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Abstract. Robot Soccer involves planning at many levels, and in this paper we
develop high level planning strategies for robots playing in the RoboCup Four-
Legged League using case based reasoning. We develop a framework for devel-
oping and choosing game plays. Game plays are widely used in many team sports
e.g. soccer, hockey, polo, and rugby. One of the current challenges for robots play-
ing in the RoboCup Four-Legged League is choosing the right behaviour in any
game situation. We argue that a flexible theoretical model for using case based
reasoning for game plays will prove useful in robot soccer. Our model supports
game play selection in key game situations which should in turn significantly
advantage the team.

1 Introduction

Robot Soccer involves planning at many levels. In this paper we are concerned with
developing high level planning strategies for robots playing in the RoboCup Four-
Legged League. We develop a framework for developing and choosing game plays.
Game plays are widely used in many team sports e.g. soccer, hockey, polo, basket-
ball and rugby. There are several important differences between robot soccer in the
Four-Legged League and human soccer, e.g. all the players on a team have the same
physical capability so specialization cannot exploit individuals physical talents. This is
in contrast to the simulated league where it is possible for the players to have different
attributes and physical capabilities. In addition because of their poor sensors, relative to
humans, the AIBO robots possess a limited capability to predict detailed actions of oth-
ers and hence there is little advantage to be gained from certain moves, e.g. disguising
a kick.

Robot Soccer is a relatively new research initiative and in terms of its development
it is in its infancy. One of the current challenges for robots playing in the RoboCup
Four-Legged League is choosing the right behaviour, e.g. the best kick, in any game
situation. Soccer is all about positioning; being in the right place at the right time. If
a robot implements a kick then it needs to be in the best position to obtain maximum
power and control.

We argue that a flexible theoretical model for using case based reasoning [8] for
game plays will prove useful in the Four-Legged League. Our model will support game
play selection in key game situations which should, in turn, significantly advantage the
team. Case based reasoning has been used in other robot soccer leagues for various
purposes. Most of the focus in strategy development has been in the Simulated League.
The Simulated League lends itself to cased based techniques and to machine learning



approaches because of the speed and flexibility of developing virtual robots as well as
the ease and practicality of data collection during actual games.

In 1999 Wendler et al [10] developed a case based reasoning approach to action
selection in the Simulation League, whilst Wendler, Kaminka and Veloso [11] pro-
vided a general theoretical case based reasoning model for robot coordination between
team members. More recently, Gabel and Veloso [3] described a highly sophisticated
case based approach to enhance the performance of the online coach in the Simulated
League. Their system allows knowledge about previous match performances to be in-
corporated into the online coach’s decision making process.

In this paper we propose a simple and robust cased based reasoning model for the
RoboCup Four-Legged League that can be customised and enhanced. In a companion
paper we will describe some experimental results that evaluate the model’s performance
using the UTS Unleashed Robot Soccer System ( http://magic.it.uts.edu.au/unleashed).

2 Robot Soccer Game Play

A major benefit of developing a case base for robot soccer game plays is that it will
result in a powerful knowledge base containing important knowledge about the game.
A case base of game plays can capture creative genius and enduring principles of how
to play the game for the purpose of teaching robots to play soccer more effectively.

Cases can describe set situations, like kickoffs, as well as running and passing game
plays, attacking moves, and defensive formations. For any game situation, in our model,
game plays are chosen based on the similarity between the current state of play and
a collection of cases in the knowledge base. As our robot soccer multiagent system
evolves, more ambitious new game play cases can be added, for example, as the robots
become better at passing we can develop cases for pass blocking.

The game play strategies embedded in the cases can blend the lessons of the past
with best guesses for future matches, and as such they incorporate some key elements
for a winning game. The game play cases in the knowledge base can be selected de-
pending on the type of game required. For example, if it is known that a particular
opposition plays a certain style of game then the case base used could reflect specific
tactics and strategies to counter that style.

Game play cases allow teams to string several plays together that take advantage
of a teams’ strengths. In other words, game play cases can form the building blocks
of larger plans. Set game plays could prove critical for the success of team. In human
games the difference between winning and losing is often the successful execution of
set game plays in both offense and defense. In human soccer it has been calculated that
as many as 40% of all goals scored are from set game play situations.

3 Case Based Reasoning in Conceptual Spaces

Categorisation of information helps robots reduce the complexity of the information
they need to acquire and manage during their lifetime. In addition, the ability to cat-
egorise gives rise to broad powers of explanation. For example, without the ability to
categorise, robots would not be capable of representing visual information beyond the
pixel level, and as a result would not develop a world model that could support even
simple forms of object recognition and reasoning. The ability to form and manipulate
categories enhances robots capacity for problem solving, communication, collaboration
etc. We expect robots to respond appropriately to information acquired through their
sensory systems. The ability to categorize new sensory information and to anchor it to
objects in the real world allows a robot to behave sensibly in previously unencountered
situations[6].



For the purpose of this paper we believe that categorizing game situations will assist
robots play better soccer. We use the conceptual spaces approach [4, 6, 5] to categoriza-
tion driven by similarity measures.

Few concepts or categories of objects can be specified using necessary and sufficient
conditions: Mathematical entities like triangles can, but almost all everyday objects,
like chairs for example, defy explicit definition.

A similarity based approach to categorization is more widely applicable to robot
soccer than explicit rules, because soccer playing robots need to make useful general-
izations about previously unencountered situations. To play soccer well robots cannot
be hardwired they must be able to respond appropriately to situations that were not
foreseen at design time.

Conceptual spaces are multidimensional spaces that can be used to describe both
physical and abstract concepts and objects. In contradistinction to the use of explicit
(causality) rules to describe the relationship between objects, conceptual spaces adopt
a similarity-based approach to categorization.

The main idea is that objects are categorized according to how similar they are to a
prototype or (cluster of) exemplar(s). For instance, the colour yellow is more similar to
green than it is to blue. For the purpose of robot soccer strategies we are interested in
identifying prototypical or important game states and measuring the similarity across
different game states.

Conceptual spaces are geometrical structures based on quality dimensions. Quality
dimensions correspond to the ways in which stimuli/features are judged to be similar or
different. Judgments of similarity and difference typically generate an ordering relation
of stimuli/features, e.g. judgments of level of control of the ball generate a natural or-
dering from “weak” to “strong” [4]. There have been extensive studies conducted over
the years that have explored psychological similarity judgments by exposing human
subjects to various physical stimuli.

Objects are characterized by a set of qualities or features {q1,qz, ..., qn}. Each
feature q; takes values in a domain Q;. For example, the distance from a robot to the
goal can take values in the domain of positive real numbers. Objects are identified with
points in the conceptual space C = Q1 x Q2 x ...Qn, and concepts/categories are
regions in conceptual space.

For the purpose of problem solving, learning and communication, robots can adopt
arange of conceptualizations using different conceptual spaces depending on the cogni-
tive task at hand. For this reason we develop various meta-level strategies that determine
the cases to consider and a number of pertinent similarity measures for our application
in robot soccer.

For our current purpose, and without loss of generality, we often identify a concep-
tual space C with R™, but hasten to note that conceptual spaces do not require the full
richness of R™. For example, in two of our similarity measure given in Section 4 we
measure the distance between two objects on the soccer field using Euclidean distance,
however we also develop a third qualitative similarity measure based on a partition-
ing of the field into strategic regions where each region can be given a weighting that
represents its strategic importance (see Figure 1).

Similarity relations are fundamental to conceptual spaces [7]. They capture infor-
mation about similarity judgments. In order to model some similarity relations we can
endow a conceptual space with a distance measure; A distance measure d is a function
from C x C into T where C is a conceptual space and T is a totally ordered set. Dis-
tance measures lead to a natural model of similarity; the smaller the distance between
two objects in conceptual space, the more similar they are. The relationship between
distance and similarity need not be linear, e.g. similarity may decay exponentially with
distance.

A categorization results in a partitioning of a conceptual space into (meaningful)
subregions. The geometrical nature of conceptual spaces coupled with representations



for prototypes, and the ability to manipulate dimensions independently of one another
ensures that they provide a highly flexible and practical representation of context-sensitive
case-based reasoning.

Our cases consist of prototypical situations and important situations that are en-
countered during a soccer match. For example: kick off, a single attacking player in the
goal penalty area, a player with the ball in a goal-end corner, or a player with the ball
on the field border.

The cases have been developed over the last year through observation of the NUbot
[1] team in practice matches and in competition matches at RoboCup 2002, and more
recently during the practice matches of UTS Unleashed!. In Part II, the sequel to this pa-
per, the cases will be refined and tested using experimentation. During the experiments
robots will be placed in preselected positions and their behaviour monitored. Successful
sequences of actions that lead to positive results will be adopted and incorporated into
the cases.

Our aim is to develop a collection of cases to create a conceptual space for the
purpose of providing strategic decision making assistance to robots. To that end we must
define the appropriate quality dimensions, i.e. features, which will prove crucial for the
similarity measure, and then the similarity measure itself. In addition, we identify some
meta-level features which can be used to determine the set of cases that should be
considered during a game.

Each of our cases consists of a set:

Case = {Field, Possession }

The State of the Field is described in terms of absolute coordinates with the center
of the field prescribed as the origin of the coordinate system. The positive y-axis is
directed along the opponents goal. In such a system we can then denote the position of
the players by an ordered pair (z, y).

The state of the field is defined by the position of the players. We denote the set of
our players by P and the opponents by the set P’, where

P = {p17p27p3ap4} and P' = {pll7pl27pil3ap£1}
Here p; = (z;,y;) and p; = (x},y}) are the absolute z and y coordinates of the ith
player.

The Degree of Possession is another important dimension in our case. The degree of
possession is a measure of which team possesses the ball and what the nature of that
possession is.

Table 1. Degree of Possession

Possession degree

no possession 0
no possession but in a scrum 1
possession but in a scrum 2
possession and clear 3
possession by the opponent team in the scrum -2
possession by the opponent team and clear -3

This numerical degree given to an otherwise qualitative characteristic will allow
us to use it effectively in calculating a similarity between a current situation and our
case-base.



In addition to the object level features we also use several meta-level features (or
global parameters) that can aid in the selection of the appropriate strategy. For exam-
ple, these meta-level features can help us identify a subset of the possible cases that
should be considered in a given situation. Furthermore, they can also be used to resolve
conflicts when two or more cases are “equally” similar.

The Situation involves a numerical evaluation that represents the context of the player
with a high degree of possession. If the player with control of the ball has no obstacles
between herself and the goal, then the team’s situation is said to be “wide open” and is
given a degree of 2. If the player with control of the ball has obstacles between herself
and the goal, then the team’s context is clear and assigned a degree of 1 and if the
player is in a scrum then the situation is given a degree of 0. Negative numerical values
are attributed to the above situations if the ball is in possession of the opponent team.
A player’s situation differs to a player’s degree of possession in that the situation is
determined by the global state of the field, whilst degree of possession only concerns
the immediate vicinity of the robot.

The Score and the Time to Game Completion are two important meta-level parameters
that can be used to determine the set of cases that should be considered. In this way
the score and the time left in the game can influence the strategy. For example, an
unfavourable score and a short time remaining might induce the robots to take more
adventurous actions. In contrast a favourable score and a short time remaining could
induce a more defensive behaviour.

Countering Opponent Team Strategies This parameter can be advantageous in the case
where reliable information about the opponent teams strategies can be obtained. For
example if the other team is known to play a strong attacking game, then it would be in
the interests of a team to ensure that they maintained possession of the ball at the cost
of pushing the ball forward.

4 Measure of Similarity and Action

As mentioned earlier an appropriate measure of similarity is essential for developing
strategies based upon past experiences. The performance of case based reasoning is
strictly dependent on the quality of the similarity measure adopted. We intend to verify
our similarity measures’ effectiveness via experiment and for that reason we have de-
veloped several measures of similarity; two quantitative measures and one qualitative
measure.

The quantitative similarity measures that we chose to make a correlation with a
prototypical case and the current situation on the field are calculated by minimising the
Euclidean norm.

Let N be the number of cases. Then the field in the jy, case can be represented as:

Cj = {PzJ ’ Pz'lj }
We let the current field situation be represented by C' = {Q;, Q}}. If we now want to
determine the similarity between a case C; and the current situation, we have to come
up with a pairing between the players in the case and the current situation. We will use
a permutation 7 for this purpose.
For any given case C'; and given permutation 7, we find the distance between the
players

PijQr(i) = \/(mpij - mQﬂ(i))rZ + (yPij - :UQ,,(Z'))2



We construct a 4 x 4 matrix as follows

P1iQr1y PijQnr2) PrjQr3) PrjQnr(a)
PoiQr1y PojQnr(2) P2jQr(3) PojQn(a)
P3;Qr1) P3jQnr2) P3iQr(3) P3jQr()
PiiQr1) P1jQnr2) PajQr(3) PajQr(a)

A corresponding matrix can be constructed for the opponent team as well. We now
look at two different methods of defining a quantitative similarity measure. Both of
these methods can be easily extended to include a weighting given to the position of the
players.

Method 1 The similarity measure is achieved by calculating the following:

I??(ZZPZIQ”UC)”Z -PzJQW(k))aaZZ‘PzNQﬂ'(k)>
’ ik k ik

2

If the minimum is found for C; and 7, then we say that in terms of the field configuration
the 1M case with player pairing 7 is the most similar to the current situation.

Method 2 In this method we first find the maximum distance between any two players:
dj max = max (PjQnx)) i k=1,---4.

The rationale behind this is that the similarity between two cases should be based on
the time required to move all robots into the positions from one case to the other. Since
each robot can move independently it can be done in parallel, hence it is enough if we
look for the maximum distance.
The similarity measure is then found by: r}glin (di,---,dj,---,dnN)
, 7T

Since we have to consider all pairings between our own players and between the
opponent players, we have to compare all in all N x (4! 4 4!) (sub-) cases with our
current situation, i.e., we have to look at 48 x N (sub-)cases. If we want to apply this
method to larger teams, e.g., with 11 players, one clearly needs to employ different
methods because we would have to consider approx. (11! + 11!) x N cases which
is approximately equal to 8.0 x 107 x N cases. However, fortunately, one could use
minimal-weight perfect matching [2] techniques at this point, which are polynomial in
the number of players.

However it is important to note that our case actions are based solely upon the posi-
tion of our team’s players since we have no control over the movement of the opponent
team’s players. So in order to have a more comprehensive strategy we include in our
analysis a subset of similar cases. Suppose that the similarity measure for the state of
the field gives us a minimum distance D from a particular case. Instead of simply con-
sidering the best matched case, we could also consider cases which satisfy D + € where
€ is small. The best case can then be selected from this subset by taking a meta-feature
such as the situation into account.

The qualitative measure of similarity is based upon the minimum number of moves
that the players have to make to go from a particular situation to one of the situations
in our case-base. To achieve this numerical value we divide the field into 30 strategic
regions. For simplicity we assume that the various regions are rectangular regions. The
sectors are created by dividing the field into three vertical regions and then each region
is subdivided into four smaller regions (along the horizontal direction). The four corners
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Fig. 1. The soccer field divided into 30 strategic regions and an example of game play scenario.

thus generated are further subdivided into four regions. Each region or sector of the field
is given a number to uniquely identify the region. The diagram of the field is shown in
Figure (1).

We can then classify the regions by assigning them a number. Our goal region is
given the number 0 and then starting from the field on our side we number the regions
left to right. Each player is then given a corresponding number which is equal to the
number of the region it is found in. We define our similarity measure by calculating the
minimum number of moves our players have to make to be in the same position as the
case being compared with. We weight the moves as: a move towards the opponents goal
is given a weight of +2, a move backward towards our goal is given a weight of —2 and
a move to the left or the right is given a weight of +1.

S Example

Let us consider a prototypical case in a soccer match; the player and the ball are stuck
in a corner with the player facing away from the field and obstructed by an opponent
player. The situation is represented in Figure (1) which illustrates the motion of the ball
and the movement of the players. Our team players are represented by fully shaded cir-
cles while the opponent team players are represented by hollow circles. Dotted arrows
indicate the motion of the ball and the arrows with a shaded head show the movement
of our team players. The unshaded arrows indicate the motion of the opponent team
players.

In this particular example, the strategy is to kick the ball backwards. As a result of
the motion of the ball the opponent players move along the direction of the moving ball.
The receiving player (Player 2) then kicks the ball back to Player 3. This motion leaves
the situation wide open and without any obstructions and allows Player 1 to position
itself in front of the opponents goal.

6 Discussion

Robot Soccer involves planning at many levels, and in this paper we developed a the-
oretical case based reasoning model for robot soccer strategies for the RoboCup Four-
Legged League.

We argued that a flexible theoretical model for using case based reasoning for game
plays will prove useful in robot soccer. Our model will support game play selection in
common and key game situations which should in turn significantly advantage the team.



One of the current challenges for robots playing in the RoboCup Four-Legged
League is choosing the right behaviour in any game situation. Our model allows robots
to develop and choose game plays for any game situation.

We adopted the conceptual spaces framework which relies on the determination of
prototypical situations and a measure of similarity across all situations. We developed
three similarity measures for our model; two quantitative and a strategically oriented
qualitative measure.

Having developed a theoretical model we intend putting it to the test using experi-
mental evaluations, and have begun to develop our experimental framework using the
UTS Unleashed! Robot Soccer Multiagent System.

One of the challenges for our future work is to extend our model to handle incom-
pleteness and uncertainty. Throughout our discussion we have assumed that the robots
world model is reasonably, but not perfectly, accurate, however in reality much of the
information required to choose the best matching case may be simply unknown even in
the case where robots can communicate. We expect our experimentation to reveal the
best way to design for high level incompleteness and uncertainty and plan to address it
using techniques given in Liu and Williams[9].
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