than a dozen nodes.
Most environments of interest have many more nodes and in our case around
1070 spanning trees. The graph-based approach with randomly sampling multiple
spanning trees seems to work well in practice as demonstrated in [19]. Therein a
comparison was made on five different graphs between the GSST algorithm and
a stochastic hill-climbing approach to compute plans for small teams of agents
from [17]. Additional experiments validated the use of random sampling of span-
ning trees to obtain graph strategies rather than an exhaustive search. Yet, one
should note that none of these tests used environments for which the graph-based
approach needed more than five agents and all but one needed 3 or less.

For search in real environments these algorithms become useful once a suitable
graph can be obtained. In [1] and [28] it was demonstrated that such construc-
tions are feasible and that we can apply graph-based search strategies to coordinate
search in real environments. These, however, only consider reducing the number of
agents needed for the search and not the time this takes. Time was only considered
in [5] and the authors presented results on the complexity of computing strate-
gies that minimize travel time. The travel time is given by weights on edges. It
turns out that minimizing the overall travel time is already strongly NP-complete
even on simple graphs such as stars and trees. One problem with modeling travel
times as weights on edges, however, is that the graph on which strategies are com-
puted usually has edges whenever contamination can spread between two vertices.
Adding a travel time to such edges treats the graph like a road map which it may
not be since it primarily captures how contamination and hence target motion can
spread. Especially when dealing with complex 2.5D or 3D environments the actual
best path in the map between any two vertices that are not directly connected with
an edge may not correspond to a path in such a graph.

Another graph-based related area is known as Moving Target Search first con-
sidered in [21]. The assumptions about target motion differs dramatically and tar-
gets generally move at bounded speed and their location is known by the searcher.
In [27] an A∗ planner with the graph representing a grid with obstacles is used to
solve the problem. Moldenhauer et al. [36] presented the Dynamic Abstract Trail-
Max algorithm for computing strategies in moving target search based on Partial-
Refinement A* (PRA*) planning [44]. In contrast to our method, which generates
a hierarchical decomposition form elevation maps for computing visibility, PRA*
extracts a hierarchy of graphs which is utilized for path planning. Another ap-
proach that also assumes that the target’s location is known is presented in [3].
Therein the goal is to prevent the evader from escaping from the robot’s field
of view for as long as possible. The problem is analyzed from a game-theoretic
perspective in complex 2D environments. Necessary and sufficient conditions for
continued observation and escape are provided, as well as motion strategies that
are in Nash equilibrium.

An entirely different graph-based approach is presented in [37]. Therein a graph
is created by randomly sampling locations in a 2D environments and it is assumed
that targets move according to a probabilistic motion model which is represented
by a Markov process that determines how contamination diffuses. The graph is

38 A. Kleiner et al.

used for an A∗ search with a suitable heuristic to search for robot paths on the
graph that reduces the level of contamination. Since this approach is computa-
tionally expensive a partitioning of the environment with another heuristic is pre-
sented. The heuristic attempts to split the graph into roughly two equal parts
with a minimal border. Then A∗ is run on both parts sequentially while the bor-
der is guarded by some sensors. This allows five robots to search a small indoor
environment.

The first paper to provide an algorithm to construct graphs for our search
problem with elevation maps is [1]. Therein the graph construction is based on
randomly sampling locations in the map. Every location has an associated area
in which targets are detectable if an agent is placed on the location. These areas
are coined detection sets and the detection sets of all vertices cover the entire
map. Edges between vertices are created whenever two detection sets overlap in a
particular manner.

Hierarchical problem decompositions have been used in the past within vari-
ous other fields, such as quad trees in computer graphics [40] and for efficiently
rendering 3D models [15], visual human motion capture [12], in moving target
search applied to computer games [36] with known target locations, and path
planning [35, 44]. In general, such hierarchical methods work well in practice and
are often validated with extensive experiments and demonstrations.

9 Conclusion

We have proposed a novel and to our best knowledge first approach for guaranteed
search in complex outdoor environments. Given an elevation map from an area
including vegetation and man-made structures, as for example obtained by SAR
devices, our system computes guaranteed schedules and navigation points from a
deduced graph representation for teams of agents searching for targets. Although
the presented method has no guarantee on optimality in terms of the number of
needed searchers, several experiments have demonstrated a significant reduction
of required agents compared to previous methods based on random sampling, as
well as the general feasibility of the approach.

A novel graph structure, embedded in elevation maps, has been presented
that is either generated randomly or based on hierarchical sampling and captures
visibility information arising in 2.5D problems. Several variants that utilize this
information differently have been proposed and evaluated. We have shown empir-
ically that hierarchical sampling combined with sparse edge generation leads to
the least amount of needed agents when computing connected strategies.

Furthermore, we demonstrated the effects on strategies when changing the
height of target and searchers, and the sensing range. In complex maps a larger
sensing range can lead to worse strategies since the graph complexity increases
due to unnecessary edges introduced from multiply overlapping detection sets.
This result is likely due to the fact that re-contamination is prohibited. However,
our approach allows it to identify empirically an appropriate sensing range leading
to strategies requiring less robots for a particular map.

Despite the fact that the presented approach is based on heuristics we have
demonstrated that it performs very well in complex real-world environments con-
taining loops, occlusions, and significant height differences. The successful coor-

Hierarchical Visibility for Guaranteed Search in Large-Scale Outdoor Terrain 39

dination of several human agents searching for evaders in a large outdoor area
containing wild-growing shrubs, hills, and nested paths was demonstrated. The
human team finally managed to capture all evaders when strictly following the
guaranteed schedule computed beforehand.

The simplicity of our approach makes it readily applicable to a variety of do-
mains. One nice property of the graph-based representation is that it facilitates
heterogeneous teams, for example, mixed-initiative teams consisting of human and
robot searchers. One direction of our future work is to integrate unmanned aerial
vehicles (UAVs) into the search by computing detection sets individually for het-
erogeneous agent types. With our current approach schedules are computed before-
hand and cannot be changed during execution. The possibility to change schedules
online can be an important feature when professional search teams are involved.
They might wish to modify strategies locally given their domain knowledge. Our
future research will focus on an online-adjustable version of the proposed approach.

10 Acknowledgments

This work was supported by AFORS MURI grant FA95500810356 and ONR grant
N00014090680.

References

1. M. Lewis A. Kolling, A. Kleiner and K. Sycara. Pursuit-evasion in 2.5d based on team-
visibility. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 4610–4616, 2010.

2. L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro. Capture of an intruder by mobile
agents. In Proceedings of the Fourteenth Annual ACM Symposium on Parallel Algorithms
and Architectures, pages 200–209, New York, NY, USA, 2002. ACM Press.

3. S. Bhattacharya and S. Hutchinson. On the existence of nash equilibrium for a visibility
based pursuit evasion game. The International Journal of Robotics Research, 2009.

4. D. Bienstock and P. Seymour. Monotonicity in graph searching. Journal of Algorithms,
12(2):239–245, 1991.

5. R. Borie, C. Tovey, and S. Koenig. Algorithms and complexity results for pursuit-evasion
problems. In Proceedings of the International Joint Conference on Artificial Intelligence,
pages 59–66, 2009.

6. J. E. Bresenham. Algorithm for computer control of a digital plotter. IBM Systems
Journal, 4(1):25–30, 1965.

7. F. Bullo, J. Cortés, and S. Mart́ınez. Distributed control of robotic networks. Applied
Mathematics Series. Princeton University Press, 2009. To appear. Electronically available
at http://coordinationbook.info.

8. R.E. Burkard and E. Cela. Linear assignment problems and extensions. Technical report,
Karl-Franzens-Univ. Graz & Techn. Univ. Graz, 1998.

9. P. Carraresi and G. Gallo. A multi-level bottleneck assignment approach to the bus drivers’
rostering problem. European Journal of Operational Research, 16(2):163–173, 1984.

10. H. Choset. Coverage for robotics – A survey of recent results. Annals of Mathematics and
Artificial Intelligence, 31(1-4):113–126, 2001.

11. D. Dereniowski. Connected searching of weighted trees. Mathematical Foundations of
Computer Science 2010, pages 330–341, 2010.

12. J. Deutscher, A. Davison, and I. Reid. Automatic partitioning of high dimensional search
spaces associated with articulated body motion capture. In Computer Vision and Pat-
tern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society
Conference on, volume 2, pages II–669. IEEE, 2001.

40 A. Kleiner et al.

13. C. Dornhege and A. Kleiner. Behavior maps for online planning of obstacle negotiation
and climbing on rough terrain. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots
& Systems (IROS), pages 3005–3011, San Diego, California, 2007.

14. Charles Elkan. The paradoxical success of fuzzy logic. In Proceedings of the Eleventh
National Conference on Artificial Intelligence, pages 698–703, Menlo Park, California,
1993.

15. M. Fan, M. Tang, and J. Dong. A review of real-time terrain rendering techniques. In Com-
puter Supported Cooperative Work in Design, 2004. Proceedings. The 8th International
Conference on, volume 1, pages 685–691. IEEE, 2003.

16. F. V. Fomin and D. M. Thilikos. An annotated bibliography on guaranteed graph search-
ing. Theoretical Computer Science, 399(3):236–245, 2008.

17. B. P. Gerkey, S. Thrun, and G. Gordon. Parallel stochastic hill-climbing with small teams.
Multi-Robot Systems: From Swarms to Intelligent Automata, 3:65–77, 2005.

18. L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and R. Motwani. A visibility-based
pursuit-evasion problem. International Journal of Computational Geometry and Applica-
tions, 9:471–494, 1999.

19. G. Hollinger, A. Kehagias, and S. Singh. GSST: Anytime guaranteed search. Autonomous
Robots, 29(1):99–118, 2010.

20. World Bank ImageCat Inc. RIT Haiti earthquake LiDAR. http://opentopo.sdsc.edu/
gridsphere/gridsphere?cid=datasets, 2010.

21. T. Ishida and R.E. Korf. Moving target search. In Proceedings of the International Joint
Conference on Artificial Intelligence, pages 204–210. Citeseer, 1991.

22. R. Jonker and A. Volgenant. A shortest augmenting path algorithm for dense and sparse
linear assignment problems. Computing, 38(4):325–340, 1987.

23. RM Karp. Reducibility among Combinatorial Problems. Complexity of Computer Com-
putations, 1972.

24. A. Kehagias, G. Hollinger, and A. Gelastopoulos. Searching the nodes of a graph: theory
and algorithms. Technical Report ArXiv Repository 0905.3359 [cs.DM], Carnegie Mellon
University, 2009.

25. A. Kleiner and C. Dornhege. Real-time localization and elevation mapping within urban
search and rescue scenarios. Journal of Field Robotics, 24(8–9):723–745, 2007.

26. J.J. Koenderink and A.J. Doorn. The internal representation of solid shape with respect
to vision. Biological cybernetics, 32(4):211–216, 1979.

27. S. Koenig, M. Likhachev, and X. Sun. Speeding up moving-target search. In Proceedings
of the 6th international joint conference on Autonomous agents and multiagent systems,
pages 1–8. ACM, 2007.

28. A. Kolling and S. Carpin. Extracting surveillance graphs from robot maps. In Proceed-
ings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
2323–2328, 2008.

29. A. Kolling and S. Carpin. Multi-robot surveillance: an improved algorithm for the Graph-
Clear problem. In Proceedings of the IEEE International Conference on Robotics and
Automation, pages 2360–2365, 2008.

30. A. Kolling and S. Carpin. On weighted edge-searching. Technical Report 01, School of
Engineering, University of California, Merced, 2009.

31. A. Kolling and S. Carpin. Pursuit-evasion on trees by robot teams. IEEE Transactions
on Robotics, 26(1):32–47, 2010.

32. A. S. LaPaugh. Recontamination does not help to search a graph. Journal of the ACM,
40(2):224–245, 1993.

33. S. Lazebnik. Visibility-based pursuit-evasion in three-dimensional environments. Technical
report, University of Illinois at Urbana-Champaign, 2001.

34. N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and C. H. Papadimitriou. The
complexity of searching a graph. Journal of the ACM, 35(1):18–44, 1988.

35. M. Metea and J. Tsai. Route planning for intelligent autonomous land vehicles using
hierarchical terrain representation. In Robotics and Automation. Proceedings. 1987 IEEE
International Conference on, volume 4, pages 1947 – 1952, mar 1987.

36. Carsten Moldenhauer and Nathan R. Sturtevant. Evaluating strategies for running from
the cops. In Proceedings of the 21st international jont conference on Artifical intelligence,
pages 584–589, San Francisco, CA, USA, 2009. Morgan Kaufmann Publishers Inc.

37. M. Moors, T. Röhling, and D. Schulz. A probabilistic approach to coordinated multi-
robot indoor surveillance. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 3447–3452, 2005.

Hierarchical Visibility for Guaranteed Search in Large-Scale Outdoor Terrain 41

38. T.D. Parsons. Pursuit-evasion in a graph. In Y. Alavi and D. R. Lick, editors, Theory and
Applications of Graphs, volume 642, pages 426–441. Springer Berlin / Heidelberg, 1976.

39. S. Sachs, S. Rajko, and S. M. LaValle. Visibility-based pursuit-evasion in an unknown
planar environment. The International Journal of Robotics Research, 23(1):3–26, January
2004.

40. Hanan Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley Pub
(Sd), 1990.

41. T. Shermer. Recent results in art galleries. Proceedings of the IEEE, 80(9):1384–1399,
1992.

42. B. Simov, G. Slutzki, and S. M. LaValle. Clearing a polygon with two 1-searchers. Inter-
national Journal of Computational Geometry and Applications, 19(1):59–92, 2009.

43. B. Steder. Freiburg campus LiDAR data. http://ais.informatik.uni-freiburg.de/
projects/datasets/fr360/, 2010.

44. Nathan Sturtevant and Michael Buro. Partial pathfinding using map abstraction and
refinement. In Proceedings of the 20th national conference on Artificial intelligence -
Volume 3, pages 1392–1397. AAAI Press, 2005.

45. I. Suzuki and M. Yamashita. Searching for a mobile intruder in a polygonal region. SIAM
Journal on Computing, 21(5):863–888, 1992.

46. B. Tovar and S. M. LaValle. Visibility-based pursuit-evasion with bounded speed. In
Proceedings of the Workshop on Algorithmic Foundations of Robotics, pages 475–489,
2006.

47. W. T. Tutte. Graph Theory. Cambridge University Press, 2001.
48. U.S. Geological Survey (USGS). U.S. Geological Survey (USGS). http://www.usgs.gov/,

2010.
49. B. Yang, D. Dyer, and B. Alspach. Sweeping graphs with large clique number. Lecture

notes in computer science, pages 908–920, 2004.

