
ARMO: Adaptive Road Map Optimization for Large Robot Teams

Alexander Kleiner*, Dali Sun* and Daniel Meyer-Delius*

Abstract— Autonomous robot teams that simultaneously dis-
patch transportation tasks are playing more and more an
important role in present logistic centers and manufacturing
plants. In this paper we consider the problem of robot motion
planning for large robot teams in the industrial domain.
We present adaptive road map optimization (ARMO) that
is capable of adapting the road map in real time whenever
the environment has changed. Based on linear programming,
ARMO computes an optimal road map according to current
environmental constraints (including human whereabouts) and
the current demand for transportation tasks from loading
stations in the plant. For detecting dynamic changes, the
environment is describe by a grid map augmented with a hidden
Markov model (HMM). We show experimentally that ARMO
outperforms decoupled planning in terms of computation time
and time needed for task completion.

I. INTRODUCTION

Recent trends in logistics and manufacturing clearly in-
dicate an increasing demand for flexibility, modularity, and
re-configurability of material flow systems. Whereas in the
past plant installations have been used for decades without
change, nowadays product life cycles and the demand for
product variety rely on innovative technologies that allow to
flexibly reconfigure automation processes without reducing
their availability. Therefore, distributed and self-organized
systems, such as teams of robots that autonomously organize
transportation tasks, are playing an increasingly important
role in present logistic centers and manufacturing plants.

Besides the task assignment problem, i.e., allocating robots
to different tasks [1], another challenge in this domain is
to efficient coordinate the simultaneous navigation of large
robot teams in confined and cluttered environments. In gen-
eral, multiple robot motion planning can be solved by either
considering the joint configuration space of the robots [2]
or by deploying decoupled techniques that separate the
problems of motion planning and coordination [3]. Whereas
the first approach is intractable for large robot teams since the
dimension of the joint configuration space grows linearly and
thus the search space grows exponentially with increasing
number of robots, the second approach yields typically
sub-optimal solutions, for example, requiring the robots to
perform larger detours in order to avoid collisions. Road map
planners are a popular method for single robot planning in
static environments [4] that compute during a pre-processing
phase a connectivity graph in free configuration space that
is then used for efficient path planning during runtime.
However, dynamic domains, such as industrial environments,

* Department of Computer Science, University of
Freiburg, Georges-Koehler-Allee 52, 79110 Freiburg, Germany,
{kleiner,sun,meyerdel}@informatik.uni-freiburg.de

Fig. 1. Motivating example: In industrial environments the map can locally
change due to replaced objects, such as pallets, as well as gathering humans.
Adaptive road map optimization facilitates the simultaneous navigation
planning of large robot teams while respecting these changes.

are more challenging due to permanent changes in the
environment, e.g., due to the placement and removal of
objects such as pallets and boxes, and the co-location of
human workers.

In this paper we present adaptive road map optimization
(ARMO) for large robot teams that is capable of adapting
the road map in real time whenever the environment has
changed. In short, the planner computes an optimal road map
according to current environmental constraints (including hu-
man whereabouts) and the current demand for transportation
tasks from the loading stations. We describe the environment
of the robot with a spatial grid map in which a hidden
Markov model (HMM) is used to represent dynamic changes.
From the continuously updated grid map the computation
of a Voronoi Graph [5] is triggered whenever significant
changes have been detected. The Voronoi graph, representing
free space connectivity, is taken as a starting point to extract
road segments (as shown in Figure 1) for the final road map.
We use a Linear Programming (LP) approach for computing
the optimal configuration of these segments with respect
to minimal travel costs and maximal compactness of the
network. Figure 1 depicts the re-arrangement of the road map
after local changes of the environment have been detected.
We show experimentally that ARMO outperforms decoupled
planning in terms of computation time and time needed for
task completion.

Kallman et al. used dynamic roadmaps for online mo-
tion planning based on Rapidly-exploring Random Trees
(RRTs) [6]. Velagapudi et al. introduced a distributed version
of prioritized planning for large teams where each robot
plans simultaneously and re-plans in case a conflict has
been detected [7]. Berg et al. presented a method for road

map based motion planning in dynamic environments [8].
In contrast to our method, which learns changes of the
environment online, their approach discriminates between
static and dynamic objects, e.g. walls and robots, in advance,
which might fail when also portions of the map have to
be considered as dynamic. Bellingham et al. proposed a
method for solving the cooperative path planning for a fleet
of UAVs [9]. They formulate the task allocation problem as
a mixed-integer linear program (MILP). Sud et al. developed
an approach for path planning of multiple virtual agents in
complex dynamic scenes [10]. They utilize first- and second-
order Voronoi diagrams as a basis for computing individual
agent paths. While computational efficient, their method does
not focus on optimizing the global efficiency of the multi
agent team.

The reminder of this paper is organized as follows. In Sec-
tion II the problem is formally described and in Section III
a description of the target system is provided. In Section IV
the method for dynamically updating the grid map, and in
Section V the algorithm for adaptively recomputing the road
map are described. In Section VI results from experiments
are presented and we finally conclude in Section VII.

II. PROBLEM FORMULATION

We consider the problem of coordinating the execution
of delivery tasks by a team of autonomous robots, e.g., the
transportation of crates containing goods, between a set of
fixed stations S. For each delivery tasks dkl ∈ D(t) a robot
has to be assigned to finalize the delivery by transporting
the corresponding crate from station k ∈ S to station l ∈ S.
We assume that the assignment problem has been solved
(e.g. as shown in our previous work [1]), and hence restrict
our attention to the problem of solving the multiple robot
motion planning problem as defined in the following. Let
R = {R1, R2, . . . , Rn} be the set of n robots navigating
simultaneously on a two-dimensional grid map. During plan-
ning, each robot has a start configuration si ∈ Cfree and a
goal configuration gi ∈ Cfree, where Cfree is the subset
of configurations robots can take on without colliding with
static obstacles. Note that in our case these configurations
directly map to locations and orientations on the discrete grid
map which are collision free given the footprint of the robot.
The problem is to compute for each robot Ri ∈ R a path
πi : [0, Ti] → Cfree such that πi(0) = si and πi(Ti) = gi
which is free of collisions with the trajectory πj of any other
robot j 6= i. Note that Ti denotes the individual path length
of robot Ri.

We consider environments with dynamic obstacles such
as pallets and larger crates that might change their locations
over time. Therefore, Cfree is a function of time which we

Fig. 2. The target system: Robots equipped with convoyer and RFID reader
for autonomously handling transportation tasks: (a) approaching a station
for loading. (b) safe navigation among humans.

denote by Cfree(t). Note that we assume that Cfree is static
during each planning cycle.

III. SYSTEM OVERVIEW

Our system is based on the KARIS (Kleinskalige Au-
tonomes Redundantes Intralogistiksystem) [11] platform de-
veloped by a joint effort of several companies and univer-
sities of the “Intralogistic Network” in south Germany. The
long-term goal of this project is to deploy hundreds of these
elements to solve tasks in intra-logistics and production,
such as autonomously organizing the material flow between
stations. The element has a size of 50 × 50 cm, a payload
of 60 kg, and is capable to recharge its batteries via contact-
less rechargers let into the ground. Furthermore, it contains
a high precision mechanism for enabling automatic docking
maneuvers, either with other elements or a loading station.
Each element is equipped with a holonomic drive to facilitate
docking behaviors and a conveyor for loading and unloading
crates when docked with a loading station. The convoyer
has an integrated RFID reader for directly reading from the
crates their destination, e.g. the target station ID, when they
are placed on the conveyer.

For the purpose of autonomous navigation the element is
equipped with two SICK S300 laser range finders (LRFs)
mounted in two opposing corners, wheel odometry, and an
inertial measurement unit (IMU). Navigation is based on
grid maps, which are generated from data collected by once
steering a single robot manually through the environment.
We use Monte-Carlo localization [12] with wheel odometry,
IMU, and range readings from the two LRFs for localizing
robots on the grid map. Furthermore, the typical hybrid
architecture is deployed consisting of two components, which
are a deliberative planning layer based on the grid map and
a reactive safety layer based on LRF data directly. Figure 2
depicts the demonstration of the system during the Logimat
fair in Stuttgart 2010. At the current stage, the system is
capable of safe autonomous navigation in human workspaces
for team sizes of up to four robots.

Server

Mehrere Seiten

Robot N

Dynamic
Occupancy Grid

Local Navigation

Local Planner

Road Map

Grid Map

Map
Inconsistencies

Adaptive Road Map
Planner

Localization

Grid
Map

Fig. 3. System Overview

The work presented in this paper has the goal to extend
the planning system for the simultaneous navigation of
large robot teams in dynamically changing environments.
Figure 3 depicts the overall system architecture and modules
of the considered extension. The localization module reports
inconsistencies between sensor observations and the current
grid map to the Dynamic Occupancy Grid Module (see
Section IV) which computes an updated version of the grid
map. The updated grid map is published to the localization
module of each robot, and also to the Adaptive Road Map
Planner (see Section V) that computes a new road map,
which is then published to the local planner of each robot.
The local planner computes then based on the road map a
path that is executed by the navigation module. The overview
does not contain the mechanism for task allocation, i.e., to
assign robots to delivery taks. In the current system this task
is solved by the contract net protocol [13], however, also
more sophisticated approaches, such as the one presented in
our previous work [1] can be deployed.

IV. DYNAMIC OCCUPANCY GRID MAPS
In this section we describe the procedure for dynamically

updating the occupancy grid map when changes in the
environment occur. We assume that a map of the entire
environment has been generated by an appropriate method
for simultaneous localization and mapping (SLAM) in ad-
vance [14]. Our method temporarily updates this represen-
tation when inconsistencies between laser observations and
the map have been detected. For this purpose we combine
a conventional occupancy grid map with a hidden Markov
model (HMM) that represents the belief about the occupancy
and occupancy change probabilities for each cell in the grid.
Standard occupancy grid maps [15] are a special case of our
representation in which the probabilities of change are zero.

Our model requires the specification of an observation
model, the initial state distribution, and the state transition
model for each cell. The observation model p(zt | ct) repre-
sents the likelihood of observing a cell c as free or occupied

free occ

misshit misshit

Fig. 4. Graphical model characterizing the state transition probabilities
and observation model of a cell in a dynamic occupancy grid.

given the actual state of the cell. In this paper, we consider
only observations obtained with a laser range scanner. The
cells in the grid that are covered by a superimposed laser
beam are determined using a ray-tracing operation. All cells
covered by the beam are considered as miss, whereas the
cells covered by the endpoint of the beam are considered as
hit. We assume that this observation model is equal for each
cell and given beforehand.

The initial state distribution p(c0) specifies the a priori
occupancy probability of a cell. The key component in
our model, however, are the state transition probabilities
p(ct | ct−1) that describe how the occupancy state of cells
changes between two consecutive time steps. These proba-
bilities allow us to explicitly characterize how the occupancy
of the space changes over time. The underlying assumption
behind our approach is that changes in the environment
are stationary, that is, the state transition probabilities do
not change themselves over time. Based on this stationary
dynamic assumption and given that a cell can either be
free (free) or occupied (occ), we only need to specify two
transition probabilities for each cell, namely the probability
of changing from occupied to free and the probability of
changing from free to occupied. Figure 4 depicts the structure
of the HMM behind our approach. The transition probabili-
ties can be efficiently estimated using the forward-backward
procedure (see [16]). The main disadvantage of this instance
of the expectation-maximization (EM) algorithm for HMMs
is that it is an offline approach and requires to store the
complete sequence of observations. An alternative, online
version of the EM algorithm [17] is used instead.

In order to update the occupancy of a dynamic occupancy
grid map as new observations become available, the follow-
ing Bayesian approach according to a discrete Bayes filter is
used:

p(ct | z1:t) = η p(zt | ct)
∑
ct−1

p(ct | ct−1) p(ct−1 | z1:t−1) ,

(1)
where η is a normalization constant, p(zt | ct) the observa-
tion model and p(ct | ct−1) the state transition probability.
Using (1) the belief p(ct | z1:t) over the current occupancy
state ct of a cell given all the available evidence z1:t up to

time t can be recursively estimated from the belief at the
previous time step. Note that the map update for standard
occupancy grids is also a special case of our approach.

V. ADAPTIVE ROADMAP PLANNER

In this section we describe the procedure for computing
the adaptive road map given a dynamic occupancy grid map,
a set of stations s ∈ S, where loc(s) denotes the location
(xs, ys) of station s on the grid map, and a set of delivery
tasks D, where each dkl ∈ D requires the routing of packages
from station k ∈ S to station l ∈ S.

A. Computation of the connectivity network

Our goal is to compute a road map that is optimal in
terms of efficiency and compactness for the simultaneous
routing of robots executing delivery tasks. For this purpose
we first compute the Voronoi graph [5] from the dynamic
grid map, which then serves as a basis for computing the
connectivity network C = (V,E) consisting of nodes v ∈ V
that correspond either to station locations loc(s) or crossings,
and edges e ∈ E that connect all stations and crossings on
the map. The computation of C is carried out by three steps.
First, we determine for each tuple (i, j) ∈ S ∧ i 6= j the
set of alternative paths Aij connecting station i and j on the
Voronoi graph. Second, according to the method described
in [18], we replace each Aij by orthogonal straight lines
(either horizontal or vertical) under the constraint that they
have to be within a minimum safety distance to obstacles
including the maximal extent of robots from their rotational
center. Third, we add all straight lines to E while merging
parallel lines if they exceed the double size of the robots.
Besides station locations loc(s), for each crossing line a node
is created and added to V . Finally, we compute for each
eij ∈ E the maximal number of possible lanes wij for this
connection according to the distance to the nearest obstacle,
and the time needed to travel this segment cij according to
its length.

B. Definition of the LP problem

Based on the connectivity network C, we define our logis-
tics problem similar to the minimum cost flow problem [19],
however, with the difference that the number of lanes in both
directions between two nodes and thus the capacities are
variable. The goal is to find a network structure by which
packages are optimally routed between the stations in the
network. At each time there exists a set of simultaneous
delivery tasks dkl ∈ D(t) that require the routing of packages
from station k ∈ S to station l ∈ S . We denote by
bkl = b(dkl) the requested throughput rate, i.e., the amount

of packages per minute that have to be delivered from station
k to station l.

Given the connectivity network C, we associate with each
edge a cost cij , the maximal number of lanes wij allowed in
the real world, and the capacity of a single lane connection
uij . Whereas the cost cij expresses the time needed to travel
from i to j, capacity uij expresses the maximal number
of robots that can travel on this connection via a single
lane at the same time without causing congestions. The
number of lanes in both directions between two nodes i
and j is expressed by the decision variables yij and yji,
respectively. For example, yij = 2, yji = 1 denotes a single
lane connection from node j to node i and a double lane
from node i to node j. The quantity wij constraints the set
of possible assignments to yij and yji according to the space
available in the the real world. For example, if wij = 4, then
possible assignments are (0, 0), (0, 1), (1, 0), (2, 1), (1, 2),
..., (2, 2). In general, it has to be assured that yij+yji ≤ wij .
Note that there exists the same limit in both directions and
thus wij = wji.

The decision variables xklij define the flow assigned to an
edge due to the delivery from k to l. The total flow xij has
to be bigger or equal to zero and below the maximal flow
uijyij , where uij is the capacity of a single lane and yij the
number of activated lanes.

We associate for each delivery task dkl the requested
throughput with the receptive station nodes. For each node
i ∈ V , b(i) = bkl if i = k, i.e., vertex i is a source, and
b(i) = −bkl if i = l, i.e., vertex i is a sink. All other nodes
for which b(i) = 0 are functioning as transition nodes. The
problem formulation can then be stated as follows:

Minimize
∑
(i,j)

∑
k

∑
l

cijx
kl
ij +

∑
(i,j)

uijyij (2)

subject to:

∑
j:(j,i)

xklij −
∑
j:(i,j)

xklji =

−bkl(i) (i = k) ∀ i, k, l
bkl(i) (i = l) ∀ i, k, l
0 otherwise.

(3)
yij + yji ≤ wij ∀ (i, j), (4)

xklij ≥ 0 ∀ (i, j), k, l, (5)∑
k

∑
l

xklij ≤ uijyji ∀ (i, j), k, l (6)∑
j:(i,j)

xklji ≤ Cmax (i 6= k ∧ i 6= l) ∀ i, k, l (7)

Equation 2 minimizes over the total travel costs and the
physical space occupied by the road network. Equation 3 en-

forces the flow conservation in the network, and Equation 4,
Equation 5, and Equation 6 are constraining the maximal
number of lanes, minimal and maximal flow, respectively.
Finally, Equation 7 ensures that the total flow through
crossings does not exceed the maximal crossing capacity
Cmax which depends on the spacial size of crossings, i.e.,
how many robots can be located there at the same time. Note
that delivery tasks for which the node operates as source or
sink have no influence on the capacity.

The above formulation can efficiently be solved by linear
programming solvers, such as CPLEX, when defining the
decision variables xij , yij by continuous values and rounding
up the yij from which then the road map can directly be
constructed. Furthermore, we yield for each delivery task
dkl a subset of edges from the road map having positive flow
assignments xklij > 0. These quantities are directly utilized
by the local planner (see Section III) for extracting individual
robot plans by finding the shortest path on the road map by
the following successor state expansion: For each node i, we
perform random sampling over all outgoing edges weighted
according to their normalized flow values xklij . If there exists
only one edge with xklij > 0 for node i, the edge is expanded
directly. Finally, the local navigation module follows this
plan while coordinating locally at crossings with other robots
when needed.

VI. EXPERIMENTAL RESULTS

The system has been tested in several different environ-
ments. Figure 5 depicts some of these environments that were
used for the results presented in this paper. The PLANT map
has a size of 51m×56m, the ASE map a size of 94m×82m,
and the KNO map a size of 88m× 43m. On each map we
defined locations of loading stations: 8 on PLANT, 16 on
ASE, and 8 on KNO.

The robot platform shown in Figure 2 has been presented
during the Logimat fair in Stuttgart, 2010, where the task
of the robot team was to deliver freshly prepared coffee
cups to visitors waiting at the delivery stations, and to
return used cups back to the coffee kitchen. During this
demonstration up to four robots were continuously running
for three days without any interruption. The robots were
driving in average four kilometers per day without causing
collisions or deadlocks. Due to the small team size we uti-
lized for this demonstration a decoupled planning technique
together with the local navigation module. In the following
a comparison with large robot teams between ARMO and
the decoupled technique based on prioritized planning from
Berg and colleagues [20] will be presented. In prioritized
planning, robot trajectories are planned iteratively after a
pre-defined priority scheme. When planning for the i’th robot

(a) (b)

(c)
Fig. 5. Grid maps utilized for experiments: (a) the PLANT map generated
from a simulated environment, (b) the ASE map generated in a real logistic
center, (c) the KNO map generated in a large distribution center.

trajectories of the i-1 robots that were planned previously are
considered as dynamic obstacles. Berg and colleagues define
the query distance as the distance for each robot to reach its
goal configuration on the shortest path when ignoring the
other robots. In order to minimize the maximum of arrival
times, priorities are assigned according to this distance: as
longer the query distance as higher the priority assigned
to a robot. The planner is complete under the assumption
that start and goal locations of each robot are so called
garage configurations, i.e., configurations that are not part
of Cfree of any other robot. The method efficiently avoids
the intractable computation of n! possible priority schemes,
however, requires at least |R| sequential calls of the motion
planner.

We utilized the Stage software library [21] for simulating
large robot teams. In our experiments we used the same
navigation software that is used on the real robots together
with a model of our real platform, including the simulation
of laser beams and odometry. One advantage of Stage is
that it allows to build simulation worlds directly from grid
maps that were generated from real environments. For the
following experiment we used the grid maps shown in
Figure 5.

We generated 100 delivery tasks for each map that were
handled by 20, 50, and 100 robots during different runs.
Table I provides the results from comparing prioritized plan-
ning (PRIO) with adaptive road map optimization (ARMO)

Map #Robots Method # C avg. v (m/s) CTime (s)

ASE

20 ARMO 1432 0.47 969
PRIO 2142 0.43 926

50 ARMO 5040 0.37 545
PRIO 10625 0.28 631

100 ARMO 8307 0.3 369
PRIO 16983 0.2 496

PLANT

20 ARMO 1471 0.42 628
PRIO 1346 0.38 610

50 ARMO 5563 0.34 426
PRIO 11601 0.25 481

100 ARMO 15145 0.22 383
PRIO 107700 0.21 874

KNO

20 ARMO 506 0.38 1383
PRIO 5638 0.35 1346

50 ARMO 2951 0.31 815
PRIO 70799 0.16 1371

100 ARMO 7729 0.29 513
PRIO 102836 0.11 1167

TABLE I
COMPARING PRIORITIZED PLANNING (PRIO) WITH ADAPTIVE ROAD

MAP OPTIMIZATION (ARMO).

on different maps with different numbers of robots. We
measured the number of conflicts (C) of the optimal path
in Cfree with trajectories of the other robots. In the case of
ARMO these were the situations in which a robot had to wait
for other robots before entering a segment, and in the case
of prioritized planning these were the situations were robots
had to plan around a conflicting path of a higher prioritized
robot. Furthermore, we measured the average velocity of all
robots (avg. v) and the total time needed by all robots to
complete the task (CTime). As can be seen from Table I
and Figure 6, while leading to slightly longer completion
times for small robot teams, ARMO significantly reduces
this time when the team size increases. This is also reflected
by the number of conflicts and the average velocities of the
robots. Prioritized planning minimizes the final completion
time after a heuristically determined order, whereas LP-based
planning in ARMO minimizes the global flow of robots,
leading to a more efficient distribution of the vehicles over
time.

The computation times of both methods were measured
in seconds on an Intel DualCore running at 2.13 GHz. We
measured for prioritized planning with 50 robots an average
computation time of 0.03± 0.03 on PLANT, 0.05± 0.04 on
ASE, and 0.1±0.17 on KNO, and with 100 robots 0.1±0.08
on PLANT, 0.13 ± 0.08 on ASE, and 1.1 ± 0.7 on KNO.
ARMO required for the road map computation t1 = 0.9 +
t2 = 0.6 on PLANT, t1 = 0.82 + t2 = 0.84 on ASE, and
t1 = 1.2 + t2 = 10.3 on KNO, where t1 is the time for
extracting the fully connected graph, and t2 the time for
solving the LP problem. Within each planning cycle ARMO
needed in average only 0.002 on PLANT, 0.004 on ASE,

ASE KNO

C
o
m

p
le

ti
o
n
 T

im
e

[s
]

20 PRIO

20 ARMO

50 PRIO

50 ARMO

100 PRIO

100 ARMO

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

PLANT

Fig. 6. Comparing the CTime of prioritized planning (PRIO) and adaptive
road map optimization (ARMO).

and 0.01 on KNO for any number of robots. In summary,
the number of robots has nearly no effect on the computation
time needed by ARMO, however, we measured a significant
growth of the time needed by prioritized planning. On the
contrary, ARMO requires much more time for computing the
road map when the environment is very large and complex,
such as the KNO map, which however needs only to be
performed at low frequency, i.e., when the environment was
significantly changed.

We also evaluated ARMO with respect to dynamic
changes of the grid map. For this purpose we modified the
ASE map step wise by adding successively obstacles that
were updated in the map by the dynamic occupancy grid
approach. Figure 7 depicts two snapshots taken at successive
points in time. As can be seen, the road map adjusts to
the changes at the cost of higher completion times. For
100 robots the completion time increased from 378s (no
modifications) to 410s (first modification) and 420s (second
modification). We performed several more experiments for
evaluating the adaptivity of our approach. Also after chang-
ing the distribution of delivery tasks between the stations,
the road map dynamically adjusted by removing or adding
links between the stations. Note that in this case only the
LP solver is restarted without re-computing the connectivity
network C.

VII. CONCLUSION

We proposed an adaptive road map planner based on a
linear programming formulation which can be used for mo-
tion planning of large robot teams in dynamically changing
environments. Experimental results have shown that ARMO
leads to more efficient multi-robot plans than decoupled
techniques while keeping the demand for computational re-
sources low. In fact, the computation time needed by ARMO
depends mainly on the complexity of the environment rather

(a) (b)

(c) (d)
Fig. 7. Adjustment of the road map according to dynamic changes in the
map (a,c) source of disturbance and (b,d) resulting modifications reflected
in the road map.

than on the number of robots. We believe that the computa-
tion of the road map could further be improved by splitting
the map into independent areas that are interconnected via
fixed crossing points similar to the stations. Then, only a
part of the road map would have to be recomputed after
local changes have been detected.

Furthermore, we have shown that ARMO is adaptive to dy-
namic changes in the map, i.e., the road map is reconstructed
accordingly, whereas changes in the map are detected by
dynamic grid maps, an extension of conventional grid maps.

We conducted several more experiments and conclude that
our method is capable to efficiently solve a wide variety of
problems. One restriction of our current implementation is
the fact that our road map planner only returns a solution
when the overall throughput demanded by the stations can
be routed given the environmental constraints, i.e., does not
exceed the capacity of the network. One future extension will
be to introduce priorities for deliveries and to construct the
network from a subset of tasks sampled according to their
priority in case the requested throughput is higher than the
capacity of the network. Furthermore, when a larger number
of real robots is available, ARMO will be used with the
real platform deployed in one of the logistic centers of our
partners.

REFERENCES

[1] D. Sun, A. Kleiner, and C. Schindelhauer, “Decentralized hash tables
for mobile robot teams solving intra-logistics tasks,” in Proc. of the

9th Int. Joint Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2010), Toronto, Canada, 2010, pp. 923–930.

[2] J. Barraquand and J.-C. Latombe, “Robot motion planning: A dis-
tributed representation approach,” International journal of robotics
research, vol. 10, pp. 628–649, 1991.

[3] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006, available at http://planning.cs.uiuc.edu/.

[4] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
Robotics and Automation, IEEE Transactions on, vol. 12, no. 4, pp.
566 –580, Aug. 1996.

[5] H. Choset, , and B. J., “Sensor-based exploration: The hierarchical
generalized voronoi graph,” The International Journal of Robotics
Research, vol. 19, no. 2, 2000.

[6] M. Kallman and M. Mataric, “Motion planning using dynamic
roadmaps,” in Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), vol. 5, 2004, pp. 4399–4404.

[7] P. Velagapudi, K. Sycara, and P. Scerri, “Decentralized prioritized
planning in large multirobot teams,” in Intelligent Robots and Systems
(IROS), 2010 IEEE/RSJ International Conference on. IEEE, pp.
4603–4609.

[8] J. van den Berg and M. Overmars, “Roadmap-based motion planning
in dynamic environments,” Robotics, IEEE Transactions on, vol. 21,
no. 5, pp. 885–897, 2005.

[9] J. Bellingham, M. Tillerson, M. Alighanbari, and J. How, “Cooperative
path planning for multiple uavs in dynamic and uncertain environ-
ments,” in Decision and Control, 2002, Proceedings of the 41st IEEE
Conference on, vol. 3, 2002, pp. 2816 – 2822 vol.3.

[10] A. Sud, E. Andersen, S. Curtis, M. Lin, and D. Manocha, “Real-
time path planning in dynamic virtual environments using multia-
gent navigation graphs,” Visualization and Computer Graphics, IEEE
Transactions on, vol. 14, no. 3, pp. 526 –538, 2008.

[11] H. Hippenmeyer, K. Furmans, T. Stoll, and F. Schönung, “Ein
neuartiges Element für zukünftige Materialflusssysteme,” Hebezeuge
Fördermittel: Fachzeitschrift für Technische Logistik, no. 6, 2009.

[12] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte carlo localiza-
tion for mobile robots,” in Proc. of the IEEE Int. Conf. on Robotics
& Automation (ICRA), 1998.

[13] R. G. Smith, “The contract net protocol: High-level communication
and control in a distributed problem solver,” IEEE Transactions on
Computers, vol. C-29, no. 12, pp. 1104–1113, 1981.

[14] G. Grisetti, R. Kümmerle, C. Stachniss, U. Frese, and C. Hertzberg,
“Hierarchical optimization on manifolds for online 2d and 3d map-
ping,” in Proc. of the IEEE Int. Conf. on Robotics and Automation
(ICRA), Anchorage, AK, USA, May 2010.

[15] H. Moravec and A. Elfes, “High resolution maps from wide angle
sonar,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots &
Systems (IROS), 1985.

[16] L. Rabiner, “A tutorial on hidden markov models and selected appli-
cations in speech recognition.” in Proceedings of the IEEE, vol. 77
(2), 1989, pp. 257–286.

[17] G. Mongillo and S. Deneve, “Online learning with hidden markov
models,” Neural Computation, vol. 20, pp. 1706–1716, 2008.

[18] X. Décoret and F. X. Sillion, “Street Generation for City Modelling,” in
Architectural and Urban Ambient Environment, Nantes France, 2002.
[Online]. Available: http://hal.inria.fr/inria-00510041/PDF/article.pdf

[19] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network flows: theory,
algorithms, and applications. Englewood Cliffs, N.J.: Prentice Hall,
1993, vol. 1.

[20] J. van den Berg and M. Overmars, in Proc. of the IEEE/RSJ Int. Conf.
on Intelligent Robots & Systems (IROS), 2005, pp. 430–435.

[21] R. Vaughan, “Massively multi-robot simulation in stage,” Swarm
Intelligence, vol. 2, no. 2, pp. 189–208, 2008.

