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Abstract. RoboCupRescue Simulation is a large-scale multi-agent simulation
of urban disasters where, in order to save lives and minimize damesgye
teams must effectively cooperate despite sensing and communicatiotiénsta
This paper presents the comprehensigarch and rescuapproach of thé&ResQ
Freiburgteam, the winner in the RoboCupRescue Simulation league at RoboCup
2004.

Specific contributions include the predictions of travel costs and civilian life
time, the efficient coordination of aactivedisaster space exploration, as well as
an any-time rescue sequence optimization based on a genetic algorithm.

We compare the performances of our team and others in terms of tpaiitity

of extinguishing fires, freeing roads from debris, disaster spaderation, and
civilian rescue. The evaluation is carried out with information extractechfr
simulation log files gathered during RoboC204. Our results clearly explain
the success of our team, and also confirm the scientific approach@ssprbin

this paper.

1 Introduction

The RoboCupRescue simulation league is part of the RoboGupetitions and aims
at simulating large scale disasters and exploring new warythe autonomous coor-
dination of rescue teams [8]. These goals are socially wiglgnificant and feature
challenges unknown to other RoboCup leagues, like the auatidn of heterogeneous
teams with more thaB0 agents, the exploration of a large scale environment inrorde
to localize victims, as well as the scheduling of time catiescue missions. Moreover,
challenges similar to those found in other RoboCup leagreemberent to the domain:
The simulated environment is highly dynamic and only péytisbservable by a single
agent. Agents have to plan and decide their actions asymchsty in real-time. Core
problems in this league amath planning coordinated fire fightingand coordinated
search and rescuef victims.

This paper presents the comprehengearch and rescuapproach of theResQ
Freiburgteam, the winner in the RoboCupRescue Simulation leaguelaa®up 2004.
We show how learning and planning techniques can be usedvaprpredictive mod-
els that allow to act rationally despite the high dynamicshaf simulation. Specific



contributions include the prediction of the life-time ofitians based orCART [4]
regression andA\DABoos{6], travel cost prediction and its integration into targetec-
tion, the efficient coordination of aactivedisaster space exploration based on sensing,
communication and reasoning, as well as an any-time resegeence optimization
based on a genetic algorithm. These techniques have in corivatthey provide ResQ
agents with formal models for reasoning about the presahfwgare state of the sim-
ulation despite its high dynamics. These models allow @editive instead of purely
reactive behavior, a capacity that we believe to be the refisamur team’s success.

We have conducted an extensive comparison of the perfomnafncur team with
the performance of other teams in terms of the capabilitwbhguishing fires, freeing
roads from debris, disaster space exploration, and aimitacue. The evaluation is car-
ried out with information extracted from simulation log §ilehat were gathered during
the RoboCup competition004. This evaluation gives much more information about
a team’s strengths and weaknesses than the standard sitotirgRoboCup Rescue
Simulation league; yet it can be automated and thereforeiges an instrument for
precise analysis of teams. The results of our study cleaqijaén the success of our
team, and also confirm the scientific approaches proposéikipaper.

The remainder of this paper is structured as follows. Wegmethe active search
and exploration approach in Section 2. The civilian res@sel on sequence optimiza-
tion is described in Section 3. Path planning and travel poadiction are covered in
Section 4. Finally, an extensive evaluation and analysih®f2004 RoboCupRescue
competition is given in Section 5 and concluded in Section 6.

2 Exploration

In a partially observable environment like the RoboCupResimulation, exploration
is the key means for agents to enlarge their knowledge. #peaally important to find
injured civilians as quickly as possible without losing éfay redundant exploration of
the same area by several agents. Our agents achieve thtislapihaintaining a<nowl-
edge Bas¢KB) that keeps track of information collected on civiliashsring the search.
Each agent maintains locally its own KB that is updated fremsgs, communication
and reasoning. The KB allows them to efficiently focus andrdimate the search for
civilians. It maintains the knowledge of an agent on thetigtebetween the set of civil-
iansC' and the set of locationk. This is carried out by maintaining for each civilian
¢ € C a set of locationd.. that contains all possible locations of the civilian. Ferth
more, we maintain for each locatiére L a set of civiliang’; that contains all civilians
that are possibly situated at locatibrinitially, Ve € C, L. = Landvl € L,C; = C.

The KB allows us the calculation of the expectation of the hanof civilians sit-
uated at any locatioh This is achieved by calculating the probability that ¢auilc is
situated at locatioh, given the current state of the knowledge base:

A iflelL
= = ¢ |Lcl ¢
Plioc(e)=1] KB) {0 otherwise @)
Which yields the expectation on the number of civilians s&daat location:
IC|
E[|Ci]] =) P(loc(c;) = 1| KBy) 2)

=0



Note that it follows from the above that initially the expation for each location is
given by E[|Cy|] = % That means that we expect civilians to be uniformly and-inde
pendently distributed on the map. This is clearly not the ddsuildings have a different
size or different degree of destruction. As an improvemené, could incooperate this
information as well. The KB is updated by either visual or itarg perception, com-
munication of perception from other agents, and reasoniily nespect to the agent’s
sensor model. The sensor model returns for any locatioa set of location¥; and 4,
that are in visual (10m) or auditory (30m) rang€ ofespectively [11].

The KB is implemented as |&'|z|L| boolean matrix, whereds is the set of civil-
ians andL the set of locations. Any entr, [) is set tofalseif a civilian ¢ is definitely
not at location, and set tdrue otherwise (including the case of uncertainty). Initially,
all entries are set tsue. Based on the sensor model, one can perform ejtbsitiveor
negativeupdate operations on the KB:

1. Positive updates:
(a) Civilian ¢ seen at location [
We can reduce the set of possible locations for civitian I: L. := {l} and
reduce' the set of possible civilians at locatiémo c: C; := {c} ;
(b) Civilian ¢ heard at location I:
We can remove civiliare from all civilian lists that are not in range of the
sensorvl’ : I’ ¢ A; = C] := C]\ {c} and reduce the set of possible locations
for civilian ¢ to all locations that are in range of the sendar:= L. N A4,
2. Negative updates:
(a) Civilian ¢ not seen at I:
We can reduce the set of possible locations for civitiqny the set of locations
within visual rangeL. := L. \ V; and remove civiliar: from all civilian lists
for locations within visual rangeéfl’ : I’ € V; = C} := C] \ {c}
(b) Civilian cnot heard at I:
No safe conclusion possible

These update rules are very efficient due to the fact thateheeption of the agents is
free of noise. It is assumed that the agent is always ableet@sg civilian within the
range of its sensors. Certainly this is not true in a realsi@asituation. If, for example,
victims are covered by rubble, they are even for humans hmaské. However, the
proposed update rules can easily be enhanced towards gistiaimethods if there are
probabilistic sensor models, which in turn have to be sugpldsy the RoboCupRescue
simulation system.

District exploration. District exploration is a multi-agent behavior for the cdioated
search of buried civilians. The behavior guarantees thahgttime each agent is as-
signed to a reachable and unexplored district on the maprderdo minimize the
number of times an agent gets stuck in a blockade during e, districts have to
consist of highly connected locations. The connectivitynaf locations results from the
number of alternative paths between them, the number o lané degree of blockage
of each single road, and the degree of uncertainty on theat#te road. Due to the fact

! Note if we see more than one civilian at the location, the set of possible nwiéf has to
contain all of them.



that blockades on the map and hence the map’s connectiuitykisown to the agents
in advance, the clustering has to be revised continuoustyu¥édagglomerativg 3]
andKD-tree [2] based clustering in order to calculate a near optimahsa#pn of the
map into districts and to approximate the connectivity lestvthem. These methods
calculate from a given connectivity gragh= (V, E) of a city, wherel/ represents the
set of locations and’ the set of connections between them, a hierarchical clogter
The hierarchical clustering, represented by a binary fresyides at each level a par-
titioning of the city inton districts, reflecting the reachability of locations on thapm
(e.g. locations with a high connectivity are found withie game cluster). Based on this
clustering, each team member is exclusively assigned toeawhable and unexplored
cluster that represents a district on the map.

Active Exploration. Active exploration is an extension to the previously ddsuli
district exploration task in that the search focuses ontioga with high evidence on
civilian whereabouts. This is carried out by exploiting #r@wledge collected from
senses, communication, and reasoning in the KB. Evideooe fine KB is utilized by
calculating an utility valud/ (1) which is equal to the number of civilians expected to
be found at observable locatio6k:

U(l)= Y E[Ck]] (3)

keO,
which yields, after inserting equation 2:

IC]

U(l)=>_ > P(loc(c;) =k | KBy) (4)

keO; i=0

The overall sum of utilities over time can be maximized by $bkction of targets
with high utility as well as targets that are reachable withishort amount of time.
Hence, from the set of locatiords, that are within the agent’s district, a target location
l; is decided based on the trade-off between utility/) and travel cost” (1):

Iy =argmax U (I) —axT (1) (5)
leLp

whereasy is a constant regulating the trade-off between the estuitaé®el costs and
the exploration utility and has to be determined experimigntThe estimated travel
costsT (1) are provided by a path planner that estimates costs basegrercalculated
Dijkstra matrix (see Section 4).

Active surveillance. Furthermore, it is important for the rescue team to haveodp-t
date information on the injured civilians that have beemfibduring the exploration
task. The prediction module, described in Section 3, pew/jatedictions of the civilian
life time that are the more accurate the more up-to-datertioernation orburiedness
damageandhealthis. As we will describe in Section 3, the number of civiliahst
can be rescued depends on the efficiency of the rescue teaoh imhurn, depends
on the accuracy of predictions. Hence, we extended theeaekiploration behavior in



that it assigns agents to the surveillance of known civil@rations after the map has
been explored sufficiently. The surveillance behavior isied out by randomly sam-
pling interesting locations from the set of known civiliathtions whereby locations
with obsolete information are selected with high prob#piln general, information on
locations are considered as obsolete if they haven't bestediby agents for a long
time.

The number of agents that are assigned to active search’ﬁedim%, wheread,
is the set of open locations aida constant that has to be determined experimentally.
All agents above the assignment limit are performing actiweeillance. Ifc = 1 then
there will be at least as many explorers as open locatios<Ifl then the exploration
speed will be increased, but in turn there might be obsoidtemation on the health
state of known victims. It > 1 then the quality of information on known victims will
increase, but the search for new agents might take more time.

Team coordination. Besides the team coordination due to the assignment ofatiéstr
it is necessary to further coordinate the multi-agent searorder to prevent the mul-
tiple exploration of locations. This is carried out by conmiuating the information on
found civilians as well as locations that have been visitémlvever, if agents select ex-
ploration targets from the same district (i.e. due to thelaypeor the shortage of avail-
able districts), it might occur that they explore locatianéce. We implemented two
methods to locally reduce the probability of multiple targeploration. Firstly, agents
select exploration targets from a probability distributi&econdly, agents negotiate tar-
gets they plan to explore in the next cycle via the short raxmyemunication channel
(sayand hean. It turned out that the latter performs poorly if agents abée to move
much longer distances in a cycle than they are able to ohsehieh is true for the
current parameter setting of the RoboCupRescue kernelpiidiBem could be solved
by performing the negotiation via the long-range commuidca Unfortunately, this
does no pay off since long-range communication is a limiesburce. Hence, agents
choose their exploration targets from a probability disttion that assigns to each tar-
get a probability that is proportional to the score follogriaquation 5. Note that the
local target selection strategy could further be improvgdiutilizing game-theoretic
methods.

3 Civilian Rescue

Lifetimeprediction To achieve good results in the civilian rescue processniectes-
sary to know a civilian’s chance of survival. If there is aable prediction for the life
time of a certain civilian, the scheduling of the rescue apjen can be adapted accord-
ingly. On the one hand, it is possible that a civilian doesmed to be rescued at all
because she will be alive at the end of the simulation. On therdand, it is possible
that a civilian would die within a short amount of time andréfere has to be rescued
as soon as possible in order to survive.

For the ResQ Freiburg agents, machine learning technigees uwsed to gain a
prediction of the civilian’s life time and classificationtinsurvivors and victims. We
created amutorun toolthat starts the simulation and the agents simultaneousisdier
to collect data. The tool was used for several simulatiors ram the Kobe, VC, and
Foligno maps, from which a large amount of datasets werergtatk



A data set consists of the values f@althanddamageof each civilian at each time
step gained during the simulation. In order to reduce theenwi the data, simulations
were carried out withint00 time steps, without rescue operations by the agents and
without fires on the map. The latter two conditions are nearg9s order to prevent un-
expected changes of the damage to a civilian due to its resesudting in zero damage,
or due to fires, resulting in unpredictable high damage. Rercalculation of the life
time, there has to be determined a time of death for eachetatésnce, the simulation
time was chosen to b#0 rounds, which seemed to be a good compromise between an
ideal simulation time obo and the standard simulation time of 300 rounds that would
lead to a non-uniform distribution of the datasets.

Regression and classification was carried out withiHeKA[12] machine learn-
ing tool. We utilized theC4.5algorithm (decision trees) for the classification task. The
regression of the simulation time is based on Adaptive Bogg¢Ada Boost) [6]. Since
the current implementation of tAR&EKAtool does only provide Ada Boost on classi-
fication, we had to extend this implementation for regres§td, which then has been
applied with regression trees (CART) [4].

The regression trees have been evaluated on test data ealgiitio learn the confi-
dence of a prediction in dependency of the civilian’s danmeggthe distance between
the query time and the predicted time of death. Confidenagesgadre necessary since
the higher the difference between the observation and til@nis actual time of death,
the less accurate predictions are. The sequence optionizagscribed in Section 3, re-
lies on the confidence values in order to minimize sequenctuéitions.

Genetic Sequence Optimization. If the time needed for rescuing civilians and the
life time of civilians is predictable, one can estimate theerall number of sur-
vivors after executing a rescue sequence by a simulatione&ch rescue sequence
S = (t1,t2, ..., tn) Of n rescue targets, an utility (S) is calculated that is equal to the
number of civilians that are expected to survive. Unfortalya an exhaustive search
over alln! possible rescue sequences is intractable. A straightfdraalution to the
problem is, for example, to sort the list of targets by theetinecessary to reach and
rescue them and to subsequently rescue targets from thef thp Gst. However, as
shown in Section 5, this might lead to unsatisfying soludioHence, we decided to
utilize a Genetic Algorithm (GA) for the optimization of ssences and thus the subse-
guent improvement of existing solutions [7].

The time for rescuing civilians is approximated by a linesgression based on the
buriedness of a civilian and the number of ambulance teaatsatle dispatched to the
rescue. Travel costs between two targets are estimatedebgging over costs sampled
during previous simulation runs. This is much more efficigran the calculation of
exact travel cost involving, in the worst case, the caldomabf the Floyd-Warshall
matrix in O (n?).

The GA is initialized with heuristic solutions, for exampbolutions thagreedily
prefer targets that can be rescued within a short time omtitgegets that have a short
lifetime. The fitness function of solutions is set equal ® pineviously described utility
U(S). In order to guarantee that solutions in the genetic pookateast as good as
the heuristic solutions, the so calletitism mechanism, which forces the permanent
existence of the best found solution in the pool, has beeah Ezgthermore, we utilized
a simple one-point-crossover strategy, a uniform mutgti@ability ofp ~ 1/n, and



a population size of0. Within each cycle500 populations of solutions are calculated
by the ambulance station from which the best sequence islbasted to the ambulance
teams that synchronously start to rescue the first civilicthé sequence.

One difficulty of the sequence optimization is given by thet fdnat information
stored in the KB on civilians changes dynamically duringheemund and thus might
cause fluctuations of the rescue sequence. This can be dayi$e@d reasons: Firstly,
civilians are discovered by active exploration, which is@xted by other agents at the
same time. Secondly, predictions vary due to informatichetigs from active or passive
surveillance. The latter effect can be weakened by upd#tiegequence with respect
to the confidence of predictions. Updates of the informatiortivilians are ignored, if
they are not statistically significant with respect to tleginfidence interval.

The effect of information updates due to exploration hasegadntrolled by de-
ciding between rescue permanence and rescue latencypweréquently change the
ambulances their targets and how fast can they react on emmrgargets. Therefore
we implemented additionally a reactive mechanism thatgeizes emergency rescue
targets that have to be rescued immediately. A target iselbfis an emergency target
if it would die if not being rescued within the next round. Hewer, any other target is
only taken as emergency target, if the current target waaflel\s survive if postponing
its rescue.

4 Path planning

Every rescue agent must do path planning in order to reaclelésted target position.
ResQ Freiburg agents, however, use path planning alrdadyg target selection and
thus can account for the time needed to reach a target whemaiithg its utility. Such
an approach is only possible with a very efficient path plarthat can be queried
several hundred times in each cycle.

The efficiency of the ResQ path planner stems from the folligwealization (ex-
plained in more detail in [9]): many nodes on the road graph &oboCup Rescue
map connect exactly two roads plus one or more houses. If ofbthese houses is the
source or destination of the path planner query, the nodemigrbe crossed, leaving no
choices for the planner. Only nodes with more than two adja®ads constitute real
crossings The road segments and simple nodes between the crossimdpe gained
in onelongroad which has no inner crossings. Longroads and crossings donew,
much smaller graph on which shortest path algorithms cambenuch more quickly
than on the larger original graph.

Since every node from the original graph lies on a longroad, each path to anfro
must include one of the two endpoint crossings of that loadyd, andc?. An optimal
path from nodes ande from the original graph therefore has length

Hll]l’l (scé + P(ci,cl) + cée) wherei, j € {1,2} (6)
To solve this formula efficiently, the ResQ planner storesdhiect routes from a
location to its adjacent crossings. The optimal paftis’, ¢/) between crossings are
computed with Dijkstra’s algorithm.
Adequacy of the path planner for the Rescue Domain is ever imortant than its
efficiency. Most often agents want to know how long it will ¢éato reach destinations.



Therefore the cost functions used by the ResQ path planrerbieen designed not to
returnpath lengthgalthough this is of course possible) but to predict tilee it will
take an agent to reach its destination. To compute this, ldr@npr tries to consider
not only the length of a path, but also partial blockadeseltation/deceleration at
crossings, right of way (depending on from where a crossingnitered), and other
agents’ trajectories. While in the RCR system, these faeti@sccurately simulated, it
is necessary for the ResQ Path Planner to use predictivedasdn order to obtain the
speed for several hundred queries per second.

We have provided several such prediction functions whielpetiding on the situa-
tion, use different aspects of an agent’s knowledge abeuvthld. For example, agents
may sometimes want to choose only among roads that are krmoha winblocked, but
in other cases may ignore blockades completely in order tlodfini the minimal time to
reach a target. Since the complex metrics used account foy wfahe specific influ-
ences mentioned above, we have been able to give a quiteabeguediction of travel
durations in many cases. This prediction is then utilizedther components, e.g. the
sequence optimizer for civilian rescue (cf. Section 3).

The simulation is cycle-based. Hence, finding paths withinméh lengths or even
minimal duration is often not the wisest choice, since twihgpdaiffering only by a few
meters or, respectively, a few seconds can often be coesider equivalent as long as
they will take the same number of cycles to travel. This al@gents to build equiv-
alence classes among paths and, consequently, targetsaSeslection mechanisms
allow to optimize other criteria when, for a set of targel®& expected number of cy-
cles to reach them is equal. It is thus possible for an ageselert the most important
target among the ones most easily reachable or, vice-wbisalosest among the most
important targets.

5 Results

During the competition, teams are evaluated by an overalksihat is calculated based
on the state of civilian health and building destructionwdger, since this score in-
cooperates the total performance of all agent skills, sgaxploration, extinguishing,
and rescuing, it is impossible to assess single agent slkiéstly. In order to compare
our agents with agents from other teams, the performanggioit agent skills are em-
phasized by an evaluation of log files that were collectedhduhe 2004 competition.
The following tables provide results from all rounds of &ains that passed the pre-
liminaries. All values refer to the last round, i.e. the marage of clean roads at round
300. Bold numbers denote the best results that have been adidaviag the respective
round.

Table 1 shows the percentage of blockades that have beewedrby the police
agents. The results show that particularly the teBlarmas RescuandThe Black Sheep
most efficiently removed blockage from the roads. Table 2wvshine percentage of
buildings that have been saved by the fire brigades. ObyidlbslteamDamas Rescue
saved most of the buildings, whereaBCreached a robust behavior, shown by the good
average value. The efficiency of exploration turned out tofe of the most important
criteria for the team evaluation. The more locations ofligims are known, the more
efficiently rescue operations can be scheduled. Table 3sttmvpercentage of build-



ings that were visited by ageRtsThe result shows thaaspianexplored most of the
buildings. However, the percentage of explored buildingsschot necessarily correlate
with the percentage of found civilians, as shown by taBleThis is due to the fact that
communication as well as reasoning might increase theefiigi of exploration. At the
end, more civilians were found BesQ FreiburghanCaspian although the latter team
explored more buildings. Important for efficient rescueragiens is the point in time
when civilian whereabouts are known. The earlier civilians found, the better their
rescue can be scheduled. Fig. 1 shows the number of civiiimmsl during each cycle
on theRandomMapThe results confirm the efficiency BlesQ Freiburg’exploration:
At any time, the agents knew about more civilians than agefrasy other team.

Fig. 2 documents the difference between a greedy rescuet s@igction, i.e. prefer-
ring targets that can be rescued fast and selection basadaptimization by a genetic
algorithm. It can be seen that an optimization of the reseggence clearly increases
the number of rescued civilians. Finally table 5 shows thalper of civilians saved by
each teamResQ Freiburgsaved more than 620 civilians during all rounds, which are
35 more than the second best and 59 more than the third bés aompetition.

Table 1. Percentage of clean roads

[ [ResQ [Damas]CaspiaiBAM [SOS [SBC [ARK [B.Sheep

Final-VC 74,68 [8222 [71,79 [70,43 [N/A N/A N/A N/A

Final-Random [77,84 [86,51 [77,66 [63,10 [N/A N/A N/A N/A

Final-Kobe 92,25 [93,74 ]92,08 [92,05 [N/A N/A N/A N/A

Final-Foligno  [96,41 [97,72 [97,22 [96,07 [N/A N/A N/A N/A

Semi-VC 67,93 [7957 (68,86 [57,90 [67,22 [57,85 |53,27 [80,53
Semi-Random [82,53 (87,44 [77,47 [81,93 [82,26 [79,53 [80,30 [78,76
Semi-Kobe 92,40 [93,65 (92,71 [92,51 [92,62 [92,56 [93,55 [99,72
Semi-Foligno [95,45 [97,08 [95,58 [96,37 [96,93 [97,07 [9592 (83,44
Round2-Kobe [92,52 [93,52 [91,46 [92,46 [92,78 93,45 [92,25 [99,50
Round2-Randon87,74 [90,03 [87,62 [87,71 [87,86 [88,73 [85,03 [99,97
Round2-VC 91,34 [91,62 [90,74 89,87 [91,40 [90,92 [N/A 98,86
Round1-Kobe [89,19 [89,51 [87,78 [88,21 [88,30 [87,70 [91,12 (81,17
Round1-VC 91,90 [92,13 [91,74 [91,84 [N/A 91,81 [91,54 [99,82
Round1-Foligno/95,84 [96,92 [96,52 [96,36 [94,19 [96,62 [97,63 [80,15

Number of wins|0 7 0 0 0 0 2 5
AVG %: 87,72 190,83 [87,09 [85,49 (88,17 [87,62 86,73 [90,19
STD %: 8,25 [5,09 8,59 [11,25 [8,93 11,59 [13,63 [9,96

6 Conclusion

The results presented explain the success oRi&Q Freiburgeam during RoboCup
2004: While ResQ Freiburg’s police agents (removal of bldels) and fire agents (ex-
tinguishing fires) performed comparably as good as agemts éither teams (see table 2
and 1), the exploration and rescue sequence optimizatititiestclearly outperformed
the strategies of other teams (see table 4 and 5). Even dinergpmpetition’s final on
the RandomMapwhich decided by only.4 points of the total score the positioning
betweenDamas RescuandResQ FreiburgResQ Freiburgvas able to rescue seven
civilians more than the second best.

2 Note: Full communication of visited locations and exploitation of a sensoetveals assumed.
% Note: Civilians are considered as being found if one of the agents wais Witir visual range.



Table 2. Percentage of saved buildings

[ [ResQ [Damas]CaspiafiBAM [SOS [SBC [ARK [B.Sheep

Final-vVC 47,21 [54,13 [8167 [43,19 [N/A N/A N/A N/A

Final-Random [24,04 [26,38 [15,03 [12,35 [N/A N/A N/A N/A

Final-Kobe 38,24 (61,89 [38,38 [13,51 [N/A N/A N/A N/A

Final-Foligno  [91,15 [62,77 [60,92 [34,56 [N/A N/A N/A N/A

Semi-VC 23,45 123,60 [25,49 27,14 [19,12 [25,10 26,36 [27,22
Semi-Random [23,18 [28,73 [18,09 [19,55 [22,82 [21,45 [17,09 [18,91
Semi-Kobe 96,49 76,76 [94,32 [95,41 [24,32 [90,54 |55,27 [94,19
Semi-Foligno  [36,22 [38,06 [32,72 [37,79 [31,89 [28,48 [26,82 [23,23
Round2-Kobe [70,27 37,03 [59,73 [95,41 [48,38 [61,49 |10,54 [9554
Round2-Randor99,04 [60,91 [54,68 [99,16 [63,55 [97,60 [80,70 [9952
Round2-VC 10,23 [11,57 [10,23 [13,53 [12,67 [71,99 [N/A 36,51
Round1-Kobe [99,46 [98,92 [99,73 [99,73 [99,05 [98,78 [67,16 [91,89
Round1-VC 97,25 [99,53 [79,70 [99,76 [N/A 98,90 [99,53 (99,53
Round1-Foligno[98,99 [98,99 [36,13 [45,99 [32,53 [54,29 [43,59 [29,86

Number of Wins}3 5 2 2 0 1 0 3
AVG %: 61,09 [55,66 [50,49 [52,65 [39,37 [64,86 [47,45 (61,64
STD %: 37,80 [34,11 [31,83 [37,50 [27,28 [31,63 [30,49 [36,70

Table 3. Percentage of explored buildings

[ [ResQ [Damas]CaspiafiBAM [SOS [SBC [ARK [B.Sheep

Final-VC 83,48 [83,24 [87,02 [67,27 [N/A N/A N/A N/A

Final-Random [69,62 [72,62 [78,13 [49,92 [N/A N/A N/A N/A

Final-Kobe 89,19 [92,97 [89,73 [9419 |N/A N/A N/A N/A

Final-Foligno  [84,15 [85,25 [86,73 [74,29 [N/A N/A N/A N/A

Semi-VC 69,39 [72,86 |77,42 45,08 [52,01 |52,87 [47,92 |59,72
Semi-Random [78,91 [68,73 [71,91 [54,36 [59,36 [70,27 [46,18 [46,18
Semi-Kobe 85,41 [96,22 [92,97 [95,54 [66,62 |97,30 [99,46 [91,89
Semi-Foligno  [74,75 [89,12 [84,98 [62,49 [65,35 [92,53 [79,08 [20,74
Round2-Kobe [87,16 [90,68 [95,00 [91,76 [80,54 [94,19 [99,46 [92,43
Round2-Randorj81,18 [80,94 [88,61 [84,53 [60,67 [94,24 [82,61 [87,89
Round2-VC 83,40 [70,18 [84,58 40,44 [67,74 87,88 [N/A 89,54
Round1-Kobe [87,43 [90,27 94,05 [96,08 [96,62 [97,70 [97,84 [80,95
Round1-VC 85,37 [90,48 [95,28 [94,26 [N/A 97,72 100,00 [91,35
Round1-Foligno[83,78 [90,05 90,05 [60,00 [54,65 [88,57 [67,37 [13,00

Number of Wins}1 1 4 1 0 2 4 1
AVG %: 81,66 (83,83 (86,89 (72,16 (67,06 |87,33 (79,99 (67,37
STD %: 582 19,98 [7,87 22,21 [13,87 |14,59 [21,84 [30,80

In total, our results provide an interesting insight inte tRoboCupRescue sim-
ulation competition: In addition to strategies for extirghing fires and the removal
of blockades, as they were favored by teams during the lassyexploration and se-
gquence optimization are crucial subproblems in the Rob&espue simulation league.
The proposed analysis provides a methodology for the fudtuely of different strate-
gies in this complex domain. The scoring metric for team@atdn shown in this paper
has been integrated into the new 3D viewer of the RoboCupResimulation league,
which we contributed for the next RoboCup competitions [10]

Currently, our team started to develop robots for the RolpdR&iscue Real Robot
league. We are confident that the methods proposed in thisr @ap also helpful in
this context. Likewise as agents in the simulation, thebetohave to find victims au-
tonomously in an unknown terrain. Sensors, such as thermeres oiIC' O, detectors,
are used to make the search more efficient, in fact they aktossearch for victims
actively.

In addition to the proposed methods, various tools for agemtd modelling and
communication were developed by our team. These tools aadadll algorithms dis-
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Table 4. Percentage of found civilians

[ [ResQ [Damas]CaspiafiBAM [SOS [SBC [ARK [B.Sheep

Final-VC 97,22 [94,44 ]100,00 [81,94 [N/A N/A N/A N/A

Final-Random [90,91 [85,71 [81,82 [70,13 [N/A N/A N/A N/A

Final-Kobe 98,77 [97,53 [95,06 [98,77 [N/A N/A N/A N/A

Final-Foligno  [96,67 [96,67 [96,67 [72,22 [N/A N/A N/A N/A

Semi-VC 77,92 77,92 (8571 [4545 [53,25 [53,25 |50,65 [63,64
Semi-Random [8851 [73,56 [72,41 63,22 [67,82 [80,46 [52,87 [55,17
Semi-Kobe 100,00 [100,00 [100,00 [98,61 [79,17 [100,00 |100,00 (97,22
Semi-Foligno [90,12 [95,06 [86,42 [81,48 [83,95 [97,53 [85,19 [30,86
Round2-Kobe [98,89 [98,89 [97,78 [95,56 [91,11 [100,00 [100,00 [98,89
Round2-Randor{98,89 [95,56 [98,89 [81,11 [70,00 [96,67 [85,56 [94,44
Round2-VC 92,22 178,89 [90,00 [4556 [72,22 [88,89 [N/A 87,78
Round1-Kobe [94,29 [100,00 [100,00 [98,57 [100,00 [100,00 [94,29 [78,57
Round1-VC 100,00 [100,00 [100,00 [97,14 [N/A 100,00 [100,00 (98,57
Round1-Foligno[100,00 [97,14 [94,29 [77,14 [74,29 [92,86 [77,14 [14,29

Number of Wins}9 4 7 1 1 5 3 0
AVG %: 94,60 [92,24 [92,79 [79,06 [76,87 [90,97 [82,85 [71,94
STD %: 717 10,53 [9,03 [20,75 [13,73 [14,69 [19,35 [30,25

Table 5. Number of saved civilians

\ [ResQ [Damas]CaspiaiBAM [SOS [SBC [ARK [B.Sheep

Final-VC 42 43 52 34 N/A N/A N/A N/A
Final-Random |32 25 29 16 N/A N/A N/A N/A
Final-Kobe 46 45 416 30 N/A N/A N/A N/A
Final-Foligno |66 54 50 29 N/A N/A N/A N/A
Semi-VC 18 15 17 12 11 12 12 14
Semi-Random [22 26 16 14 20 14 15 15
Semi-Kobe 57 47 54 52 20 39 34 44
Semi-Foligno |37 46 44 43 42 28 29 24
Round2-Kobe |57 37 43 50 43 35 28 43
Round2-Randorjb2 48 39 45 a7 44 50 37
Round2-VC 31 33 32 24 37 51 N/A 34
Round1-Kobe [45 51 47 43 47 31 25 34
Round1-VC 62 62 55 57 N/A 51 54 44
Round1-Foligno/53 53 37 33 37 41 30 23

#Wins: 9 5 2 0 0 1 0 0
Y TOTAL: 620 585 561 482 304 346 277 312
>’ SEMI+PREM 434 418 384 373 304 346 277 312

cussed in this paper, are freely available for download fthenofficial home page of
RoboCupRescue simulation 2005 [1].
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