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Abstract—One primary goal in rescue robotics is to
deploy a team of robots for coordinated victim search
after a disaster. This requires robots to perform sub-
tasks, such as victim detection, in real-time. Human
detection by computationally cheap techniques, such
as color thresholding, turn out to produce a large
number of false-positives. Markov Random Fields
(MRFs) can be utilized to combine the local evidence
of multiple weak classifiers in order to improve the
detection rate. However, inference in MRFs is com-
putational expensive

In this paper we present a novel approach for the
genetic optimizing of the building process of MRF
models. The genetic algorithm determines offline rele-
vant neighborhood relations with respect to the data,
which are then utilized for generating efficient MRF
models from video streams during runtime.

Experimental results clearly show that compared
to a Support Vector Machine (SVM) based classifier,
the optimized MRF models significantly reduce the
false-positive rate. Furthermore, the optimized mod-
els turned out to be up to five times faster then the
non-optimized ones at nearly the same detection rate.

I. INTRODUCTION

The increasing extent of natural disasters, particularly
earth quakes, Hurricanes, and Tsunamis, motivates re-
search in the field of rescue robotics. One primary goal
is to deploy, under the surveillance of a human operator,
a team of robots for coordinated victim search after a
disaster. This requires robots to perform subtasks, such
as victim detection, partially or even fully autonomous.

The National Institute of Standards and Technology
(NIST) develops test arenas for the simulation of sit-
uations after a disaster [10]. In this real-time scenario,
robots have to explore an unknown area autonomously
within 20 minutes, and to detect victims therein. There
might be “faked” victim evidence, such as printed images
of human faces, non-human motion, and heat sources
that do not correspond to victims. The heat blanket in
the last row of Figure 4, for example, would be wrongly
reported as victim by most heat-seeking robots. Note
that this example is particularly difficult due to the large
size of the thermo signature, as well as the closely located
evidence given by the skin-like color of the blanket, the
face, and motion.

Due to the real-time constraint within rescue-like ap-
plications, only fast computable techniques are admissi-
ble. We successfully applied color thresholding, motion
detection, and shape detection on images taken by an
infrared and color camera 1. However, the detection
rate of these classifiers turns out to be moderate, since
they are typically tuned for specific objects found in the
environment. Hence, in environments containing many
diverse objects, they tend to produce a large number of
evidence frames, from which in the worst case, most are
false-positives, i.e objects that are wrongly recognized as
victims.

One solution to this problem is to combine local evi-
dences, i.e. evidences that are close to each other in the
real world, and to reason on their true class label with
respect to their neighborhood relations. Markov Random
Fields (MRFs) provides a probabilistic framework for
representing such local dependencies. However, inference
in MRFs is computational expensive, and hence not
generally applicable in real-time. In this paper we present
a novel approach for the genetic optimization of the
building process of MRF models. The genetic algorithm
determines offline relevant neighborhood relations, for
example the relevance of the relation between evidence
types heat and motion, with respect to the data. These
pre-selected types are then utilized for generating MRF
models during runtime. First, the vertices of the MRF
graph are constructed from the output of the weak
classifiers. Second, edges between these nodes are added
if the specific type of nodes can be connected by an
edge type that has been selected during the optimization
procedure.

Experiments carried out on test data generated in
environments of the NIST benchmark clearly show that
compared to a Support Vector Machine (SVM) based
classifier, the optimized MRF models significantly reduce
the false-positive rate. Furthermore, the optimized mod-
els turned out to be up to five times faster than the non-
optimized ones at nearly the same detection rate.

Human body detection and tracking from color images

1Note the underlying vision system was part of the Rescue Robots
Freiburg team, which won the 1st price of the autonomy rescue
competition during RoboCup ’05 and RoboCup ’06.



has been already successfully applied based on back-
ground subtraction [18], [9], [3], and based on color
thresholding [7]. SVMs have been utilized to detect
human motion [6], [13], and MRFs have been applied
for pedestrian tracking [19] and face detection [8]. In the
context of rescue robotics, Bahadori and colleagues stud-
ied various techniques from computer vision and their
applicability to the rescue context [2]. Nourbakhsh and
colleagues utilized a sensor fusion approach for incorpo-
rating the measurements from a microphone, IR camera,
and conventional CCD camera [12]. They assigned to
each sensor a confidence value indicating the certainty
of measurements from this sensor and calculated the
probability of human presence by summing over all
single sensor observation probabilities, weighted by their
confidence value.

The remainder of this paper is structured as follows.
In Section II we introduce the underlying vision system,
Section III explains the MRF model, and in Section IV
we introduce the genetic model selection approach. Fi-
nally, we provide results from experiments in Section V
and conclude in Section VI.

II. VISION DATA PROCESSING

The utilized vision system is part of the rescue robot
Zerg, shown in Figure 1 (a), which is equipped with
a Hokuyo URG-X003 Laser Range Finder (LRF), a
ThermalEye Infra-Red (IR) camera, and a Sony DFW-
V500 color camera. The LRF is capable of measuring
distances up to 4000mm within a field of view (FOV) of
240◦, whereas the FOV of of the IR and color camera are
50◦ and 70◦, respectively. In order to combine evidence

(a) (b)

(c) (d)

Fig. 1. The autonomous rescue robot Zerg (a) and vision data
from the same scene (b)-(d): A color image taken by the CCD
camera (b), a thermo image taken by the IR camera (c), and
a 3D scan taken by the 3D scanner (d).

from thermo and color images, we firstly project their
pixels onto the 3D range scan, and secondly determine

pixel-pixel correspondence by interpolating from best
matching yaw and pitch angles found in both projections.

Before camera images are projected onto the scan, they
are linearized with respect to the intrinsic parameters of
the camera. On color cameras, these parameters are usu-
ally calibrated from pixel to real-world correspondences
generated by a test pattern, such as the printout of a
chess board [4]. In case of IR camera calibration, it is
necessary to generate a test pattern that also appears on
thermo images. This has been achieved by taking images
from a heat reflecting metal plate covered with quadratic
isolation patches in a chess board-like manner.

From both images three different evidence types are
generated, which are color, motion, and shape, respec-
tively. Each evidence type is represented by a rectangular
region described by the position and size (u, v, w, h) on
the image, number of pixels included, and the real world
position (x, y, z) of the center.

Color pixels are segmented by fast thresholding [5] in
the Y UV color space. In case of the IR camera, only
the luminance (brightness) channel is used since thermo
images are represented by single values proportional to
the detected temperature. Pixels within the same color
class are merged into blobs by run length encoding, and
represented by rectangular regions.

Motion is detected by background subtraction of sub-
sequent images. Let It be an image at time t from a
sequence of images I with I0 = Background. Then, the
difference between an image and the background can be
calculated by AV Gt = (1− β) AV Gt−1 + βIt, DIFFt =
AV Gt − It, where AV G is the running average over all
images and β a factor controlling the trade-off between
latency and robustness. Pixels labeled as foreground are
also merged into groupings by run length encoding and
are represented by a set of rectangular regions.

Shape detection is currently limited to the detection of
human faces. We use the openCV [4] implementation of
the method from Viola and colleagues [17], which has
been further improved by Lienhart [11]. The method
utilizes a cascade of haar -like features that are trained
and boosted from hundreds of sample images scaled to
the same size. Since the classifier was mainly trained from
images with faces aligned in the vertical direction, we
rotated images for allowing the detection of faces aligned
horizontally.

III. Markov Random Fields

The series of images in Figure 4(a) clearly shows that
single evidences are not sufficient to uniquely identify vic-
tims. Therefore, it is necessary to consider neighborhood
relations in order to reduce false-positive detections.
Markov Random Fields (MRFs) provides a probabilistic
framework for representing local dependencies. A MRF
is defined by an undirected graph G = (Y, E), where Y is
a set of discrete variables Y = {Y1, . . . , YN}, and E is a
set of edges between them. Each variable Yi ∈ {1, . . . ,K}



can take on one of K possible states. Hence, G describes
a joint distribution over {1, . . . ,K}N .

According to the approach of Anguelov and his col-
leagues [1], we utilize pairwise Markov networks, where a
potential φ (yi) is associated to each node and a potential
φ (yi, yj), to each undirected edge E = {(ij)} (i < j)
between two nodes. Consequently, the pairwise MRF
model represents the joint distribution by:

Pφ(y) =
1
Z

N∏
i=1

φi(yi)
∏

(ij)∈E

φij(yi, yj), (1)

where Z denotes a normalization constant, given by Z =∑
y′

∏N
i=1 φi(y′i)

∏
(ij)∈E φij(y′i, y

′
j).

A specific assignment of values to Y is denoted by
y and represented by the set

{
yk

i

}
of K · N indicator

variables, for which yk
i = I(yi = k). In order to foster

the associativity of the model, we reward instantiations
that have neighboring nodes, which are labeled by the
same class. This is enforced by requiring φij(k, l) =
λk

ij , where λk
ij > 1, for all k = l, and φij(k, l) = 1,

otherwise [14]. Inference is carried out by solving the
maximum a-posterior (MAP) inference problem, i.e. to
find arg maxy Pφ (y).

Fig. 2. MRF graph online constructed from features detected
in the thermo and color images. Note that the number of
shown features has been reduced for the sake of readability.

For our specific problem, we define the node potentials
φ (yi) by a vector of features which indicates the quality
of the node’s corresponding evidence frame. These are
the size of the evidence frame, the number of included
pixels, and the real world distance taken from the 3D
range measurement. Likewise we define the edge poten-
tials φ (yi, yj) by a vector of features that indicates the
quality of neighborhood relations. Edges are build based
on combinations of the evidence types introduced in
Section II. In our case there exist 36 possible edge types,
given the 6 different types of evidence. For example, the
edge type isWarmSkin describes the combination of the
features heat and skinColor. The feature vector of an

edge includes the type of the edge, and the real-world
distance measure between both nodes.

The MRF graph is dynamically constructed for each
image from the video stream during runtime (see Figure 2
for an example). Firstly, we generate from the image data
six sets of evidence frames, as described in Section II.
From these sets, six types of MRF nodes are generated
by calculating the feature vectors for each node potential,
whereas each node type corresponds to one type of
evidence . Secondly, edges between nodes are generated.
Each node connects to the four closest neighbors in
its vicinity, if they are within close real-world distance,
which was maximally 60cm in our implementation. Fi-
nally, for each edge a feature vector for its edge potential
is calculated.

For the sake of simplicity, we represent potentials
by a log-linear combination log φi(k) = wk

n · xi and
log φij(k, k) = wk

e ·xij , where xi denotes the node feature
vector, xij the edge feature vector, and wk

n and wk
e the

row vectors according to the dimension of node features
and edge features, respectively. Consequently, we can
denote the MAP inference problem arg maxy Pφ (y) by:

arg max
y

N∑
i=1

K∑
k=1

(wk
n ·xi)yk

i +
∑

(ij)∈E

K∑
k=1

(wk
e ·xij)yk

i yk
j . (2)

Equation 2 can be solved as a linear optimization prob-
lem by replacing the quadratic term yk

i yk
j with the

variable yk
ij and adding the linear constraints yk

ij ≤ yk
i

and yk
ij ≤ yk

j . Hence, the linear programming formulation
of the inference problem can be written as:

max
N∑

i=1

K∑
k=1

(wk
n · xi)yk

i +
∑

(ij)∈E

K∑
k=1

(wk
e · xij)yk

ij (3)

s.t. yk
i ≥ 0, ∀i, k;

∑
k

yk
i = 1, ∀i;

yk
ij ≤ yk

i , yk
ij ≤ yk

j , ∀ij ∈ E , k,

which can, for example, be solved by the Simplex
method. For a more detailed description, we refer to
the work of Anguelov and colleagues [1]. Furthermore,
it is necessary to learn the weight vectors for the node
and edge potential from data, which we carried out by
utilizing the maximum margin approach recommended
by Taskar and colleagues [15].

IV. MODEL SELECTION

In the general case, solving the MAP inference prob-
lem, as shown in Section III, is NP-hard. Also in case of
the considered two-class problem one notices an increase
of computation time if the number of nodes and edges,
and thus size of the linear programming problem, grows.

Computation time is an important issue if applying
the detection method, for example, to live video streams
taken by a camera in a Search and Rescue scenario. Fur-
thermore, the efficiency of specific evidence correlations
(edge types in the MRF graph) depends on the scenario
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Fig. 3. Comparing model complexity (computation time) with the
percentage of correctly classified vision features (green), and the
percentage of false positives (red). Each data point corresponds to
a MRF model with specific types of edges activated.

where the classifier is applied. For example, heat sources
might be a stronger evidence for human bodies in an
outdoor scenario as it would be in an indoor scenario with
many heat sources, such as PCs and radiators. Therefore,
our goal is to reduce the computation time of the MRF
model by selecting edge types that significantly improve
the classifier with respect to the data. For example,
since measurements from different sensors are generally
more significant, the two edges between the motion node
and the two heat nodes in Figure 2, are more valuable
as a single connection between both heat nodes only.
However, by selecting the four closest nodes both heat
nodes would be connected.

Therefore, we examined the contribution of specific
edge types to the overall detection rate. This has been
carried out by learning MRF models with different sets
of activated edge types while measuring accuracy and
computation time needed for inference. Figure 3 summa-
rizes the result, whereas each data point corresponds to a
specific combination of edge types. As can be seen, MRF
inference needs between 2ms and 16ms, depending on
the combination of activated edge features. Surprisingly,
a higher amount of computation time does not neces-
sarily yield better classifier performance. Good classifier
performance can already be achieved at a much smaller
computation time than needed for computing models
containing all types of edges, if the significant edge types
are activated.

However, since the complexity of exhaustive search
is in O (2n), and learning a single classifier takes a
comparably high amount of time, finding optimal edge
types is intractable in the general case. Therefore, we
applied an genetic algorithm for selecting most efficient
combinations of edges. The scoring function for guiding
the search has been defined by the trade-off between
classifier performance and computation time:

S = U − αC (pi) , (4)

where U corresponds to the utility metric, C (.) denotes a
cost function reflecting the model complexity, pi denotes
the ith permutation, and α is a parameter regulating
the trade-off. Depending on the needs of the specific
application, U can be computed, for example, from the
negative false-positive rate, the total number of correctly
classified evidence frames, and the percentage of the
correctly classified area. Without loss of generality, we
decided to use the area-based utility metric since it
enforces the detection of body silhouettes rather than
frames on their own. The series in Figure 4 (c) depicts
this metric for true positives by the blue cluster, which
has been build by the union of all true positive evidence
frames in the image.

The scoring function is utilized as fitness function for
the genetic algorithm (GA). Solutions, i.e specific com-
binations of edge types, are represented for the genetic
optimization as a binary string, whereas each edge type
is represented by a bit, and set to true or false regarding
the activation of the corresponding edge type. In order
to guarantee that good solutions are preserved within
the genetic pool, the so-called elitism mechanism, which
forces the permanent existence of the best found solution
in the pool, has been used. Furthermore, we utilized a
simple one-point-crossover strategy, a uniform mutation
probability of p ≈ 1/n, and a population size of 10. In
order to avoid that solutions are calculated twice, all
computed solutions are memorized by their binary string
in a hash map.

V. EXPERIMENTS

We generated more than 6000 labeled examples from
video streams recorded within a NIST arena-like environ-
ment and split them into three folds. The training data
contains true evidence, which is exclusively generated
from human bodies, and false evidence, which is gener-
ated from artificial sources, such as a heat blanket, laptop
power supply, printouts of faces, moving objects, and
objects with skin-like texture, such as wood. Figure 4(a)
depicts some examples from the training data. Each color
frame corresponds to an evidence type, whereas green
frames correspond to face detection, orange frames to
heat detection, red frames to color detection, and yellow
frames to motion detection. Note that the training data
contains intentionally many cases in which the vision
system produces ambiguous evidences. From this data,
MRF models were trained by K-fold cross-validation,
with K = 3.

In oder to evaluate the model selection, we reduced
the total set of edge types from 32 to 9 since in our case,
some feature combinations represent the same concept,
as for example the combinations of heat from the thermo
images together with face from the color images, and face
and heat both from the thermo image. The genetic model
selection has been evaluated by multiple runs with varied
parameter α and varied scoring metric (Equation 4), e.g.
based on the false-positive rate, total error, and total



(a) (b) (c)

Figure 4. Examples from the test data: (a) Detected evidences: skin color (red), heat (orange), motion (white), face (green),
(b) the same evidences after classification and (c) all positive evidences clustered into areas.

area. In average, the genetic selection yielded the optimal
solution after considering 60 ± 7 models, which is more
than eight times faster than performing exhaustive search
over all 512 possible models.

For the selection of the final MRF model, we utilized
the area-bases scoring metric with α = 2.0. The ge-
netic algorithm selected a classifier which activates, for
example, the edge types motion ∧ face, heat ∧ skin,
heat ∧ face, heat ∧ motion, and forbids motion ∧ skin,
as well as all edge types between the same kind of nodes.
Finally, the selected classifier reached an accuracy of
87.9% at 2.3ms, in contrast to the classifier with all edges
activated (88.76% at 12.59ms) and the classifier with no
edges activated (71.33% at 1.14ms). Figure 4 shows some
examples of the successful application of the classifier

even to hard cases, such as small finger movements, and
test persons completely surrounded by faked evidences.

SVM MRF
False False Err. False False Err.
Pos. Neg. [%] Pos. Neg. [%]

Human 23 433 39.4 26 143 14.6
Faked 758 0 11.3 151 0 2.3
Both 703 2689 32.8 484 836 12.8

Total 1484 3122 21.0 661 979 7.5

Table I. Comparison of the SVM and MRF classifier: Num-
bers denote the amount of wrongly classified evidences in
images containing humans, faked evidence, and both

We compared the performance of the optimized MRF
model with a Support Vector Machine (SVM) [16] based



classifier. The SVM has been trained on the same fea-
tures as they were generated for the MRF model, shown
in Section II. In Table I the performance for classifying
single evidence frames of both classifiers is reported. The
results have been partitioned into three sets showing the
performance on examples containing human evidence,
faked evidence, and both. The result indicates that the
optimized MRF model performs better in terms of false-
positive classifications, particularly in situations contain-
ing exclusively faked data.

In the context of Search and Rescue it is desirable to
reach a high true-positive rate on each image, i.e. humans
are detected reliably, and a low false-positive rate, i.e. no
victim alarm from faked evidence. This is not directly
expressed by the percentage of correctly classified frames
since one wrongly detected frame within an image suffices
to trigger the false alarm. Therefore, we counted the
true-positive and false-positive rate for both classifiers
image-wise, i.e. images are counted as true-positive, and
false-positive, if there is a single correct and a single
wrong evidence found, respectively. It turned out that
for images containing human evidence, both MRF and
SVM reported a victim correctly in 100% of the cases,
whereas in images containing faked evidence, the SVM
wrongly reported a victim in 60% and the MRF in 13%
of the cases. Note that the result of the MRF model is
comparably good, since the training data also contained
images with more than three different types of faked
evidence at the same time, which makes a distinction
from human beings impossible.

VI. CONCLUSION

We introduced a system that creates MRF models in
real-time from motion, color, and shape evidence, de-
tected by a CCD camera and IR camera, respectively. In
order to reduce computational complexity during infer-
ence, the building process of models has been optimized
by a genetic algorithm, which decides offline relevant
edge types with respect to the data. Finally, the selected
classifier was five times faster than the model with all
edge types activated, while gaining optimal performance
in terms of the complexity trade-off, and near-optimal
performance in terms of accuracy. We compared the
optimized model with a SVM and showed that the false-
positive rate has been significantly reduced, which is
an important aspect when considering victim detection
in the context of rescue robotics. From an image-wise
evaluation of the classifier it can be concluded that the
approach reliably detects victims if present and only in
hard cases, i.e. if the number of faked evidences is high,
false-positives occur. The classifier performance could be
further improved by introducing temporal relations, i.e.
by adding edges between evidences found in preceding
images from the video stream.

The proposed approach is general as it can easily
be extended for incorporating other types of human
evidence, such as audio noise, e.g. tapping, and CO2

emission. Also given these evidence types, it might be
interesting to figure out which correlations significantly
contribute to the classifier’s performance. In future work,
we will furthermore consider to extend the class variable
by classes describing the victim’s state, e.g. aware and
unconscious, which can generally be concluded from
correlations between evidence types.
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