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Abstract. In the last decade, several approaches were introduced in literature
to merge multiple and potentially conflicting pieces of information. Within the
growing field of application favourable to distributed information, data fusion
strategies aim at providing a global and consistent point of view over a set of
sources which can contradict each other. Moreover, in many situations, the pieces
of information provided by these sources are uncertain.
Possibilistic logic is a well-known powerful framework to handle such kind of
uncertainty where formulas are associated with real degrees of certainty belong-
ing to [0, 1]. Recently, a more flexible representation of uncertain information
was proposed, where the weights associated with formulas are in the form of in-
tervals. This interval-based possibilistic logic extends classical possibilistic logic
when all intervals are singletons, and this flexibility in representing uncertain
information is handled without extra computational costs. In this paper, we pro-
pose to extend a well known approach of possibilistic merging to the notion of
interval-based possibilistic knowledge bases. We provide a general semantic ap-
proach and study its syntactical counterpart. In particular, we show that conve-
nient and intuitive properties of the interval-based possibilistic framework hold
when considering the belief merging issue.

1 Introduction

The problem of belief merging [Lin96] arises when a situation requires to take into ac-
count several pieces of information obtained from distinct and often conflicting sources
(or agents). This kind of situations frequently appears in many usual frameworks, such
as distributed databases, multi-agent systems, or distributed information in general (e.g.,
semantic web), and leads to perform some combination operations on available infor-
mation to extract a global and coherent point of view. Roughly speaking, merging opera-
tors introduced in literature strongly rely on the representation of available information.



In the last decade, several approaches were proposed to merge pieces of information
provided without explicit priority [KPP02,EKM10,EKM12] or to the contrary to merge
prioritized information [BK03,GLB06].

From a semantic point of view, these approaches are generally divided in two steps:
first locally rank interpretations using some scales (depending on the considered frame-
work, possibilistic distributions or κ-functions for instance), then aggregating these lo-
cal rankings among all the bases to obtain a global total pre-order over considered
interpretations (see [KPP02] for more details). The result of merging is finally obtained
by considering preferred interpretations according to this global total pre-order.

In our framework, the pieces of information provided by each source may be uncer-
tain. In this paper, these pieces of information, encoded by the means of propositional
formulas, are called beliefs. Possibilistic logic [DLP94] is a well-known framework
which allows to conveniently represent and reason with such uncertain pieces of infor-
mation: uncertainty is represented by real numbers, belonging to [0,1], associated with
each piece of information. Moreover, uncertainty is also represented at the semantic
level by associating a possibility degree with each possible world (or interpretation).
An inference mechanism was proposed in [Lan00] to derive plausible conclusions from
a possibilistic knowledge base K, which needs log2(m) calls to the satisfiability test of
a set of propositional clauses (SAT), where m is the number of different degrees used
in K.

However, in many situations, providing a precise weight to evaluate the certainty
associated with a belief can be a difficult problem (e.g., when scales are provided by an
expert). In [BHLR11], a flexible representation was introduced to allow the expression
of an imprecision on possibilistic degrees associated with beliefs, where weights asso-
ciated with formulas are in the form of intervals of [0, 1]. An interesting result is that
handling this flexibility is done without extra computational costs with respect to the
classical framework. A natural question concerns now the ability of this framework to
keep such properties while considering more sophisticated issues, like the belief merg-
ing problem.

Several approaches to merge classical possibilistic belief bases were introduced
in [BDPW99,BK03,QLB10]. Resulting possibilistic merging operators were analyzed
in [BDKP00], where they are sorted into different classes depending on the configura-
tion of the bases to merge. We can distinguish:

– conjunctive operators, exploiting symbolic complementarities between sources;
– disjunctives operators, which deal with conflicting but equally reliable sources;
– idempotent operators, suitable when sources to merge are not independent;
– reinforcement operators, which consider the repetition of pieces of information

among sources to merge as a confirmation;
– adaptive and average operators, which adopt a disjunctive attitude in case of con-

flicts and a reinforcement behaviour in the other cases.

In this paper, we extend this approach to the framework of interval-based possibilis-
tic logic. More precisely, we extend the strategies introduced in [BDKP02] by adapting
possibilistic aggregation operators to deal with intervals. In particular, we show that
intuitive intervals characterization principles and computational properties introduced



in [BHLR11] still stand when considering the problem of belief merging. Section 3 in-
troduces a general semantic approach, which relies on aggregation operations over in-
tervals at the level of possibility distributions. In particular, we focus on the well-known
minimum-based, maximum-based and product-based operations. Finally, Section 4
provides a syntactic counterpart to our semantic approach.

2 Background and Notations

In this paper, we consider a finite propositional language L. We denote by Ω the finite
set of interpretations of L and by ω an element of Ω.

2.1 Possibilistic logic

Possibility distributions A possibility distribution, denoted by π, is a function from
Ω to [0, 1]. π(ω) represents the degree of compatibility (or consistency) of the interpre-
tation ω with the available knowledge. π(ω) = 1 means that ω is fully consistent with
the available knowledge, while π(ω) = 0 means that ω is impossible. π(ω) > π(ω′)
simply means that ω is more compatible than ω′. A possibility distribution π is said to
be normalized if there exists an interpretation ω such that π(ω) = 1. Otherwise, the
distribution is inconsistent and is called subnormalized.

A possibility distribution allows to define two functions from L to [0, 1] called pos-
sibility and necessity measures, denoted by Π and N , and defined by:

Π(ϕ) = max{π(ω) : ω ∈ Ω, ω |= ϕ} and N(ϕ) = 1−Π(¬ϕ)

Π(ϕ) measures to what extent the formula ϕ is compatible with the available knowl-
edge while N(ϕ) measures to what extent it is entailed.

Given a possibility distribution π encoding some available knowledge, a formula ϕ
is said to be a consequence of π, denoted by π |=π ϕ, iff Π(ϕ) > Π(¬ϕ).

Possibilistic knowledge bases A possibilistic formula is a tuple 〈ϕ, α〉 where ϕ is
an element of L and α ∈ (0, 1] is a valuation of ϕ representing N(ϕ). Note that no
formula can be of type 〈ϕ, 0〉 as it brings no information. Then, a possibilistic base
K = {〈ϕi, αi〉, 1 ≤ i ≤ n} is a set of possibilistic formulas.

An important notion that plays a central role in the inference process in the one of
strict α-cut. A strict α-cut, denoted by Kα, is a set of propositional formulas defined
by Kα = {ϕ : 〈ϕ, β〉 ∈ K and β > α}. The strict α-cut is useful to measure the
inconsistency degree of K defined by Inc(K) = max{α : Kα is inconsistent }.

If Inc(K) = 0 then K is said to be completely consistent. If a possibilistic base
is partially inconsistent, then Inc(K) can be seen as a threshold below which every
formula is considered as not enough entrenched to be taken into account in the inference
process. More precisely, we define the notion of core of a knowledge base as the set of
formulas with a necessity value greater than Inc(K), i.e.,

Core(K) = KInc(K) = {ϕ : 〈ϕ, α〉 ∈ K and α > Inc(K)}



A formula ϕ is a consequence of a possibilistic base K, denoted by K `π ϕ, iff
Core(K) ` ϕ.

Given a possibilistic baseK, we can generate a unique possibility distribution where
interpretations ω satisfying all propositional formulas in K have the highest possible
degree π(ω) = 1 (since they are fully consistent), whereas the others are pre-ordered
w.r.t. highest formulas they falsify. More formally:

∀ω ∈ Ω, πK(ω) =

{
1 if ∀〈ϕ, α〉 ∈ K, ω |= ϕ
1−max{αi : 〈ϕi, αi〉 ∈ K,ω 2 ϕi} otherwise.

The following completeness and soundness result holds:

K `π ϕ iff πK |=π ϕ.

2.2 Merging possibilistic belief bases

Let us consider a multi-set of possibilistic belief bases E = {K1, . . . ,Kn} and their
associated possibilistic distributions π1, . . . , πn, each of these bases representing the
local point of view associated with a single source. The aim of belief merging is to
compute an unique possibilistic distribution, denoted π⊕, representing a global and con-
sistent point of view among pieces of information provided by sources, even if some of
these sources contradict each others. The most common approach to merge possibilis-
tic knowledge bases is the one presented in [BDKP00,BDKP02]. These strategies are
close to the ones introduces in [KPP02] in the case of merging classical non prioritized
propositional belief bases.

Generally speaking, most common belief merging operators, denoted ∆, are di-
vided in two steps. First, all interpretations are rank ordered with respect to individual
sources. In the framework of possibilistic logic, this step is performed quite straightfor-
wardly since each possibilistic belief base induces an unique possibilistic distributions
over interpretations. Then, ranks individually computed are aggregated among all belief
bases to merge, using an aggregation operator denoted ⊕, to associate a global rank to
each considered interpretations: these ranks allow to induce a global order, denoted in
this paper <π⊕ , where preferred interpretations are usually considered as models of the
result of merging, denoted∆⊕(E). This distribution finally induces a possibilistic belief
base, denoted K⊕, representing the result of merging. Obviously, several aggregation
operators are possible, depending on expected properties for the result of merging.

In the context of possibilistic logic, several aggregation function were discussed
in [BDKP02] to compute the value of π⊕(ω) from the νE(ω) = 〈π1(ω), . . . , πn(ω)〉
vector. These operators were divided into several categories: conjunctive (adequate
when the sources are consistent), disjunctive (adequate when the sources are conflict-
ing), idempotent (ignoring the redundancies) and reinforcement (seeing redundancies
as confirmation).

Generally speaking, any function ⊕ which respects the following conditions can be
considered a possibilistic aggregating function:

1. ⊕(1, . . . , 1) = 1
2. If ∀1 ≤ i ≤ n, ai ≥ bi then ⊕(a1, . . . , an) ≥ ⊕(b1, . . . , bn)



Note that clearly, many aggregation operators are possible to combine initial dis-
tributions, offering different behaviours in computing the result of merging. The most
common operators used in the context of the possibilistic merging are the following
ones:

– the minimum: ⊕min(π1, . . . , πn) = min(π1, . . . , πn);
– the product: ⊕prd(π1, . . . , πn) = n

√
Ππi;

– the maximum: ⊕max(π1, . . . , πn) = max(π1, . . . , πn);
– the dual product: ⊕dpr(π1, . . . , πn) = 1− n

√
Π(1− πi);

– the probabilistic sum: ⊕prs(π1, . . . , πn) = 1−Π(1− πi);
– the averaging: ⊕ave(π1, . . . , πn) = Σπi/n.

In particular, this paper focuses on the minimum-based, the maximum-based and the
product-based merging operators.

Moreover, a syntactic counterpart of possibilistic merging operators was introduced
in [BDPW99,BDKP02]. Namely, authors show that the result of merging can be char-
acterized by the belief base B⊕ defined as follows:

B⊕ = {(Dj , 1−⊕(x1, . . . , xn)) : j = 1, . . . , n}

where Dj are disjunctions of size j between formulas φi obtained from each Bi and
xi = 1− αi if φi ∈ Dj , xi = 1 otherwise.

Desterecke et al. [DDC09] proposed another way of merging possibilistic bases
on the ground of maximal coherent subsets which is closer to what is usually done in
propositional logic which will be studied here.

2.3 Interval-based possibilistic logic

Interval-based possibilistic logic was introduced in [BHLR11]. This framework can
be described as a generalization of possibilistic logic, where uncertainty associated to
beliefs is represented by the means of an interval of I = [α, β] ⊆ [0, 1] instead of a
number. The intuitive meaning behind this interval is that the real value of uncertainty
is unknown and belong to the interval.

The set of intervals of [0, 1] is denoted by I. An interval based possibility distribu-
tion, denoted by πI , is then also described by the means of intervals of I. This induces
a partial pre-ordering among the set of interpretations ofΩ. More precisely, an interpre-
tation ω is said to be preferred to ω′, denoted by ω/ω′, iff β < α′ where πI(ω) = [α, β]
and πI(ω′) = [α′, β′].

A first approach to compute possibility and necessity measures is to use the notion
of compatible possibility distribution. Formally, a classical possibility distribution π is
said to be compatible with πI iff ∀ω ∈ Ω, π(ω) ∈ πI(ω). The non finite set of all com-
patible possibility distributions obtained from πI is denoted by Cmp(πI). Possibility
and necessity measures are then defined as follows:

ΠI(ϕ) = [minπ∈Cmp(πI)Π(ϕ),maxπ∈Cmp(πI)Π(ϕ)]
NI(ϕ) = [minπ∈Cmp(πI)N(ϕ),maxπ∈Cmp(πI)N(ϕ)]



As it is shown in [BHLR11], these measures can be characterized by the means of
operations on intervals:

ΠI(ϕ) =M{πI(ω) : ω ∈ Ω,ω |= ϕ}
NI(ϕ) = 1	ΠI(¬ϕ)

whereM{I1, . . . , In} = [max{α1, . . . , αn},max{β1, . . . , βn}] and 1	 [α, β] = [1−
β, 1− α].

Interval-based possibilistic bases A syntactic representation of interval-based pos-
sibilistic logic is obtained by associating necessity-values, in the form of intervals, to
formulas. An interval-based possibilistic base, denoted IK, is thus defined as:

IK = {〈ϕ, I〉, ϕ ∈ L and I ∈ I}

Likewise possibility distributions, a compatible possibilistic base can be obtained from
an interval-based possibilistic base by replacing each interval-based possibilistic for-
mula 〈ϕ, I〉 by a standard possibilistic formula 〈ϕ, δ〉 where δ ∈ I . The non-finite set of
all possible standard possibilistic bases compatible with an interval-based possibilistic
base IK is denoted by Cmp(IK). Two particular compatible bases are IKlb = {〈ϕ, α〉 :
〈ϕ, [α, β]〉 ∈ IK}, IKub = {〈ϕ, β〉 : 〈ϕ, [α, β]〉 ∈ IK}, which are respectively ob-
tained by selecting either lower or upper bounds of intervals.

Like in the standard possibilistic logic, interval-based possibilistic bases can be par-
tially inconsistent. As it is shown in [BHLR11], the interval-based inconsistency degree
can be equivalently computed in the two following ways:

Inc(IK) = {Inc(K) : K ∈ Cmp(IK)}
= [Inc(IKlb), Inc(IKub)]

This central notion allows to characterize the interval-based syntactic inference which
can intuitively be defined by considering all compatible bases:

IK |=c φ iff Core(IK) ` φ iff ∀K ∈ Cmp(IK), Core(K) ` φ

where Core(IK) = {ϕ : 〈ϕ, I〉 ∈ IK and Inc(IK) / I}.

3 A semantic approach to interval-based possibilistic merging

In this section, we propose a general semantic approach to merge interval-based possi-
bility distributions. Let E = {IK1, . . . , IKn} be a multi-set of n interval-based possi-
bilistic bases. From E, we can derive a family of interval-based possibility distributions
πI1 . . . π

I
n , each IKi inducing an unique interval-based possibility distribution πIi . This

step allows to locally rank order each interpretation ω of Ω with respect to each IKi.
To compute the result of merging E, we now need to aggregate all intervals associated
to each interpretation ω to obtain a global ordering over Ω. We introduce the notion of
interval-based aggregation operator, denoted by⊕I , and then denote by πI⊕ the interval-
based possibility distribution obtained by aggregating all distributions obtained from E
with ⊕.



In this framework, the real uncertainty value associated to a formula is unknown,
and may be any value of the interval. Therefore, a first approach to define an aggregation
operator on intervals is to take into account each possible combination of all existing
standard distributions compatible with interval-based distributions to consider. Namely:

Definition 1. Let π1, . . . , πn be interval-based possibility distributions and let ⊕ be
a possibilistic aggregation operator, then an interval-based possibilistic aggregation
operator ⊕I based on ⊕ can be defined as follows:

⊕I(πI1 (ω), . . . , πIn(ω)) =
⋃

πi∈Cmp(πIi )

{⊕(π1(ω), . . . , πn(ω))}.

However, the previous definition is not helpful computationally speaking. Indeed,
the number of compatible possibility distributions being infinite, computing the result
of merging is a difficult problem. We introduce a first characterisation of aggregat-
ing intervals, when considering the minimum-based, the maximum-based and the
product-based operations, which only relies on considering lower and upper bounds
of intervals. Moreover, the following proposition shows that in these cases, the value
respectively associated to each interpretation ω of Ω by πI⊕ constitutes an interval.
Namely:

Proposition 1. Let π1, . . . , πn be n interval-based possibility distributions, let ⊕I be
an interval-based aggregation operator relying on theminimum-based, themaximum-
based or the product-based classical possibilistic operator and let πI⊕ be the interval-
based possibility distribution obtained by considering ⊕I , then:

πI⊕(ω) = ⊕I(πI1 (ω), . . . , πIn(ω)) = [⊕(α1, . . . , αn),⊕(β1, . . . , βn)]

where for each i = 1 . . . n, πIi (ω) = [αi, βi].

Obviously, many other definitions of⊕ are possible. We then propose three intuitive
requirements for an interval-based aggregation operator. Formally:

1. ⊕I(I1, . . . , In) is an interval;
2. ⊕I([1, 1], . . . , [1, 1]) = [1, 1];
3. If ∀1 ≤ i ≤ n, Ii / I ′i then ⊕I(I1, . . . , In) /⊕I(I ′1, . . . , I ′n).

The first requirement means that the result of aggregating some intervals should
also be an interval. The second requirement says that if each source agrees that ω is
fully possible, then the result of aggregation should confirm it. The last says that if each
source prefers ω to ω′, then the result of aggregation should prefer so. The following re-
sult shows that any interval-based aggregation operator based on a classical aggregation
operator straightforwardly ensures the two last requirements. Namely:

Proposition 2. Let ⊕ be a n-ary function from [0, 1]n to [0, 1]. If ⊕ is a possibilistic
aggregation operator, then ⊕I (given by Definition 1) satisfies conditions 2 and 3.

In a general case, Condition 1 is not guaranteed. However, when considering the
minimum-based, the maximum-based or the product-based aggregation operations,
the three requirements are satisfied. Namely:



Proposition 3. Let⊕min,⊕max and⊕prd be respectively the n-aryminimum-based,
the maximum-based and the product-based classical aggregation operations. Then
⊕Imin, ⊕Imax and ⊕Iprd satisfy conditions 1-3, and are interval-based possibilistic ag-
gregation operators.

One can remark that this approach of aggregating interval-based possibility dis-
tributions generalizes aggregation operations defined in the classical case, since in the
extreme case, where all intervals provided by sources are only singletons, the possibility
distribution ⊕I recovers the results provided by ⊕. More formally:

Proposition 4. In the case where intervals within each πIi obtained from E only con-
sist in singletons (namely for all πIi obtained from E, for all ω, πIi (ω) = [α, α]) then:
i) each πIi obtained from E has a unique compatible possibility distribution πi and
ii) πI⊕(ω) = ⊕I(πI1 (ω), . . . , πIn(ω)) = ⊕(π1(ω), . . . , πn(ω)), where is⊕I an interval-
based aggregation operator based on the classical aggregation operator ⊕, and each
πi is the unique classical distribution compatible with the respective interval-based
distribution πIi .

Let us illustrate these definitions with the following example:

Example 1 Let π1, π2 and π3 be three possibility distributions such that:

ω π1 π2 π3
ω1 [.1, .3] [.4, .6] [.7, .9]
ω2 [.4, .5] [.4, .5] [.4, .5]
ω3 [.4, .5] [.7, .8] [1, 1]
ω4 [.1, .2] [.1, .5] [.1, .8]

Considering merging operators relying respectively on the minimum-based, the
product-based and the maximum-based operations, we obtain the following results:

ω ⊕min ⊕prd ⊕max
ω1 [.1, .3] [.303, .545] [.7, .9]
ω2 [.4, .5] [.4, .5] [.4, .5]
ω3 [.4, .5] [.654, .736] [1, 1]
ω4 [.1, .2] [.1, .430] [.1, .8]

Note that considering the interval-based comparative relation /, πI⊕ only induces a
partial pre-order over interpretations ω of Ω (different comparative relations are possi-
ble but are out of the scope of this paper, see [BHLR11] for more details). This result
allows to provide a result for the merging of E without focusing on each combination
of all possible classical distributions compatible with considered interval-based distri-
butions. As a corollary, this result also shows that aggregating interval-based possibility
distribution can be achieved within only two calls to classical aggregating operations,
respectively on lower and upper bounds of intervals.

In the classical possibilistic case, merging operators, relying on standard aggrega-
tion operators, are divided into several non-exclusive families. Since these definitions
do not hold anymore when considering interval-based possibilistic degrees, we thus
provide their counterparts in the interval based possibilistic framework. Formally:



Definition 2. Let π1, . . . , πn be n interval-based possibility distributions and let ⊕I
be a possibilistic merging operator, then ⊕I is said to be:

1. conjunctive iff ∀I ∈ I, I ⊕I [1, 1] = [1, 1]⊕I I = I
2. disjunctive iff ∀I ∈ I, I ⊕I [1, 1] = [1, 1]⊕I I = [1, 1]
3. idempotent iff ∀I ∈ I, I ⊕I I = I
4. reinforcement iff ∀I, I ′ ∈ I s.t. I, I ′ 6= [1, 1] and I, I ′ 6= [0, 0] then

(I ⊕I I ′)α ≤ min(Iα, I ′α) and (I ⊕I I ′)β ≤ min(Iβ , I ′β)
5. averaging iff ∀I ∈ I,min(Iα, I ′α) ≤ (I ⊕I I ′)α ≤ max(Iα, I ′α) and
min(Iβ , I

′
β) ≤ (I ⊕I I ′)β ≤ max(Iβ , I ′β)

where Iα and Iβ are respectively the lower bound and the upper bound of an interval
I .

From these definitions, and from previous results introduced in this paper, one can
remark that several families of interval-based aggregation operators extend properties
associated with the classical families on which they are based. Namely:

Proposition 5. Let π1, . . . , πn be n interval-based possibility distributions and let ⊕I
be a possibilistic merging operator. If ⊕ is conjuctive (resp. disjunctive, or idempotent)
then ⊕I is conjuctive (resp. disjunctive, or idempotent).

Let us illustrate this fact with the following example:

Example 2 Let us consider again Example 1. On this example, we have:

– The interpretation ω3 is associated with merged value of [1, 1] for the disjunctive
operator ⊕Imax;

– The interpretation ω2 has a merged value of [.4, .5] for the idempotent operators
⊕Imin, ⊕Iprd,⊕Imax.

4 A syntactic counterpart

In this section, we provide some syntactic counterparts to the general semantic approach
introduced previously.

The definitions given in the previous section allow to define, from the sources, a
possibility value for every interpretations. The result of the merging operation is thus
define as the interpretations maximal according to their possibility values.

Definition 3. Let π1, . . . , πn be interval-based possibility distributions and let ⊕Io be
a possibilistic merging operator, then:

∆Io (IK1, . . . , IKn) = {π(ω) = ⊕Io (π1, . . . , πn))}

There is also a syntactic counterpart to this definition. One can build an interval-
based possibilistic base out of the sources the following way:



Definition 4. Let IKi = {〈ϕ, Iji 〉} be interval-based possibilistic knowledge bases and
let ⊕Io be a possibilistic merging operator, then:

NIo (IK1, . . . , IKn) = {(Dj , 1	⊕Io (x1, . . . , xn)) : j = 1, . . . , n}

and Dj are disjunctions of size j between formulas φi taken from different Bi and
xi = 1	 [αi, βi] if φi ∈ Dj and xi = [1, 1] otherwise.

The consequences from the syntactic merging operation are equivalent to the results
of the semantic merging operation.

Proposition 6. Let IKi = {〈ϕ, Iji 〉} be interval-based possibilistic knowledge bases,
let φ be a formula and let ⊕Io be a possibilistic merging operator, then:

∆Io (IK1, . . . , IKn) |= φ iff NIo (IK1, . . . , IKn) ` φ

Now, let us instantiate three particular cases of Definition 4, namely with ⊕Imin
(interval-based idempotent conjunctive merging),⊕Imax (interval-based idempotent dis-
junctive merging), ⊕Iprd (interval-based product-based conjunctive merging).

We restrict ourselves to the case of two knowledge IK1 and IK2 (since all opera-
tions are associative and commutative).

For the interval-based idempotent conjunctive operation, we have:

∆I
min(IK1, IK2) = {〈ϕi, [1, 1]	min([1, 1]	 Ii, [1, 1])〉 : (ϕi, Ii) ∈ IK1}

∪ {〈ψj , [1, 1]	min([1, 1]	 Ij , [1, 1])〉 : (ψj , Ij) ∈ IK2}
∪ {〈ϕi ∨ ψj , [1, 1]	min([1, 1]− Ii, [1, 1]− Ij)〉 :

(ϕi, Ii) ∈ IK1 and (ψj , Ij) ∈ IK2}
= {〈ϕi, I1〉 : 〈ϕi, I1〉 ∈ IK1}
∪ {〈ψj , Ij〉 : 〈ψj , Ij〉 ∈ IK2}
∪ {〈ϕi ∨ ψj ,max(Ii, Ij)〉 :
〈ϕi, I1〉 ∈ IK1 and 〈ψj , Ij〉 ∈ IK2}

we can check that is equivalent to

∆Imin(IK1, IK2) = IK1 ∪ IK2

For the interval-based idempotent disjunctive operation, we have:

∆I
max(IK1, IK2) = {〈ϕi, [1, 1]	max([1, 1]	 Ii, [1, 1])〉 : (ϕi, Ii) ∈ IK1}

∪ {〈ψj , [1, 1]	max([1, 1]	 Ij , [1, 1])〉 : (ψj , Ij) ∈ IK2}
∪ {〈ϕi ∨ ψj , [1, 1]	max([1, 1]− Ii, [1, 1]− Ij)〉 :

(ϕi, Ii) ∈ IK1 and (ψj , Ij) ∈ IK2}
= {〈ϕi, [0, 0]〉 : 〈ϕi, I1〉 ∈ IK1}
∪ {〈ψj , [0, 0]〉 : 〈ψj , Ij〉 ∈ IK2}
∪ {〈ϕi ∨ ψj ,min(Ii, Ij)〉 :
〈ϕi, I1〉 ∈ IK1 and 〈ψj , Ij〉 ∈ IK2}

we can check that is equivalent to

∆Imax(IK1, IK2) = {〈ϕi ∨ ψj ,min(Ii, Ij)〉 : 〈ϕi, I1〉 ∈ IK1 and 〈ψj , Ij〉 ∈ IK2}



For the interval-based product-based conjunctive merging operation, we have:

∆I
prd(IK1, IK2) = {〈ϕi, [1, 1]	 (([1, 1]	 Ii)× [1, 1])〉 : (ϕi, Ii) ∈ IK1}

∪ {〈ψj , [1, 1]	 ([1, 1]× ([1, 1]	 Ij))〉 : (ψj , Ij) ∈ IK2}
∪ {〈ϕi ∨ ψj , [1, 1]	 (([1, 1]	 Ii)× ([1, 1]	 Ij))〉 :

(ϕi, Ii) ∈ IK1 and (ψj , Ij) ∈ IK2}
= IK1 ∪ IK2

∪ {〈ϕi ∨ ψj , [αi + αj − αi × αj , βi + βj − βi × βj ]〉 :
〈ϕi, I1〉 ∈ IK1 and 〈ψj , Ij〉 ∈ IK2}

Example 3 LetE = {IK1, IK2} be a belief profile with IK1 = {〈a, [.5, .7]〉, 〈¬a ∨ b, [.4, .8]〉}
and IK2 = {〈¬b ∨ a, [.2, .3]〉, 〈¬b, [.6, .7]〉}. The interval-based possibility distribution
is given in the following table.

ωi πI(IK1) πI(IK2) ⊕Imin ⊕Imax ⊕Iprd
a ∧ b [1, 1] [.3, .4] [.3, .4] [1, 1] [.547, .632]
a ∧ ¬b [.2, .6] [1, 1] [.2, .6] [1, 1] [.447, .774]
¬a ∧ b [.3, .5] [.3, .4] [.3, .4] [.3, .5] [.3, .447]
¬a ∧ ¬b [.3, .5] [1, 1] [.3, .5] [1, 1] [.547, .707]

In the following, we give the resulting base for our three main operators, the result
of the disjunction of a∨¬b and ¬b∨a and ¬a∨ b and ¬b are not given as they produce
>.

– NImin(IK1, IK2) = IK1 ∪ IK2 ∪ {〈a ∨ ¬b ∨ a, [.5, .7]〉, 〈a ∨ ¬b, [.6, .7]〉}
– NImax(IK1, IK2) = {〈a ∨ ¬b ∨ a, [..2, .3]〉, 〈a ∨ ¬b, [.5, .7]〉}
– NIprd(IK1, IK2) = IK1 ∪ IK2 ∪ {〈a ∨ ¬b ∨ a, [.368, .542]〉, 〈a ∨ ¬b, [.553, .7]〉}

One can easily verify that the syntactic and semantic operators have the same con-
sequences.

5 Conclusion

This paper addressed a first approach for merging interval-based possibilistic belief
bases. More precisely, we have extended the possibilistic merging operators introduced
in the classical case to handle the concept of interval-based possibilistic degrees. This
way, our study shown that convenient and intuitive properties associated to this frame-
work still hold when dealing with more tricky issues, in particular the problem of belief
merging.

A future work is to consider the belief revision problem in the context of interval-
based possibilistic logic. This problem consists in integrating a higher priority informa-
tion in a belief base, such that this information must be deduced from the base after the
process. Despite this problem is a particular case of merging, namely a belief base is
merged with a higher priority piece of information, it still raises some difficult issues.
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