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Abstract. RoboCupRescue Simulation is a large-scale multi-agent simulation
of urban disasters where, in order to save lives and minimize damage, rescue
teams must effectively cooperate despite sensing and communication limitations.
This paper presents the comprehensivesearch and rescueapproach of theResQ
Freiburg team, the winner in the RoboCupRescue Simulation league at RoboCup
2004.
Specific contributions include the predictions of travel costs and civilian life-
time, the efficient coordination of anactivedisaster space exploration, as well as
an any-time rescue sequence optimization based on a genetic algorithm.
We compare the performances of our team and others in terms of their capability
of extinguishing fires, freeing roads from debris, disaster space exploration, and
civilian rescue. The evaluation is carried out with information extracted from
simulation log files gathered during RoboCup2004. Our results clearly explain
the success of our team, and also confirm the scientific approaches proposed in
this paper.

1 Introduction

The RoboCupRescue simulation league is part of the RoboCup competitions and aims
at simulating large scale disasters and exploring new ways for the autonomous coor-
dination of rescue teams [8]. These goals are socially highly significant and feature
challenges unknown to other RoboCup leagues, like the coordination of heterogeneous
teams with more than30 agents, the exploration of a large scale environment in order
to localize victims, as well as the scheduling of time critical rescue missions. Moreover,
challenges similar to those found in other RoboCup leagues are inherent to the domain:
The simulated environment is highly dynamic and only partially observable by a single
agent. Agents have to plan and decide their actions asynchronously in real-time. Core
problems in this league arepath planning, coordinated fire fightingand coordinated
search and rescueof victims.

This paper presents the comprehensivesearch and rescueapproach of theResQ
Freiburg team, the winner in the RoboCupRescue Simulation league at RoboCup 2004.
We show how learning and planning techniques can be used to provide predictive mod-
els that allow to act rationally despite the high dynamics ofthe simulation. Specific



contributions include the prediction of the life-time of civilians based onCART [4]
regression andADABoost[6], travel cost prediction and its integration into targetselec-
tion, the efficient coordination of anactivedisaster space exploration based on sensing,
communication and reasoning, as well as an any-time rescue-sequence optimization
based on a genetic algorithm. These techniques have in common that they provide ResQ
agents with formal models for reasoning about the present and future state of the sim-
ulation despite its high dynamics. These models allow deliberative instead of purely
reactive behavior, a capacity that we believe to be the reason for our team’s success.

We have conducted an extensive comparison of the performance of our team with
the performance of other teams in terms of the capability of extinguishing fires, freeing
roads from debris, disaster space exploration, and civilian rescue. The evaluation is car-
ried out with information extracted from simulation log files that were gathered during
the RoboCup competition2004. This evaluation gives much more information about
a team’s strengths and weaknesses than the standard scoringin the RoboCup Rescue
Simulation league; yet it can be automated and therefore provides an instrument for
precise analysis of teams. The results of our study clearly explain the success of our
team, and also confirm the scientific approaches proposed in this paper.

The remainder of this paper is structured as follows. We present the active search
and exploration approach in Section 2. The civilian rescue based on sequence optimiza-
tion is described in Section 3. Path planning and travel costprediction are covered in
Section 4. Finally, an extensive evaluation and analysis ofthe 2004 RoboCupRescue
competition is given in Section 5 and concluded in Section 6.

2 Exploration

In a partially observable environment like the RoboCupRescue simulation, exploration
is the key means for agents to enlarge their knowledge. It is especially important to find
injured civilians as quickly as possible without losing time by redundant exploration of
the same area by several agents. Our agents achieve this ability by maintaining aKnowl-
edge Base(KB) that keeps track of information collected on civiliansduring the search.
Each agent maintains locally its own KB that is updated from senses, communication
and reasoning. The KB allows them to efficiently focus and coordinate the search for
civilians. It maintains the knowledge of an agent on the relation between the set of civil-
iansC and the set of locationsL. This is carried out by maintaining for each civilian
c ∈ C a set of locationsLc that contains all possible locations of the civilian. Further-
more, we maintain for each locationl ∈ L a set of civiliansCl that contains all civilians
that are possibly situated at locationl. Initially, ∀c ∈ C,Lc = L and∀l ∈ L,Cl = C.

The KB allows us the calculation of the expectation of the number of civilians sit-
uated at any locationl. This is achieved by calculating the probability that civilian c is
situated at locationl, given the current state of the knowledge base:

P (loc(c)= l | KBt) =

{

1

|Lc|
if l ∈ Lc

0 otherwise
(1)

Which yields the expectation on the number of civilians situated at locationl:

E[|Cl|] =

|C|
∑

i=0

P (loc(ci) = l | KBt) (2)
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Note that it follows from the above that initially the expectation for each locationl is
given byE[|Cl|] = |C|

|L| . That means that we expect civilians to be uniformly and inde-
pendently distributed on the map. This is clearly not the case if buildings have a different
size or different degree of destruction. As an improvement,one could incooperate this
information as well. The KB is updated by either visual or auditory perception, com-
munication of perception from other agents, and reasoning with respect to the agent’s
sensor model. The sensor model returns for any locationl the set of locationsVl andAl

that are in visual (10m) or auditory (30m) range ofl, respectively [11].
The KB is implemented as a|C|x|L| boolean matrix, whereasC is the set of civil-

ians andL the set of locations. Any entry〈c, l〉 is set tofalseif a civilian c is definitely
not at locationl, and set totrue otherwise (including the case of uncertainty). Initially,
all entries are set totrue. Based on the sensor model, one can perform eitherpositiveor
negativeupdate operations on the KB:

1. Positive updates:
(a) Civilian c seen at location l

We can reduce the set of possible locations for civilianc to l: Lc := {l} and
reduce1 the set of possible civilians at locationl to c: Cl := {c} ;

(b) Civilian c heard at location l:
We can remove civilianc from all civilian lists that are not in range of the
sensor:∀l′ : l′ /∈ Al ⇒ C ′

l := C ′
l \ {c} and reduce the set of possible locations

for civilian c to all locations that are in range of the sensor:Lc := Lc ∩ Al

2. Negative updates:
(a) Civilian c not seen at l:

We can reduce the set of possible locations for civilianc by the set of locations
within visual range:Lc := Lc \ Vl and remove civilianc from all civilian lists
for locations within visual range:∀l′ : l′ ∈ Vl ⇒ C ′

l := C ′
l \ {c}

(b) Civilian c not heard at l:
No safe conclusion possible

These update rules are very efficient due to the fact that the perception of the agents is
free of noise. It is assumed that the agent is always able to see any civilian within the
range of its sensors. Certainly this is not true in a real disaster situation. If, for example,
victims are covered by rubble, they are even for humans hard to see. However, the
proposed update rules can easily be enhanced towards probabilistic methods if there are
probabilistic sensor models, which in turn have to be supported by the RoboCupRescue
simulation system.

District exploration. District exploration is a multi-agent behavior for the coordinated
search of buried civilians. The behavior guarantees that atany time each agent is as-
signed to a reachable and unexplored district on the map. In order to minimize the
number of times an agent gets stuck in a blockade during exploration, districts have to
consist of highly connected locations. The connectivity oftwo locations results from the
number of alternative paths between them, the number of lanes and degree of blockage
of each single road, and the degree of uncertainty on the state of the road. Due to the fact

1 Note if we see more than one civilian at the location, the set of possible civilians atl has to
contain all of them.
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that blockades on the map and hence the map’s connectivity isunknown to the agents
in advance, the clustering has to be revised continuously. We usedagglomerative[3]
andKD-tree [2] based clustering in order to calculate a near optimal separation of the
map into districts and to approximate the connectivity between them. These methods
calculate from a given connectivity graphG = 〈V,E〉 of a city, whereV represents the
set of locations andE the set of connections between them, a hierarchical clustering.
The hierarchical clustering, represented by a binary tree,provides at each level a par-
titioning of the city inton districts, reflecting the reachability of locations on the map
(e.g. locations with a high connectivity are found within the same cluster). Based on this
clustering, each team member is exclusively assigned to onereachable and unexplored
cluster that represents a district on the map.

Active Exploration. Active exploration is an extension to the previously described
district exploration task in that the search focuses on locations with high evidence on
civilian whereabouts. This is carried out by exploiting theknowledge collected from
senses, communication, and reasoning in the KB. Evidence from the KB is utilized by
calculating an utility valueU(l) which is equal to the number of civilians expected to
be found at observable locationsOl:

U (l) =
∑

k∈Ol

E[|Ck|] (3)

which yields, after inserting equation 2:

U (l) =
∑

k∈Ol

|C|
∑

i=0

P (loc(ci) = k | KBt) (4)

The overall sum of utilities over time can be maximized by theselection of targets
with high utility as well as targets that are reachable within a short amount of time.
Hence, from the set of locationsLD that are within the agent’s district, a target location
lt is decided based on the trade-off between utilityU (l) and travel costT (l):

lt = argmax
l∈LD

U (l) − α ∗ T (l) (5)

whereasα is a constant regulating the trade-off between the estimated travel costs and
the exploration utility and has to be determined experimentally. The estimated travel
costsT (l) are provided by a path planner that estimates costs based on apre-calculated
Dijkstra matrix (see Section 4).

Active surveillance. Furthermore, it is important for the rescue team to have up-to-
date information on the injured civilians that have been found during the exploration
task. The prediction module, described in Section 3, provides predictions of the civilian
life time that are the more accurate the more up-to-date the information onburiedness,
damageandhealth is. As we will describe in Section 3, the number of civilians that
can be rescued depends on the efficiency of the rescue team, which in turn, depends
on the accuracy of predictions. Hence, we extended the active exploration behavior in
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that it assigns agents to the surveillance of known civilianlocations after the map has
been explored sufficiently. The surveillance behavior is carried out by randomly sam-
pling interesting locations from the set of known civilian locations whereby locations
with obsolete information are selected with high probability. In general, information on
locations are considered as obsolete if they haven’t been visited by agents for a long
time.

The number of agents that are assigned to active search is limited to |L|
k

, whereasL
is the set of open locations andk a constant that has to be determined experimentally.
All agents above the assignment limit are performing activesurveillance. Ifk = 1 then
there will be at least as many explorers as open locations. Ifk < 1 then the exploration
speed will be increased, but in turn there might be obsolete information on the health
state of known victims. Ifk > 1 then the quality of information on known victims will
increase, but the search for new agents might take more time.

Team coordination. Besides the team coordination due to the assignment of districts,
it is necessary to further coordinate the multi-agent search in order to prevent the mul-
tiple exploration of locations. This is carried out by communicating the information on
found civilians as well as locations that have been visited.However, if agents select ex-
ploration targets from the same district (i.e. due to the overlap or the shortage of avail-
able districts), it might occur that they explore locationstwice. We implemented two
methods to locally reduce the probability of multiple target exploration. Firstly, agents
select exploration targets from a probability distribution. Secondly, agents negotiate tar-
gets they plan to explore in the next cycle via the short rangecommunication channel
(sayand hear). It turned out that the latter performs poorly if agents areable to move
much longer distances in a cycle than they are able to observe, which is true for the
current parameter setting of the RoboCupRescue kernel. Theproblem could be solved
by performing the negotiation via the long-range communication. Unfortunately, this
does no pay off since long-range communication is a limited resource. Hence, agents
choose their exploration targets from a probability distribution that assigns to each tar-
get a probability that is proportional to the score following equation 5. Note that the
local target selection strategy could further be improved by utilizing game-theoretic
methods.

3 Civilian Rescue

Lifetime prediction To achieve good results in the civilian rescue process, it isneces-
sary to know a civilian’s chance of survival. If there is a reliable prediction for the life
time of a certain civilian, the scheduling of the rescue operation can be adapted accord-
ingly. On the one hand, it is possible that a civilian does notneed to be rescued at all
because she will be alive at the end of the simulation. On the other hand, it is possible
that a civilian would die within a short amount of time and therefore has to be rescued
as soon as possible in order to survive.

For the ResQ Freiburg agents, machine learning techniques were used to gain a
prediction of the civilian’s life time and classification into survivors and victims. We
created anautorun toolthat starts the simulation and the agents simultaneously inorder
to collect data. The tool was used for several simulation runs on the Kobe, VC, and
Foligno maps, from which a large amount of datasets were generated.
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A data set consists of the values forhealthanddamageof each civilian at each time
step gained during the simulation. In order to reduce the noise in the data, simulations
were carried out within400 time steps, without rescue operations by the agents and
without fires on the map. The latter two conditions are necessary in order to prevent un-
expected changes of the damage to a civilian due to its rescue, resulting in zero damage,
or due to fires, resulting in unpredictable high damage. For the calculation of the life
time, there has to be determined a time of death for each dataset. Hence, the simulation
time was chosen to be400 rounds, which seemed to be a good compromise between an
ideal simulation time of∞ and the standard simulation time of 300 rounds that would
lead to a non-uniform distribution of the datasets.

Regression and classification was carried out with theWEKA [12] machine learn-
ing tool. We utilized theC4.5algorithm (decision trees) for the classification task. The
regression of the simulation time is based on Adaptive Boosting (Ada Boost) [6]. Since
the current implementation of theWEKAtool does only provide Ada Boost on classi-
fication, we had to extend this implementation for regression [5], which then has been
applied with regression trees (CART) [4].

The regression trees have been evaluated on test data sets inorder to learn the confi-
dence of a prediction in dependency of the civilian’s damageand the distance between
the query time and the predicted time of death. Confidence values are necessary since
the higher the difference between the observation and the civilian’s actual time of death,
the less accurate predictions are. The sequence optimization, described in Section 3, re-
lies on the confidence values in order to minimize sequence fluctuations.

Genetic Sequence Optimization. If the time needed for rescuing civilians and the
life time of civilians is predictable, one can estimate the overall number of sur-
vivors after executing a rescue sequence by a simulation. For each rescue sequence
S = 〈t1, t2, ..., tn〉 of n rescue targets, an utilityU(S) is calculated that is equal to the
number of civilians that are expected to survive. Unfortunately, an exhaustive search
over all n! possible rescue sequences is intractable. A straightforward solution to the
problem is, for example, to sort the list of targets by the time necessary to reach and
rescue them and to subsequently rescue targets from the top of the list. However, as
shown in Section 5, this might lead to unsatisfying solutions. Hence, we decided to
utilize a Genetic Algorithm (GA) for the optimization of sequences and thus the subse-
quent improvement of existing solutions [7].

The time for rescuing civilians is approximated by a linear regression based on the
buriedness of a civilian and the number of ambulance teams that are dispatched to the
rescue. Travel costs between two targets are estimated by averaging over costs sampled
during previous simulation runs. This is much more efficientthan the calculation of
exact travel cost involving, in the worst case, the calculation of the Floyd-Warshall
matrix inO(n3).

The GA is initialized with heuristic solutions, for example, solutions thatgreedily
prefer targets that can be rescued within a short time or urgent targets that have a short
lifetime. The fitness function of solutions is set equal to the previously described utility
U(S). In order to guarantee that solutions in the genetic pool areat least as good as
the heuristic solutions, the so calledelitism mechanism, which forces the permanent
existence of the best found solution in the pool, has been used. Furthermore, we utilized
a simple one-point-crossover strategy, a uniform mutationprobability ofp ≈ 1/n, and
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a population size of10. Within each cycle,500 populations of solutions are calculated
by the ambulance station from which the best sequence is broadcasted to the ambulance
teams that synchronously start to rescue the first civilian in the sequence.

One difficulty of the sequence optimization is given by the fact that information
stored in the KB on civilians changes dynamically during each round and thus might
cause fluctuations of the rescue sequence. This can be causedby two reasons: Firstly,
civilians are discovered by active exploration, which is executed by other agents at the
same time. Secondly, predictions vary due to information updates from active or passive
surveillance. The latter effect can be weakened by updatingthe sequence with respect
to the confidence of predictions. Updates of the informationon civilians are ignored, if
they are not statistically significant with respect to theirconfidence interval.

The effect of information updates due to exploration has to be controlled by de-
ciding between rescue permanence and rescue latency, i.e. how frequently change the
ambulances their targets and how fast can they react on emergency targets. Therefore
we implemented additionally a reactive mechanism that recognizes emergency rescue
targets that have to be rescued immediately. A target is defined as an emergency target
if it would die if not being rescued within the next round. However, any other target is
only taken as emergency target, if the current target would safely survive if postponing
its rescue.

4 Path planning

Every rescue agent must do path planning in order to reach itsselected target position.
ResQ Freiburg agents, however, use path planning alreadyduring target selection and
thus can account for the time needed to reach a target when calculating its utility. Such
an approach is only possible with a very efficient path planner that can be queried
several hundred times in each cycle.

The efficiency of the ResQ path planner stems from the following realization (ex-
plained in more detail in [9]): many nodes on the road graph ofa RoboCup Rescue
map connect exactly two roads plus one or more houses. If noneof these houses is the
source or destination of the path planner query, the node canonly be crossed, leaving no
choices for the planner. Only nodes with more than two adjacent roads constitute real
crossings. The road segments and simple nodes between the crossings can be joined
in one longroad, which has no inner crossings. Longroads and crossings forma new,
much smaller graph on which shortest path algorithms can be run much more quickly
than on the larger original graph.

Since every noden from the original graph lies on a longroad, each path to or fromn
must include one of the two endpoint crossings of that longroad,c1

n andc2

n. An optimal
path from nodess ande from the original graph therefore has length

min
i,j

(

sci
s + P (ci

s, c
j
e) + cj

ee
)

wherei, j ∈ {1, 2} (6)

To solve this formula efficiently, the ResQ planner stores the direct routes from a
location to its adjacent crossings. The optimal pathsP (ci

s, c
j
e) between crossings are

computed with Dijkstra’s algorithm.
Adequacy of the path planner for the Rescue Domain is even more important than its

efficiency. Most often agents want to know how long it will take to reach destinations.
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Therefore the cost functions used by the ResQ path planner have been designed not to
returnpath lengths(although this is of course possible) but to predict thetime it will
take an agent to reach its destination. To compute this, the planner tries to consider
not only the length of a path, but also partial blockades, acceleration/deceleration at
crossings, right of way (depending on from where a crossing is entered), and other
agents’ trajectories. While in the RCR system, these factorsare accurately simulated, it
is necessary for the ResQ Path Planner to use predictive functions in order to obtain the
speed for several hundred queries per second.

We have provided several such prediction functions which, depending on the situa-
tion, use different aspects of an agent’s knowledge about the world. For example, agents
may sometimes want to choose only among roads that are known to be unblocked, but
in other cases may ignore blockades completely in order to find out the minimal time to
reach a target. Since the complex metrics used account for many of the specific influ-
ences mentioned above, we have been able to give a quite accurate prediction of travel
durations in many cases. This prediction is then utilized byother components, e.g. the
sequence optimizer for civilian rescue (cf. Section 3).

The simulation is cycle-based. Hence, finding paths with minimal lengths or even
minimal duration is often not the wisest choice, since two paths differing only by a few
meters or, respectively, a few seconds can often be considered as equivalent as long as
they will take the same number of cycles to travel. This allows agents to build equiv-
alence classes among paths and, consequently, targets. Several selection mechanisms
allow to optimize other criteria when, for a set of targets, the expected number of cy-
cles to reach them is equal. It is thus possible for an agent toselect the most important
target among the ones most easily reachable or, vice-versa,the closest among the most
important targets.

5 Results

During the competition, teams are evaluated by an overall score that is calculated based
on the state of civilian health and building destruction. However, since this score in-
cooperates the total performance of all agent skills, such as exploration, extinguishing,
and rescuing, it is impossible to assess single agent skillsdirectly. In order to compare
our agents with agents from other teams, the performance of typical agent skills are em-
phasized by an evaluation of log files that were collected during the 2004 competition.
The following tables provide results from all rounds of all teams that passed the pre-
liminaries. All values refer to the last round, i.e. the percentage of clean roads at round
300. Bold numbers denote the best results that have been achieved during the respective
round.

Table 1 shows the percentage of blockades that have been removed by the police
agents. The results show that particularly the teamsDamas RescueandThe Black Sheep
most efficiently removed blockage from the roads. Table 2 shows the percentage of
buildings that have been saved by the fire brigades. Obviously the teamDamas Rescue
saved most of the buildings, whereasSBCreached a robust behavior, shown by the good
average value. The efficiency of exploration turned out to beone of the most important
criteria for the team evaluation. The more locations of civilians are known, the more
efficiently rescue operations can be scheduled. Table 3 shows the percentage of build-
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ings that were visited by agents2. The result shows thatCaspianexplored most of the
buildings. However, the percentage of explored buildings does not necessarily correlate
with the percentage of found civilians, as shown by table 43. This is due to the fact that
communication as well as reasoning might increase the efficiency of exploration. At the
end, more civilians were found byResQ FreiburgthanCaspian, although the latter team
explored more buildings. Important for efficient rescue operations is the point in time
when civilian whereabouts are known. The earlier civiliansare found, the better their
rescue can be scheduled. Fig. 1 shows the number of civiliansfound during each cycle
on theRandomMap. The results confirm the efficiency ofResQ Freiburg’sexploration:
At any time, the agents knew about more civilians than agentsof any other team.

Fig. 2 documents the difference between a greedy rescue target selection, i.e. prefer-
ring targets that can be rescued fast and selection based on an optimization by a genetic
algorithm. It can be seen that an optimization of the rescue sequence clearly increases
the number of rescued civilians. Finally table 5 shows the number of civilians saved by
each team:ResQ Freiburgsaved more than 620 civilians during all rounds, which are
35 more than the second best and 59 more than the third best in the competition.

Table 1. Percentage of clean roads

ResQ Damas CaspianBAM SOS SBC ARK B.Sheep

Final-VC 74,68 82,22 71,79 70,43 N/A N/A N/A N/A
Final-Random 77,84 86,51 77,66 63,10 N/A N/A N/A N/A
Final-Kobe 92,25 93,74 92,08 92,05 N/A N/A N/A N/A
Final-Foligno 96,41 97,72 97,22 96,07 N/A N/A N/A N/A
Semi-VC 67,93 79,57 68,86 57,90 67,22 57,85 53,27 80,53
Semi-Random 82,53 87,44 77,47 81,93 82,26 79,53 80,30 78,76
Semi-Kobe 92,40 93,65 92,71 92,51 92,62 92,56 93,55 99,72
Semi-Foligno 95,45 97,08 95,58 96,37 96,93 97,07 95,92 83,44
Round2-Kobe 92,52 93,52 91,46 92,46 92,78 93,45 92,25 99,50
Round2-Random87,74 90,03 87,62 87,71 87,86 88,73 85,03 99,97
Round2-VC 91,34 91,62 90,74 89,87 91,40 90,92 N/A 98,86
Round1-Kobe 89,19 89,51 87,78 88,21 88,30 87,70 91,12 81,17
Round1-VC 91,90 92,13 91,74 91,84 N/A 91,81 91,54 99,82
Round1-Foligno 95,84 96,92 96,52 96,36 94,19 96,62 97,63 80,15

Number of wins 0 7 0 0 0 0 2 5
AVG %: 87,72 90,83 87,09 85,49 88,17 87,62 86,73 90,19
STD %: 8,25 5,09 8,59 11,25 8,93 11,59 13,63 9,96

6 Conclusion

The results presented explain the success of theResQ Freiburgteam during RoboCup
2004: While ResQ Freiburg’s police agents (removal of blockades) and fire agents (ex-
tinguishing fires) performed comparably as good as agents from other teams (see table 2
and 1), the exploration and rescue sequence optimization abilities clearly outperformed
the strategies of other teams (see table 4 and 5). Even duringthe competition’s final on
the RandomMap, which decided by only0.4 points of the total score the positioning
betweenDamas RescueandResQ Freiburg, ResQ Freiburgwas able to rescue seven
civilians more than the second best.
2 Note: Full communication of visited locations and exploitation of a sensor model was assumed.
3 Note: Civilians are considered as being found if one of the agents was within their visual range.
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Table 2. Percentage of saved buildings

ResQ Damas CaspianBAM SOS SBC ARK B.Sheep

Final-VC 47,21 54,13 81,67 43,19 N/A N/A N/A N/A
Final-Random 24,04 26,38 15,03 12,35 N/A N/A N/A N/A
Final-Kobe 38,24 61,89 38,38 13,51 N/A N/A N/A N/A
Final-Foligno 91,15 62,77 60,92 34,56 N/A N/A N/A N/A
Semi-VC 23,45 23,60 25,49 27,14 19,12 25,10 26,36 27,22
Semi-Random 23,18 28,73 18,09 19,55 22,82 21,45 17,09 18,91
Semi-Kobe 96,49 76,76 94,32 95,41 24,32 90,54 55,27 94,19
Semi-Foligno 36,22 38,06 32,72 37,79 31,89 28,48 26,82 23,23
Round2-Kobe 70,27 37,03 59,73 95,41 48,38 61,49 10,54 95,54
Round2-Random99,04 60,91 54,68 99,16 63,55 97,60 80,70 99,52
Round2-VC 10,23 11,57 10,23 13,53 12,67 71,99 N/A 36,51
Round1-Kobe 99,46 98,92 99,73 99,73 99,05 98,78 67,16 91,89
Round1-VC 97,25 99,53 79,70 99,76 N/A 98,90 99,53 99,53
Round1-Foligno 98,99 98,99 36,13 45,99 32,53 54,29 43,59 29,86

Number of Wins:3 5 2 2 0 1 0 3
AVG %: 61,09 55,66 50,49 52,65 39,37 64,86 47,45 61,64
STD %: 37,80 34,11 31,83 37,50 27,28 31,63 30,49 36,70

Table 3. Percentage of explored buildings

ResQ Damas CaspianBAM SOS SBC ARK B.Sheep

Final-VC 83,48 83,24 87,02 67,27 N/A N/A N/A N/A
Final-Random 69,62 72,62 78,13 49,92 N/A N/A N/A N/A
Final-Kobe 89,19 92,97 89,73 94,19 N/A N/A N/A N/A
Final-Foligno 84,15 85,25 86,73 74,29 N/A N/A N/A N/A
Semi-VC 69,39 72,86 77,42 45,08 52,01 52,87 47,92 59,72
Semi-Random 78,91 68,73 71,91 54,36 59,36 70,27 46,18 46,18
Semi-Kobe 85,41 96,22 92,97 95,54 66,62 97,30 99,46 91,89
Semi-Foligno 74,75 89,12 84,98 62,49 65,35 92,53 79,08 20,74
Round2-Kobe 87,16 90,68 95,00 91,76 80,54 94,19 99,46 92,43
Round2-Random81,18 80,94 88,61 84,53 60,67 94,24 82,61 87,89
Round2-VC 83,40 70,18 84,58 40,44 67,74 87,88 N/A 89,54
Round1-Kobe 87,43 90,27 94,05 96,08 96,62 97,70 97,84 80,95
Round1-VC 85,37 90,48 95,28 94,26 N/A 97,72 100,00 91,35
Round1-Foligno 83,78 90,05 90,05 60,00 54,65 88,57 67,37 13,00

Number of Wins:1 1 4 1 0 2 4 1
AVG %: 81,66 83,83 86,89 72,16 67,06 87,33 79,99 67,37
STD %: 5,82 9,98 7,87 22,21 13,87 14,59 21,84 30,80

In total, our results provide an interesting insight into the RoboCupRescue sim-
ulation competition: In addition to strategies for extinguishing fires and the removal
of blockades, as they were favored by teams during the last years, exploration and se-
quence optimization are crucial subproblems in the RoboCupRescue simulation league.
The proposed analysis provides a methodology for the further study of different strate-
gies in this complex domain. The scoring metric for team evaluation shown in this paper
has been integrated into the new 3D viewer of the RoboCupRescue simulation league,
which we contributed for the next RoboCup competitions [10].

Currently, our team started to develop robots for the RoboCupRescue Real Robot
league. We are confident that the methods proposed in this paper are also helpful in
this context. Likewise as agents in the simulation, these robots have to find victims au-
tonomously in an unknown terrain. Sensors, such as thermo cameras orCO2 detectors,
are used to make the search more efficient, in fact they are used to search for victims
actively.

In addition to the proposed methods, various tools for agentworld modelling and
communication were developed by our team. These tools and also all algorithms dis-
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Table 4. Percentage of found civilians

ResQ Damas CaspianBAM SOS SBC ARK B.Sheep

Final-VC 97,22 94,44 100,00 81,94 N/A N/A N/A N/A
Final-Random 90,91 85,71 81,82 70,13 N/A N/A N/A N/A
Final-Kobe 98,77 97,53 95,06 98,77 N/A N/A N/A N/A
Final-Foligno 96,67 96,67 96,67 72,22 N/A N/A N/A N/A
Semi-VC 77,92 77,92 85,71 45,45 53,25 53,25 50,65 63,64
Semi-Random 88,51 73,56 72,41 63,22 67,82 80,46 52,87 55,17
Semi-Kobe 100,00 100,00 100,00 98,61 79,17 100,00 100,00 97,22
Semi-Foligno 90,12 95,06 86,42 81,48 83,95 97,53 85,19 30,86
Round2-Kobe 98,89 98,89 97,78 95,56 91,11 100,00 100,00 98,89
Round2-Random98,89 95,56 98,89 81,11 70,00 96,67 85,56 94,44
Round2-VC 92,22 78,89 90,00 45,56 72,22 88,89 N/A 87,78
Round1-Kobe 94,29 100,00 100,00 98,57 100,00 100,00 94,29 78,57
Round1-VC 100,00 100,00 100,00 97,14 N/A 100,00 100,00 98,57
Round1-Foligno 100,00 97,14 94,29 77,14 74,29 92,86 77,14 14,29

Number of Wins:9 4 7 1 1 5 3 0
AVG %: 94,60 92,24 92,79 79,06 76,87 90,97 82,85 71,94
STD %: 7,17 10,53 9,03 20,75 13,73 14,69 19,35 30,25

Table 5. Number of saved civilians

ResQ Damas CaspianBAM SOS SBC ARK B.Sheep

Final-VC 42 43 52 34 N/A N/A N/A N/A
Final-Random 32 25 29 16 N/A N/A N/A N/A
Final-Kobe 46 45 46 30 N/A N/A N/A N/A
Final-Foligno 66 54 50 29 N/A N/A N/A N/A
Semi-VC 18 15 17 12 11 12 12 14
Semi-Random 22 26 16 14 20 14 15 15
Semi-Kobe 57 47 54 52 20 39 34 44
Semi-Foligno 37 46 44 43 42 28 29 24
Round2-Kobe 57 37 43 50 43 35 28 43
Round2-Random52 48 39 45 47 44 50 37
Round2-VC 31 33 32 24 37 51 N/A 34
Round1-Kobe 45 51 47 43 47 31 25 34
Round1-VC 62 62 55 57 N/A 51 54 44
Round1-Foligno 53 53 37 33 37 41 30 23

#Wins: 9 5 2 0 0 1 0 0
Σ TOTAL: 620 585 561 482 304 346 277 312
Σ SEMI+PREM 434 418 384 373 304 346 277 312

cussed in this paper, are freely available for download fromthe official home page of
RoboCupRescue simulation 2005 [1].
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