
Decentralized Collision Avoidance, Deadlock Detection, and Deadlock
Resolution for Multiple Mobile Robots

Markus Jäger Bernhard Nebel
Corporate Technology Institut für Informatik

Siemens AG Albert-Ludwigs-Universität
81739 Munich, Germany 79100 Freiburg, Germany

markus.jaeger@mchp.siemens.de nebel@informatik.uni-freiburg.de

Abstract
This paper describes a method for coordinating the in-

dependently planned trajectories of multiple mobile robots
to avoid collisions and deadlocks among them.

Whenever the distance between two robots drops be-
low a certain value, they exchange information about their
planned trajectories and determine whether they are in
danger of a collision. If a possible collision is detected,
they monitor their movements and, if necessary, insert idle
times between certain segments of their trajectories in or-
der to avoid the collision.

Deadlocks among two or more robots occur if a number
of robots block each other in a way such that none of them
is able to continue along its trajectory without causing a
collision. These deadlocks are reliably detected. After a
deadlock is detected, the trajectory planners of each of the
involved robots are successively asked to plan an alterna-
tive trajectory until the deadlock is resolved.

We use a combination of three fully distributed algo-
rithms to reliably solve the task. They do not use any global
synchronization and do not interfere with each other.

1 Introduction
Whenever multiple mobile robots share the same work-

space, the potential for collisions among them must be
taken into account. This can be done by using a central-
ized component to plan collision free trajectories of all the
robots simultaneously [1] or by planning the trajectories of
all the robots independently and using a centralized com-
ponent to coordinate these trajectories, so that no collision
is possible [2, 3].

Centralized approaches, however, have the disadvan-
tage that they are computationally demanding, inflexible
and presuppose that there is a global communication net-
work. We therefore omit centralized components and, in
contrast to centralized approaches, achieve global coor-
dination by distributed algorithms and assume only local
communication between pairs of physically close robots.
This permits less demanding communication frameworks

and allows easier and more adaptive coordination between
the robots.

Whenever the distance between two robots drops be-
low a certain value they exchange information about their
planned trajectories and determine whether they are in
danger of a collision. If a possible collision is detected,
they monitor their movements and, if necessary, insert idle
times between certain segments of their trajectories in or-
der to avoid the collision.

Deadlocks among two or more robots occur if a number
of robots block each other in a way such that none of them
is able to continue along its trajectory without causing a
collision. These deadlocks are reliably detected. After a
deadlock is detected, the trajectory planners of each of the
involved robots are successively asked to plan an alterna-
tive trajectory until the deadlock is resolved.

We use a combination of three fully distributed algo-
rithms to reliably solve the task. They do not use any global
synchronization and do not interfere with each other.

This paper does not deal with the trajectory planning it-
self. It concentrates on the coordination methods for the
collision avoidance, the deadlock detection, and the dead-
lock resolution. The methods provided in the paper can
therefore be seen as an intermediate layer between the tra-
jectory planning layer and the trajectory execution layer, as
shown in Figure 1.

Some related work, which also concentrates on inde-
pendent planning of the trajectories, is summarized in the
next section. Sections 3 to 6 describe the coordination.
They focus on general assumptions, collision avoidance,
deadlock detection, and deadlock resolution, respectively.
The last two sections provide some simulation results and
give a summary, draw some conclusions and mention some
future work.

2 Related Work
The work dealing with independently planned trajec-

tories differs mainly in the strategies which are used to
avoid collisions and the strategies to deal with deadlocks.

R o b o t A

 T r a j e c t o r y
C o o r d i n a t i o n L a y e r

 T r a j e c t o r y
E x e c u t i o n L a y e r

 T r a j e c t o r y
P l a n n i n g L a y e r

R o b o t B

 T r a j e c t o r y
C o o r d i n a t i o n L a y e r

 T r a j e c t o r y
E x e c u t i o n L a y e r

 T r a j e c t o r y
P l a n n i n g L a y e r

C o o r d i n a t i o n

Figure 1: Each robot in the system consists of three layers. The
task of the trajectory planning layer is to plan a trajectory for
a certain robot, the trajectory coordination layer is responsible
for coordinating the independently planned trajectories, and the
trajectory execution layer moves the robot along its trajectory.

Aguilar et al.[4] plan the trajectories independently, but
use a centralized mechanism to merge the trajectories, so
that no collisions and deadlocks can occur. The centralized
mechanism requires that a robot is able to send broadcast
messages to all other robots, leading to high demands on
communication abilities of the robots.

Kato et al.[5], in contrast, demand no communication
abilities of the robots at all. They use traffic rules which,
if obeyed by all robots, ensure collision and deadlock free
operation of the whole system. They, however, make some
very special assumptions about the environment.

Chun et al.[6] also do not demand communication abil-
ities at all, but require that the sensors of a robot can detect
other robots within a certain range. Whenever a robot de-
tects another robot it computes the probable collision point
and replans its trajectory, in order to avoid it. Since the
replanning is done on a local basis, it might lead to dead-
locks, which are neither detected nor resolved.

The problem of avoiding collisions among two robots
was discussed by Kant and Zucker [7], O’Donnell and
Lozano-Periz [8], and Lee et al.[9]. They solve the prob-
lem by inserting idle times between trajectory segments.
This approach has largely influenced our collision avoid-
ance strategy.

Wang and Premvuti [10, 11] use a deadlock detection
algorithm which requires communication only among a
robot and its immediate neighbors. Our deadlock detec-
tion strategy is similar to theirs, but our deadlock resolution
strategy differs. They assume, that each passage in the en-
vironment is unidirectional and that the environment con-
tains buffering-areas at each intersection. Since a robot,
which is involved in a deadlock, can use a buffering-area
to dodge, it is possible to resolve deadlocks without replan-
ning trajectories.

3 General Assumptions
This section presents some general assumptions made

in the rest of the paper.
� Each robot is able to communicate with all other

robots which are within a certain range ��� .
� If two robots are able to communicate, they regularly

exchange information about their current position.
� The deviation between a computed distance of two

robots, based on position information, and the real
distance is assumed to be less than

���
.

� The distance between two robots must never be less
than �	��
� , since this means a probable collision.

� A planned trajectory is represented as a sequence of
trajectory segments.

4 Collision Avoidance
When the distance between two robots is larger than a

certain distance ��������� they are considered to be safe, i.e.
not facing a possible collision in the near future. Each
robot evaluates position information received from other
robots to determine its distance to them.

When the position evaluation of a robot determines that
its distance �	����� to another robot might be less than ��������� ,
i.e. �	������� ����� �	� ����� , it instantiates a coordination link
to the other robot. The coordination link is only removed
after the distance of the robots is safe again. Since for the
maintenance of the coordination links communication is
needed, the equation � �������"! � � � � � must hold.

The task of a coordination link is to coordinate the
movements of two robots along their trajectories, so that no
collision is possible. The interaction between a robot and
a coordination link is very simple. The link either gives
permission to the robot to move on or not. A robot has to
ask each of its coordination links for permission before it
is allowed to give the next segment of its trajectory to its
trajectory execution layer.

To establish a coordination link between two robots, one
robot is elected coordinator and the other robot becomes
partner. After the coordinator is elected, he requests the
trajectory segments from his partner. Based on his own
and the partners trajectory, the coordinator determines a
schedule for the two robots. The schedule consists of the
following entries: both robots are allowed to move, only
the coordinator is allowed to move, and only the partner is
allowed to move. Using the schedule, the coordinator then
gives permissions to himself and his partner.

The determination of the schedule is based on work of
Kant and Zucker [7] and O’Donnell and Lozano-Periz [8].
At first, a so-called task-completion-diagram (TCD) is con-
structed, see Figure 2. The trajectory segments of the coor-
dinator are shown on the horizontal axis and the segments

S e g m e n t s o f C o o r d i n a t o r

S
eg
m
en
ts
 o
f
P
ar
tn
er

B o t h m o v e

P a r t n e r m o v e s

C o o r d i n a t o r m o v e s

Figure 2: This figure shows a task-completion-diagram (TCD)
with collision regions and an execution path from the lower left
to the upper right corner.

of the partner on the vertical. The sizes of the segments
in the diagram are shown as constant, independent of the
execution time of the segments. The current position of the
robots is in the lower left corner and the end of the trajec-
tories is in the upper right corner.

The gray areas in the diagram correspond to collision
regions. They are obtained by checking whether a certain
segment of the coordinator and a certain segment of the
partner lead to a collision, i.e. checking whether any two
positions of the robots on the segments would lead to a dis-
tance of the robots less than � �#
� . If so, the area in the di-
agram which corresponds to the segments is marked gray.
Collision checking has to be done for all combinations of
coordinator and partner segments.

After the TCD is completed, an execution path which
avoids all gray regions starting at the lower left corner and
going to the upper right corner is constructed. If this is not
possible, a special entry meaning that none of the robots is
allowed to move is added to the schedule.

The execution path is finally used to construct the
schedule. Starting from the lower left corner, the path is cut
into straight pieces and for each piece entries are added to
the schedule. For each horizontal piece an entry meaning
that the coordinator is allowed to move, for each vertical
piece an entry saying that the partner is allowed to move,
and for each sloped piece an entry denoting that both robots
are allowed to move.

Giving only one robot the permission to execute its next
trajectory segment means that one robot has to wait until
the other robot has finished its trajectory segment. This
corresponds to inserting idle times between trajectory seg-
ments of the waiting robot.

As it can be seen in Figure 2, many different execution
paths which avoid all gray regions starting at the lower left
corner and going to the upper right corner could be con-
structed for a certain TCD. The algorithm we use deter-
mines the shortest possible execution path [9], since this

1
7

4

3
2

6

5
8

90

Figure 3: The nodes of the graph shown in this figure correspond
to robots and a directed edge between two nodes is indicating that
one robot is waiting for another one. The node from which an
edge is originating corresponds to the waiting robot.

path causes the least overall delay of the robots. The algo-
rithm furthermore has the property that it finds a solution,
i.e. an execution path, if one exists.

The different execution times of the trajectory seg-
ments and unforseen delays of one robot along its segments
should also be taken into account when the execution path
is constructed [7, 8, 9].

As described above, a coordination link is only used to
coordinate the movement of two robots. The coordination
of more than two robots results from the fact that a robot
can have more than one coordination link. Since a robot
needs the permission from all its coordination links before
it is allowed to move on, the coordination links connect all
the involved robots in a global coordination structure. This
global coordination structure, however, can contain dead-
locks - some robots mutually wait for each other - which
have to be detected and resolved, see Section 5 and 6.

5 Deadlock Detection
Deadlocks can only occur if a coordination link forces

a robot to stop, i.e. if a coordination link does not give
the permission to process the next trajectory segment. This
occurs when the robot has to wait until the other robot has
completed some of its trajectory segments. Whenever a
robot is forced to wait for another one, a deadlock detection
is initiated.

The case in which one robot has to wait for another can
be seen as a directed edge from the waiting robot to the
other robot in a graph in which every robot is represented
by a graph node. Such a graph is depicted in Figure 3.
Here, for example, robot 9 has to wait for robot 0. The
case in which the construction of the execution path fails
and in which none of the two robots is given the permission
to move on, is represented as two edges connecting the two
robots and pointing in opposite directions. Figure 3 shows
this for robot 4 and 6.

In the context of the graph, a deadlock among the robots
exists if and only if the graph contains a circle. Therefore
deadlock detection means to detect a circle in the graph.
Since this is a common problem in distributed deadlock
detection, a lot of algorithms for that purpose have been
developed. We basically use the algorithm proposed by

Chandy et al.[12], which only requires that each robot
knows its outgoing edges to detect deadlocks. The algo-
rithm works as follows:

� When a new directed edge is established the robot
from which the edge originates initiates a new probe
message and sends it along the edge.

� Whenever a robot receives a probe message it for-
wards the probe message along all its outgoing edges.
The forwarded probe message contains the id of the
visited robot so that deadlock cycles can be identified.

� If a robot receives a probe message which itself has
initiated, it knows that the probe must have been for-
warded along a circle and therefore detects a dead-
lock. Since the traveled path of a probe is stored in
the probe, the cycle causing the deadlock is known at
the time when the deadlock is detected.

A disadvantage of this algorithm is that it is possible that
more than one robot detect the same deadlock, e.g. if two
robots initiate a deadlock detection for the same circle at
the same time. Sinha and Natarajan [13] have proposed
an improvement of the algorithm which ensures that each
deadlock is only detected by exactly one robot. We do not
use this improvement, since our deadlock resolution strat-
egy is able to cope with multiple detections of the same
deadlock, resulting in multiple deadlock resolutions oper-
ating on the same edges.

Using the improvement would not simplify the dead-
lock resolution strategy, since multiple deadlock resolu-
tions which operate on the same edges can also occur if
the graph contains multiple cycles which have nodes and
edges in common.

The algorithm described above ensures that each dead-
lock is detected by at least one robot. It is however possible
that phantom deadlocks are detected. This means, that a
deadlock is detected which has already been resolved. This
can happen if the deadlock has edges in common with an-
other deadlock and if the deadlock resolution of the other
deadlock modifies these edges. The deadlock resolution
strategy is able to cope with such phantom deadlocks.

6 Deadlock Resolution
A deadlock resolution, which is initiated by the robot

detecting a deadlock, works by sending messages along the
deadlock circle. Whenever it is not possible to forward a
message along the circle, this indicates a phantom dead-
lock and the deadlock resolution terminates.

A deadlock resolution comprises two steps. Initially an
attempt is made to change the direction of one edge in the
circle, since this would destroy the circle and therefore re-
solve the deadlock. If no edge direction can be changed,
robots are chosen and asked to plan alternative trajectories.
If none of the two steps succeeds, which is considered to

S e g m e n t s o f C o o r d i n a t o r

S
eg
m
en
ts
 o
f
P
ar
tn
er

c o n s t r u c t e d

a l t e r n a t i v e

Figure 4: This figure shows a task-completion-diagram (TCD)
with a collision regions, a constructed execution path, and an al-
ternative execution path.

be very unlikely for real applications, all robots blocked by
the deadlock are informed. These robots then do not par-
ticipate any more in any deadlock detection or deadlock
resolution process.

6.1 Edge Direction Change
As stated above, the direction of an edge defines which

of the two robots connected by the edge has to move first.
Sometimes, however, it is not important that a certain robot
moves first. It is only important that both robots do not
move at the same time. Figure 4 shows such a case. There
are two possibilities to avoid the collision region. The solid
line is the execution path constructed by the algorithm - the
coordinator moves first - and the dashed line is an alterna-
tive one - the partner would move first.

A deadlock resolution is rather simple if one of the
edges causing the deadlock has the above stated property.
The coordinator of the coordination link to which this edge
belongs must only be asked to use the alternative execu-
tion path. This results in a new schedule and a change of
the edge direction. After the direction of one edge in a cir-
cle is changed, the circle does not exist any more and the
deadlock is resolved.

To determine an edge whose direction can be changed
and to actually change the direction, a change message is
sent around the circle. When a robot receives a change
message, it asks the coordinator of its outgoing edge,
which belongs to the circle, to change the direction of the
edge. If the coordinator is able to change the direction, the
deadlock resolution was successful and is therefore termi-
nated, i.e. the change message is discarded. If the change
message travels around the whole circle, no edge direction
could be changed and the second step of the deadlock res-
olution, described in the next section, is executed.

The change of the direction of an edge can cause new
deadlocks. This is shown in Figure 5. If the deadlock
which consists of the edge e and the semi-circle 1 is re-
solved by changing the direction of the edge e, a new
deadlock consisting of the edge e and the semi-circle 2 is
caused. If one of the new deadlock is resolved by again

7

5
e 21

Figure 5: If the direction of the edge e is changed, the deadlock
consisting of e and 1 is resolved, but a new deadlock consisting
of e and 2 is caused.

changing the direction of the edge, the original deadlock is
reestablished. This might lead to an oscillation of the edge
direction.

Proposition 6.1: An oscillation does not continue forever.
Proof: If the change of the direction of an edge causes a
new deadlock, the graph must contain an outer circle con-
taining all the nodes of the original and the caused dead-
lock. Figure 5 shows such an outer circle consisting of
the semi-circles 1 and 2. If the deadlock resolution of the
outer circle breaks the circle, which means that either the
semi-circle 1 or the semi-circle 2 is broken, the oscillation
stops. If the outer circle cannot be broken, this is detected
after finite time and all robots involved in the deadlock
are informed. Since these robots then do not participate
in any deadlock detection or deadlock resolution process
any more, the oscillation stops. (See also Section 6.2.) $
6.2 Planning of Alternative Trajectories

If no schedule which avoids the deadlock can be found
for the robots, i.e. it is not possible to resolve a deadlock
by changing an edge direction, it is necessary to plan alter-
native trajectories for one or more robots. The replanning
has to be done in a controlled manner. It should be avoided
that all robots plan alternative trajectories at the same time.

The algorithm provided here tries to keep the number of
robots which are forced to plan alternative trajectories low.
It comprises two steps which are iterated until the dead-
lock is resolved or until it is determined that the deadlock
cannot be resolved by asking individual robots to plan al-
ternative trajectories. The latter case is considered to be
very unlikely for real applications and depends solely on
the abilities of the trajectory planning layer and the prop-
erties of the environment.

The first step is to send a replan message around the
circle, just as it is done with the change message. If a robot
receives a replan message it asks its trajectory planning
layer to plan an alternative trajectory. The robot can inform
its trajectory planning layer about the positions of other
robots surrounding it, i.e. other robots to which it has a
coordination link, to obtain better results. After a robot was
able to plan an alternative trajectory, all its outgoing edges
are removed. Since this breaks the circle, the deadlock is
resolved and the replan message can be discarded. If a
robot receives a replan message which itself has initiated,
it knows that none of the robots in the circle is able to plan

1
4

3
2

6

8

9

1
2 3

4
5

6

7
8
9

1 0

1 1

Figure 6: This figure shows a deadlock circle of the robots 1,2,
and 3, and a number of other affected robots. Furthermore, it
shows the path of a free message initiated by robot 2.

an alternative trajectory.
If the deadlock could not be resolved during the first

step, this is either because it is not possible to resolve the
deadlock by asking individual robots to plan an alternative
trajectory or because it is temporarily not possible. The lat-
ter could be due to other robots in the neighborhood of the
robots of the circles which hinder them to plan an alterna-
tive trajectory. The two cases can be distinguished by

Criteria 6.1: If none of the affected robots is able to plan
an alternative trajectory and if none of the affected robots
has an unaffected robot in its neighborhood, then the dead-
lock cannot be resolved by asking individual robots to plan
alternative trajectories.

A robot is considered to be affected if it is part of the circle
or if it is attached to the circle by an outgoing edge, either
directly or transitive. Figure 6 shows a deadlock circle of
the robots 1,2, and 3, and a number of other affected robots.

The idea of the second step now is to check Criteria 6.1
and to ask affected robots which are not part of the circle to
plan alternative trajectories. Criteria 6.1 is used to stop the
iteration of the two steps in hopeless cases. The affected
robots which are not part of the circle are asked to plan
alternative trajectories in order to free as much robots as
possible from the deadlock.

During the second step a free message is sent to all af-
fected robots. This is done by on the one hand sending the
free message around the circle and on the other hand al-
lowing the free message to leave the circle and traverse the
affected robots in a depth-first way using incoming edges.
Robots which have already received the free message once
are omitted. Figure 6 shows the path of a free message ini-
tiated by robot 2, where the dashed arrows show the path
around the circle and the grayed arrows show the path dur-
ing traversal.

The free message is used to tell the robots, which are
not part of the circle, to plan alternative trajectories and to
collect information whether non affected robots are still in
the neighborhood. If a robot receives a free message which
itself has initiated, it knows that all the affected robots have
received the message. The robot then evaluates Criteria 6.1
and stops the deadlock resolution, if the conditions to do so
are met.

a) b)

Figure 7: Figure a) shows a supermarket like environment with a
lot of shelves and figure b) shows an office like environment with
some desks. Each environment contains five robots.

7 Simulation Results
We implemented the described strategies and tested

them in simulation. We used two different environments.
A supermarket and an office like environment. They are
shown in Figure 7. The supermarket consists of one huge
room with a lot of obstacles, i.e. the shelves of the super-
market. The office consist of five smaller rooms with only
some obstacles. The environments are 10x15m in size.

The robots we used for the simulation have a length
of 1m and a width of 0.8m and are moving at a speed of
0.3m/s. Figure 7 shows some robots.

We carried out 6 simulation runs for each environment,
with 1 to 6 robots respectively. Each of the 12 simula-
tions was running for 10 minutes. During the simulations
the robots followed randomly planned trajectories. The
average number of coordination links a robot maintained,
the number of deadlocks which occurred, and the average
trajectory length of the robots were determined after each
simulation.

2 3 4 5 61

1

2

3

2 3 4 5 61

1

2

3

a) b)

r o b o t s r o b o t s

c o o r d l i n k s c o o r d l i n k s

Figure 8: Average number of coordination links.

Figure 8 shows the average number of coordination
links a robot maintained. Figure 8 a) for the supermarket
and Figure 8 b) for the office. As it can be seen, the average
number of coordination links increases almost linear with
the number of robots. This is due to the fact that it mainly
depends on the amount of robots in the neighborhood of a
robot, which depends linear on the amount of robots used.

The number of deadlocks which occurred is depicted in
Figure 9. It increases significantly when more than four
robots are used. In the case of two and three robots the

2 3 4 5 61

1 0

2 0

3 0

2 3 4 5 61

1 0

2 0

3 0

a) b)

r o b o t s r o b o t s

d e a d l o c k s d e a d l o c k s

Figure 9: Number of deadlocks.

amount of collisions in the office like environment - Figure
9 b) - is two to three times higher than in the supermar-
ket like environment - Figure 9 a). This is due to the fact
that the office like environment contains a hot spot - the
corridor connecting the rooms - which is regularly passed
by the robots. The hot spot has its greatest impact when
two or three robots are used since an increasing number of
robots transforms the whole environment into a hot spot.

Almost all of the deadlocks had to be resolved by re-
planning. Only 3% of the deadlocks could be resolved by
changing the direction of an edge.

2 3 4 5 61

 5 0

1 0 0

1 5 0

2 3 4 5 61

 5 0

1 0 0

1 5 0

a) b)

r o b o t s r o b o t s

t r a j e c t o r y l e n g t h t r a j e c t o r y l e n g t h

Figure 10: Average trajectory length.

Since a robot moves at a speed of 0.3m/s and a simula-
tion is running for 10 minutes, a robot could move 180 me-
ter at the best. The actual values, however, are lower since
the robots have to wait for each other and are involved in
deadlocks and deadlock resolution processes. The actual
average trajectory length of the robots is shown in Figure
10. It significantly decreases if more than four robots are
used.

A basic result of the simulations is that the collision
avoidance, described in Section 4, is sufficient to coordi-
nate the robots in most cases if only a few robots are used.
The necessity for deadlock detection and deadlock resolu-
tion significantly increases with the number of robots. If
more than four robots are used, the system is still able to
resolve the deadlocks, but the overall performance, i.e. the
length of the robots trajectories, decreases rapidly. Five
robots in combination with the environments of the given
size and structure seems to be the critical value for the co-
ordination methods described in this paper.

8 Summary, Conclusion, and Future Work
In this paper we described a decentralized approach for

collision avoidance, deadlock detection, and deadlock res-
olution among multiple mobile robots which follow inde-
pendently planned trajectories. We introduced a combi-
nation of three fully distributed algorithms which reliably
solve the task. They do not use any global synchronization,
do not interfere with each other, and demand only local in-
ter robot communication.

The global coordination of a fleet of robots is achieved
by using only local coordination of pairs of robots. The
idea to achieve this is to allow more than one coordination
link for each robot. This links a set of robots together in a
global control structure.

Deadlocks in the global coordination, which cannot be
avoided when only local coordination is used, are reliably
detected. The deadlocks are resolved by changing the di-
rection of coordination links and asking robots to plan al-
ternative trajectories. The only deadlocks which cannot be
resolved are those where the trajectory planning layers of
the involved robots are not able to plan alternative trajecto-
ries. This, however, depends solely on the abilities of the
trajectory planning layer and the properties of the environ-
ment.

The strict separation of trajectory planning and collision
avoidance/deadlock handling makes it possible to use a lot
of different trajectory planners with our system. The only
restriction is, that they should be able to plan alternative
trajectories. There are no other special assumptions about
the environment or the application made.

As a conclusion, we can say that our approach is very
suitable to coordinate a number of independently moving
robots through local inter robot communication in a lot of
applications. Our simulation results confirm this.

For further work, we consider it interesting to investi-
gate different strategies for the construction of the execu-
tion paths of the TCDs, see Section 4. If, for example, the
execution path would be constructed in a way that situa-
tions like the one shown in Figure 4 are favored, obviously
more deadlocks could be resolved by changing edge direc-
tions and less deadlocks would have to be resolved by re-
planning trajectories. Furthermore, different strategies for
the collision avoidance could be evaluated.

We intend to use the methods described in this paper to
coordinate a fleet of real robots. The task of the robots will
be to cooperatively clean a large room, e.g. a large super-
market or an airport. Some field test results, concerning
navigation etc., for one robot can be found in [14].

References
[1] J. Barraquand, B. Langlois, and J.-C. Latombe, Nu-

merical Potential Field Techniques for Robot Path

Planning, IEEE Trans. on System, Man, and Cyber-
netics, vol. 22(2), pp. 224-241, 1992

[2] S. Leroy, J. P. Laumond, and T. Simeon, Multiple
Path Coordination for Mobile Robots: A Geometric
Algorithm, International Joint Conference on Artifi-
cial Intelligence (IJCAI), 1999

[3] M. Bennewitz and W. Burgard, Coordinating the Mo-
tions of Multiple Mobile Robots Using a Probabilistic
Model. 8th International Symposium on Intelligent
Robotic Systems (SIRS), 2000

[4] L. Aguilar, R. Alimi, S. Fleury, M. Herrb, F. Ingrand,
and F. Robert, Ten Autonomous Mobile Robots (and
even more) in a Route Network Like Environment,
Int. Conf. on Intelligent Robots and Systems (IROS),
Vol. 2, pp. 260-267, 1995

[5] S. Kato, S. Nishiyama, and J. Takeno, Coordinating
Mobile Robots by Applying Traffic Rules, Interna-
tional Conference on Intelligent Robots and Systems
(IROS), pp. 1535-1541, 1992

[6] L. Chun, Z. Zheng, and W. Chang, A Decentralized
Approach to the Conflict-Free Motion Planning for
Multiple Mobile Robots, Int. Conf. on Robotics and
Automation (ICRA), pp. 1544-1549, 1999

[7] K. Kant and S. W. Zucker, Towards Efficient Tra-
jectory Planning: The Path-Velocity-Decomposition,
The International Journal of Robotics Research, no.
5, pp. 72-89, 1986

[8] P.A. O’Donnell and T. Lozano-Periz, Deadlock-Free
and Collision-Free Coordination of Two Robot Ma-
nipulators, Int. Conf. on Robotics and Automation
(ICRA), pp. 484-489, 1989

[9] J. Lee, H. S. Nam, and J. Lyou, A Practical Collision-
Free Trajectory Planning for Two Robot Systems, Int.
Conf. on Robotics and Automation (ICRA), pp. 2439-
2445, 1995

[10] J. Wang and V.Premvuti, Distributed traffic regulation
and control for multiple autonomous mobile robots
operating in discrete space, Int. Conf. on Robotics
and Automation (ICRA), pp. 1619-1624, 1995

[11] J. Wang, Operating Primitives Supporting Traffic Re-
gulation and Control of Mobile Robots under Distri-
buted Robotic Systems, Int. Conf. on Robotics and
Automation (ICRA), pp. 1613-1618, 1995

[12] K. M. Chandy, J. Misra, and L. M. Haas, Distributed
Deadlock Detection, ACM Trans. on Computer Sys-
tems, May 1983

[13] M. K. Sinha and N. Natarajan, A Priority Based Dis-
tributed Deadlock Detection Algorithm, IEEE Trans.
on Software Engineering, Jan. 1985

[14] H. Endres, W. Feiten, and G. Lawitzky, Field Test of
a Navigation System: Autonomous Cleaning in Su-
permarkets, Int. Conf. on Robotics and Automation
(ICRA), pp. 1779–1781, 1998

