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A new perspective on reasoning with qualitative spatial knowledge

Jae Hee Lee and Diedrich Wolter
SFB/TR 8 Spatial Cognition

Universität Bremen
P.O. Box 330440 28334 Bremen, Germany

Abstract
In this paper we call for considering a paradigm
shift in the reasoning methods that underly qualita-
tive spatial representations. As alternatives to con-
ventional methods we propose exploiting methods
from linear programming and real algebraic geom-
etry. We argue that using mathematical theories
of the spatial domain at hand might be the key to
effective reasoning methods, and thus to practical
applications.

1 Introduction
Qualitative spatial knowledge is ubiquitous in natural language.
Thus, it is essential in human-computer interaction, which is
an integral part of our everyday life where interaction with
digital equipments is omnipresent. In the field of artificial
intelligence, reasoning with qualitative spatial knowledge has
been researched under the umbrella term Qualitative Spatial
Reasoning (QSR) [Cohn and Renz, 2008]. QSR pursues a rela-
tion-algebraic approach that provides universal means to deal
with any type of qualitative spatial knowledge (e.g., topology,
direction, distance). It has been assumed that the relation-alge-
braic approach will allow for an efficient, effective, universal
reasoning method. Despite its promising properties, however,
the relation-algebraic approach suffers from its incomplete-
ness for many representations of qualitative spatial knowledge.
Furthermore, it is not capable of generating a model for given
constraints, which is a desirable feature for many real-world
applications.

In this paper we call for considering a paradigm shift in the
reasoning methods that underly qualitative spatial represen-
tations. As alternatives to conventional methods we propose
exploiting methods from linear programming and real alge-
braic geometry. We argue that using mathematical theories
of the spatial domain at hand might be the key to effective
reasoning methods, and thus to practical applications.

2 The Relation-Algebraic Approach and Its
Limitations

The building blocks of QSR are a spatial domain D, a finite
set R = {R1, R2, . . . , Rn} of binary relations on D which
partitions D2, and a map ◦ : R × R → 2D, R1 ◦ R2 =

{y ∈ D |xR1y and yR2z }, which is called the composition.
A prominent, simple example is the one-dimensional space
(e.g., a queue) equipped with the relations before, behind,
equal and the usual notion of composition, e.g., if Alice is
behind Bob and Bob is behind Charlie than Alice is behind
Charlie (i.e., behind ◦ behind = behind).

For a given domain D (e.g., a queue), a partition R (e.g.,
before, behind, equal), a composition ◦, a set of variables
(e.g., Alice, Bob, Charlie), and a set of spatial constraints (e.g.,
Alice is behind Bob, Bob is behind Charlie, Charlie is behind
Alice), a common reasoning task is figuring out whether there
is an instantiation of the variables over the domain D, such
that the given spatial constraints are consistent (the example
is not consistent, as there is no instantiation for Alice, Bob
and Charlie that satisfies the constraints). For this reasoning
problem QSR employs the path-consistency method, which
is used for solving constraint satisfaction problems over finite
domains. Since the domain D of interest in QSR is usually
infinite as opposed to the domain of a finite CSP, partitionR
and composition ◦ have to meet certain requirements, such that
the path-consistency method is applicable to the constraints
(See [Renz and Nebel, 2007] and [Renz and Ligozat, 2005] for
more details). A triple (D,R, ◦) that meets those requirements
forms a non-associative algebra; it forms a relation algebra, if
it is additionally closed under composition [Ligozat, 2005].

We will call the reasoning approach that utilizes the path-
consistency method the relation-algebraic approach. The main
deficiency of the relation-algebraic approach is that there is no
guarantee for its completeness, i.e., the algorithm can fail to
identify all inconsistent scenarios. Accordingly, research has
been concentrated on finding out whether the consistency of
constraints defined by a triple (D,R, ◦) can be decided with
the path-consistency method. The recent result showed that
spatial representations for directional information cannot be
decided by the path-consistency method in general [Wolter and
Lee, 2010]. Thus, we have to question the idea of keeping the
relation-algebraic approach as a universal means, and should
be open to search for alternative methods for a sound and
complete reasoning.

The relation-algebraic approach is also not capable of pro-
viding models for the given input constraints. However, in real
application domains (e.g., computer-aided design, geographic
information systems) not only deciding the consistency of con-
straints, but also determining the positions of spatial objects
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satisfying those constraints is desired.
In the next two sections we introduce a selection of quali-

tative spatial representations for directional information, and
methods for reasoning with those representations, which over-
come the deficiencies of the relation-algebraic approach.

3 Representations for Qualitative Spatial
Knowledge

If a set of spatial objects are represented by a finite number
of points in the Euclidian space—which is generally the case
in many applications—then the qualitative spatial relations
between those objects can be described by a system of poly-
nomial equations or inequalities. For example, we can model
people in a queue as points in R and represent “Alice is behind
Bob, Bob is behind Charlie, Charlie is behind Alice” with the
system xA − xB > 0∧ xB − xC > 0∧ xC − xA > 0, where
xA, xB , xC ∈ R.

If we leave the one-dimensional Euclidian space R and
move to the two-dimensional Euclidian space R2, new con-
straints emerge which were not existent in the one-dimensional
case. An important new constraint in the two-dimensional case
is based on the relative positions of three points, i.e., whether
the points are oriented in clockwise (CW) order, counterclock-
wise (CCW) order, or collinear. Formally, such a constraint
can be expressed as a polynomial inequality or equation based
on three points p1=(x1, y1), p2=(x2, y2) and p3=(x3, y3)
in the following way

x2y3 + x1y2 + x3y1 − y2x3 − y1x2 − y3x1 < 0 (CW)

x2y3 + x1y2 + x3y1 − y2x3 − y1x2 − y3x1 > 0 (CCW)

x2y3 + x1y2 + x3y1 − y2x3 − y1x2 − y3x1 = 0, (collin.)

where the polynomials on the lefthand side are obtained from

det

(
1 x1 y1
1 x2 y2
1 x3 y3

)
, (1)

where det stands for determinant. The importance and ubiq-
uity of this relationship of three points in a plane will be evi-
dent in the next subsections, where we introduce a selection of
qualitative spatial representations for directional information.
In each of the subsections we will show how a relation of each
spatial representation can be translated to a polynomial con-
straint, which is based on the relative position of three points
presented above.

3.1 The LR calculus
The domain of the LR calculus [Scivos and Nebel, 2005]
is the set of all points in the Euclidian plane. A LR rela-
tion describes for three points p1 = (x1, y1), p2 = (x2, y2),
p3 = (x3, y3) the relative position of p3 with respect to p1,
where the orientation of p1 is determined by p2. There are alto-
gether nine LR relations; seven relations for points, which are
depicted in Figure 1 are: left, right, front, start, inbetween, end,
back. In Figure 1 the Euclidian plane is partitioned by points
p1 and p2, p1 6= p2 into seven regions: two half-planes (l, r),
two half-lines (f , b), two points (s, e), and a line segment
(i). These regions determine the relation of the third point

Figure 1: Illustration of LR relation p1 p2 r p3

p1 p2 l p3 ⇔ x2y3 + x1y2 + x3y1 − y2x3 − y1x2 − y3x1 > 0

p1 p2 r p3 ⇔ x2y3 + x1y2 + x3y1 − y2x3 − y1x2 − y3x1 < 0

p1 p2 b p3 ⇔ x2y3 + x1y2 + x3y1 − y2x3 − y1x2 − y3x1 = 0

∧ p1 p2 r p4 ∧ p4 p1 l p3

p1 p2 s p3 ⇔ x3 = x1 ∧ y3 = y1 ∧ x3 6= x2 ∧ y3 6= y2

p1 p2 i p3 ⇔ x2y3 + x1y2 + x3y1 − y2x3 − y1x2 − y3x1 = 0

∧ p1 p2 r p4 ∧ p4 p1 r p3 ∧ p4 p2 l p3

p1 p2 e p3 ⇔ x3 = x2 ∧ y3 = y2 ∧ x3 6= x1 ∧ y3 6= y1

p1 p2 f p3 ⇔ x2y3 + x1y2 + x3y1 − y2x3 − y1x2 − y3x1 = 0

∧ p1 p2 r p4 ∧ p4 p2 r p3

p1 p2 d p3 ⇔ x1 = x2 ∧ y1 = y2 ∧ x1 6= x3 ∧ y1 6= y3

p1 p2 t p3 ⇔ x1 = x2 = x3 ∧ y1 = y2 = y3,

Table 1: A correspondence table for the LR calculus.

to p1 and p2. The remaining two relations are: double :={
(p1, p2, p3)

∣∣ p1, p2, p3 ∈ R2, p1 = p2, p1 6= p3
}

, triple :={
(p1, p2, p3)

∣∣ p1, p2, p3 ∈ R2, p1 = p2 = p3
}

. By describ-
ing the relations using polynomial constraints, we obtain the
correspondences in Table 1, where we introduce a new point
p4 when required. We note that an inequation “6=” can be
written as a disjunction of “>” and “<”.

3.2 The OPRAm calculus
The domain of the OPRAm calculus [Moratz, 2006] is the
set of all oriented points. An oriented point p is a quadruple
(x, y, v, w), x, y, v, w ∈ R, where (x, y) is the location of
p, and (v, w) defines the orientation of p by means of an
orientation vector ~op := (v, w) − (x, y). Two orientated
points p1 and p2 are equal, if their positions and orientations
are equal. With m lines passing through p, we can partition
the whole plane (without the point itself) equally into 2m open
sectors and 2m half-lines, where exactly one distinguished
half-line has the same orientation as ~op. Starting with the
distinguished half-line, and going through the sectors and
half-lines alternately in the counterclockwise order, we can
assign numbers 0 to 4m − 1 to the open sectors and half-
lines (see Figure 2). An OPRAm relation is a binary relation
which describes for points p1 and p2 their positions to each
other with respect to the aforementioned partitioning. This is
represented by the notation p1 m∠ji p2, where m is as defined

4



Figure 2: Illustration of OPRA2 relation p1 2∠2
7 p2

before, i is number of the sector (or half-line) of p1, in which
p2 is located, and j is the number of the sector (or half-line)
of p2, in which p1 is located. We write p1 m∠= p2 if they
share the same position.1 Then for p1 = (x1, y1, v1, w1),
p2 = (x2, y2, v2, w2), and the rotation map
(
rx(v, w, k)
ry(v, w, k)

)
:=

(
cos(k · π

m
) − sin(k · π

m
)

sin(k · π
m
) cos(k · π

m
)

)(
v
w

)
(2)

we can define for i = 0, 2, . . . ,m− 4,m− 2:

p1 m∠∗
i p2 :⇔ det

(
1 x1 y1
1 rx(v1,w1,

i
2 ) ry(v1,w1,

i
2 )

1 x2 y2

)
= 0

∧ det

(
1 x1 y1
1 rx(v1,w1,

i
2
+1) ry(v1,w1,

i
2
+1)

1 x2 y2

)
< 0,

which describe that p2 is in half-line i of p1, and for i =
1, 3, . . . ,m− 3,m− 1:

p1 m∠∗
i p2 :⇔ det

(
1 x1 y1

1 rx(v1,w1,
i−1
2 ) ry(v1,w1,

i−1
2 )

1 x2 y2

)
> 0

∧ det

(
1 x1 y1

1 rx(v1,w1,
i+1
2 ) ry(v1,w1,

i+1
2 )

1 x2 y2

)
< 0,

which describe that p2 is in sector i of p1. Then

p1 m∠ji p2 ⇔ p1 m∠∗
i p2 ∧ p2 m∠∗

j p1

and
p1 m∠= p2 ⇔ (x1, y1) = (x2, y2),

and we obtain the desired polynomial constraints.
The polynomial constraints from OPRAm relations con-

sist of quadratic polynomials with real algebraic numbers2

as their coefficients. Dealing with real algebraic numbers re-
quires more computing effort than with rational numbers. As
the real algebraic numbers are resulted from cos(k πm ) and
sin(k πm ) from (2) which are responsible for the positions of
the half-lines, we can avoid real algebraic numbers by slightly
modifying the definition for the positions of the half-lines so
as to have only rational numbers as the coefficients.

3.3 The ST ARm calculus
The ST ARm calculus [Renz and Mitra, 2004] is similar to
the OPRAm calculus except it has a fixed reference direc-
tion. Consequently, for all oriented points p = (x, y, v, w)

1The original paper [Moratz, 2006] introduces also the so-called
same relations that further differentiate p1 m∠= p2 by the orienta-
tions of p1 and p2.

2A real algebraic number is a real number that is a root of a
polynomial with integer coefficients (e.g.,

√
2 as a root of x2).

the values for (v, w) are fixed to v = x, w = y + 1 to al-
low ~op = (v, w) − (x, y) = (0, 1) as the orientation for all
points. This restriction on the expressibility of the representa-
tion has a computational advantage that the resulting polyno-
mial constraints require less variables and they are linear and
not quadratic. Hence, they can be solved more efficiently, for
example, by the simplex method in subsection 4.1.

So far, we have seen the correspondences between qual-
itative spatial constraints and polynomial constraints from
several spatial representations. Once we have these correspon-
dences, deciding the consistency or finding a model of a set of
constraints amounts to solving a system (i.e., a conjunction)
of corresponding polynomial equations or inequalities. The
approaches to this very problem is discussed in the following
section.

4 Alternative Methods for Reasoning with
Qualitative Spatial Knowledge

This section introduces methods for solving constraints com-
ing from qualitative spatial relations. As seen in the preceding
section, directional constraints can be translated to a system of
polynomial equations and inequalities. If the polynomials in
the system have degree at most 1 (i.e., the systems is linear),
than the simplex method from linear programming can be
applied. Otherwise, the Gröner base method from algebraic
geometry, or the cylindrical algebraic decomposition method
from real algebraic geometry can be applied to polynomial
systems with arbitrary degrees.

4.1 The Simplex Method
Many mathematical optimization problems can be formulated
as a Linear Programming [Dantzig and Thapa, 1997] problem,
i.e., finding a maximum (or minimum) of a linear function sub-
ject to a set of constraints which is given by a system of linear
inequalities. The simplex method is one of the techniques in
linear programming that is widely used. The simplex method
is divided in two phases. In Phase I, it searches for a feasible
solution of the given linear system. If a solution is found, then
the solution is used in Phase II to find an optimal solution. As
our objective is solving a linear system and not optimization,
only the algorithm for Phase I is relevant.

The simplex method is a sound and complete method, and
has single exponential time complexity.

4.2 The Gröbner Base Method
Several methods have been developed to solve systems of mul-
tivariate polynomial equations over the complex field. Gröbner
bases introduced by Buchberger [Buchberger, 1985] offer a
computational approach that allows us to rewrite a set of poly-
nomial equations, not altering their common zero set. In
spirit, the approach of computing Gröbner bases is related
Wu’s method [Wu, 1978; 1986] as both methods determine
elimination polynomials to rewrite polynomials by means of
polynomial division. The rewriting process cancels variables
and thus leads to equations that are easier to handle. Both
elimination techniques are common foundations of algebraic
approaches to geometric theorem proving. When computing
the Gröbner basis a normalization step is usually carried out to
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obtain the basis in normal form, called the reduced Gröbner
basis. This form exhibits a remarkable feature: when the ini-
tial set of polynomials does not have a common solution, then
the reduced Gröbner basis is equal to {1}. This property sug-
gests that Gröbner basis enable a straight-forward approach
to test the zero set for emptiness, but recall that polynomial
equations can also involve complex roots. Henceforth, in cases
where the reduced Gröbner basis does not equal {1}, a com-
mon solution is known to exist, but one still needs to check
whether the common solution is real-valued. The approach of
first computing the Gröbner basis and then further examining
existence of real-valued solutions can handle problems arising
when analyzing constraint calculi [Wolter, to appear], e.g.,
automatically computing the composition operation. However,
this approach does not provide us with a complete decision
procedure and it appears to be very difficult to turn it into a
provenly complete one.

4.3 Cylindrical Algebraic Decomposition
The Cylindrical Algebraic Decomposition (CAD) [Collins,
1975; Arnon et al., 1984] overcomes the deficiencies of the
two previously introduced methods; compared to the simplex
method, CAD can handle any polynomial systems and is not
limited to linear systems, and where as the Gröber base method
is not complete, CAD provides a complete algorithm.

Given a finite set of polynomials f1, . . . , fm in r variables
with coefficients from Q, the CAD algorithm computes a finite
subset S of Rr, such that

{(sgn(f1(s)), . . . , sgn(fn(s))) | s ∈ S } (3)
= {(sgn(f1(x)), . . . , sgn(fr(x))) |x ∈ Rr } ,

where sgn is a real-valued function that returns the sign (i.e.,
−1, 0, or 1) of its argument. Thus, solving a system of poly-
nomial equations and inequalities having f1, . . . , fm on the
left-hand side of the system can be accomplished by evalu-
ating f1, . . . , fm over the elements of S and checking their
signs. Due to condition (3) this decision procedure is sound
and complete. It also terminates as S is finite.

To generate the set of sample points S the CAD algo-
rithm decomposes Rr, the domain of variables x1, . . . , xr,
into finitely many subsets C1, . . . , CK of Rr, such that each
cell Ci is sign-invariant with respect to f1, . . . , fm, meaning
that the signs of f1, . . . , fm are constant when evaluated over
Ci. Set S is then obtained by calculating a sample point in
each of the cells C1, . . . , CK .

The complexity of CAD is doubly exponential in the number
r of the variables.

CAD is designed for general polynomial systems. As a con-
sequence, it is not optimized for particular polynomial systems
translated from qualitative spatial relations. For instance, the
fact that most polynomial constraints coming from directional
relations have their origins in the determinant expression in
(1) is not deployed. This lack of integration results in the
low performance of the CAD algorithm when dealing with
qualitative spatial constraints. We observe in the evaluation of
the computer algebra system Mathematica3 in Figure 5 that
CAD is not able to deal with more than 5 objects efficiently.

3http://www.wolfram.com/mathematica

Figure 3: The benchmark problem LR-ALL-LEFT(n) consists
of a set of LR constraints {pi pj l pk | 1 ≤ i < j < k ≤ n}
over n varibles, which are consistent by construction.

Figure 4: The benchmark problem LR-INDIAN-TENT(n) is a
generalization of the Indian Tent Problem for four points (see
[Wallgrün et al., 2007]). The problem consists of the same set
as LR-ALL-LEFT(n) except two constraints p1 p2 l pn and
p2 p3 l pn are substituted with p1 p2 r pn and p2 p3 r pn.
These new two constraints contradict p1 p3 l pn, because
they force pn to be placed in the shaded region. Hence,
LR-INDIAN-TENT(n) is inconsistent for all n ≥ 4.

Accordingly, future research has to concentrate on the theo-
retical analysis of the interaction between the CAD algorithm
and qualitative spatial constraints, and also on the tight inte-
gration thereof to achieve better performance.

5 Conclusions
In this paper we have discussed several approaches that pro-
pose themselves as alternatives to the conventional relation-
algebraic method. From the three presented approaches the
simplex method and CAD provide sound and complete al-
gorithms, which are also constructive and are therefore able
to generate models for consistent constraints. The simplex
method, which runs faster than CAD, is well suited for qual-
itative spatial constraints that can be translated to a system
of linear equations and inequalities (e.g., constraints from the
ST ARm calculus). On the other hand, CAD is versatile, and
can deal with any system of polynomial constraints. However,
CAD suffers from its poor performance in solving qualitative
spatial constraints, since it is a general solver and is therefore
not tailored to these specific constraints. We see this deficiency
of CAD as an open research question. To overcome this is-
sue, a thorough analysis of the input polynomials is needed
in the future. Analyzing the determinant expression (1) and
adapting the result to the CAD algorithm might be a key to the
improvement of this approach.

In summary, there is a need to adopt the mentioned new
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Figure 5: Evaluation of MathematicaTM ver. 8.0.1.0 with
benchmark problems LR-ALL-LEFT(n) (see Figure 3) and
LR-INDIAN-TENT(n) (see Figure 4) using the function
FindInstance. Although Mathematica finds consistent
instances for LR-ALL-LEFT(4) and LR-ALL-LEFT(5),
and inconsistencies of LR-INDIAN-TENT(4) and
LR-INDIAN-TENT(5) in less than few seconds, it was
not able to decide consistency of LR-ALL-LEFT(6) and
inconsistency of LR-INDIAN-TENT(6) within 6 hours. The
evaluation was done on an OS X machine with Intel Core 2
Duo 2.66 GHz processor and 4 GB memory.

approaches for reasoning with qualitative spatial informa-
tion. The future research in qualitative spatial reasoning
should therefore consider—besides investigating qualitative
spatial representations with regard to their relation-algebraic
properties—analyzing and optimizing the introduced new ap-
proaches by exploiting the structure of polynomials from qual-
itative spatial constraints.
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Abstract
Consistency checking plays a central role in quali-
tative spatial and temporal reasoning. Given a set
of variables V , and a set of constraints Γ taken
from a qualitative calculus (e.g. the Interval Al-
gebra (IA) or RCC-8), the aim is to decide if Γ
is consistent. The consistency problem has been
investigated extensively in the literature. Practi-
cal applications e.g. urban planning often impose,
in addition to those between undetermined entities
(variables), constraints between determined entities
(constants or landmarks) and variables. This paper
introduces this as a new class of qualitative con-
straints satisfaction problems, and investigates its
consistency in several well-known qualitative cal-
culi, e.g. IA, RCC-5, and RCC-8. We show that the
usual local consistency checking algorithm works
for IA but fails in RCC-5 and RCC-8. We further
show that, if the landmarks are represented as poly-
gons, then the new consistency problem of RCC-5
is tractable but that of RCC-8 is NP-complete.

1 Introduction
Qualitative constraints are widely used in temporal and spa-
tial reasoning. This is partially because they are close to
the way humans represent and reason about commonsense
knowledge. Moreover, qualitative constraints are easy to
specify and provide a flexible way to deal with incomplete
knowledge.

Usually, these constraints are taken from a qualitative cal-
culus, which is a set M of relations defined on an infinite
universe U of entities [6]. Well-known qualitative calculi in-
clude the Interval Algebra [1], RCC-5 and RCC-8 [9], and the
cardinal direction calculus (for point-like objects) [7].

A central problem of reasoning with a qualitative calcu-
lus is the consistency problem. For a qualitative calculusM
on U , an instance of the consistency problem over M is a
network Γ of constraints like xαy, where x, y are variables
taken from a finite set V , and α is a relation inM. Consis-
tency checking has applications in many areas, e.g. temporal

∗This work was partly supported by an ARC Future Fellowship
(FT0990811).

or spatial query preprocessing, planning, natural language un-
derstanding, etc. Moreover, several other reasoning problems
e.g. the minimal label problem and the entailment problem
can be reduced in polynomially time to the consistency prob-
lem.

The consistency problem has been studied extensively for
many different qualitative calculi (cf. [2]). These works
almost unanimously assume that the qualitative constraints
involve only unknown entities. In other words, the precise
(geometric) information of every object is totally unknown.
In practical applications, however, we often meet constraints
that involve both known and unknown entities, i.e. constants
and variables.

For example, consider a class scheduling problem in a pri-
mary school. In addition to constraints between unknown in-
tervals (e.g. a Math class is followed by a Music class), we
may also impose constraints involving determined intervals
(e.g. a P.E. class should be during afternoon).

Constraints involving known entities are especially com-
mon in spatial reasoning tasks such as urban planning. For
example, to find a best location for a landfill, we need to for-
mulate constraints between the unknown landfill and signifi-
cant landmarks, e.g. lake, university, hospital etc.

In this paper, we explicitly introduce landmarks (defined
as known entities) into the definition of the consistency prob-
lem, and call the consistency problem involving landmarks
the hybrid consistency problem. In comparison, we call the
usual consistency problem (involving no landmarks) the pure
consistency problem.

In general, solving constraint networks involving land-
marks is different from solving constraint networks involv-
ing no landmarks. For example, consider the simple RCC-5
algebra. It is a well-known result that a path-consistent con-
straint network Γ is consistent when Γ involves no landmarks.
But the following example shows that this fails to hold when
landmarks are involved. Suppose a, b, c are the three regions
shown below. Let x be a spatial variable, which is required to
be a subset of a, b, c. This network is path-consistent, but in-
consistent since the three landmarks have no common points.

The aim of this paper is to investigate how landmarks af-
fect the consistency of constraint networks in several very im-
portant qualitative calculi. The rest of this paper proceeds
as follows. Section 2 introduces basic notions in qualitative
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constraint solving and examples of qualitative calculi. The
new consistency problem, as well as several basic results, is
also presented here. Assuming that all landmarks are rep-
resented as polygons, Section 3 then provides a polynomial
decision procedure for the consistency of hybrid basic RCC-
5 networks. Besides, if the network is consistent, a solution is
constructed in polynomial time; Section 4 shows that consis-
tency problem for hybrid basic RCC-8 networks is NP-hard.
The last section then concludes the paper.

2 Qualitative Calculi and The Consistency
Problem

Most qualitative approaches to spatial and temporal knowl-
edge representation and reasoning are based on qualitative
calculi. Suppose U is a universe of spatial or temporal enti-
ties. Write Rel(U) for the algebra of binary relations on U . A
qualitative calculus on U is a sub-Boolean algebra of Rel(U)
generated by a set B of jointly exhaustive and pairwise dis-
joint (JEPD) relations on U . Relations in B are called basic
relations of the qualitative calculus.

We next recall the well-known Interval Algebra (IA) [1]
and the two RCC algebras.
Example 2.1 (Interval Algebra). Let U be the set of closed
intervals on the real line. Thirteen binary relations between
two intervals x = [x−, x+] and y = [y−, y+] are defined by
comparing the order relations between the endpoints of x and
y. These are the basic relations of IA.
Example 2.2 (RCC-5 and RCC-8 Algebras1). Let U be the
set of bounded regions in the real plane, where a region is a
nonempty regular set. The RCC-8 algebra is generated by the
eight topological relations

DC,EC,PO,EQ,TPP,NTPP,TPP∼,NTPP∼, (1)

where DC,EC,PO,TPP and NTPP are defined in Ta-
ble 1, EQ is the identity relation, and TPP∼ and NTPP∼

are the converses of TPP and NTPP, respectively, see
Fig. 1 for illustraion. The RCC-5 algebra is the sub-algebra
of RCC-8 generated by the five part-whole relations

DR,PO,EQ,PP,PP∼, (2)

where DR = DC ∪ EC, PP = TPP ∪ NTPP, and
PP∼ = TPP∼ ∪NTPP∼.

A qualitative calculus provides a useful constraint lan-
guage. Suppose M is a qualitative calculus defined on do-
main U . Relations in M can be used to express constraints

1We note that the RCC algebras have interpretations in arbitrary
topological spaces. In this paper, we only consider the most impor-
tant interpretation in the real plane.

Figure 1: Illustrations of the basic relations in RCC-8.

Table 1: A topological interpretation of basic RCC-8 relations
in the plane, where a, b are two bounded plane regions, and
a◦, b◦ are the interiors of a, b, respectively.

Relation Meaning
DC a ∩ b = ∅
EC a ∩ b 6= ∅, a◦ ∩ b◦ = ∅
PO a 6⊆ b, b 6⊆ a, a◦ ∩ b◦ 6= ∅
TPP a ⊂ b, a 6⊂ b◦

NTPP a ⊂ b◦

about variables which takes values in U . A constraint has the
form

xαy, or xαc, or cαx,
where α is a relation inM, c is a constant in U (called land-
mark in this paper), x, y are variables taking values in U .
Such a constraint is basic if α is a basic relation inM.

Given a finite set Γ of constraints, write V (Γ) (L(Γ), resp.)
for the set of variables (constants, resp.) appearing in Γ. A
solution of Γ is an assignment of values in U to variables in
V (Γ) such that all constraints in Γ are satisfied. If Γ has a
solution, we say Γ is consistent or satisfiable. Two sets of
constraint Γ and Γ′ are equivalent if they have the same set of
solutions.

A set Γ of constraints is said to be a complete constraint
network if there is a unique constraint between each pair of
variables/constants appearing in Γ.
Definition 2.1. Let M be a qualitative calculus on U . The
hybrid consistency problem ofM is, given a constraint net-
work Γ inM, decide the consistency of Γ inM, i.e. decide
if there is an assignment of elements in U to variables in Γ
that satisfies all the constraints in Γ. The pure consistency
problem ofM is the sub-consistency problem that considers
constraint networks that involve no landmarks.

The hybrid consistency problem of M can be approxi-
mated by a variant of the path-consistency algorithm. We say
a complete constraint network Γ is path-consistent if for any
three objects li, lj , lk in V (Γ) ∪ L(Γ), we have

αij = α∼ji & αij ⊆ αik ◦w αkj , (3)

where ◦w is the weak composition [4; 6] inM and α ◦w β is
defined to be the smallest relation in M which contains the
usual composition of α and β. It is clear that each complete
network can be transformed in polynomial time into an equiv-
alent complete network that is path-consistent. Because the
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consistency problem is in general NP-hard, we do not expect
that a local consistency algorithm can solve the general con-
sistency problem. However, it has been proved that the path-
consistency algorithm suffices to decide the pure consistency
problem for large fragments of some well-known qualitative
calculi, e.g. IA, RCC-5, and RCC-8 (cf. [2]). This shows
that, at least for these calculi, the pure consistency problem
can be solved by path-consistency algorithm and the back-
tracking method.

The remainder of this paper will investigate the hybrid con-
sistency problem for the above calculi. In the following dis-
cussion, we assume Γ is a complete basic network that in-
volves at least one landmark.

For IA, endpoints of the intervals in different solutions of a
complete basic constraint network respect the same ordering.
This suggests that any partial solution of a consistent network
can be extended to a complete solution.
Proposition 2.1. Suppose Γ is a basic network of IA con-
straints that involves landmarks and variables. Then Γ is
consistent iff it is path-consistent.

This result shows that, for IA, the hybrid consistency prob-
lem can be solved in the same way as the pure consistency
problem. Similar conclusion also holds for some other cal-
culi, e.g. the Point Algebra, the Rectangle Algebra, and the
Cardinal Direction Calculus (for point-like objects) [7]. This
property, however, does not hold in general. Take the RCC-5
as example. If a basic network Γ involves no landmark, then
we know Γ is consistent if it is path-consistent. If Γ involves
landmarks, we have seen in the introduction a path-consistent
but inconsistent basic RCC-5 network.

In the next two sections, we investigate how landmarks af-
fect the consistency of RCC-5 and RCC-8 topological con-
straints. We stress that, in this paper, we only consider the
standard (and the most important) interpretation of the RCC
language in the real plane, as given in Example 2.2. When
restricting landmarks to polygons, we first show that the con-
sistency of a hybrid basic RCC-5 network can still be decided
in polynomial time (Section 4), but the that of RCC-8 net-
works is NP-hard.

3 The Hybrid Consistency Problem of RCC-5
We begin with a short review of the realization algorithm for
pure consistency problem of RCC-5 [5; 3]. Suppose Γ in-
volves only spatial variables v1, v2, · · · , vn. We define a fi-
nite set Xi of control points for each vi as follows:
• Add a point Pi to Xi;
• For any j > i, add a new point Pij to both Xi and Xj if

(viPOvj) ∈ Γ;
• For any j, put all points in Xi into Xj if (viPPvj) ∈ Γ.

Take ε > 0 such that the distance between any two differ-
ent points in

⋃n
i=1Xi is greater than 2ε. Let B(P, ε) be the

closed disk with radius ε centred at P . By the choice of ε,
different disks are disjoint. Let ai =

⋃{B(P, ε) : P ∈ Xi}.
It is easy to check that the assignment is a solution of Γ, if Γ
is consistent.

Assume Γ is a basic RCC-5 network involving landmarks
L = {l1, · · · , lm} in the real plane and variables V =

{v1, · · · , vn}. Write ∂L for the union of the boundaries of
the landmarks. An equivalence relation∼L can be defined on
the plane as follows: For P,Q 6∈ ∂L,

P ∼L Q iff (∀1 ≤ j ≤ m)[P ∈ lj ↔ Q ∈ lj ] (4)

A block is defined as an equivalent class under ∼L. Be-
cause∼L is defined only for points that are not on the bound-
aries of the landmarks, it is easy to see that each block is an
open set. It is also clear that the complement of the union of
all landmarks (which are bounded) is the unique unbounded
block. We write B for the set of all blocks.

For each landmark li, we write I(li) for the set of blocks
that li contains, and write E(li) for the set of rest blocks, i.e.
the blocks that are disjoint from li. That is,

I(li) = {b ∈ B : b ⊆ li}, (5)
E(li) = {b ∈ B : b ∩ li = ∅}. (6)

It is easy to see that the interior (exterior, resp.) of li is exactly
the regularized union (i.e. the interior of its closure) of all
blocks in I(li) (E(li),resp.). Moreover, each block is in either
I(li) orE(li), but not both, i.e., I(li)∪E(li) = B and I(li)∩
E(li) = ∅.

These constructions can be extended from landmarks to
variables as

I(vi) =
⋃
{I(lj) : ljPPvi}, (7)

E(vi) =
⋃
{I(lj) : ljDRvi} ∪

⋃
{E(lj) : viPPlj}. (8)

Intuitively, I(vi) is the set of blocks that vi must contain,
and E(vi) is the set of blocks that should be excluded from
vi.

The following proposition claims that no block can appear
in both I(vi) and E(vi).
Proposition 3.1. Suppose Γ is a basic RCC-5 constraint
network that involves at least one landmark. If Γ is path-
consistent, then I(vi) ∩ E(vi) = ∅.

We have the following theorem.
Theorem 3.1. Suppose Γ is a basic RCC-5 constraint net-
work that involves at least one landmark. If Γ is consistent,
then we have
• For any vi ∈ V ,

E(vi) ( B. (9)

• For any vi ∈ V andw ∈ L∪V such that (viPOw) ∈ Γ,

E(vi) ∪ E(w) ( B, (10)
E(vi) ∪ I(w) ( B, (11)
I(vi) ∪ E(w) ( B. (12)

• For any vi ∈ V and lj ∈ L such that (viPPlj) ∈ Γ,

I(vi) ( I(lj). (13)

• For any vi ∈ V and lj ∈ L such that (ljPPvi) ∈ Γ,

E(vi) ( E(lj). (14)

• For any vi, vj ∈ V such that (viPPvj) ∈ Γ,

I(vi) ∪ E(vj) ( B. (15)
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These conditions are also sufficient to determine the con-
sistency of a path-consistent basic RCC-5 network. We show
this by devising a realization algorithm. The construction is
similar to that for the pure consistency problem. For each vi,
we define a finite set Xi of control points as follows, where
for clarity, we write

P (vi) = B− I(vi)− E(vi). (16)

• For each block b in P (vi), select a fresh point in b and
add the point into Xi.

• For any j > i with (viPOvj) ∈ Γ, select a fresh point
in some block b in P (vi)∩P (vj) (if it is not empty), and
add the point into Xi and Xj .

• For any j, put all points in Xj into Xi if (vjPPvi) ∈ Γ.

We note that the points selected from a block b for different vi,
or in different steps, should be pairwise different. Recall that
each point in

⋃n
i=1Xi is not at the boundary of any block. We

choose ε > 0 such that B(P, ε) does not intersect either the
boundary of a block or another disk B(Q, ε). Furthermore,
we can assume that ε is small enough such that the union of
all the disks B(P, ε) does not cover any block in B.

Let

âi =
⋃
{B(P, ε) : P ∈ Xi} ∪

⋃
{lj : ljPPvi}. (17)

We claim that {â1, · · · , ât} is a solution of Γ. To prove this,
we need the following lemma.

Lemma 3.1. Let Γ be a path-consistent basic RCC-5 con-
straint network that involves at least one landmark. Suppose
B is the block set of Γ. Then, for each b ∈ B, we have

• b ∈ I(vi) iff b ⊆ âi.
• If b ∈ E(vi) iff b ∩ âi = ∅.

• If b ∈ P (vi) iff b * âi and b ∩ âi 6= ∅.

Remark 3.1. Since {I(vi), E(vi), P (vi)} is a partition of the
blocks in B, it is easy to see the conditions in Lemma 3.1 are
also sufficient. That is, for example, b ∈ I(vi) iff b ⊆ âi.

We next prove that {â1, · · · , ât} is a solution of Γ.

Theorem 3.2. Suppose Γ is a complete basic RCC-5 network
involving landmarks L and variables V . Assume Γ is path-
consistent and satisfies the conditions in Theorem 3.1. Then
Γ is consistent and {â1, · · · , ât}, as constructed in (17), is a
solution of Γ.

It is worth noting that the complexity of deciding the con-
sistency of a hybrid basic RCC-5 network includes two parts,
viz. the complexity of computing the blocks, and that of
checking the conditions in Theorem 3.1. The latter part alone
can be completed in O(|B|n(n + m)) time, where |B| is the
number of the blocks. In the worst situation, the number
of blocks may be up to 2m. This suggests that the deci-
sion method described above is in general inefficient. The
following theorem, however, asserts that this method is still
polynomial in the size of the input instance, provided that the
landmarks are all represented as polygons.

Theorem 3.3. Suppose Γ is a basic RCC-5 constraint net-
work, and V (Γ) = {v1, · · · , vn} and L(Γ) = {l1, · · · , lm}

are the set of variables and, respectively, the set of landmarks
appearing in Γ. Assume each landmark li is represented by a
(complex) polygon with less than k vertices. Then the consis-
tency of Γ can be decided in O((m+ n)6k6) time.

4 The Hybrid Consistency Problem of RCC-8
Suppose Γ is a complete basic RCC-8 network that involves
no landmarks. Then Γ is consistent if it is path-consistent [8;
10]. Moreover, a solution can be constructed for each path-
consistent basic network in cubic time [5; 3]. This section
shows that, however, when considering polygons, it is NP-
hard to determine if a complete basic RCC-8 network involv-
ing landmarks has a solution. We achieve this by devising a
polynomial reduction from 3-SAT.

In this section, for clarity, we use upper case lettersA,B,C
(with indices) to denote landmarks, and use lower case letters
u, v, w (with indices) to denote spatial variables.

The NP-hardness stems from the fact that two externally
connected polygons, say A,B, may have more than one tan-
gential points. Assume v is a spatial variable that is required
to be a tangentially proper part of A but externally connected
to B. Then it is undetermined at which tangential point(s) v
and B should meet.

Precisely, consider the configuration shown in Fig. 2 (a),
where A and B are two externally connected landmarks,
meeting at two tangential points, say Q+ and Q−. Assume
{u, v, w} are variables that are subject to the following con-
straints

uTPPA, uECB,

vTPPB, vECA,wTPPB,wECA,

uECv, uDCw, vDCw.

It is easy to see that u andB are required to meet at eitherQ+

(a) (b) (c)

Figure 2: Two landmarks A,B that are externally connected
at two tangential points Q+ and Q−.

or Q−, but not both (cf Fig. 2(b,c)). The correspondence be-
tween these two configurations and the two truth values (true
or false) of a propositional variable is exploited in the follow-
ing reduction.

Let φ =
∧m
k=1 ϕk be a 3-SAT instance over propositional

variables set {p1, · · · , pn}. Each clause ϕk has the form p∗r ∨
p∗s ∨ p∗t , where literal p∗i is either pi or ¬pi for i = r, s, t. We
next construct a set of polygons L and a complete basic RCC-
8 network Γφ, such that φ is satisfiable iff Γφ is satisfiable.

First, define A,B1, B2, · · · , Bn as in Fig. 3. For each 1 ≤
i ≤ n, A is externally connected to Bi. Let Q+

i and Q−i be
the two tangential points.
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Figure 3: Illustration of landmarks A,B1, · · · , Bn.

Figure 4: Illustration of landmark Ck.

The variable set of Γ is V = {u, v1, · · · , vn, w1, · · · , wn}.
We impose the following constraints to the variables in V .

uTPPA, uECBi, (18)
viECA, viTPPBi, viDCBj (j 6= i), (19)
wiECA, wiTPPBi, wiDCBj (j 6= i), (20)
uECvi, uDCwi, (21)
viDCwj , viDCvj (j 6= i), wiDCwj (j 6= i). (22)

From the discussion above, we know u is required to meet
with each Bi at either Q−i or Q+

i , but not both.
For each clause ϕk, we introduce an additional landmark

Ck, which externally connects A at three tangential points,
and partially overlaps Bi. The three tangential points of Ck
andA are determined by the literals in ϕk. Precisely, suppose
ϕk = p∗r ∨ p∗s ∨ p∗t , then the first tangential point of A and
Ck is constructed to be Q+

r if p∗r = pr, or Q−r if p∗r = ¬pr.
The second and the third tangential points are selected from
{Q+

s , Q
−
s } and {Q+

t , Q
−
t } similarly. Take clause pr∨¬ps∨pt

for example, the tangential points between landmarks Ck and
A should be Q+

r , Q−s , and Q+
t , as shown in Fig. 4.

The constraints between Ck and variables in V are speci-
fied as

uECCk, viPOCk, wiPOCk. (23)

SinceCk andA have three tangential points, the constraints
uTPPA and uECCk imply that u should occupy at least one
of the three tangential points. This corresponds to the fact that
if ϕk is true under some assignment, then at least one of its
three literals is assigned true.

Lemma 4.1. Suppose φ =
∧m
k=1 ϕk is a 3-SAT instance

over propositional variables set {p1, p2, · · · , pn}. Let Γφ be
the basic RCC-8 network composed with constraints in (18)-
(23), involving landmarks {A,B1, · · · , Bn, C1, · · · , Cm}
and spatial variables {u, v1, · · · , vn, w1, · · · , wn}. Then φ
is satisfiable iff Γφ is satisfiable.

The following corollary follows directly.

Corollary 4.1. Deciding the consistency of a complete basic
RCC-8 network involving landmarks is NP-hard.

Is this consistency problem still in NP? As long as the land-
marks are polygons, the answer is yes!
Theorem 4.1. Suppose all landmarks in a hybrid basic RCC-
8 network are represented by (complex) polygons. Then de-
ciding the consistency of a complete basic RCC-8 network
involving at least one landmark is an NP-complete problem.

5 Conclusion and Further Discussions
In this paper, we introduced a new paradigm of consistency
checking problem for qualitative calculi, which supports def-
initions of constraints between a constant (landmark) and a
variable. Constraints like these are very popular in practical
applications such as urban planning and schedule planning.
Therefore, this hybrid consistency problem is more practi-
cal. Our examinations showed that for some well-behaved
qualitative calculi such as PA and IA, the new hybrid consis-
tency problem can be solved in the same way; while for some
calculi e.g. RCC-5 and RCC-8, the usual composition-based
reasoning approach fails to solve the hybrid consistency prob-
lem. We provided necessary and sufficient conditions for de-
ciding if a hybrid basic RCC-5 network is consistent. Under
the assumption that each landmark is represented as a poly-
gon, these conditions can be checked in polynomial time. As
for the RCC-8, however, we show that it is NP-complete to
determine the consistency of a basic network that involves
polygonal landmarks.

The hybrid consistency problem is equivalent to determin-
ing if a partial solution can be extended to a complete solu-
tion. This is usually harder than the pure consistency prob-
lem. More close connections between the pure and hybrid
consistency problems are still unknown. For example, sup-
pose the consistency problem is in NP (decidable, resp.).
Is the hybrid consistency problem always in NP (decidable,
resp.)?
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Abstract. This paper presents a general way of addressing problems in video
activity understanding using graph based relational learning. Video activities are
described using relational spatio-temporal graphs, that represent qualitative spatio-
temporal relations between interacting objects. A wide range of spatio-temporal
relations are introduced, as being well suited for describing video activities. Then,
a formulation is proposed, in which standard problems in video activity under-
standing such as event detection, are naturally mapped to problems in graph based
relational learning. Experiments on video understanding tasks, for a video dataset
consisting of common outdoor verbs, validate the significance of the proposed
approach.

1 Introduction

One of the goals of AI is to enable machines to observe human activities and understand
them. Many activities can be understood by an analysis of the interactions between ob-
jects in space and time. The authors in [13][14] introduce a representation of interactions
between objects, using perceptually salient discretizations of space-time, in the form of
qualitative spatio-temporal relationships. Then, they apply relational learning to learn
event classes from this representation. This approach to understanding video activities
using a qualitative spatio-temporal representation and relational learning is an alternative
to much research on video activity analysis, which has largely focussed on a low-level
pixel based representations e.g. [17].

This paper expands the scope of this research in the following two ways. Firstly,
building on previous work [14], that has restricted itself to just simple topological rela-
tions, this work draws from a body of research in qualitative spatial relations [11][2], and
proposes that these relations provide a natural way of representing video activities. This
aspect is described in section 2. Secondly, this paper presents a general way of trans-
lating standard problems in video activity analysis [9] to problems in relational graph
learning [4]1, by extending the application of a novel formulation proposed in [14]. This
aspect is described in section 3. Sections 4 describes experimental analysis on real data.
Section 5 concludes this chapter with pointers to future research.

1 While this paper concentrates on graph based relational learning for reasons given below, we
believe that this analysis can be carried over to logic based relational learning [7] [10].
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Fig. 1: (a) Five qualitative spatial relationships:(i)topology; (ii) direction; (iii) relative speed; (iv)
relative size; (v) qualitative trajectories. (b) Three simple events: (i) bounce - characterized by
a periodic change between the directional relationships UL and DL; (ii) throw - by the change
from PO to DR and St to De; (iii) chase by a change from De to Pu. At the bottom is the
corresponding spatio-temporal graph. (c) The same spatial relations in (b) for a short segment, its
logical representation and equivalent relational interaction graph.

2 Graph Based Representation of Activities

We propose that qualitative spatial relations provide a natural way of representing in-
teractions between objects participating in video activities. Qualitative relations form
interesting features as they are the result of a particular way of discretizing quantitative
measurements into qualitatively interesting concepts, such that these concepts signify
perceptually salient relationships [3]. The problem of abstracting qualitative relations
from noisy video data, is facilitated by the use of a Hidden Markov Model based frame-
work described in [15].

Five types of relations are illustrated in Fig. 1 (a). Their suitability for describing
interactions is illustrated in Fig. 1 (b). At the top of Fig. 1 (b) is a sequence of images
representing the interaction between a person and a ball, namely bounce, throw and
chase. Below that is shown, three “parallel sequences of episodes”. An episode [13]
corresponds to an interval, during which a spatial relationship holds maximally, and can
be described by logic (e.g. Holds(O1, O2,UR, I2) as shown in Fig. 1(c) for a shorter
sub-interval of the interval shown in Fig. 1(b)). Each sequence of episodes in Fig. 1(b)
and (c) correspond to one of the three different types of qualitative relations, namely
topology (RCC5), relative directions (DIR4) and relative trajectories (QTC6).

16



3

An alternative to the above “sequence of episodes” based representation is to relate
the intervals corresponding to each pair of episodes, using Allen’s temporal relationships
[1], e.g. Meets(I2, I3), as shown in Fig. 1(c). This leads to a fully relational representa-
tion capturing many, if not all, qualitatively interesting temporal dependencies.

An alternative relational representation to logical predicates is to use interaction
graphs [14], as shown in Fig. 1(c). They are three layered graphs, in which the layer
1 nodes are mapped to the interacting objects. Layer 2 nodes of the interaction graph
represent the episodes between the respective pairs of tracks pointed to at layer 1 and
are labelled with their respective maximal spatial relation as shown in Fig. 1(c). The
layer 3 nodes of the activity graph are labelled with Allens temporal relations (e.g. m
: meets, in Fig. 1(c)) between intervals corresponding to certain pairs [12] of layer 2
nodes.

Interaction graphs are a computationally efficient alternative to logical predicates,
as they avoid repetition of object and episode variables and also provide a well defined
and computationally efficient comparison of interactions, by means of suitable simi-
larity measure. This measure is defined using a kernel on a feature space obtained by
expressing a interaction graph in terms of a bag of sub-interaction subgraphs [14].

An activity graph is an interaction graph that captures the spatio-temporal relation-
ships between all pairs of co-temporally observed objects that are involved in activities
for an extended duration. Note that the activity graph may also represent the spatio-
temporal graph for activities in several unrelated videos for the same domain, and not
necessarily one single video.

3 Graph Based Relational Learning of Activities

The authors in [14] proposed a novel relational graph based learning formulation for
video activity understanding, in the context of a specific unsupervised learning task. In
the following, we use this formulation to describe a general way of translating standard
problems in video activity analysis to standard problems in relational graph learning.
We show how it can be more generally applied, in order to address many of the standard
video activity understanding tasks.

One of the key underlying hypotheses in research on video activity understanding
[9] is that activities are composed of events of different types. Based on this hypothesis,
tasks such as learning event class models, event classification, clustering and detection
are defined. In this work, we characterize events by a set of co-temporal tracklets (a
tracklet is a one-piece segment of a track). Events having similar spatio-temporal rela-
tionships between their constituent tracklets tend to belong to the same event class. The
set of all event classes is called C. A set of events E is a “cover” of a set of tracks T
iff the union of all tracklets in E is isomorphic to T . In general there may be coinci-
dental interactions between objects that that would not naturally be regarded as part of
any event in an event class 2. This notion of an event cover can be regarded as an global
explanation of the activities in a video in terms of instances of event classes.

A set of tracks T can be abstractly represented using an activity graph A, as de-
scribed above. An event corresponds to a subgraph of A, such that this subgraph is also

2 We ignore this complexity here but see [12], [14]. The final paper would contain details of how
coincidences can be incorporated into the learning algorithms. Here, there is no space to give
further details here.
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an interaction graph. An event cover in this formulation, thus becomes a set of interac-
tion graphs, whose union isA. These interaction graphs are called event graphs3. Similar
event graphs tend to belong to the same event class. An event model is defined for the
set of event classes C, according to which, each class is a probability distribution over a
finite set of interaction graphs. Finally, observation noise is modelled by allowing multi-
ple possible activity graphsA, for the same set of observed tracks T . This formalism has
been used to model the joint probability distribution of the above variables {C,G,A, T }
as: P (C,G,A, T ) ≈ P (C)P (G|C)P (A|G, C)P (T |A)

We now apply this formulation to address the above video understanding tasks in
terms of relational graph learning. The task of learning an event model translates to
learning an event model for event classes C given A and a corresponding G. A MAP
formulation of this problem is

Ĉ = argmax
C

P (C)P (G|C)

In this work, we learn a generative event model in the form of a simple mixture of
Gaussians, in both supervised and unsupervised settings. In the unsupervised setting, we
used a Bayesian Information Criterion to automatically determine the number of classes.
More generally, techniques related to graph classification [5] [6] [8] and clustering [16],
may be applied.

The video event detection task corresponds to the case, when given an event model
C, the goal is to detect the events, or more generally, learn a labelled cover G, where the
labels correspond to one of the event classes in C, that is:

Ĝ = argmax
G

P (G|C)P (A|G, C)

In this work, we form the cover G, by simply searching for subgraphs in the activity
graph that are most likely given the event model C. That is, we find those graphs g ∈ G
for which the likelihood P (g|C), is above a threshold. We also simply assume a uniform
distribution P (A|G, C) for all possible event graph covers G.

In a more general unsupervised video understanding setting, the goal is to learn the
unknowns: G, C and A, given only the observed tracks T , that is:

(Ĉ, Ĝ, Â) = arg max
C,G,A

P (C)P (G|C)P (A|G, C)P (T |A)

A Markov Chain Monte Carlo (MCMC) procedure is used in [14] to find the MAP solu-
tion. MCMC is used to efficiently search the space of possible activity graphs, possible
covers of the activity graph and possible event models, in order to find the MAP solution.

4 Experiments

A real video dataset consisting of activities representing simple verbs such as throw (a
ball), catch etc is used to evaluate the proposed approach. The dataset consists of 36
videos. Each video lasts for approximately 150–200 frames and contains one or more

3 In practical situations, with co-temporal events, there will be co-incidental interaction graphs,
which are a part of A, but not a part of any event graph. We leave further details of this to the
full paper.
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Fig. 2: Left: Accuracies for three tasks - classification, clustering and detection - for possible
combinations of spatial relationships are shown. In order to make the results visually legible, only
the top ranking combination for a fixed number of combinations are shown. The letters are given
by letters: a - RCC5, b - QTC6, c - DIR4, d - SPD3, e - SIZ3 (See Fig. 1 (a) for further explanation
of these acronyms). Right: Confusion matrix for the classification task.

of the following 6 verbs: approach, bounce, catch, jump, kick and lift. A ground truth,
in terms of labelled intervals corresponding to each of the constituent verbs, in each of
these videos is available. We process the dataset by detecting objects of interest using a
multi-class object detector and then track the detected blobs.

This dataset is used to evaluate how possible combinations of these features perform
for three of the learning tasks - event classification, event clustering and event detection
- that arise out of the proposed formulation described above. In order to evaluate the per-
formance of event recognition, a leave-one out cross validation scheme is adopted. For
the classification task, an event model in terms of the interaction graphs, is learned from
the training videos, in a supervised way using the available class labels. The interac-
tion graph for the video corresponding to the test segment is classified using the learned
event model. The classified label for the test segment evaluated against the ground truth
label for this segment, in order to compute the average accuracy across different folds.
In order to evaluate clustering, the segments for all the available videos are clustered
and the accuracy of clustering is evaluated using Rand Index. Finally, the detection task
is evaluated by a leave one out procedure, which uses 35 videos for training the event
model. The event model is used to detect the events in the remaining video. An event is
regarded as being detected if the detected interval overlaps the ground-truth interval by
more than 50%.

The results for the classification, clustering and detection tasks are shown in Fig.
2 (left), for different combinations of spatial relationships. These results show that for
all three learning tasks, the combination of all five types of qualitative spatial relations
results in maximum accuracies. The results for the classification task for each of the six
verbs is shown with the help of a confusion matrix in Fig. 2 (right). It can be seen that
apart from the verb “approach”, which gets confused with “catch”, the rest of the verbs
are classified with reasonably high accuracies.

5 Summary and Future Work

This paper firstly demonstrates the role of different types of qualitative spatio-temporal
relations in bridging the gap between low level video input and high level activity under-
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standing has been demonstrated. One direction for future research is to investigate the
role of other qualitative relations and their role in representing activities. Another inter-
esting direction is to model human actions by considering relationships between body
parts. These body parts could be obtained using part-based models.

Another contribution is that this paper presents a general way of addressing problems
in video activity understanding using graph based relational learning. In the future, it
would be interesting to extend this formalism to other tasks in activity understanding
such as anomaly detection, scene description and gap filling.
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Abstract
This paper serves to promote studying spatio-
temporal configurations problems in physical do-
mains, called physical puzzled for short. The kind
of physical puzzles we consider involve simple ob-
jects that are subject to the laws of mechanics, re-
stricted to what is commonly considered to be ac-
cessible by common sense knowledge. Our problem
specification involves several unknowns, creating
uncertainty which inhibits analytic construction of
solutions. Instead, tests need to be carried out in
order to evaluate solution candidates. The objective
is to find a solution whilst minimizing the number
of tests required.

1 Introduction
Qualitative representations aim to capture human common-
sense understanding and to enable efficient symbolic reasoning
processes. Qualitative representations abstract from an overly
detailed domain by only distinguishing between an essential
set of meaningful concepts. Qualitative approaches are widely
acknowledged for their ability to abstract from uncertainty, for
example an uncertain measurement of a location can become
a certain notion of region membership. Naturally, different
tasks may call for different qualitative concepts to describe the
state of affairs. This task-dependency lead to the development
of a wide range of qualitative representations of space and
time—see [Cohn and Renz, 2007] for an overview.

When benchmarking qualitative representation and reason-
ing it appears natural to consider adequacy of representation as
well as effectiveness and efficiency of reasoning. Since quali-
tative representations are meant to provide us with a formal
model for common-sense reasoning, we argue for studying
problems which are easy to solve for humans but hard for com-
puters. To this end, we examine spatial configuration problems
in the physical domain, i.e., problems in which objects need to
be arranged in a certain way in order to achieve a specific goal
(like making a ball hit a goal). As claimed by Bredeweg and
Struss, “reasoning about, and solving problems in, the physical
world is one of the most fundamental capabilities of human
intelligence and a fundamental subject for AI” [Bredeweg
and Struss, 2003]. Problem solving in a physical context can
thus be considered a well-suited benchmark domain for AI.

The physical domain is also key to qualitative reasoning. As
Williams and de Kleer put it, “[...] the heart of the qualitative
reasoning enterprise is to develop computational theories of
the core skills underlying engineers, scientists, and just plain
folks’s ability to hypothesize, test, predict, create, optimize,
diagnose and debug physical mechanisms” [Williams and de
Kleer, 1991]. Solving puzzles has some tradition is AI re-
search. Recently, Cabalar and Santos accounted puzzles as
an well-suited test bed for their ability to present challenging
problems in small packages [Cabalar and Santos, 2011]. We
argue for studying physical puzzles that involve dynamics,
in particular we consider the problem of configuring an en-
vironment by arranging objects to make a ball bounce into
a pre-defined goal region. A similar kind of bouncing ball
problem also served as example to motivate the poverty con-
jecture in qualitative reasoning [Forbus et al., 1991]. In the
light of today’s state of the art in qualitative spatial reasoning,
Cohn and Renz take a more differentiated point of view [Cohn
and Renz, 2007]. Therefore, we regard physical puzzles to be
the domain of choice for evaluating advances in qualitative
reasoning.

2 The Physical Puzzle Domain
Our proposal has been inspired by computer games that,
among other difficulties, confront a player with tricky physical
problems that involve spatio-temporal reasoning as well as
reasoning about action and change. Two games exemplify
the genre of physical puzzles we propose to study: the game
Deflector published by Vortex Software in 1987 (see Figure 1
for a screenshot of the Commodore 64 version) requires the
player to arrange a set of rotatable mirrors in such a way as
to make a laser beam hit balloons. Hitting all balloons (and
thereby making them burst) clears a level. This kind of puzzle
is a purely spatial one. Obstacles placed in the level make
it hard to foresee which mirror setup is required to point the
laser to a specific point in space. Whilst this problem can be
solved purely using computational geometry, the state space is
too large to be enumerated by humans. Human players need
to employ some means of heuristics and reasoning in order
to construct solutions. The second game, called Crazy Ma-
chines developed by FAKT Software is similar but involves a
complex physical domain (see Figure 2 for a screenshot). The
objective is to arrange objects in such a way that they exhibit
certain functionality (for instance, making a set of balloons
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Figure 1: Screenshot of the computer game Deflektor in which
rotatable mirrors have to be arranged such that all balloons
(grey) are destroyed by the laser beam (yellow).

Figure 2: An exemplary physical puzzles from the computer
game Crazy Machines. The objects to the right (a burning can-
dle, scissors, and two levers) have to placed in such a way that
all balloons burst. The robot in this puzzle is capable of car-
rying one object and it will only move straight on, eventually
falling off the platform.

burst). This game is not only more complex as it involves a
variety of physical laws (gravity, magnetism, etc.), but it also
involves many unknowns. No physical constants like friction
coefficients, mass, or density are known.

When details of the underlying physical model are unknown
or cannot be handled computationally1, a solution cannot be
determined by a single computation. Instead it becomes nec-
essary to first construct trial solutions and study how they
perform. In order to position a trampoline such that it gets
hit by a ball falling down (see Fig. 3 for illustration), it is
necessary to first observe where the ball hits the ground. Then
the trampoline can then be placed accordingly. Aside from
such simple variations of where exactly to place the trampo-
line between objects O1 and O2, more complex relationships
need to be assessed too. Again considering Fig. 3, it is by no

1for example, if inverse kinematics cannot be handled analytically

goal
trampoline

ball

O1 O2

Figure 3: A physical puzzle in which trampolines need to
placed to make a ball reach a goal area

means easy to see whether placing a trampoline on the ground
between O1 and O2 would help to make the ball bounce over
the obstacle O2 in order to reach the goal area. In conclu-
sion, unknowns introduce uncertainty on two levels, on the
numerical level of fine-tuning a solution and on the qualitative
level.

2.1 Reasoning in Physical Puzzles
Reasoning can help in different ways to solve a physical puzzle.
First of all, qualitative assessment of a trial can help to guide
the search for the right choice of parameters. To this end, a
representation of some basic physical knowledge is required.
From such background knowledge one can infer whether a
parameter like the position of a trampoline needs to be shifted
to the left or to the right. The same approach can also help
to recognize that fine-tuning parameters will not lead to a
solution. For example, if the trampoline does not make the ball
jump high enough (top vertex of the parabola-like trajectory is
not above O2), it is pointless to fine-tune how the trampoline
bounces back the ball.

More importantly, reasoning on the qualitative level can
also help to identify solution candidates. To this end any
solution to the physical puzzle also needs to be a solution
of the qualitative abstraction of the puzzle. This allows for
a generate-and-test approach based on qualitative reasoning.
First, solution candidates are generated on the qualitative level
and then it is studied by trials whether it the solution candidate
is realizable in the concrete physical context given. A similar
approach has recently been described by [Westphal et al.,
2011] in context of spatial planning.

To foster reasoning we treat the physical world as a black
box and aim to minimize the number of trials required. We
note that the necessity of performing trials is not an artificial
burden but it is also common in engineering problems. Even
when all physical effects involved are known, one might not
be able to create reliable computer models. It is up to the
researcher developing a reasoner (or up to the engineer, re-
spectively) to minimize the amount of experiments necessary.

Even simple physical puzzles involve a dense and complex
structured search space that does not become tractable until
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Figure 4: Specialized (extended) Bouncing Ball Puzzles
BBP 0 (left) and eBBP 0 (right)

reasoning is applied. The level of difficulty can easily be
fine-tuned by changing the number of static obstacles and by
limiting the set of objects that can be placed. We conclude that
physical puzzles are an excellent problem to study the utility
of approaches to qualitative representation and reasoning.

3 Problem Specification
The physics considered in this proposal are the physic of rigid
objects including gravity. For the sake of simplicity we only
consider the task of throwing a ball into a basket. In order to
solve a puzzle, one can change how the ball is thrown from
a fixed start position (by choosing the initial velocity vector)
and one may alter a given scene by placing objects from a
given set of objects.

Definition 1. A trajectory is a continuous function
T : R+

0 → Rn. Let Tn be the set of all trajectories in Rn.

A trajectory does not have to be continuously differentiable.
In the kind of problems we consider we can regard all trajec-
tories to converge to a fixed end position in finite time, thus
trajectories can be represented as finite polygonal curves.

Definition 2. A simulation is a function Sn : C×F×U→ Tn

mapping a set of problem parameters to a trajectory. We call
C the set of configuration parameters, F and U are sets of fixed
problem parameters of which U is called unknowns.

Definition 3. A physical puzzle is the tuple < Sn,C, F,G >,
where Sn is a simulation, F ∈ F, U ∈ U, and G ⊂ Rn a set
of goal positions. A configuration C ∈ C is called a solution
for a particular U iff limt→∞ Sn(P, F, U)(t) ∈ G.

In the following the dimension n will be omitted and de-
faults to 2. When benchmarking a solution strategy to solve
a puzzle, the number of tries is counted, i.e., calls to the S
function until finding a solution. For reasons of comparability
evaluations should be performed on a number of puzzles vari-
ants and involve statistics. We now list a set of distinct types
of physical puzzle problems order by increasing difficulty.

The Simple Bouncing Ball Puzzle (sBBP) In this puzzle
only two free parameters are available to control how the ball
is thrown from a fixed start position: the angle and the size of
the initial velocity vector. We single out two special variants:

sBBP0 the goal area is enclosed be obstacles but can be en-
tered freely by a ball from above (see Figure 4).

sBBP−1 this is the normal BBP but without gravity

The Bouncing Ball Puzzle (BBP) In this problem a number
of objects can be placed to alter the path of the ball. Some
special cases of these puzzles can be identified:
BBP0 analogous to sBBP0, but the ball has a fixed initial

velocity. It can only be guided into the goal area by
placing objects (see Figure 4).

BBP−1 BBP without gravity

4 Conclusion
In this proposal we argue for solving configuration problems
in the physical domain to benchmark qualitative representa-
tion and reasoning techniques. Solving problems in physics
of rigid objects is largely of spatio-temporal nature, but it in-
volves unknowns, resulting in a steep scaling behavior with
respect to problem complexity. We have chosen the physi-
cal world as our domain as it covers spatial, temporal, and
general qualitative reasoning. Furthermore, it gives rise to
the ultimate benchmark: to defeat human problem solvers in
computer games. Using a physical simulator that takes quanti-
tative input parameters and produces a quantitative output we
allow different qualitative representations to be applied and
successful puzzle solvers can also be expected to be relevant
for serious applications.
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Abstract
Qualitative spatial calculi offer a method to de-
scribe spatial configurations in a framework based
on a finite set of relations that abstracts from the
underlying mathematical theory. But an open issue
is whether they can be employed in applications.
Further their cognitive adequacy is questionable or
not investigated at all. In this paper we investi-
gate the applicability of OPRA to navigation in
street networks that are described via local obser-
vations. Further we scrutinize whether a descrip-
tion of directions that is deemed cognitively ade-
quate and can be described in OPRA can perform
that task. We are using an environment that we de-
veloped ourselves for these experiments, the used
algorithms and the program itself are explained in
detail.

1 Introduction
Since the emergence of Allen’s interval algebra [Allen, 1983]
qualitative spatial and temporal reasoning has become an in-
teresting field in artificial intelligence research. A lot of the
tools used and later refined for reasoning tasks has already
been introduced by Allen, i.e. composition based reasoning.
A multitude of qualitative spatial and temporal calculi have
been defined dealing with different aspects of space and time.
In the field of spatial calculi, we can spot two big classes
of calculi, this is the ones dealing with topological aspects
of space like RCC [Randell et al., 1992] and others dealing
with directions either with a local or global reference frame.
OPRA is a calculus dealing with directions having a local
reference frame. It is based on oriented points, i.e. points in
the plane that have a position and an orientation. A feature of
the OPRA calculus is its adjustable granularity, in fact for
each m ∈ N with m ≥ 1 a version of the OPRA calculus
exists. The reference frame forOPRA2 is shown in Figure 1.
The position of the basic entity of the OPRA calculus, the
oriented point, is shown as the black dot in the middle and
its direction as the arrow. OPRA2 means that the plane is
divided into sectors by two intersecting lines with all angles
between adjacent lines being the same. The lines and their in-
tersection point divide the plane into one sector that is a point
(the intersection point itself) four sectors on the lines and four

Figure 1: OPRA2 reference frame

planar sectors. If we call the point in Figure 1 A and another
point B, we can determine in which sector B with respect to
A lies. With rising granularity the relations of the OPRA
calculus grow finer and finer and their number rises making
reasoning very time consuming.

Although there are many qualitative spatial calculi and
even more publication about them, only initial steps have
been made towards applicability of qualitative spatial calculi
to problems that arise in the real world. Moreover, for many
calculi it is known that algebraic closure only approximates
consistency, but it is not know if this approximation is “good
enough” for tasks at hand.

We investigate the applicability of the OPRA calculus
(with reasonable granularity) to navigation problems in a
street network. For this task, we only rely on knowledge that
a person can observe at the decision points, i.e. the crossings,
of a street network in a qualitative way. In Figure 2 such a
crossing is shown. The person driving in the car knows where

Figure 2: A crossing

she comes from and can observe that the street with the pub
is to the left, the one with the church is straight ahead and the
one with the school is to the right. But she cannot observe
where the airport at the other end of the city is with respect
to this. Further knowledge can be deduced from the observed
one, but that knowledge is only as good as is the reasoning
for the calculus at hand. The have to ask the question, if this
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knowledge is good enough. What helps us in this case is the
fact that we are navigating in a grid that is pre-defined by the
given street network. But there are still open questions, is
the “straight ahead” or “left” defined byOPRA the “straight
ahead” or “left” as perceived by humans.

As an overall scenario consider that a swarm of robots is
exploring an unknown street network (or interior of a build-
ing). The robots can make observations at any crossing with
respect to a qualitative calculus (in our case OPRA) and
they know what a street looks like, i.e. the connections be-
tween crossings. The robots can exchange and integrate the
data they obtained, but they cannot triangulate their positions.
When their work is done, a network of local observations is
obtained, but nothing is known so far about non-local con-
straints. In that this means that all these non-local constraints
are only restricted by the universal relations so far. So the
issue is the non-existence of non-local knowledge in our net-
work. It is desirable to refine those universal relations in a
way that all relations that cannot hold with respect to the al-
gebraic properties of the calculus at hand are thrown out. The
standard approach in qualitative spatial reasoning is applying
algebraic closure on the network. This approach is basically
just an approximation, but this approximation might be good
enough.

Research on “wayfinding choremes” by A. Klippel et al.
[Klippel and Montello, 2007; Klippel et al., 2005] claims a
cognitively adequate representation of directions on decision
points, i.e. crossings in our street networks. Basically there
are 7 choremes that describe turning situations at crossings
as depicted in Figure 3. These choremes are ignorant of the

Figure 3: The seven wayfinding choremes

situation of “going back”, which is formalized in OPRA.
Furthermore, for our navigation task the situation of running
into a dead end can always appear and we need the possibility
of turning around and leaving that dead end. The derivation
of these choremes in based upon a sectorization of a circle
as shown in Figure 4. With these sectors we would have

Figure 4: Sectors of a circle for wayfinding choremes

the choice of directions from l, r, f , b in Figure 2, sharp
or half turns do not occur there. This sectorization clearly
has a “back” sector and is quite close to the definition of the
OPRA relations. The main difference is the lack of rela-
tions on a line. The size of the sectors in Figure 4 is only ap-
proximately described by Klippel. We are going to simulate
these sectorization byOPRA relations of adequate granular-
ity. Where the choice of granularity is a tradeoff between the
minimum size of sectors and reasoning efficiency. We will
use these Klippel’s sectors encoded in OPRA to navigate
our street network and examine its impact on the reasoning
qualities.

We apply our techniques for techniques for deriving ob-
servations in OPRA and in the representation of Klippel’s
sectors in OPRA to test data to gain knowledge their fitness
for navigation tasks in street networks. Since we believe that
the best test data for street networks are the real ones, we use
descriptions of street networks compiled out of maps from
OpenStreetMap1.

2 The OPRA calculus
The basic entity of the OPRA calculus are oriented points,
these are points that have a position given by coordinates and
an orientation. This orientation can be given as an angle with
respect to an axis. A configuration of oriented points is shown
in Figure 5.

Definition 1 (Oriented Point). An oriented point is a tuple
〈p, ϕ〉, where p is a coordinate in R2 and ϕ an angle to an
axis.

We also can describe an oriented point as a tuple of points
〈p0, pi〉 being located at p0 and pointing to p1. hence the
direction is given by the vector from p0 to p1. From this de-
scription, we can compute the angle ϕ to the axis easily. By
disregarding the lengths of the vectors, we arrive at Defini-
tion 1. The OPRA calculus defines relations between such

Figure 5: Oriented points

pairs of oriented points. These relations are of adjustable
granularity, where this granularity is denoted by the index
m of OPRAm. For the introduction of relations the plane
around each oriented point is sectioned by m lines with one
of them having the same orientation ϕ as the oriented point.
The angles between all lines have to be equal. The sectors are
numbered from 0 to 4m − 1 counterclockwise. The label 0
is assigned to the direction with the same orientation as the
oriented point itself. Such a sectioning is shown in Figure 6
this is in fact Figure 5 with the sectioning introduced. In fact,
we introduce a set of angles

⋃

0≤i<2m

{[
i
π

m

]
,
[
i
π

m
, (i+ 1)

π

m

]}

1http://www.openstreetmap.org/
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Figure 6: Oriented points with sectors

to partition the plane into the described sections. To introduce
OPRA relations between two oriented points o and q, we
need to distinguish between the two cases, if pr1(o) = pr1(q)
or not, where pr1 is the projection to the first component of a
tuple. I.e. we need to distinguish if both points have the same
position in the plane.

A good auxiliary construction to introduce OPRAm rela-
tions are half relations.
Definition 2. For two oriented points o and q we call o B q
the half relation from o to q.

If we want to annotate a sector i or granularity m to a half
relation, we shall write om Bi q. A half relation determines
the number i of the sector around owhere q lies in if pr1(o) 6=
pr1(q) and the sector around o into q points into, if pr1(o) =
pr1(q). E.g. in Figure 6 the oriented points B lies in sector
13 of A and we obtain the half relation A4 B13 B. And for A
with respect to B we get B4 B3 A.

First we consider the case of pr1(o) 6= pr1(q). We then get
the OPRAm relation from o to q as the product of om Bi q

and om Bj q, we will write this as om∠j
i . And for pr1(o) =

pr1(q), we get theOPRAm relations as the product of o s q
and om Bj q written as om∠j

sq, where s is a special symbol
describing the coincidence of the position of points.

The composition and converse tables for OPRA need to
be calculated for any granularity of this calculus, fortunately
there is a quite efficient algorithm for this task [Mossakowski
and Moratz, to appear].

3 Factorizing the OPRA to cognitive
adequacy

Investigations of Alexander Klippel et al. [Klippel et al.,
2005] investigated sector models as shown in Figure 7 for

Figure 7: Klippel’s relations

navigation tasks and claim their cognitive adequacy. They
are using eight sectors

f front
hl half left
l left
sl sharp left
b back
sr sharp right
r right
hr half right

for their model. Nothing is said about the treatment of the
borders of the sectors, i.e. about which sector the separating
line belongs to, if it belongs to any. This question needs to be
solved for simulating such a sectioning by a qualitative spatial
calculus.

We are encoding Klippel’s approach into OPRA8 (see
Figure 8) and OPRA16 to be able to define f , b, l and r

Figure 8: OPRA8

sectors that are suitably small and to get constraint network
sizes that still can be handled by algebraic reasoners. The rea-
soner GQR [Gantner et al., 2008] already needs 14GB of mem-
ory to start up with the OPRA16 composition table, with-
out precaching the composition table for all general relations.
For having suitably small sectors, we unite the OPRAm

(m ∈ 2n and n > 2) sectors via a mapping d as following.
f 7→ {0, 1, 2, 4m− 1, 4m− 2}
l 7→ {m− 2,m− 1,m,m+ 1,m+ 2}
b 7→ {2m− 2, 2m− 1, 2m, 2m+ 1, 2m+ 2}
r 7→ {3m− 2, 3m− 1, 3m, 3m+ 1, 3m+ 2}

The Klippel sectors hl, sl, sr and hr are formed by the re-
maining OPRA sectors. For n = 2 the sectors would over-
lap with this approach. We decided to add the border lines of
f , b l and r to the respective relations, since this still yields
sectors for these relations for m 7→ ∞ for OPRAm. With
this we would recover OPRA2 from Klippel’s approach for
m 7→ ∞. To apply this sectioning to OPRAm, for all sets
d1, d2 ∈ d(K) apply d1 × d2 where K are Klippel’s sectors,
and add the sets {s} × d1 we call these sets D. From these
sets of sectors we can easily define predicates p1 . . . p8 that
are true if and only if a certain OPRAm relation belongs to
such a set lifted to OPRAm.
Example 3. We want to encode Klippel’s sectioning into the
sectioning of OPRA8, which has the half relations 0 . . . 31.
With the above definitions we obtain the mapping

f 7→ {30, 31, 0, 1, 2}
hl 7→ {3, 4, 5}
l 7→ {6, 7, 8, 9, 10}
sl 7→ {11, 12, 13}
b 7→ {14, 15, 16, 17, 18}
sr 7→ {19, 20, 21}
r 7→ {22, 23, 24, 25, 26}
hr 7→ {27, 28, 29}

This mapping of Klippel’s sectors to the sectors of OPRA8

is shown in Figure 9. Please note that the OPRA8 emula-
tions of f , l, b and r are still quite big sectors with 22.5◦.
Another drawback is that all sectors are the same size.
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Figure 9: Mapping Klippel to OPRA

Example 4. We can get smaller sectors by encoding Klip-
pel’s sectors into the sectors for OPRA16 as

f 7→ {62, 63, 0, 1, 2}
hl 7→ {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}
l 7→ {14, 15, 16, 17, 18}
sl 7→ {19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29}
b 7→ {30, 31, 32, 33, 34}
sr 7→ {35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45}
r 7→ {46, 47, 48, 49, 50}
hr 7→ {51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61}

The sectors for f , l,b and r now have a size of 10.25◦ and
the remaining sectors are bigger than them, what is closer to
Klippel’s intention. The issue with working withOPRA16 is
already the sheer size of the composition table with 41602 en-
tries and the long descriptions of constraint networks in 4160
base relations.

In the end we have a trade-off between staying close to
Klippel’s intentions, which can be done by a high arity
OPRA calculus and the possibility to perform reasoning
over constraint networks. But for our task of navigation the
reasoning results to not have to be perfect, they just need to be
good enough. Hence, we hope that on constraint networks of
reasonable size OPRA8 and OPRA16 do the job. It would
also be nice to have high arity OPRA calculi for having the
possibility of being able to compare the impact of the size of
f , l b and r in more detail.

4 From observations to a constraint network
As stated it is our aim to investigate navigation based on lo-
cal observations using the OPRA calculus. A good source
for realistic data about street networks is the world itself.
We are using street networks that have been retrieved from
OpenStreetMap2, make local observations on them and for-
malize these observations in OPRA. We simplify the Open-
StreetMap data in the sense that we abstract from bends in
streets. Our streets are just straight lines. With algebraic rea-
soning global knowledge can be deduced from local observa-
tions. For algebraic reasoning we use the tools GQR [Gantner
et al., 2008] and SparQ [Wallgrün et al., 2006, 2009]. Us-
ing this overall knowledge, we navigate through the described
street network.

2http://www.openstreetmap.org/

In the rest of this section we are using the street network
in Figure 10 as the source for our examples. In our street

Figure 10: A street network

networks, we label crossings by Ci with i ∈ N. Please note
that our definition of crossings at this point includes dead-
ends. In our example these are the dots. The lines depict
streets between crossings. We call crossings Ci and Cj with
i 6= j that are connected by a street adjacent.

4.1 Local Observations
It is our aim to navigate with knowledge that people can make
at crossings. When walking to a crossing, you know where
you came from and hence your orientation. Further you can
see which orientation the other streets at the crossing have
with respect to your orientation. And of course you know
that streets are streets with a crossing at both ends. You do
not know what the situation at any other crossing looks like.
This is an abstraction from very short streets.

In the first step of the formalization of our local observa-
tions we need to derive oriented points from a given street
network. For any point Ci in the network determine the set
A of adjacent oriented points. For any C ∈ A introduce the
oriented point 〈Ci, C〉. For the sake of brevity, we will also
write CiC for such a tuple. As described in Section 2 this
representation of an oriented point still contains unnecessary
information about the length of the vector from Ci to C, but
this does no harm.
Example 5. Consider the network given in Figure 10
and the point C6. The set of adjacent points to C6 is
{C0, C5, C12}, we hence introduce the set of oriented points
{〈C6, C0〉, 〈C6, C5〉, 〈C6, C12〉} or written in the short form
{C6C0, C6C5, C6C12}.

In the second step, we define the streets. For each oriented
point CiCj , we define the street via the OPRAm relation
CiCj m∠0

0 CjCi. The oriented point CjCi exists, since the
streets in our network are not directed and hence if Cj is ad-
jacent to Ci then Ci is adjacent to Cj .
Example 6. For a street in shown in Figure 11. This is the

Figure 11: A street

street between the points C6 and C0, hence we have intro-
duced the oriented points C6C0 and C0C6 in the previous
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step (see Example 5) at the respective locations to point to
each other. So we introduce the relation C6C0 m∠0

0 C0C6.
In the third step, we add the local observations. For each

oriented point CiCj form the set P of oriented points with
for each p ∈ P the properties pr1(p) = Ci and pr2(p) 6=
Cj hold. Where pr1 is the projection to the first component
of a tuple and pr2 to the second one. For each p ∈ P , we
form the OPRAm relation CiCj m∠CiCjBp

s p. Since Ci =
pr1(p), the first half-relation is clearly s, the computation of
the second one will be explained in section Section 4.2.
Example 7. We again refer to Figure 10 and the oriented
points introduced in Example 5. Consider the oriented point
C6C0. For this point we get P = {C6C5, C6C12} and the
relations

C6C0 m∠C6C0BC6C5
s C6C5

C6C0 m∠C6C0BC6C12
s C6C12

In Algorithm 1 we show a slightly optimized version of the
described algorithm where steps two and three are amalga-
mated.

Algorithm 1 Deriving Observations

1: C is the set of nodes of a street network
2: S the set of streets as tuples of start and end points
3: O is the set of oriented points
4: R is the set of relations
5: m is the granularity of the OPRA calculus

Require: O = ∅ and R = ∅ and m > 0
6: Require a correct description of a street network

Require: ∀C ∈ C.∃s ∈ S.C = pr1(s) ∨ C = pr2(s)
Require: ∀s ∈ S.∃C1 ∈ C.∃C2 ∈ C.s = 〈C1, C2〉 ∧ C1 6=

C2

7: Introduction of oriented points
8: for all C ∈ C do
9: for all s ∈ S do

10: if pr1(s) = C then
11: O := O ∪ {〈C,pr2(s)〉}
12: end if
13: end for
14: end for
15: Definition of streets and local observations
16: for all o ∈ O do
17: R := R ∪

{
om∠0

0〈pr2(o),pr1(o)〉
}

18: for all p ∈ O do
19: if pr1(o) = pr1(p) and pr2(o) 6= pr2(p) then
20: R := R ∪ {om∠oBp

s p}
21: end if
22: end for
23: end for
24: return R

If we are working with an approach as suggested by Klip-
pel, we add another step that replaces the OPRA-relations
by sets of relations as described in Section 4.3.

4.2 Deriving OPRA-relations
For our observations taken in Section 4.1, we need a way to
derive OPRA-relations from tuples of points (or line seg-

ments). In particular we need is computation in Algorithm 1
Line 20, where oB p was not determined so far.

By scrutinizing the definitions of the OPRAm relations,
we see that for any CkCl m∠j

i CtCv , there is little depen-
dence between the i and j. In fact, the only dependence is
on i being s or not. We can distinguish these cases easily by
determining if Ck = Ct or not. If Ck = Ct, we know that
i = s and can determine j as a half relation. If Ck 6= Ct,
there is no dependence between i and j and we can deter-
mine both via half relations. We can apply Algorithm 2 to de-
termine OPRA-relations between two oriented points CkCl

and CtCv . The main issue that is still open is the derivation

Algorithm 2 Computing OPRA-relations

1: CkCl oriented point
2: CtCv oriented point
3: m granularity of OPRA

Require: m > 0
4: if Ck = Ct then
5: return m∠CkClBCtCv

s
6: else
7: return m∠CtCvBCkCl

CkClBCtCv

8: end if

of the half relations. In fact the needed calculation for the
OPRA relations in Algorithm 1 can be reduced to this step
(refer to Algorithm 1 Line 20). All other information in the
involved OPRA relations can already be derived directly in
that algorithm.

To determine theOPRAm half relations between oriented
points CkCl and CtCv , we determine sectors of the unit cir-
cle3 in the Euclidean plane that correspond to those relations.
Then, we compute the angle from CkCl to CtCv and de-
termine into which sector this angle belongs. This directly
yields the half relation. In Figure 12 these sectors are shown
for OPRA1 to OPRA4. By inspecting the definition of

(a) (b) (c) (d)

Figure 12: Sectors of the circle for OPRA1 (a), OPRA2

(b), OPRA3 (c), and OPRA4 (d)

OPRA relations, we also see that half relations with an even
identifier are relations on a line, while the ones with an odd
identifier are relations in a plane. For an example inspect Fig-
ure 12.

The sectioning for OPRAm is done by identifying an an-
gle interval with every element of the cyclic group Z4m as

[i]m =

{ ]
2π i−1

4m , 2π i+1
4m

[
if i is odd{

2π i
4m

}
if i is even

3In fact the radius of the circle does not matter, since we are
disregarding lengths.
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Please note that these intervals are normalized to the repre-
sentation of angles in the interval [0, 2π[. For an implemen-
tation one can create a look-up-table with the borders of the
respective intervals and the respective values for i.

To compute the needed angle from CkCl and CtCv , we
form the vectors

~a =

(
(Ck)x − (Cl)x
(Ck)y − (Cl)y

)
~b =

(
(Ck)x − (Ct)x
(Ck)y − (Ct)y

)

if Ck 6= Ct and

~a =

(
(Ck)x − (Cl)x
(Ck)y − (Cl)y

)
~b =

(
(Ct)x − (Cv)x
(Ct)y − (Cv)y

)

if Ck = Ct. The operations (_)x and (_)y denote the projec-
tions to the x and y coordinate of a point. The case distinction
takes credit to the fact that in the case of positional equality
of oriented points the angle between the orientations is used
as an OPRA half relation. We determine the angle φ′ from
~a to ~b, we use the atan2 function which yields values in the
interval ]−π, π] as:

φ′ = atan2(~ax~by − ~ay~bx,~ax~bx + ~ay~by)

we normalize our angles to the interval [0, 2π[ by

φ =

{
φ′ + 2π if φ′ < 0
φ′ if φ′ ≥ 0

to get an angle that φ that is compatible to the intervals in
our definition of [i]m. To determine the half relation for φ,
we just need look up the appropriate interval that has been
pre-calculated.

4.3 Factorizing the OPRA-relations to cognitive
adequacy

Additionally to investigating navigation with OPRA rela-
tions, we also want to emulate relations as proposed by Klip-
pel [Klippel et al., 2005] inOPRAm. For this reason, we use
n unary predicates pi with 1 ≤ i ≤ n that partition the set of
the OPRAm base relations. If an OPRAm relation om∠t

sq
has been determined between o and q with Algorithm 2, we
form the new relation relations

o
{
r | pi(r) = pi(m∠t

s) for 1 ≤ i ≤ n
}
q

where r is an OPRAm relation. We do this for all pairs
of oriented points that haven been introduced in Section 4.2.
All other pairs are in the universal relation anyways. For this
factorization adjacent sectors will be united to a single rela-
tion, but the operation involved works for all kinds of pred-
icates, even tough the usefulness might be questionable in
many cases.

5 Navigation
Having obtained a description of a street network as an
OPRA constraint network, we are able to apply algebraic
closure on them to obtain refined constraint networks. Since
we are starting from consistent descriptions, we do not have
to fear that algebraic closure detects inconsistencies. In fact,
in the descriptions from Section 4.2 and Section 4.3 many

Algorithm 3 Factorization (to Klippel’s description)

1: R set of determined OPRAm relations
2: pi with 1 ≤ i ≤ n set of predicates
3: R′ set of output relations

Require: R′ = ∅
4: for all om∠t

sq ∈ R do
5: Rtmp = ∅
6: for all m∠y

x ∈ OPRAm do
7: prop = true
8: for 1 ≤ i ≤ n do
9: prop := prop ∧ pi(m∠t

s) = pi(m∠y
x)

10: end for
11: if prop then
12: Rtmp := Rtmp ∪ {m∠y

x}
13: end if
14: end for
15: R′ := R′ ∪ {oRtmpq}
16: end for
17: return R′

universal relations are contained, since we only made local
observations. E.g. the relation between C13C9 and C6C5

is universal, since these oriented points cannot be observed
together locally at a crossing. Algebraic closure only approx-
imates consistency for OPRA, hence our refined constraint
networks might be too big, but this is no issue for our naviga-
tion task, it might just lead to detours.

Starting from a refined constraint network of a street net-
work, we want to navigate through it (hopefully without tak-
ing too many detours). We are going to apply a least angle
strategy for navigation with imprecise and maybe faulty data.
We can base the navigation on half relations. Just remember
the definition of OPRA relations. If CkCl m∠j

i CtCv , then
CtCv is in sector i of CkCl with granularity m. The way
backwards is of no interest for forward navigation. Based on
this we introduce weights on half OPRA relations. Going
forward and taking slight bends is normally good for such a
navigation, taking sharp bends and going back is bad. We can
assign the weights w(i) to OPRAm half relations i as

w(i) =

{
i if 0 ≤ i ≤ 2m
4m− i if 2m < i < 4m

this yields a weight distribution that assigns the lowest
weights to going forward and making slight bends.
Example 8. Consider again the sectors for OPRA4 in Fig-
ure 12d. Applying weights with respect to our formula yields
the distribution

w(0) = 0 w(5) = w(11) = 5
w(1) = w(15) = 1 w(6) = w(10) = 6
w(2) = w(14) = 2 w(7) = w(9) = 7
w(3) = w(13) = 3 w(8) = 8
w(4) = w(12) = 4

which is depicted in Figure 13. We can observe that going
forward or taking slight bends has small weights whereas go-
ing backwards and taking sharp bends leads to high weights.

In the navigation task, we start at a point from and want
to reach a point to. The current point is start initialized
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Figure 13: OPRA4 weight distribution

by from . These are point that represent crossings in the
street scenario, not oriented points. We determine the set
of all OPRA relations om∠j

ip with pr1(o) = start and
pr1(p) = to. We then form the half relations oB to as

oB to =
∑

pr1(p)=to

{
om Bi to | om∠j

ip
}

We then normalize the weights as

w =

∑
i=oBto

w(i)

|oB to| · penalty

where penalty is a property of pr2(o) that is initialized with
1 and incremented by 1 each time pr2(o) is visited on a path.
This is introduced to make loops bad ways to go and to get
out of dead ends. We now take all o with the minimum w, if
there is more than one, we choose by fortune. pr2(o) becomes
our new point start and its penalty is increased since it is
visited. We repeat this, until to is reached. The algorithm for
navigation is shown in Line 4.

Algorithm 4 Navigation

1: from start point
2: to end point
3: start = from
4: ROUTE := start
5: while start 6= to do
6: R := ∅
7: W := ∅
8: for all p with pr1(p) = to do
9: for all o with pr1(o) = start do

10: if R contains a relation oB p then
11: R := (R \ oB p) ] o(B ] omBi)p if om∠j

ip
12: else
13: R := R ] om Bi p if om∠j

ip
14: end if
15: end for
16: end for
17: for all r ∈ R do
18: W :=W ∪ (r,weight(r))
19: end for
20: cand := r ∈ R with w(r) = min
21: next := random element from cand
22: increase pr2(next).penalty
23: start := pr2(next)
24: ROUTE := ROUTE ◦ start
25: end while
26: return ROUTE

The assignment of weights is shown in Algorithm 5. Please
note that we have used disjoint unions of the half relation

symbols in Line 4, since those lead to better navigation results
in our first experiments, even for low granularities.

Algorithm 5 Weight assignment: weight

1: oB p is given
2: W := 0
3: for all r ∈ B do
4: if 0 ≤ r ≤ 2m then
5: W :=W + r
6: else
7: W :=W + 4m− r
8: end if
9: end for

10: W := W
|B| · pr2(o).penalty

11: return W

6 Experiments
Finding good data for experiments with navigation based on
local observations is a hard task. A big issue is that the max-
imal size of a street network that we can use for navigation
is limited by the number of nodes and by the granularity of
the underlying OPRA calculus. The time needed for apply-
ing the algebraic closure algorithm rises steeply with any of
these two parameters growing. As a rule of thumb we can say
that we can e.g. handle street networks with around 120 to
170 points with OPRA8 in a reasonable time (2 to 4 hours)
when computing algebraic closure with GQR. (However, note
that this has to be computed only once, and can then be used
for as many navigation tasks as wanted.) On the other hand a
network in 170 points in our representation (the reduction of
data is described in Figure 4) does not cover big areas in most
cases. For example the network shown in Figure 14 that de-
rived from the data on OpenStreetMap (latitude 51.8241200
longitude 9.3117500) for a village with about 1400 inhabi-
tants already has 117 points. Large cities like Paris of course
have many more points in our representation and cannot be
handled efficiently with the algebraic reasoners. But on the

Figure 14: A street network of a village
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other hand, we want to observe navigations along paths of
very differing lengths, including very long paths to be able to
judge the navigation properties of our networks based on lo-
cal observations under very differing circumstances. For long
paths networks of a sufficiently big size are needed. Unfor-
tunately this problem grows even bigger by the fact that the
closer we get to boundary of our street network the worse our
local observations and refinements will be. For a point in the
middle of a street network (as in the inner circle in Figure 14
there are many points around it in all directions with observa-
tions being made, putting this point into its place in a qualita-
tive sense. In the middle circle the observations around a cer-
tain point already get sparser and information about the points
gets less certain, this gets worse in the outer circle. Outside
of the outer circle information about the points is very bad.
In fact, it turned out, that navigating into the dead ends at the
boundary of the map is very alluring, since their position with
respect to other points is not very restricted. For meaning-
ful experiments about the navigation performance, the need
street networks that are big enough to provide an area in the
center for which enough information can be derived.

Our test data has hence to consist of street networks that
are small enough to be manageable with qualitative reasoners
and that are big enough to yield enough information. For the
first requirement networks in no more than 20 points would
be nice, for the second one the whole world, since then there
would be no boundary problem.

The results of our experiments are available at
http://www.informatik.uni-bremen.de/
~till/fuerstenau_K8.html (for Klippel8) and
http://www.informatik.uni-bremen.de/
~till/fuerstenau_O8.html (for OPRA8). We
have made 66 navigation experiments. The average path
length was 16.0 (using OPRA8 factorized due to Klippel’s
sectorization of the circle) and 16.2 (using OPRA8) with
our algorithm based on local observations, while that of
a shortest path (using the complete map) was 13.2, and
that of a uniform shortest path (counting all way lengths
as 1) was 11.0. The average length of a random walk
was 718.0. As expected, the standard deviation of our
algorithm is significantly higher than that of shortest paths:

Klippel8 OPRA8 shortest
path

uniform
shortest
path

random
walk

mean 16.0 16.2 13.2 11.0 718.0
standard
deviation

9.3 9.3 5.1 3.5 519.9

However, our algorithm still performs quite well when
compared with shortest paths.

Conclusion
Our experiments show that navigation based on local obser-
vations of an agent performs fairly well when compared with
shortest paths computed using global map knowledge, and
orders of magnitude better than randowm walk.

When making the experiments, we quickly reached the
limits of the standard qualitative spatial reasoning tools. The

constraint networks generated by our algorithms thus could
been seen as a challenge for (further) improving performace
of these tools.

Further experiments should be done with different test
data. Particularly interesting would be street networks of di-
verse style. It is e.g. interesting to use layouts of planned and
grown cities and villages. Further gyratory traffics (e.g. at
Place-Charles-de-Gaulle) of increased interest. With a larger
set of experiments, the approach could be used to systemati-
cally evaluate street networks with respect to their local nav-
igation quality, and study which features of street networks
influence this quality.
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Abstract

Linked geospatial data has recently received atten-
tion, as researchers and practitioners have started
tapping the wealth of geospatial information avail-
able on the Web. We discuss some core research
problems that arise when querying linked geospa-
tial data, and explain why these are relevant for the
qualitative spatial reasoning community. The prob-
lems are presented in the context of our recent work
on the models stRDF and stSPARQL and their ex-
tensions with indefinite geospatial information.

1 Introduction
Linked data is a new research area which studies how one can
make RDF data available on the Web, and interconnect it with
other data with the aim of increasing its value for everybody
[Bizer et al., 2009]. The resulting “Web of data” has recently
started being populated with geospatial data. A representa-
tive example of such efforts is LinkedGeoData1 where Open-
StreetMap data are made available as RDF and queried using
the declarative query language SPARQL [Auer et al., 2009].
With the recent emphasis on open government data, some of
it encoded already in RDF2, portals such as LinkedGeoData
demonstrate that the development of useful Web applications
might be just a few SPARQL queries away.

We have recently developed stSPARQL, an extension of
the query language SPARQL for querying linked geospa-
tial data [Koubarakis and Kyzirakos, 2010]3. stSPARQL has
been fully implemented and it is currently being used to query

1http://linkedgeodata.org/
2http://data.gov.uk/linked-data/
3The paper [Koubarakis and Kyzirakos, 2010] presents the lan-

guage stSPARQL that also enables the querying of valid times of
triples. Here, we omit time and discuss only the geospatial subset of
stSPARQL.

linked data describing sensors in the context of project Sem-
sorGrid4Env4 [Kyzirakos et al., 2010] and linked earth obser-
vation (EO) data in the context of project TELEIOS5.

In the context of TELEIOS we are developing a Virtual Ob-
servatory infrastructure for EO data. One of the applications
of TELEIOS is fire monitoring and management led by the
National Observatory of Athens (NOA). This application fo-
cuses on the development of techniques for real time hotspot
and active fire front detection, and burnt area mapping. Tech-
nological solutions to both of these cases require the integra-
tion of multiple, heterogeneous data sources, some of them
available on the Web, with data of varying quality and vary-
ing temporal and spatial scales.

In this paper we show how well-known approaches to qual-
itative spatial representation and reasoning [Renz and Nebel,
2007] can be used to represent and query linked geospatial
data using RDF and stSPARQL. Thus, we propose linked
geospatial data as an interesting application area of qualita-
tive spatial reasoning techniques, and discuss open problems
that might be of interest to the qualitative spatial reasoning
community. In particular, we address the problem of repre-
senting and querying indefinite geospatial information, and
discuss the approach we adopt in TELEIOS.

The organization of the paper is as follows. Section 2 in-
troduces the kinds of linked geospatial data that we need to
represent in the NOA application of TELEIOS, shows how to
represent it in stRDF, and presents some typical stSPARQL
queries. Then, Section 3 shows how the introduction of qual-
itative spatial information in the stRDF data model enables
us to deal with the NOA application more accurately. The
same section introduces the new model stRDFi which al-
lows qualitative spatial information to be expressed in RDF
and gives examples of interesting queries in the new model.
In Section 4 we proceed to discuss some open problems in
the stRDFi framework that require new contributions by the

4http://www.semsorgrid4env.eu/
5http://www.earthobservatory.eu/
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qualitative spatial reasoning community. Finally, in Section 5
we discuss related work and in Section 6 we draw conclu-
sions.

The paper is mostly informal and uses examples from the
NOA application of TELEIOS. Even in the places where the
paper becomes formal, we do not give any detailed tech-
nical results for which the interested reader is directed to
[Koubarakis et al., 2011].

2 Linked geospatial data in the NOA
application

The NOA application of TELEIOS concentrates on the devel-
opment of solutions for real time hotspot and active fire front
detection, and burnt area mapping. Technological solutions
to both of these cases require integration of multiple, hetero-
geneous data sources with data of varying quality and vary-
ing temporal and spatial scales. Some of the data sources are
streams (e.g., streams of EO images) while others are static
geo-information layers (e.g., land use/land cover maps) pro-
viding additional evidence on the underlying characteristics
of the affected area.

2.1 Datasets
The following datasets are available in the NOA application:

• Hotspot maps. NOA operates a MSG/SEVIRI6 acqui-
sition station and receives raw satellite images every 15
minutes. These images are processed with image pro-
cessing algorithms to detect the existence of hotspots.
The information related to hotspots is stored in ESRI
shapefiles and KML files. These files hold informa-
tion about the date and time of image acquisition, carto-
graphic X, Y coordinates of detected fire locations, the
level of reliability in the observations, the fire radiative
power assessed, and the observed fire area. NOA re-
ceives similar hotspot shapefiles covering the geograph-
ical area of Greece from the European project SAFER
(Services and Applications for Emergency Response).

• Burnt area maps. From project SAFER, NOA also
receives ready-to-use accumulated burnt area mapping
products in polygon format, projected to the EGSA87
reference system7. These products are derived daily us-
ing the MODIS satellite and cover the entire Greek ter-
ritory. The data formats are ESRI shapefiles and KML
files with information relating to date and time of image
acquisition, and the mapped fire area.

• Corine Land Cover data. The Corine Land Cover
project is an activity of the European Environment
Agency which is collecting data regarding land cover
(e.g., farmland, forest) of European countries. The
Corine Land Cover nomenclature uses a hierarchical
scheme with three levels to describe land cover:

6MSG refers to Meteosat Second Generation satellites, and SE-
VIRI is the instrument which is responsible for taking infrared im-
ages of the earth.

7EGSA87 is a 2-dimensional projected coordinate reference sys-
tem that describes the area of Greece.

Figure 1: An example of hotspots and burnt area mapping
products in the region of Attiki, Greece

– The first level consists of five items and indicates
the major categories of land cover on the planet,
e.g., forests and semi-natural areas.

– The second level consists of fifteen items and
is intended for use on scales of 1:500,000 and
1:1,000,000 identifying more specific types of land
cover, e.g., open spaces with little or no vegetation.

– The third level consists of forty-four items and is
intended for use on a scale of 1:100,000, narrow-
ing down the land use to a very specific geographic
characterization, e.g., burnt areas.

The land cover of Greece is available as an ESRI shape-
file that is based on the Corine Land Cover nomencla-
ture.

• Coastline geometry of Greece. An ESRI shapefile that
describes the geometry of the coastline of Greece is
available.

Figure 1 presents an example of hotspots and burnt area
mapping products, as viewed when layered together over a
map of Greece.

2.2 Using semantic web technology
An important challenge in the context of TELEIOS is to de-
velop advanced semantics-based querying of the available
datasets along with linked data available on the web. This
is a necessary step in order to unlock the full potential of the
available datasets, as their correlation with the abundance of
data available in the web can offer significant added value.
As an introduction to Semantic Web technology, we present a
simple example that shows how burnt area data is expressed
in the language stRDF, and then proceed to illustrate some
interesting queries using the language stSPARQL.

Similar to RDF, in stRDF we can express information using
triples of URIs, literals, and blank nodes in the form “subject
predicate object”. Figure 2 shows four stRDF triples that
encode information related to the burnt area that is identified
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ex:BurntArea_1 rdf:type noa:BurntArea.
ex:BurntArea_1 noa:hasID "1"ˆˆxsd:decimal.
ex:BurntArea_1 geo:geometry "POLYGON((

38.16 23.7, 38.18 23.7,
38.18 23.8, 38.16 23.8,
38.16 23.7));<http://spatialreference
.org/ref/epsg/4121/>"ˆˆstrdf:geometry.

ex:BurntArea_1 noa:hasArea
"23.7636"ˆˆxsd:double.

Figure 2: An example of a burnt area represented in stRDF

by the URI ex:BurntArea_1. The prefixes noa and ex
correspond to appropriate namespaces for the URIs that refer
to the NOA application and our running example, while xsd
and strdf correspond to the XML Schema namespace and
our stRDF namespace, respectively.

In stRDF the standard RDF model is extended with the
ability to represent geospatial data. In our latest version of
stRDF we opt for a practical solution that uses OGC stan-
dards to represent geospatial information. We introduce the
new data type strdf:geometry for modeling geometric
objects. The values of this datatype are typed literals that en-
code geometric objects using the OGC standard Well-known
Text (WKT) or Geographic Markup Language (GML). Liter-
als of this datatype are called spatial literals.

The third triple in Figure 2 shows the use of spatial lit-
erals to express the geometry of the burnt area in question.
This spatial literal specifies a polygon that has exactly one
exterior boundary and no holes. The exterior boundary is
serialized as a sequence of its vertices’ coordinates. These
coordinates are interpreted according to the GGRS87 geode-
tic coordinate reference system identified by the URI http:
//spatialreference.org/ref/epsg/4121/.

In the case of burnt area maps, these stRDF triples are
created by a procedure that processes the relevant shapefiles
and produces one stRDF triple for each property that refers
to a particular area. Although we are currently doing this
manually, in the future we plan to use automated tools as in
[Blázquez et al., 2010].

Figure 3 presents a query in stSPARQL that looks for all
the URIs of burnt areas that are located in Greece and cal-
culates their area. stSPARQL is an extension of SPARQL
in which variables may refer to spatial literals (e.g., variable
?BAGEO in ?BA geo:geometry ?BAGEO8). stSPARQL
provides functions that can be used in filter expressions to
express qualitative or quantitative spatial relations. For ex-
ample the function strdf:Contains is used in Figure 3
to encode the topological relation non-tangential proper part
inverse (NTPP−1) of RCC-8 [Cui et al., 1993].

In this query, linked data from DBpedia9 are used to iden-
tify those burnt areas that are located in Greece. DBpedia is
an RDF dataset consisting of the contents of Wikipedia that
allows you to link other data sets on the Web to Wikipedia

8We are assuming that DBpedia offers precise representations
of country geometries as values of the predicate geo:geometry.
This is not the case at the moment since these values are points cor-
responding to the bounds of a region located in the center of Greece.

9http://www.dbpedia.org/

select ?BA strdf:Area(?BA)
where {?BA rdf:type noa:BurntArea .

?BA geo:geometry ?BAGEO .
?C rdf:type noa:GeographicBound .
?C dbpedia:Country dbpedia:Greece .
?C geo:geometry ?CGEO .
filter(strdf:Contains(?CGEO,?BAGEO))}

Figure 3: An example of a query expressed in stSPARQL

select ?BA ?BAGEO
where {?R rdf:type noa:Region .

?R geo:geometry ?RGEO .
?R noa:hasCorineLandCoverUse ?F .
?F rdfs:subClassOf clc:Forests .
?CITY rdf:type dbpedia:City .
?CITY geo:geometry ?CGEO .
?BA rdf:type noa:BurntArea .
?BA geo:geometry ?BAGEO .
filter(strdf:Intersect(?RGEO,?BAGEO)&&

strdf:Distance(?BAGEO,?CGEO)<2)}

Figure 4: A more complex example of a query expressed in
stSPARQL

data. The result of this query is a list of URIs that may in-
clude ex:BurntArea_1 of Figure 2.

Figure 4 presents a more complex query in stSPARQL that
looks for all burnt areas that were classified as forests accord-
ing to the Corine Land Cover dataset. These areas must also
be located within 2km from a city. This query also uses linked
data from DBpedia to retrieve geospatial information about
cities.

3 Indefinite geospatial information in the
NOA use case

This section motivates our approach towards extending the
model stRDF with the ability to represent and query indefi-
nite qualitative spatial information. The new model is named
stRDFi where “i” stands for “indefinite”.

The infrared imager SEVIRI on board of the MSG satel-
lites has medium resolution, i.e., each image pixel represent-
ing a hotspot in the NOA shapefiles corresponds to a 3km
by 3km rectangle in geographic space. Thus, a precise rep-
resentation of the real world situation that corresponds to a
hotspot would be to state that there is a geographic region
with unknown exact coordinates where a fire is taking place,
and that region is included in a known 3km by 3km rect-
angle. This is captured by the following triples and con-
straints in stRDFi that introduce the hotspot, the fire cor-
responding to it and the region corresponding to the fire.
This region ( region1) is a new kind of literal, called an
unknown literal, which is asserted to be inside the polygon
defined by "POLYGON((24.81 35.32, 24.84 35.33,
24.84 35.30, 24.81 35.30, 24.81 35.32))".

noa:hotspot1 rdf:type noa:Hotspot .
noa:fire1 rdf:type noa:Fire .
noa:hotspot1 noa:correspondsTo noa:fire1 .
noa:fire1 noa:occuredIn _region1 .
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_region1 strdf:NTPP "POLYGON((24.81 35.32,
24.84 35.33, 24.84 35.30, 24.81 35.30,
24.81 35.32));<http://spatialreference.
org/ref/epsg/4121/>"ˆˆstrdf:geometry.

Unknown literals are like existentially quantified variables
in first-order logic. By convention, identifiers for unknown
literals in stRDFi always start with an underscore. In the
above example, strdf:NTPP is the non-tangential proper
part relation of RCC-8.

The NOA fire monitoring activities include validating
hotspots, i.e., making sure that they do not correspond to false
alarms due to the medium resolution of the images, or fires
that are not of interest since they do not take place in forested
areas. Part of the validation activities of NOA include col-
lecting information about forest fires reported in the Greek
Press. Therefore, when fire noa:fire1 is validated, NOA
may want to annotate the relevant hotspot, validated fire and
burnt area with information from news sources available on
the Web that have reported the corresponding fire. Assuming
that Greek newspapers will soon follow the example of New
York Times and use tags to annotate news articles, articles re-
porting fire events may be tagged with the name of the admin-
istrative area in which the fire occurred and the word “fire”.
Then, it is easy to retrieve the geographical coordinates of
the place mentioned in the tag and, using standard geometric
methods, decide whether the location of the hotspot is near
that place.

Alternatively, using techniques from Geographic Informa-
tion Retrieval and Natural Language Processing [Schockaert
et al., 2008; Hoffart et al., 2010] one could harvest qualita-
tive spatial information from the Web. As an example, in-
formation related to noa:fire1 obtained from a regional
Greek newspaper available on the Web might say that “there
was a fire north of the village of Zoniana in the Prefecture
of Rethymno, Crete”. In this case NOA might choose to pro-
duce an annotation which mixes the qualitative spatial infor-
mation discovered from the newspaper with information that
corresponds to the relevant administrative regions of Greece.
Of course, such techniques are not always accurate and ex-
tracted information has to be accompanied by a confidence
level [Hoffart et al., 2010].

The next triples introduce the burnt area corresponding to
noa:fire1 and some details related to the administrative
geography of Greece as defined by the recent “Kallikratis
Plan”10. Since there is already work in encoding the adminis-
trative geography of countries, e.g., the UK [Goodwin et al.,
2008], in terms of qualitative spatial constraints such as the
ones we used above, we expect that such annotations can be a
useful source of information for the NOA application. This is
stressed by the fact that currently much of this information is
or will become available as public open data in portals of the
relevant European governments (e.g., see the geodata portal
of the Government of Greece11).

noa:fire1 rdf:type noa:ValidatedFire .
noa:fire1 ex:hasBurntArea _region2 .

10http://en.wikipedia.org/wiki/
Administrative_divisions_of_Greece/

11http://geodata.gov.gr/

kal:Zoniana rdf:type kal:Community .
kal:Mylopotamos rdf:type kal:Municipality .
kal:Rethymno rdf:type kal:Prefecture .

kal:Zoniana kal:occupies _region3 .
kal:Mylopotamos kal:occupies _region4 .
kal:Rethymno kal:occupies _region5 .

kal:Zoniana kal:partOf kal:Mylopotamos .
kal:Mylopotamos kal:partOf kal:Rethymno .

_region3 strdf:NTPP _region4 .
_region4 strdf:NTPP _region5 .
_region1 strdf:northOf kal:Zoniana .
_region2 strdf:northOf kal:Zoniana .

In the following, we discuss how to evaluate stSPARQL
queries over the stRDFi data given in the beginning of this
section. Let us consider the following query: “Find all fires
that have occurred in a region which is a non-tangential
proper part of the polygon defined by "POLYGON((24.823
35.308, 24.827 35.308, 24.827 35.305, 24.823
35.305, 24.823 35.308))"”12. In stSPARQL, this
query can be expressed as shown in Figure 5. The answer
to that query is the one shown in Table 1. Notice, that
this answer is conditional. Because the information in the
database is indefinite (the exact geometry of region1 is
not known), we cannot say for sure whether fire1 satisfies
the requirements of the query. These requirements are
satisfied under the condition given in the answer.

select ?F
where { ?F rdf:type noa:Fire .

?F noa:occuredIn ?R .
filter (strdf:NTPP(?R, "POLYGON((24.823
35.308, 24.827 35.308, 24.827 35.305,
24.823 35.305, 24.823 35.308))"))}

Figure 5: An example of a query for the stRDFi model ex-
pressed in stSPARQL

Table 1: A conditional answer in stRDFi

?F Condition
noa:fire1 region1 strdf:NTPP

"POLYGON((24.823 35.308, 24.827
35.308, 24.827 35.305, 24.823
35.305, 24.823 35.308))"

Let us consider the query of Figure 5 again. If we
rephrase it to “Find fires that have certainly occurred
in a region which is a non-tangential proper part of
the polygon defined by "POLYGON((24.823 35.308,
24.827 35.308, 24.827 35.305, 24.823 35.305,
24.823 35.308))"”, fire1 does not satisfy the
query. To be able to express such queries over stRDFi

data, in [Koubarakis et al., 2011] we have extended
12Notice, that this second polygon is contained in the one men-

tioned previously.
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the semantics of query answering for stSPARQL given
in [Koubarakis and Kyzirakos, 2010] using well-known
techniques from the literature of incomplete informa-
tion in relational databases [Imielinski and Lipski, 1984;
Grahne, 1991] and constraint databases [Koubarakis, 1997].

4 Open Problems
In Sections 2 and 3 we used the NOA application of
TELEIOS as an example to demonstrate how linked geospa-
tial data sets that typically contain geometric objects spec-
ified by exact co-ordinates can be enriched with qualitative
spatial information to enable better knowledge representation
and more expressive query answering.

We expect that various kinds of qualitative spatial informa-
tion will soon become part of linked geospatial data sets with
advances in the automatic extraction of qualitative spatial re-
lations from textual Web sources [Schockaert et al., 2008],
images [Mylonas et al., 2009; Hudelot et al., 2008], etc., and
the creation of ontologies with a geospatial component such
as YAGO2 [Hoffart et al., 2010].

Let us now discuss a few open problems in the stRDFi

framework that require new contributions by the qualitative
spatial reasoning community:
• Checking the consistency of constraint networks that in-

volve qualitative spatial relations among regions identi-
fied by a URI and constant ones (e.g., a rectangle or a
polygon in the plane Q2 or in a Cartesian co-ordinate
system). This combination of qualitative and quantita-
tive constraints has been studied in detail for temporal
constraints [Koubarakis, 2006], but similar results do not
exist for spatial constraints.
• Checking the consistency of constraint networks that

involve qualitative and quantitative spatial relations
among planar regions that are constrained to have cer-
tain shapes (e.g., triangles, rectangles, polygons). The
case of rectangles has been studied in detail in the past
(e.g., see [Balbiani et al., 1999]) and there is some re-
cent work on topological relations among convex planar
regions [Li and Liu, 2010].
• Performing variable elimination in constraint networks

with qualitative and quantitative spatial constraints or,
equivalently, performing quantifier elimination in the as-
sociated first-order theory. As shown for the tempo-
ral case in [Koubarakis, 1997], variable elimination is
needed for answering certainty queries with answer vari-
ables (i.e., “What is the region that is on fire and is cer-
tainly inside a specific area?”). This cannot be done in
the general case even for topological relations [Bennet,
1997] but no detailed results beyond this are known.
• Scalable implementations of constraint network algo-

rithms for qualitative and quantitative spatial constraints.
RDF stores supporting linked geospatial data are ex-
pected to scale to billions of triples like their non-spatial
counterparts [Neumann and Weikum, 2008] and recent
work in this area is encouraging [Brodt et al., 2010].
Can this level of scalability be achieved when qualita-
tive spatial relations come into play? A good approach

here might to start with algorithms with low polynomial
complexity (even if they do not cover the general case)
and try to implement them as efficiently as possible. In
the temporal case, this approach has been followed suc-
cessfully by temporal reasoners such as TimeGraph-II
and extensions [Gerevini et al., 1994]. In addition, there
might be cases where network structure can be exploited
(e.g., hierarchical organization of geographical regions).

• There are no publicly available data sets, benchmarks
and related implementations. This workshop and the as-
sociated QSTR library is an excellent way to bring to-
gether the community and make progress in this area.
It is also important to liaise with similar efforts in the
Semantic Web community.

5 Related Work
Enriching linked data sources with geospatial information is
a recent activity. Two representative examples are [Auer et
al., 2009; de León et al., 2010]. In [Auer et al., 2009] Open-
StreetMap data are made available as RDF and queried using
the declarative query language SPARQL. Using similar tech-
nologies, [de León et al., 2010] makes available as linked
data various heterogeneous Spanish public datasets. In both
of these data sources qualitative spatial relations do not ap-
pear in the triples. YAGO2 [Hoffart et al., 2010] offers only
a part-of relation.

In addition to stSPARQL there have also been other works
developing spatial and temporal extensions for RDF and
SPARQL [Perry, 2008; Kolas, 2008]. There is also a forth-
coming OGC standard [OGC, 2010] for the development of
a query language for geospatial data encoded in RDF, called
GeoSPARQL.

In contrast to the above works, the area of description log-
ics has studied the representation and reasoning with quali-
tative spatial relations utilizing data models that are similar
to RDF. Racer was the first reasoner to support qualitative
spatial relations [Wessel and Moller, 2009]. More recently,
[Stocker and Sirin, 2009] has developed an extension of the
DL reasoner Pellet [Parsia and Sirin, 2004] that allows rea-
soning with RCC-8 relations. Finally, [Batsakis and Petrakis,
2010] proposes SOWL, an extension of OWL, to represent
spatial qualitative and quantitative information employing the
RCC-8 topological relations, cardinal direction relations, and
distance relations. To reason about spatial relations a set of
SWRL rules are implemented in the Pellet reasoner.

6 Conclusions
In this paper we proposed linked geospatial data on Semantic
Web as an interesting application area of qualitative spatial
reasoning techniques. In the context of our recent work on
the models stRDF and stSPARQL and their extensions with
indefinite geospatial information, we discussed some open
problems that may be of interest to the qualitative spatial rea-
soning community. As part of our future work we intend to
study the computational complexity of query processing for
the languages we have developed.
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Méditerranée.

ESIL - Case 925. Av de Luminy.
13288 Marseille Cedex 9 France.

serayet,drap,papini@esil.univmed.fr

3LSIS-CNRS 6168, Université du Sud
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This paper presents the results of the VENUS euro-
pean project aimed at providing scientific methodolo-
gies and technological tools for the virtual exploration
of deep water archaeological sites. We focused on un-
derwater archaeological 3D surveys validation problem.
This paper shows how the validation problem has been
tackled within the Removed Sets framework, accord-
ing to Removed Sets Fusion (RSF) and to the Par-
tially Preordered Removed Sets Inconsistency Handling
(PPRSIH). Both approaches have been implemented
thanks to ASP and the good behaviour of the Removed
Sets operations is presented through an experimental
study on two underwater archaeological sites.

1 Introduction

The VENUS European Project (Virtual ExploratioN of
Underwater Sites, IST-034924)1 aimed at providing sci-
entific methodologies and technological tools for the vir-
tual exploration of deep underwater archaeology sites.
In this context, digital photogrammetry is used for data
acquisition. The knowledge about the studied objects
is provided by both archaeology and photogrammetry.
One task of the project was to investigate how artifi-
cial intelligence tools could be used to perform reasoning
with underwater archaeological 3D surveys. More specif-
ically, this task focused on the validation problem of un-
derwater artefacts 3D surveys. Within this project two
different conceptual descriptions of the surveyed arte-
facts have been proposed leading to two different solu-
tions both developed within the Removed Sets frame-
work. This syntactic approach is more suitable than a
semantic one, in order to pinpoint the errors that cause
inconsistency. The present paper provides a synthesis of
these two solutions. The first solution stems from the
Entity Conceptual Model for modeling generic knowl-
edge and uses instantiated predicate logic as represen-
tation formalism and Removed Sets Fusion (RSF) with
Sum strategy for reasoning [9]. The second one is based
on an application ontology for modeling generic knowl-
edge and the belief base is represented in instantiated
predicate logic equipped with a partial preorder and Par-
tially Preordered Removed Sets Inconsistency Handling
(PPRSIH) for reasoning [17]. The paper is organized
as follows. After describing in Section 2 the validation

1http : //www.venus− project.eu

problem in the context of the VENUS project, Section 3
gives a brief synthetic presentation of the Removed Sets
framework. Section 4 shows how the validation problem
is expressed as a RSF problem while Section 5 shows that
how the validation problem can be reduced to a PPRSIH
problem. Finally, Section 6 discusses the results of the
experimental study before concluding.

2 The Validation problem in VENUS
In the context of the VENUS project, digital photogram-
metry is used for data acquisition. Usual commercial
photogrammetric tools only focus on geometric features
and do not deal with the knowledge concerning the sur-
veyed objects. The general goal is the integration of
knowledge about surveyed objects into the photogram-
metric tool ARPENTEUR [5] in order to provide more
“intelligent” 3D surveys. In this project, we investigated
how Artificial Intelligence tools can be used for repre-
senting and reasoning with 3D surveys information.

Within the context of underwater archaeological sur-
veys, we deal with information of different nature. Ar-
chaeologists provide expert knowledge about artefacts,
in most of the cases amphorae. Archaeological knowl-
edge takes the form of a characterization of amphorae
thanks to a typology hierarchically structured. For each
type corresponds a set of features or attributes which we
assign an interval representing the expected values for
an amphora of this type.

The data acquisition process provides measures com-
ing from the photogrammetric restitution of surveyed
amphorae pictures on the underwater site (see À in fig-
ure 1). These observations usually are uncertain, inac-
curate or imprecise since the pictures are taken in situ,
their quality could not be optimal, because of the hos-
tile environment: weather conditions, visibility, water
muddying, site not cleaned, . . . Moreover, errors could
occur during the restitution step. For all these rea-
sons, the archaeological knowledge (see Á in figure 1)
and the data coming from the photogrammetric acqui-
sition process could conflict. This special case of incon-
sistency handling is a validation problem because the
measured values of attributes of a surveyed amphora in
situ, an instance, may not fit with the characterization
of the amphorae type it is assumed to belong to. The
VENUS project does not use image recognition. The
generic knowledge is inserted in the system by the ex-
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perts. There is no automatic image recognition since
the experts recognise the objects in the image during
the measuring step thanks to their a priori knowledge.

Example 1 We illustrate the validation problem with
the Pianosa island site [12]. There are 8 types of am-
phorae: Dressel20, Beltran2B, Gauloise 3, . . . and each
type of amphorae is characterized by 9 attributes, total-
Height, totalWidth, totalLength, bellyDiameter, inter-
nalDiameter, . . . [14]. However, the only measurable
attributes are totalHeight, totalLength2. Default val-
ues for these attributes take the form of a range of val-
ues [v − v.t%, v + v.t%] centered around a typical value
v (expressed in m.) where t is a tolerance threshold.
For example, the default values for the attributes to-
talHeight and totalLength for the Dressel20 type are
[0.5328, 0.7992] and [0.368, 0.552], while for a Beltran2B
type they are [0.9008, 1.3512] and [0.3224, 0.4836]. Sup-
pose, during the photogrammetric restitution process, the
expert focuses on a given amphora, he recognizes as a
Beltran2B. When the survey provides the values 1.13
as totalHeight and 0.27 as totalLength, the question is
do these values fit with the characterization of the Bel-
tran2B? When the values do not fit, the most probable
reason is that the measures are incorrect due to bad con-
ditions of acquisition.

In order to provide a qualitative representation of this
validation problem, a conceptual description of archae-
ological knowledge is required (see Á in figure 1). Sev-
eral conceptual descriptions have been used within the
VENUS project. At the beginning of the project, we
used a object oriented conceptual description, restricted
form of the Entity Model approach [16]. The restricted
Entity Model is denoted by E = {C, Vd, CI} where C
is a concept (or a class), Vd is the set of default val-
ues for the attributes, CI is a set of constraints on at-
tributes. The concepts are the types of amphorae sur-
veyed on the archaeological site. For each concept, that
is each type of amphorae, we represent the measurable
attributes. The default values for these attributes take
the form of a range of values and Vd is a set of inter-
vals, each interval corresponding to the possible values
of attributes for a given type of amphorae. The set of
constraints on the attributes CI consists in integrity con-
traints, domain constraints and conditional constraints
which express the compatibility of the measured values
of attributes with the default values of attributes for
a given type. The belief profile consists of the generic
knowledge according to the restricted Entity Model pro-
vided by the typology.xml file and of the instances of
amphorae provided by the amphora.xml file.

During the project, we constructed an application on-
tology [13] from a domain ontology which describes the
vocabulary on the amphorae (the studied artefacts) and
from a task ontology describing the data acquisition pro-
cess. This ontology consists of a set of concepts, rela-
tions, attributes and constraints like domain constraints.
The belief base contains the application and ontology,

2For amphorae the attributes totalWidth and totalLength
have the same value since there are revolution objects.
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Figure 1: General scheme

constraints and observations. The ontology represents
the generic knowlegde which is preferred to observations.
Due to the lack of space, we only consider a small part
of the ontology (Figure 2).

3 The Removed Sets Framework

The Removed Sets framework provides a syntactic belief
change approach for revision and fusion. When deal-
ing with belief change operations since we deal with un-
certain, incomplete, dynamic information, inconsistency
can result. In order to provide a consistent result of
the change operation, the Removed Sets approach fo-
cuses on the minimal set of formulae to remove, called
Removed sets, in order to restore consistency. The Re-
moved Sets operations have been proved to be equivalent
to the ones based on maximal consistent subsets [15; 4;
1]. However, in the context of applications where few
inconsistencies may occur, the Removed Sets approach
seems to be more efficient when implementing large be-
lief bases.

Initially, the Removed Sets approach has been pro-
posed for revising propositional formulae in CNF (RSR
[11; 18]). It has then been generalized to arbitary propo-
sitional formulae for revision and fusion (RSF [9]). The
Removed Sets approach has been extended to totally
preordered belief bases (PRSR [2]), (PRSF [8]) and more
recently to partially preordered belief bases for revision
(PPRSR [17]). A central notion is the one of potential
Removed Set3 which are sets of formulas whose removal
restores consistency into the union of belief bases.

Definition 1 Let E = {K1, . . . ,Kn} be a belief pro-
file s.t. K1, . . . ,Kn are propositional belief bases and
K1 t . . . tKn is inconsistent (t denotes set union with
accounting for repetitions). X ⊆ K1 t . . . t Kn is a
potential Removed Set of E iff (K1 t . . . t Kn)\X is
consistent.

The collection of potential Removed Sets of E is de-
noted by PR(E). Since the number of potential Re-
moved Sets of E is exponential w.r.t. the number of

3We give the definitions in the general setting of fusion
where revision is a special case.
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formulae, we only consider the minimal potential Re-
moved Sets w.r.t. set inclusion. Moreover belief change
operations or strategies are formalized in terms of total
or partial preorders on potential Removed Sets minimal
w.r.t. set inclusion. This strategies can be sorted in two
families: majority operators (e.g. Card, Sum) which
follows the point of view of the majority of the belief
bases in E and egalitarist operators (e.g. Max,GMax)
which tries to satisfy best all the belief bases in E.

3.1 Removed Sets Fusion
For Removed Sets Fusion, the fusion strategies (Card,
Sum, Max, GMax)[9] are formalized thanks to a total
preorder over PR(E). Let X and Y be two potential
Removed Sets, for each strategy P a total preorder ≤P

over the potential Removed Sets is defined. X ≤P Y
means that X is preferred to Y according to the strategy
P . We define <P as the strict total preorder associated
to ≤P (i.e. X <P Y if and only if X ≤P Y and Y 6≤P

X).

Definition 2 Let E = {K1, . . . ,Kn} be a belief profile
such that K1t. . .tKn is inconsistent. X ⊆ K1t. . .tKn

is a Removed Set of E according to the strategy P if
and only if i) X is a potential Removed Set of E; ii)
@X ′ ∈ PR(E) such that X ′ ⊂ X; iii) @X ′ ∈ PR(E)
such that X ′ <P X.

The collection of Removed Sets of E according to the
strategy P is denoted by RP (E). The Removed Sets
Fusion operation is defined by:

Definition 3 Let E = {K1, . . . ,Kn} such that K1 t
. . .tKn is inconsistent. The merging operation is defined
by: ∆RSF

P (E) =
⋃

X∈RP (E){(K1 t . . . tKn)\X}.

3.2 Partially Preordered Removed Sets
Inconsistency Handling

Let K be a finite set of arbitrary formulae and �K be
a partial preorder on K .=K denotes the equivalence re-
lation �K corresponding to �K i.e. a =K b iff (a �K

b) ∧ (b �K a). Restoring the consistency of a partially
preordered belief bases involves the definition of a partial
preorder on subsets of formulae, called comparators [3;
19]. Several ways have been proposed for defining a pref-
erence relation on subsets of formulae of K, from a par-
tial preorder �K . In the VENUS project, we focus on
the lexicographic preference [19] which extends the lexi-
cographic preorder initially defined for totally preordered
belief bases to partially preordered belief bases. The be-
lief base K is partitionned into K = E1t. . .tEn (n ≥ 1)
where each subset Ei represents an equivalence class of
K w.r.t. =K . A preference relation between the equiva-
lence classes Ei’s, denoted by ≺s is defined by Ei ≺s Ej

iff ∃ϕ ∈ Ei, ∃ϕ′ ∈ Ej such that ϕ ≺K ϕ′. This partition
can be viewed as a generalization of the idea of strati-
fication defined for totally preordered belief bases. We
rephrase the lexicographic preference defined in [19] as
follows:

Definition 4 Let K = E1 t . . . t En be a finite set
of arbitrary formulae partitioned into equivalence class
according to =K . Let �K be a partial preorder on

K = E1 t . . . tEn, Y ⊆ K and X ⊆ K. Y is said to be
lexicographically preferred to X, denoted by Y EM X, iff
∀i, 1 ≤ i ≤ n: if |Ei ∩ Y | > |Ei ∩X| then ∃j, 1 ≤ j ≤ n
such that |Ej ∩X| > |Ej ∩ Y | and Ej ≺s Ei.

Let PR(K) be the set of potential removed sets. Among
them, we want to prefer the potential removed sets which
allow us to remove the formulae that are not preferred
according to �K . Therefore we generalize the notion of
Removed Sets to subsets of partially preordered formu-
lae. We denote by RM(K) the set of removed sets of
K.

Definition 5 Let K be an inconsistent belief base
equipped with a partial preorder �K . R ⊆ K is a re-
moved set of K iff i) R is a potential removed set; ii)
@R′ ∈ RM(K) such that R′ ⊂ R; iii) @R′ ∈ RM(K) such
that R′ CM R.

Definition 6 Let K be an inconsistent belief base
equipped with a partial perorder �K . The consistency
restoration operation is defined by

∆∆(K) =
⋃

X∈RM(K)

{K\X}.

3.3 ASP implementation

In order to implement belief change operations within
the Removed sets framework, we translate the belief
change problem into a logic program with answer set
semantics. This method proceeds in two stages. The
first stage consists in the translation of E into a logic
program ΠE and we have shown that the answer sets of
ΠE correspond to the potential removed sets of E [9].

Let E be a belief profile4. Each propositional variable
a occuring in E is represented by an ASP atom a ∈ A
in ΠE . The set of all positive, (resp. negative) literals of
ΠE is denoted by V +, (resp. V −). The set of rule atoms
representing formulae is defined by R+ = {rf | f ∈ E}
and FO(rf ) represents the formula of E corresponding
to rf in ΠE , namely ∀rf ∈ R+, FO(rf ) = f . This trans-
lation requires the introduction of intermediary atoms
representing subformulae. We denote by ρjf the inter-

mediary atom representing f j which is a subformula of
f ∈ E. The first part of the construction has two steps:

1. We introduce rules in order to build a one-to-one
correspondence between answer sets of ΠE and in-
terpretations of V +. For each atom, a ∈ V + two
rules are introduced: a ← not a′ and a′ ← not a
where a′ ∈ V − is the negative atom corresponding
to a.

2. We introduce rules in order to exclude the answer
sets S corresponding to interpretations which are
not models of (E\F ) with F = {f | rf ∈ S}. Ac-
cording to the syntax of f , the following rules are
introduced: (i) If f =def a then rf ← not a is in-
troduced; (ii) If f =def ¬f1 then rf ← not ρf1

is introduced; (iii) If f =def f1 ∨ . . . ∨ fm then

4In case of inconsistency handling the profile E is reduced
to a belief base K.
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rf ← ρf1 , . . . , ρfm is introduced; (iv) If f =def

f1∧. . .∧fm then it is necessary to introduce several
rules: ∀1 ≤ j ≤ m, rf ← ρfj .

This stage is common to any belief change operation
while the next one depends on the chosen belief change
operation.

In case of fusion the second stage provides, according
to selected strategy P , another set of rules that leads to
the program ΠP

E and we have shown [9] that the answer
sets of ΠP

E correspond to the removed sets of E for a
strategy P . In the validation problem since we have to
minimize the number of formulae to remove, therefore
the number of formulae occuring in a removed set, we
select the Sum strategy. This strategy is expressed by
the minimize{} statement and the new logic progam
ΠSum

E = ΠE ∪minimize{rf | rf ∈ R+} is such that the
answer sets of ΠSum

E which are provided by the CLASP
solver [7] correspond to the removed sets of ∆RSF

Sum(E)
[9].

In case of partially Preordered Removed Sets Incon-
sistency Handling the CLASP solver [7] gives the answer
sets of ΠE . We then construct a partial preorder between
them using the lexicographic comparator EM. We have
shown in [17] that the preferred answer sets according
to EM correspond to the removed sets of E. We used a
java program to partially preorder the answer sets to ob-
tain the preferred answer sets. Since the lexicographic
comparator satisfies the monotony property [19], it is
sufficient to compare the answer sets which are minimal
according to the inclusion. Moreover, the determination
of the minimal answer sets according to this partial pre-
order does not increase the computationnal cost, since
this cost is insignificant compared to the cost of answer
sets computation by CLASP.

4 The validation problem wihin RSF
In order to represent the validation problem within the
RSF framework and to implement it with ASP, we rep-
resented this problem with instantiated predicate logic.
The belief profile consists of two belief bases. The first
one stems from the restricted Entity Model conceptual
description and represents the generic knowledge. We in-
troduce the predicates type(x, y) and cmp(z, y, x) where
x is an amphora, y is a type of amphorae and z is an
attribute. type(x, y) expresses that an amphora x be-
longs to a type y and cmp(z, y, x) expresses that an at-
tribute z of an amphora x of type y has a value com-
patible with the possible values for the type y, as spec-
ified in 2. The domain constraints specify that an am-
phora must have one and only one type. For n types
of amphorae, for each amphora there is one disjunction
type(x, y1)∨ . . .∨ type(x, yn) and n(n− 1)/2 mutual ex-
clusion formulae ¬type(x, yi) ∨ ¬type(x, yj). The con-
ditional constraints specify the compatibility of the at-
tributes values with respect to the type. For each am-
phora x, for each attribute z and for each type y, there
is a formula type(x, y) → cmp(z, y, x). Let m be the
number of attributes, the incompatibility of type speci-
fies that for each amphora and each type there is a for-
mula ¬cmp(z1, y, x)∧. . .∧¬cmp(zm, y, x)→ ¬type(x, y).

The second belief base represents the instances of am-
phorae: the type the observed amphora belongs to
(namely type(x, y)) and the compatible attributes with
the type (namely cmp(z, y, x)). We illustrate the RSF
approach with the example 1.

Example 2 We limit ourselves to only two types of
amphorae Beltran2B and Dressel20, respectively de-
noted by B2B and D20 thereafter, and to the sur-
vey of one observed amphora (denoted by 4 hereafter).
Two attributes are used: totalHeight (denoted by tH)
and totalLength (denoted by tL). The first belief base
is automatically generated from the typology.xml file
and K1 = {¬type(4, B2B) ∨ ¬type(4, D20), type(4, B2B) ∨
type(4, D20), type(4, D20) → cmp(tH,D20, 4), type(4, D20)
→ cmp(tL,D20, 4), type(4, B2B) → cmp(tH, B2B, 4),
type(4, B2B) → cmp(tL, B2B, 4), ¬cmp(tH,B2B, 4) ∧
¬cmp(tL, B2B, 4) → ¬type(4, B2B), ¬cmp(tH,D20, 4) ∧
¬cmp(tL,D20, 4) → ¬type(4, D20) }. The second belief
base corresponding to the observed amphora is automat-
ically generated from typology.xml and amphora.xml files
and K2 = {type(4, B2B), cmp(tH,B2B, 4)}. The opera-
tion ∆RSF

Sum,>(E) where E = {K1,K2} is translated into

ΠSum
E as follows:

cmp(tH,B2B, 4).
1 {type(4, d20), type(4, B2B)} 1.
← n type(4, d20), type(4, d20).
← n type(4, B2B), type(4, B2B).
r(x0)← not type(4, B2B).
r(x1)← type(4, d20), not cmp(tH, d20, 4).
r(x2)← type(4, d20), not cmp(tL, d20, 4).
r(x3)← type(4, B2B), not cmp(tH,B2B, 4).
r(x4)← type(4, B2B), not cmp(tL,B2B, 4).
r(x5)← type(4, d20), not cmp(tH, d20, 4), not cmp(tL, d20, 4).
r(x6)← type(4, B2B), not cmp(tH,B2B, 4), not cmp(tL,B2B, 4).
n type(4, B2B)← r(x0).
n cmp(tH, d20, 4)← r(x1).
n cmp(tL, d2, 4)← r(x2).
n cmp(tH,B2B, 4)← r(x3).
n cmp(tL,B2B, 4)← r(x4).
minimize {r(x0), r(x1), r(x2), r(x3), r(x4)r(x5), r(x6)} .

Note that the ASP translation uses some shortcuts
compared to the translation scheme depicted in section
3.3. Thanks to the cardinality literals by recent ASP
solvers, the unique type constraint is reduced to a sin-
gle rule 1 {type(4, d20), type(4, B2B)} 1. Also, the gen-
eration of the rule corresponding to type(4, B2B) and
the mutual exclusion between this atom and its classical
negation are compacted into a single rule.

The only answer set of the above pro-
gram is {cmp(tH,B2B, 4), type(4, B2B), r(x4),
n cmp(tL,B2B, 4)} which corresponds to the removed
set {type(4, B2B) → cmp(tL,B2B, 4)} that pinpoints
a bad measure for the total length attribute under the
hypothesis of an amphora of type Beltran2B.

5 The validation problem within
PPRSIH

The conceptual description in this approach is repre-
sented in terms of an application ontology and an extract
is illustrated in Figure 2.
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Figure 2: Extract of the application ontology

The belief base consists of the application ontology,
the constraints and the instances of amphorae repre-
sented in predicate logic. The introduced predicates are
shown in an instantiated version in Table 1. The for-
mulae corresponding to the extract of the ontology are
given below where amph, amph it, arch it, meas it, metro,
has metro, tL, tH, type denote amphora, amphora item,
archaeological item, measurable item, metrology ,
has metrology, totalLenght, total Height, typology re-
spectively: ∀x arch it(x) → meas it(x), ∀x amph it(x) →
arch it(x), ∀x amph(x) → amph it(x), ∀xmeas it(x) →
∃z has metro(x, z), ∀x∀z has metro(x, z) → metro(z),
∀z metro(z) → ∃l tL(z, l) ∧ ∃h tH(z, h), ∀x amph(x) →
amph it(x) ∧ (type(x, y1) ∨ · · · ∨ type(x, yn)). The set
of constraints consists in integrity constraints which
specify that the value of attributes do not exceed
a given value, domain constraints are specified by
cardinality constraints within the application ontology
and conditional constraints express the compatibility
of the attribute values with respect to the type. The
domain constraints are expressed like in Section 4 by one
disjunction ∀x type(x, y1)∨· · ·∨ type(x, yn) and n(n−1)/2
mutual exclusion formulae ¬type(x, yi) ∨ ¬type(x, yj).
The integrity constraints are expressed by the formulae:
∀x meas it(x) → ∃z∃h(tH(z, h) ∧ cmpMItH(h, x)),
∀x meas it(x) → ∃z∃l(tL(z, l)∧ cmpMItL(l, x)),
∀x arch it(x) → ∃z∃h(tH(z, h)∧ cmpARItH(h, x)),
∀x arch it(x) → ∃z ∃l (tL(z, l) ∧ cmpARItL(l, x)),
∀x amph it(x)→ ∃z∃h(tH(z, h)∧ cmpAItH(h, x)),
∀x amph it(x) → ∃z∃l(tL(z, l)∧ cmpAItL(l, x)). The
conditional constraints are expressed by the formu-
lae: ∀x type(x, yi) → ∃z∃h(tH(z, h) ∧ cmptH(h, yi)) ∀x,
type(x, yi) → ∃z∃l(tL(z, l) ∧ cmptL(l, yi)). The formu-
lae corresponding to the instances of amphorae are
amph(x), type(x, y), metro(z), meas it(x), arch it(x),
amph it(x), has metro(x, z), tL(z, l) ∧ cmpMItL(l, x) ∧
cmpARItL(l, x) ∧ cmpAItL(l, x) ∧
¬cmptL(l, yi) and tH(z, h) ∧ cmpMItH(h, x) ∧
cmpARItH(h, x) ∧ cmpAItH(h, x) ∧ ¬cmptH(h, yi).
The belief base is equipped with a partial preorder
which reflects the hierarchy of concepts in the ontology.
Moreover constraints are preferred to the ontology
which is preferred to the instances. We illustrate the
PPRSIH approach thanks to example 1.

Example 3 We limit ourselves to the amphorae types

Beltran2B and Dressel20 and to the survey of the ob-
served amphora denoted by 4. Table 1 presents the in-
stantiated predicates and Figure 3 illustrates the partially
preordered belief base.

predicate p

meas it(4) mi

amph(4) a
type(4, Beltran2B) b

tH(m,h) h
cmpAItL(l, 4) cAIl
cmpAItH(h, 4) cAIh

cmptL(l, Beltran2B) clb
type(4, Beltran2B) b

predicate p

arch it(4) ari
metro(m) m

has metro(4,m) hm

cmpMItL(l, 4) cMIl
cmpMItH(h, 4) cMIh

cmptL(l,Dressel20) cld
cmptH(h,Beltran2B) chb

metro(am) am

predicate p

amph it(4) ai

type(4, Dressel20) d
tL(m, l) l

cmpARItL(l, 4) cARIl
cmpARItH(h, 4) cARIh

cmptH(h,Dressel20) chd

amph(4) a

Table 1: instantiated predicates and their corresponding
proposition p

The validation problem is translated into a logic
progam ΠE in the same spirit than the one presented
in section 3.3. CLASP provides 1834 answer sets. How-
ever, if only focusing on the minimal answer sets with
respect to inclusion we have to partially preorder 320
answer sets. According to the lexicographic compara-
tor EM, we obtain two uncomparable preferred answer
sets S1 and S2 such that FO(S1 ∩ R+) = {a, b} and
FO(S2 ∩ R+) = {l ∧ cARIl ∧ cAIl ∧ cMIl ∧ ¬clb}. There-
fore, there are two removed sets R1 = {a, b} and R2 =
{l ∧ cARIl ∧ cARIl ∧ cMIl ∧ ¬clb}. The removed set R1

pinpoints the typology while R2 pinpoints that the value
of TotalLength attribute may be wrong. This approach
provides 2 removed sets while the RSF one only provides
one removed set. The reason is that in PPRSIH ap-
proach the typology is only suspected if the value of one
of the attributes is incompatible while in RSF approach
the typology is suspected if the values of more than one
attributes are incompatible.

6 Concluding discussion

We now present the results of the experimental study,
first on the full Pianosa survey which contains 40 am-
phorae then on the Port-Miou survey which contains 500
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a = b
↓
ai

INSTANCE ↓
ari m =
↓ l ∧ cMIl

∧ cARIl
∧ cAIl

∧ ¬clb =
mi = hm h ∧ cMIh

∧ cARIh
∧ cAIh

∧ chb
↓

a→ ai ∧ b
↓

ai → ari ↓
ontology ↓

ari → mi

↓
GENERIC mi → hm = hm → m m→ l ∧ h

KNOWLEDGE ↘ ↙
(d ∨ b) ∧ (¬b ∨ ¬d) =

d→ l ∧ cld = d→ h ∧ chd
= b→ l ∧ clb = b→ h ∧ chb↓

constraints ai → h ∧ cAIh
= ai → l ∧ cAIl↓

ari → h ∧ cARIh
= ari → l ∧ cARIl↓

mi → h ∧ cMIh
= mi → l ∧ cMIl

Figure 3: Partial preorder on formulae of the belief base

amphorae. We used 4 different tolerance thresholds t
around the typical values of each type: 20%, 10%, 5%
and 1% and N denotes the number of inconsistent am-
phorae. The CPU times T1, T2, T3 and T correspond to
the translation from the XML files to the logic program,
the ASP implementation of RSF, the translation from
ASP to an XML file and the total time T1 +T2 +T3 re-
spectively. The tests were conducted on a Centrino Duo
cadenced at 1.73GHz and equipped with 2GB of RAM.
The results are summarized in Table 2.

RSF PPRSIH

t N T1 T2 T3 T T1 T2T3 T

20 5 0.05 0.62 0.95 1.62 0.24 1.12 0 1.36
10 26 0.05 0.60 0.64 1.29 0.27 5.13 0 5.40
5 30 0.05 0.61 0.45 1.11 0.29 5.87 0 6.16
1 36 0.05 0.60 0.33 0.98 0.31 6.91 0 7.22

(a) Pianosa survey (40 amphorae)

RSF PPRSIH

N T1 T2 T3 T T1 T2 T3 T

44 0.43 5.26 0.14 5.83 0.68 9.38 0 10.06
65 0.43 5.06 0.04 5.53 0.75 13.69 0 14.44
72 0.43 4.99 0 5.42 0.81 15.03 0 15.84
81 0.43 5.06 0 5.49 0.88 16.80 0 17.68

(b) Port Miou survey (500 amphorae)

Table 2: CPU times (s) for RSF and PPRSIH on two
surveys.

Concerning the knowledge representation aspect the
RSF approach stems from the Entity Model concep-
tual description and uses instantiated predicate logic. It
creates a flat knowledge base, with numerous formulae,
where all the objects are at the same level. In the full
Pianosa survey involving 40 amphorae, the traduction

of the problem requires 8462 formulae and 4160 atoms
and in the full Port Miou involving 500 amphorae, the
traduction of the problem requires 105775 formulae and
52000 atoms. Moreover, it only considers the intrinsic
constraints between objects. However, the lack of ex-
pressivity and the high number of formulae are compen-
sated by the good computational behaviour of the rea-
soning tasks expressed in this language. The PPRSIH
approach stems from the application ontology and uses
instantiated predicate logic equipped with a partial pre-
order. It creates a more structured belief base, involving
less formulae than the first approach. In the full Pi-
anosa survey involving 40 amphorae, the traduction of
the problem requires 1080 formulae and 840 atoms and
in the full Port-Miou survey involving 500 amphorae and
the traduction requires 6021 formulae and 4683 atoms. It
allows for representing the intrinsic constraints as well as
the taxonomic relations between objects, and relations
between objects. The partial preorder defined on the
finite set of formulae expresses more structure than the
first solution. This approach takes advantage of the good
computational behaviour of instantiated predicate logic
while expressing, in the same time, a more structured
belief base.

Concerning the reasoning aspect, both implementa-
tions rely on CLASP which is one of the most efficient
current ASP solver. The results obtained on Pianosa
as well as on Port Miou survey given in Table 2 clearly
show that both approaches deal with the full survey with
a very good time. However, the first solution gives the
best running times. Moreover, reducing the tolerance
intervals increases the number of inconsistencies as illus-
trated in table 2 and the first solution seems to be not
sensitive to this increasing while the running time of the
second solution grows with the number of inconsisten-
cies. The consuming task comes from the reading of the
answer sets before partially ordering them in order to
only select the preferred ones. In order to improve this
approach we have to investigate how to directly encode
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the partial preorder on answer sets within the logic pro-
gram. Another direction to follow in order to reach a
trade-off between representation and reasoning could be
to represent the validation problem in Description Logic,
since the generic knowledge in expressed in terms of on-
tology. However, we have to study which low complexity
Description Logic could be suitable. Moreover, we have
to study to which extent the approach combining De-
scription logic and ASP [6] could be used for implemen-
tation as well as the extended ASP solver to first order
logic[10].
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Abstract
Approaches for modeling graded spatial relations
abound in the literature on image processing and on
geographic information systems. In contrast, few
proposals have addressed the use of degrees in ap-
plication contexts where inference plays a central
role. We argue that the use of degrees is nonetheless
natural in such contexts, and may enhance the ap-
plication potential of qualitative spatial reasoning
in domains where relations between vague regions
need to be expressed, as well as domains where the
robustness of spatial relations w.r.t. small changes
in the underlying configurations is important. In
particular, we discuss the interpretation of degrees,
contrasting fuzzy regions with formal accounts of
spatial vagueness based on supervaluation seman-
tics. We also touch upon the problem of acquiring
(fuzzy) spatial relations from the web in an auto-
mated way.

1 Introduction
The field of qualitative spatial representation and reasoning
(QSR) deals with symbolic representations of spatial con-
figurations [4], modeling for instance how two regions are
topologically related [17] (e.g. whether some geographic re-
gion overlaps with another) or what the relative position is
of a point w.r.t. a vector [29] (e.g. the relative position of a
landmark w.r.t. a moving subject). Typically, approaches to
QSR are based on a small number of jointly exhaustive and
pairwise disjoint (JEPD) relations. In the well-known Region
Connection Calculus (RCC [17]), for instance, the topologi-
cal relationship of two regions is always one of the so-called
RCC8 relations: DC (disconnected), EC (externally con-
nected), PO (partially overlapping), EQ (equal), TPP (tangen-
tial proper part), NTPP (non-tangential proper part), TPP−1
(inverse of TPP), or NTPP−1 (inverse of NTPP).

Despite the elegance and conceptual simplicity of such
frameworks, the way they discretize a continuum of possi-
ble spatial configurations sometimes leads to unintuitive be-
havior. When spatial relations are derived from images, for
instance, one pixel can make the difference between EC and

∗Postdoctoral fellow of the Research Foundation – Flanders.

DC, and, even worse, whether an EC or DC relation is found
may depend on the resolution of the image. Along similar
lines, when most of some region a is contained in a region b,
it may be more natural to think of a as being a part of b than to
think of a and b as partially overlapping regions. In geogra-
phy, the situation is further complicated by the fact that many
toponyms cannot be characterized by precise boundaries (e.g.
downtown Barcelona). It may be difficult to assess the spatial
relationship between two vague regions (e.g. Northern Spain
and Central Catalonia), as different views on the delineation
of these regions may correspond to different spatial relations.

Many approaches address this kind of problems by assum-
ing spatial relations to be graded (or fuzzy). Then it becomes
possible to say that Northern Spain and Central Catalonia are
overlapping to some degree, while Central Catalonia is also
considered to be a part of Northern Spain to some degree.
How these graded relations are defined depends on the appli-
cation. In this respect, it is useful to note that applications of
QSR can roughly be divided in two classes. In a first class of
applications, qualitative spatial relations are used to interface
between a known quantitative description of a scene and natu-
ral language (e.g. to describe a route or to query a geographic
information system), or more generally, to abstract away from
irrelevant details in quantitative representations (e.g. to rec-
ognize types of events [9]). Fuzzy spatial relations have been
widely studied in this kind of applications, both from the an-
gle of image processing and understanding (e.g. [12; 11; 25;
14]), and from the angle of geographic information systems
(e.g. [18; 15; 21]). The main purpose of using degrees, here,
is to induce a total ordering, e.g. to decide which among a
given number of situations best satisfies some query. For this
first class of applications, one of the main considerations is
that relations be cognitively meaningful, more than obeying
nice mathematical properties or being easy to compute.

The second class of applications uses qualitative descrip-
tions of spatial scenes as a surrogate for quantitative descrip-
tions, when the latter are not available or require a prohibitive
amount of computation. In such applications, symbolic rea-
soning plays a key role to verify the integrity of qualita-
tive descriptions (e.g. in geo-ontologies [26]) and to augment
available knowledge by explicitly deriving its logical conse-
quences. In order to support inference, it is important that
spatial relations are defined in such a way that they satisfy
important mathematical properties, related to transitivity, re-
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flexivity, etc., even if the resulting models are somewhat less
rich from a cognitive point of view. However, this second
class of applications is less prevalent, especially when graded
approaches are concerned, as (i) in general, qualitative de-
scriptions are often difficult to obtain in practical applications
(other than from quantitative descriptions) and (ii) graded ap-
proaches face the added difficulty of obtaining meaningful
degrees. The main aim of this paper is to discuss these two
issues regarding the application potential of (fuzzy) qualita-
tive spatial reasoning.

The remainder of the paper is structured as follows. In the
next section, we discuss a number of ways in which vague re-
gions can be modelled. Then, Section 3 discusses the notion
of a fuzzy region, carefully distinguishing it from the related
notion of a vague region. In Section 4, we discuss the ratio-
nale of fuzzy spatial relations as a compact way of encoding
the spatial relationship of fuzzy regions. As a running exam-
ple, we focus on topological relations, using a fuzzy version
of the RCC. Then Section 5 zooms in on the key problem of
acquiring (fuzzy) qualitative spatial knowledge. In particular,
we review some techniques that have been proposed in the
area of geographic information retrieval.

2 Vague regions
Early on, QSR approaches have been extended to cope with
the indeterminacy of the boundaries of geographic regions. In
the Egg-Yolk calculus [3], and in many related formalisms,
regions are represented using two nested sets. The smallest
set (called the yolk) corresponds to a lower approximation of
the region while the largest set (called the egg) corresponds
to an upper approximation.

We may wonder how exactly an (egg,yolk) pair should be
interpreted. Often, an epistemic view is assumed in this con-
text. An (egg,yolk) pair then represents our knowledge about
where the true boundaries are located. This knowledge may
be refined after we have learned more about the region, which
is taken into account in the Egg-Yolk calculus by the intro-
duction of a primitive “crisper than” relation. This relation
models that one (egg,yolk) pair is a refinement of another
one, i.e. a more precise approximation of the same region.
However, it should be noted that such a view is at odds with
the idea that the spatial relationship between two regions can
be determined from their (egg,yolk) representations. Indeed,
let (a, a) be the representation of a region a. Clearly, if a
has unknown, but precise boundaries, we should always have
that P (a, a) holds, where P denotes the part-of relation. Now
suppose that (a, a) also models what we know about region
b, then typically there are several spatial relations that may
still hold between a and b. This means that the spatial re-
lationship between (a, a) and itself may differ depending on
whether both occurrences of the pair (a, a) refer to the same
or to different entities. In fact, this is strongly related to the
well-known observation that no uncertainty calculus can ever
be compositional [8]. Moreover, the epistemic view does not
conform well with intuition when it comes to geographic re-
gions. The fact that downtown Barcelona does not have pre-
cise boundaries is not related to our lack of knowledge about
Barcelona, but due to an inherent form of indeterminacy.

Seeing the pair (a, a) not as an imperfect description of
a single crisp boundary, but as the perfect description of a
vague boundary is close to the supervaluationist view of spa-
tial vagueness [28; 1]. Essentially, under this latter view, the
label of a vague region is seen as an under-specified descrip-
tion of a region in space. The possible ways in which the
vague region may be interpreted are called the precisifications
of the region, and statements (e.g. about which spatial rela-
tions hold) may be true for all precisifications of the under-
lying regions (in which case the statement is supertrue), for
none of the precisifications (in which case it is superfalse),
or for some but not all (in which case it lacks a truth value).
The pair (a, a) can then be seen as defining the possible pre-
cisifications of region a. However, not every region which
contains a and is contained in a is likely to correspond to a
plausible precisification. To cope with this, it has recently
been proposed [2] to add more structure to the set of pre-
cisifications, by linking each precisification to some value of
an underlying parameter (or set of parameters). The resulting
semantics is called standpoint semantics, and the different pa-
rameter values are called standpoints. For example, possible
precisifications of downtown Barcelona may be linked to pa-
rameters that refer to population density, commercial activity,
distance to prominent landmarks, etc.

Given this latter view on vague regions, how should
we model the spatial relationship between two regions
a and b? In principle, this relationship is determined by
associating one spatial relation (say an RCC-8 relation)
with each pair of precisifications, viz. with each pair
of parameter choices. Let C be the set of all possible
choices of all relevant parameters, then we may see the
spatial relationship between a and b as a mapping ρ from
C × C to RCC8, where we write RCC8 for the set
{DC,EC,PO,EQ, TPP,NTPP, TPP−1, NTPP−1}.
This solution seems to be within the spirit of the standpoint
semantics, where the different standpoints regarding the
spatial relationship are pairs of standpoints regarding the
delineation of regions. However, from an application point
of view, this approach is still not entirely satisfactory, as
it is not clear how (or whether) the mapping ρ can be
represented in a compact way. Note in particular that the set
C itself may be infinite, and we may not even know which
parameters are relevant in a given context. As we will see,
fuzzy spatial relations can be used as a compact, approximate
representation of the mapping ρ, relative to a given context.

3 Fuzzy regions
Assume that C is equipped with a probability distribution pC ,
which encodes, in a given context, how likely it is that the
elements of C are actually considered as standpoints. For in-
stance, not every population density value is equally likely to
be used as a threshold value in the definition of the boundaries
of downtown Barcelona. As each element of C corresponds
to a region, pC corresponds to a probability distribution on re-
gions. If we moreover see a region as a set of locations (i.e.
points), pC corresponds to a probability distribution on sets of
locations, i.e. a random set of locations.

Recall that a random set in a universe U is a probability
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distribution m on the power set of U . For the ease of pre-
sentation, we will restrict ourselves to finite universes1. A
subset X ⊆ U is called a focal element of a random set m
if m(X) > 0. It is well-known that fuzzy sets can be seen
as special cases of random sets, where the focal elements all
belong to a family of nested sets X0 ⊆ ... ⊆ Xn ⊆ U [7].
The corresponding fuzzy set is usually defined in terms of its
membership function A (u ∈ U ):

A(u) =
∑

u∈Xi

m(Xi) (1)

Note in particular that A(u) ∈ [0, 1] then reflects the prob-
ability that a standpoint is taken for which u is assumed to
belong to the region being modeled. In general, the focal ele-
ments corresponding to all the possible standpoints C will not
necessarily be nested sets. In that case, a fuzzy set can only
represent an approximation of the actual random set model
of the spatial region. More details about the relationship be-
tween random sets and fuzzy sets can be found in [7].

For applications, the use of fuzzy sets to model the spa-
tial extent of regions has a number of important advantages.
First, the random set encoding allows for a compact repre-
sentation of a fuzzy region as a list of classical regions. In
most applications, the number of focal elements can indeed
be taken finite and small. In situations where we want a con-
tinuum (e.g. to use a gradual boundary for regions such as
Central Catalunia), a field-based representation based on the
membership function (1) may be more appropriate. More-
over, fuzzy sets are simple and intuitive to use, and do not
require access to the set of parameters underlying the possi-
ble standpoints. As a result, it becomes possible to estimate
fuzzy regions in a purely data-driven manner, e.g. by analyz-
ing web documents [19] or by conducting surveys [15]. Thus,
while the degrees underlying a fuzzy set representation may
conceptually be linked to meta-standpoints, in practice we do
not require access to the distribution pC , or even the set C:
fuzzy sets may be directly estimated based on statistical evi-
dence.

It is important to note, however, that in contrast to super-
valuationist approaches, fuzzy sets do not actually model any
vagueness underlying the boundaries of a region. In fact, the
probability distribution pC which we assumed to exist could
be seen as a meta-standpoint regarding the interpretation of a
vague region. In other words, fuzzy sets offer a precise, but
graded representation of vague regions, which are valid only
under a particular view. We refer to [16] for a discussion on
the relationship between vagueness and fuzziness.

4 Fuzzy spatial relations
Let A be the fuzzy set (membership function) corresponding
to a region a. For each λ ∈]0, 1] we can consider the λ-cut
Aλ defined as

Aλ = {x |A(x) ≥ λ}
We can thus characterize the spatial relationship between two
regions a and b, modeled by the membership functions A

1It is important to note, however, that the following discussion
generalizes to the infinite case.

and B, as a ]0, 1]2 → RCC8 mapping, which maps each
(λ, µ) ∈]0, 1]2 to the RCC8 relation that holds between Aλ
and Bµ. While being expressive, this approach is not suitable
in applications, due to the high number of different relation-
ships that can thus be described. Even when we restrict our-
selves to a finite subset of the unit interval [0,1], the number
of different relations that can be described quickly becomes
prohibitively high. For instance, the restriction to {0.5, 1}
would lead to a calculus which is isomorphic to the Egg-Yolk
calculus (based on RCC8 relations in this case).

To cope with the high number of possible relationships, the
idea of using fuzzy spatial relations is to group types of con-
figurations which are sufficiently similar for a given purpose.
For instance, assume that we restrict ourselves to {0.5, 1}
and that PO(A0.5, B0.5), PO(A0.5, B1), DC(A1, B0.5),
DC(A1, B1). This intuitively means that the spatial rela-
tionship is PO if we are sufficiently tolerant in the defini-
tion of the boundaries of some region and DC otherwise.
In this sense, the previous configuration is similar to one
where e.g. DC(A0.5, B0.5), DC(A0.5, B1), PO(A1, B0.5),
PO(A1, B1). In the fuzzy RCC [22], these two config-
urations are described in the same way, by asserting that
PO(A,B) and DC(A,B) both hold to degree 0.5. In fact,
in the fuzzy RCC each spatial configuration is described by
the degree to which six primitive relations are satisfied (C,
O, P , NTP , P−1 and NTP−1). From these degrees, the
degrees to which each of the RCC8 relations are satisfied can
be calculated. As an example, one possible way to define the
degree to which C(A,B) holds is:

C(A,B) = max(0, sup{λ+ µ− 1 |C(Aλ, Bµ)}) (2)

where C(Aλ, Bµ) holds if the classical regions Aλ and Bµ
are connected in the sense of the RCC. The degree to which
A and B are disconnected is then defined as DC(A,B) =
1− C(A,B).

It is important to note that this use of degrees is fundamen-
tally different from the use of degrees to model fuzzy regions.
Indeed, in the latter case, degrees have a clear quantitative
interpretation, and can be linked to a random set (although
other interpretations are possible, e.g. interpreting fuzzy sets
in terms of likelihood functions [6]). In the former case, how-
ever, degrees are used as a technical tool which enables us to
use a more compact encoding. This is similar to the view put
forward by De Finetti [5] that the notion of graded truth in
multi-valued logics is (only) useful to allow for more com-
pact descriptions (rather than as a way to reject the principle
of bivalence).

As graded relations are thus used to group similar config-
urations, we have some freedom in how they are defined.
In particular, it is desirable that a fuzzy RCC behaves in a
way which is similar to the classical RCC, and that important
properties related to transitivity among others are satisfied. In
[22], it was shown that a fuzzy RCC can be built from an ab-
stract, graded connection relation, in much the same way as
the classical RCC is built from an abstract, crisp connection
relation. As in the classical RCC, sound and complete infer-
ence procedures for the fuzzy RCC can be derived from com-
position tables, and the overall complexity of the main rea-
soning problems also remains the same (NP-complete). Prac-
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tical reasoning with the fuzzy RCC can be done using stan-
dard RCC reasoners by virtue of some form of finite model
property (Proposition 4 in [22]). As a result, as far as reason-
ing problems such as satisfiability checking are concerned, it
is always possible to represent a fuzzy region as a nested set
of crisp region and to express fuzzy spatial relations between
the fuzzy regions in terms of disjunctions of classical RCC
relations between these crisp regions. In this sense, the fuzzy
RCC could be seen as classical qualitative calculus with a
large number of spatial relations (depending on the number
of different degrees that are used in the input). It would be in-
teresting to see whether techniques that have been developed
in the QSR community to cope with large qualitative calculi
[13] would help to implement more efficient solvers, taking
more of the inherent structure of fuzzy regions into account.
Alternatively, most reasoning problems in the fuzzy RCC can
straightforwardly be deduced to disjunctive linear program-
ming, for which dedicated solvers exist.

Several models for the fuzzy RCC can be considered,
which differ in how the connection relation C is defined. One
model is based on the notion of connection presented in (2). It
is then assumed that regions are represented as fuzzy sets, but
that the type of relations we are interested in remain purely
qualitative. Another model was proposed in [20] based on the
idea of closeness. In the latter model, two regions are defined
to be connected to the extent that they are close to each other,
where regions may either be classical or fuzzy sets. Note
that although the motivation for making the connection rela-
tion graded is quite different in both cases (resp. dealing with
fuzzy regions and robustness of transitions such as DC/EC or
TPP/NTPP), the resulting calculus is identical. Indeed, the
fuzzy RCC inferences are sound regardless of how C is de-
fined, and they are complete w.r.t. both of the aforementioned
choices [22].

5 Acquiring spatial information
Approaches for qualitative spatial reasoning are mainly use-
ful in domains where qualitative descriptions of spatial con-
figurations can be obtained, but no quantitative models, and
where qualitative results are sufficient. One application where
qualitative spatial reasoning is of potential interest is geo-
graphic information retrieval. Knowledge about qualitative
relations plays a key role, for instance, in query expansion
[10]. Moreover, in this domain, there is a strong interest in
vernacular places, whose spatial footprint tends to be vague.
Indeed, in contrast to administrative regions, usually very lit-
tle is known about the location of vernacular places.

Consider, for instance, the names of neighborhoods and
districts within a given city. For popular neighborhoods, we
may be able to find sufficient information on the web to build
a useful fuzzy set representation [19; 27]. For lesser-known
neighborhoods, however, such a strategy is bound to fail, and
we may instead try to derive qualitative models from web
documents. However, it turns out that acquiring spatial re-
lations from text documents is hard, due to the inherent am-
biguity of spatial propositions such as “in” (which can refer
to several relations, including P , P−1 and PO), and due to
the fact that spatial relations are seldom stated explicitly (e.g.

few documents explicitly state that one region is bordering on
another one). To some extent, these problems have been ad-
dressed in [24], where recall-oriented heuristics are proposed
to derive instances of the relationsEC and P . Nonetheless, it
appears that much more work is needed on the topic of deriv-
ing qualitative spatial representations from the web. Although
this clearly is a challenging problem, reasonable progress in
this area could lead to a widespread use of qualitative spa-
tial reasoning for geographic information retrieval. In this
context, it is clear that we should try to take advantage of
any quantitative knowledge we have to enrich the available
qualitative models. This calls for hybrid reasoning strategies
which mix qualitative spatial reasoning with geometric com-
putations. In [23] a heuristic approach along these lines has
been proposed, based on a combination of genetic algorithms
and ant colony optimization.

Clearly, it is hard to directly extract fuzzy spatial relations
from web documents. However, the classical RCC can be
seen as a special case of the fuzzy RCC, in which relations
are known to hold to degree 1. The role of degrees other
than 1 is two-fold. First, when combining quantitative spatial
information which is represented using fuzzy sets with quali-
tative models, degrees will naturally occur when propagating
information. The second role is related to the existence of in-
consistencies. Qualitative spatial models may be inconsistent
for a variety of reasons, and different strategies may be used
to cope with them. However, a particularly natural strategy
to deal with inconsistency is to gradually weaken those asser-
tions that are involved in an inconsistency. As a simple ex-
ample, suppose that one piece of evidence leads to DC(a, b)
while another leads to EC(a, b). As these two assertions
are inconsistent, in the classical RCC we need to choose one
(which would be more or less arbitrary) or to replace both as-
sertions by the disjunction DC(a, b) ∨ EC(a, b). This latter
approach is rather cautious, and would result in a substan-
tial loss of information. In the fuzzy RCC, we may pursue a
different strategy, which is especially suitable if both pieces
of evidence are rather strong: we assume that both DC(a, b)
and EC(a, b) are true to some degree. For instance, the as-
sertions DC(a, b) ≥ 0.5 and EC(a, b) ≥ 0.5 are consis-
tent with each other. Especially when some of the regions
involved are known to be vague, such a strategy may yield in-
tuitive results; see e.g. [24] for a case study on the neighbor-
hoods of the city of Cardiff. One example from [24] where
there was an initial inconsistency in the extracted relations
concerns the Cardiff neighborhoods of Cardiff Bay and Bute-
town. On the one hand, residents of the wealthy Cardiff Bay
tend to consider their neighborhood as being different from
the much poorer Butetown. On the other hand, Butetown is
also considered to be the new name for the area which used
to be called Tiger Bay, and which encompasses the Cardiff
Bay part of Cardiff. Hence both an adjacency and a part-of
relation are intuitively acceptable to describe the relationship
between Cardiff Bay and Butetown. Using fuzzy spatial rela-
tions, it is possible to express that both of these relations are
satisfied to some extent, whereas the classical RCC setting
would require us to choose between both relations.
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6 Conclusions
In this paper, we have focused on fuzzy models for represent-
ing regions and the qualitative spatial relations between them.
In particular, we discussed the interpretation of degrees, with
the aim of clarifying the use of such models in applications.
First, we discussed how a fuzzy set could be linked to a meta-
standpoint regarding the delineation of a vague region, and
how membership degrees can be given a clear quantitative in-
terpretation in terms of random sets. Then we stressed that
the use of degrees in fuzzy spatial relations serves a rather
different purpose: enabling a compact representation of the
spatial relationship between regions represented as fuzzy sets.
Finally, we have briefly looked at geographic information re-
trieval as a promising application area for (fuzzy) qualitative
spatial reasoning.
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Abstract
Originating from Allen’s Interval Algebra,
composition-based reasoning has been widely
acknowledged as the most popular reasoning tech-
nique in qualitative spatial and temporal reasoning.
Given a qualitative calculus (i.e. a relation model),
the first thing we should do is to establish its
composition table (CT). In the past three decades,
such work is usually done manually. This is
undesirable and error-prone, given that the calculus
may contain tens or hundreds of basic relations.
Computing the correct CT has been identified by
Tony Cohn as a challenge for computer scientists in
1995. This paper addresses this problem and intro-
duces a semi-automatic method to compute the CT
by randomly generating triples of elements. For
several important qualitative calculi, our method
can establish the correct CT in a reasonable short
time. This is illustrated by applications to the
Interval Algebra, the Region Connection Calculus
RCC-8, the INDU calculus, and the Oriented Point
Relation Algebras. Our method can also be used
to generate CTs for customised qualitative calculi
defined on restricted domains.

1 Introduction
Since Allen’s seminal work of Interval Algebra (IA) [1;
2], qualitative calculi have been widely used to represent and
reason about temporal and spatial knowledge. In the past
decades, dozens of qualitative calculi have been proposed in
the artificial intelligence area “Qualitative Spatial & Tempo-
ral Reasoning” and Geographic Information Science. Except
IA, other well known binary qualitative calculi include the
Point Algebra [20], the Region Connection Calculi RCC-5
and RCC-8 [17], the INDU calculus [16], the Oriented Point
Relation Algebras OPRA [14], and the Cardinal Direction
Calculus (CDC) [10; 19; 13], etc.

Relations in each particular qualitative calculus are used to
represent temporal or spatial information at a certain gran-
ularity. For example, The Netherlands is west of Germany,

∗A complete version of this paper is available via: http://
arxiv.org/abs/1105.4224.This work was partly supported
by an ARC Future Fellowship (FT0990811).

The Alps partially overlaps Italy, I have today an appoint-
ment with my doctor followed by a check-up.

Given a set of qualitative knowledge, new knowledge can
be derived by using constraint propagation. Consider an ex-
ample in RCC-5. Given that The Alps partially overlaps
Italy and Switzerland, and Italy is a proper part of the Eu-
ropean Union (EU), and Switzerland is discrete from the EU,
we may infer that The Alps partially overlaps the EU. The
above inference can be obtained by using composition-based
reasoning. The composition-based reasoning technique has
been extensively used in qualitative spatial and temporal rea-
soning, and, when combined with backtracking methods, has
been shown to be complete in determining the consistency
problem for several important qualitative calculi, including
IA, Point Algebra, Rectangle Algebra, RCC-5, and RCC-8.
Moreover, qualitative constraint solvers have been developed
to facilitate composition-based reasoning [21; 22].

We here give a short introduction of the composition-based
reasoning technique. Suppose M is a qualitative calculus,
and Γ = {viγijvj}ni,j=1 is a constraint network overM. The
composition-based reasoning technique uses a variant of the
well-known Path Consistency Algorithm,1 which applies the
following updating rule until the constraint network becomes
stable or an empty relation appears:

γij ← γij ∩ γik ◦w γkj , (1)

where α ◦w β is the weak composition (cf. [11; 18]) of two
relations α, β inM, namely the smallest relation inMwhich
contains the usual composition of α and β. Although for
OPRA and some other calculi the composition-based reason-
ing is incomplete to decide the consistency problem, it re-
mains a very efficient method to approximately solve the con-
sistency problem.

The weak composition in a qualitative calculusM is deter-
mined by its weak composition table (CT for short). Usually,
the CT of M is obtained by manually checking the consis-
tency of {xαy, yβz, xγz} for each triple of basic relations
〈α, γ, β〉. When M contains dozens or even hundreds of
basic relations, this consistency-based method is undesirable
and error-prone. [7] first noticed this problem and identified
it as a challenge for computer scientists.

1The notion of Path Consistency is usually defined for constraints
on finite domains, and not always appropriate for general qualitative
constraints, which are defined on infinite domains.
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This problem remains a challenge today. We here consider
several examples. The Interval Algebra and the RCC-8 al-
gebra contain, respectively, 13 and 8 basic relations. Their
CTs were established manually. But if a calculus contains a
hundred basic relations, we need to determine the consistency
of one million such basic networks. This is manually impos-
sible. The OPRA calculi and the CDC are large qualitative
spatial calculi that have drawn increasing interests. OPRAm

contains 4m×(4m+1) (i.e. 72, 156, 272 form = 2, 3, 4, re-
spectively) basic relations [14], while the CDC contains 218
basic relations [10]. Sometimes we need ingenious and spe-
cial methods to establish CT for such a calculus. For the
OPRA calculi, the algorithm presented in the original paper
[14] contains gaps and errors. Later, [9] presented the second
algorithm, which is quite lengthy and cumbersome. Another
simple algorithm has also been proposed recently [15]. Given
the huge number of basic relations of OPRAm, the validity
of these algorithms need further verification. As for the CDC,
[10] first studied the weak composition. Later, [19] noticed
errors in Goyal’s method and gave a new algorithm to com-
pute the weak composition. Unfortunately, in several cases,
their algorithm does not generate the correct weak composi-
tion (see [13]).

In this paper, we respond to this challenge and propose a
semi-automatic approach to generate CT for general quali-
tative calculi. In the remainder of this paper, we first recall
basic notions and results about qualitative calculi and weak
composition tables in Section 2, and then apply our method
to IA, INDU, RCC-8, and OPRA1 and OPRA2 in Section
3. Section 4 then concludes the paper.

2 Preliminaries
In this section we recall the notions of qualitative calculi and
their weak composition tables. Interested readers may consult
e.g. [12; 18] for more information.
Definition 2.1. Suppose U is a universe of spatial or tempo-
ral entities, and B is a set of jointly exhaustive and pairwise
disjoint (JEPD) binary relations on U . We call the Boolean
algebra generated by B a qualitative calculus, and call rela-
tions in B the basic relations of this qualitative calculus.

We consider a simple example.
Example 2.1 (Point Algebra). Suppose U = R. For two
points a, b in U , we have either a < b, or a = b, or a > b. Let
B = {<,=, >}. Then B is a JEPD set of relations on U . We
call the Boolean Algebra generated by B the Point Algebra.

We next recall the central notion of weak composition.
Definition 2.2. Suppose M is a qualitative calculus on U ,
and B is the set of its basic relations. The weak composition
of two basic relations α and β inM, denoted as α ◦w β, is
defined as the smallest relation inM which contains α ◦ β,
the usual composition of α and β.

Usually, a qualitative calculus has a finite set of relations.
The weak composition operation ofM can be summarised in
an n × n table, where n is the cardinality of B, and the cell
specified by α and β contains all basic relations γ in B such
that γ ∩ α ◦ β 6= ∅. The CT of the Point Algebra is given
below.

◦ < = >
< < < ∗
= < = >
> ∗ > >

Definition 2.3. Suppose M is a qualitative calculus on U
with basic relation set B. For basic relations α, β, γ, we call
〈α, γ, β〉 a composition triad, or c-triad, if γ ⊆ α ◦w β.

We can determine if a 3-tuple is a c-triad as follows.
Proposition 2.1. A 3-tuple 〈α, γ, β〉 of basic relations inM
is a c-triad iff γ ∩ α ◦ β 6= ∅, which is equivalent to saying
that the basic constraint network

{xαy, yβz, xγz} (2)

is consistent, i.e. it has a solution in U .
To compute the weak composition of α and β, one straight-

forward method is to find all basic relations γ such that
〈α, γ, β〉 is a c-triad.

3 A General Method for Computing CT
In this section, we propose a general approach to compute the
composition table of a qualitative calculus M with domain
U and basic relation set B. The approach is based on the
observation that each triple of objects in U derives a valid
c-triad.
Proposition 3.1. Suppose a, b, c are three objects in U . Then
〈ρ(a, b), ρ(a, c), ρ(b, c)〉 is a c-triad, where ρ(x, y) is the ba-
sic relation inM that relates x to y.

It is clear that six (different or not) c-triads can be generated
if we consider all permutations of a, b, c.

To compute the CT ofM, the idea is to choose randomly
a triple of elements in U and then compute and record the
c-triads related to these objects in a dynamic table. Con-
tinuing in this way, we will get more and more c-triads un-
til the dynamic table becomes stable after sufficient large
loops. The basic algorithm is given in Algorithm 1, where
D is a subdomain of U , Ψ decides when the procedure termi-
nates, TRIAD records the number of c-triads obtained when
the procedure terminates, and LASTFOUND records the time
when the last triad is first recorded. For a calculus with
unknown CT, the condition may be assigned with the form
LOOP ≤ 1, 000, 000 (i.e., the algorithm loops one million
times), or LOOP ≤ LASTFOUND + 100, 000 (i.e., until no
new c-triad is found in the last one hundred thousand loops),
or their conjunction. If the CT is known and we want to
double-check it, then the boundary condition could be set to
TRIAD < N to save time, where N is the number of c-triads
of the calculus.

We make further explanations here.
SupposeM is a qualitative calculus on U . Recall U is of-

ten an infinite set. We need first to decide a finite subdomain
D of U , as computers only deal with numbers with finite pre-
cision. Once D is chosen, we run the loop, say, one million
times. Therefore, one million instances of triples of elements
in D are generated. We then record all computed c-triads in
a dynamic table. It is reasonable to claim that the table is
stable if no new entry has been recorded after a long time
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Algorithm 1: Computing the Composition Table ofM
Input: A subdomain D ofM, and a boundary condition

Ψ related toM
Output: The Composition Table CT ofM
Initialise CT ;
LOOP ← 0;
TRIAD ← 0;
LASTFOUND ← 0;
while Ψ do

LOOP ← LOOP + 1;
Generate triple of objects (a, b, c) ∈ D3 randomly;
α← the basic relation between a and b;
β ← the basic relation between b and c;
γ ← the basic relation between a and c;
α′ ← the basic relation between b and a;
β′ ← the basic relation between c and b;
γ′ ← the basic relation between c and a;
for 〈r, s, t〉 ∈ {〈α, γ, β〉, 〈α′, β, γ〉, 〈γ, α, β′〉,
〈β, α′, γ′〉, 〈β′, γ′, α′〉, 〈γ′, β′, α〉} do

if 〈r, s, t〉 is not in CT then
Record triad 〈r, s, t〉 to CT ;
TRIAD ← TRIAD + 1;
LASTFOUND ← LOOP;

end
end

end
return CT .

(e.g. as long as the time has past to get all recorded c-triads).
Because D is finite, Algorithm 1 will generate a stable table
after a sufficient large number of iterations.

We observe that a finite subdomain D may restrict the pos-
sible c-triads if it is selected inappropriately. We introduce a
notion to characterise the appropriateness of a subdomain.

Definition 3.1. SupposeM is a qualitative calculus defined
on the universe U . A nonempty subset D of U is called a
3-complete subdomain ofM if each consistent basic network
as specified in Eq. 2 has a solution in D.

If D is a 3-complete subdomain, then, for each c-triad
〈α, γ, β〉, there are a, b, c in D such that (a, b) ∈ α, (b, c) ∈
β, and (a, c) ∈ γ. Therefore, to determine the CT ofM, we
need only consider instances of triples in D.

Note that no matter whether the subdomain D is 3-
complete, the algorithm always generates ‘valid’ triads, in
the sense that any 3-tuple 〈α, γ, β〉 in the CT generated is in-
deed a c-triad of the calculus. However, the algorithm only
converges to the correct CT when the subdomain D is 3-
complete.

It is of course important questions to find 3-complete sub-
domains or to decide if a particular subdomain is 3-complete.
However, it seems that there is no general answer for arbitrary
qualitative calculi, since the questions are closely related to
the semantics of the calculi. For a particular calculus, e.g.
IA, this can be verified by formal analysis. Note that a super-
set of a 3-complete subdomain is also 3-complete. To make
sure a chosen subdomain D is 3-complete, we often apply
the algorithm on several of its supersets at the same time. If

the same number is generated for all subdomains, we tend to
believe that D is 3-complete and the generated table is the
CT ofM. Note a formal proof is necessary to guarantee the
3-completeness of D.

Even if a CT of M has been somehow obtained, our
method can be used to verify its correctness. Double-
checking is necessary since computing the CT is error-prone
(see the last paragraph of page 1). If there is a c-triad that does
not appear in the previously given table, something must be
wrong with the table, because the c-triads computed by Al-
gorithm 1 are always valid. It is also possible that the algo-
rithm terminates with a fragment of given composition table.
We then can make theoretical analysis to see if the missing
c-triads are caused by the incompleteness of the subdomain.
If so, we modify the subdomain and run the algorithm again,
otherwise, the missing c-triads are likely to be invalid c-triads.

Another thing we should keep in mind is how to generate
a triple of elements (a, b, c) from D. Note that if D is small
(e.g. in the cases of PA and IA), we can generate all possible
triples. IfD contains more than 1000 elements, then it will be
necessary to generate the triples randomly as there are over a
billion different triples. The distribution over D may affect
the efficiency of the algorithm. Assuming that we have very
limited knowledge of the calculusM, it is natural to take a, b
and c independently with respect to the uniform distribution.
We note that the better we understand the calculus, the more
appropriate the distribution we may choose.

To increase the efficiency of the algorithm, we sometimes
use the algebraic properties of the calculus. For example, if
the identity relation id is a basic relation, then by α ◦w id =
α = id ◦w α and id ⊆ α ◦w α∼, we need not compute the
c-triads involving id, where α∼ is the converse of α. This is
to say, the algorithm only needs to generate pairwise differ-
ent elements. As another example, suppose that the calculus
is closed under converse, i.e. the converse of a basic relation
is still a basic relation. Then in Algorithm 1 we need only
compute α, β, γ. The other relations and c-triads can be ob-
tained by replacing α′, β′, γ′ in the algorithm by, respectively,
α∼, β∼, γ∼. Similar results have been reported in [4].

In the following we examine three important examples. All
experiments were conducted on a 3.16 GHZ Intel Core 2 Duo
CPU with 3.25 GB RAM running Windows XP. Note the re-
sults rely on the random number generator. As our aim is to
show the feasibility of the algorithm rather than investigating
the efficiency issues, we only provide one group of the results
and do not make any statistical analysis.

3.1 The Interval Algebra and the INDU Calculus
We start with the best known qualitative calculus.

Example 3.1 (Interval Algebra). Let U be the set of closed
intervals on the real line. Thirteen binary relations between
two intervals x = [x−, x+] and y = [y−, y+] are defined
in Table 1. The Interval Algebra [2] is the Boolean algebra
generated by these thirteen JEPD relations.

The CT for IA has been computed in 1983 in Allen’s fa-
mous work. When applying Algorithm 1 to IA, we do not
consider all intervals. Instead, we restrict the domain to the
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Table 1: Basic IA relations and their converses, where x =
[x−, x+], y = [y−, y+] are two intervals.

Relation Symbol Converse Meaning
before b bi x− < x+ < y− < y+

meets m mi x− < x+ = y− < y+

overlaps o oi x− < y− < x+ < y+

starts s si x− = y− < x+ < y+

during d di y− < x− < x+ < y+

finishes f fi y− < x− < x+ = y+

equals eq eq x− = y− < x+ = y+

Table 2: Implementation for IA, where TRIAD is the num-
ber of c-triads recorded by running the algorithm on DM for
M = 4 to M = 20, LASTFOUND is the loop when the last
triad is first recorded

M 4 5 6 7 8 9 10 11 12
TRIAD 139 319 409 409 409 409 409 409 409

LASTFOUND 92 629 1501 878 2111 3517 728 697 932
M 13 14 15 16 17 18 19 20

TRIAD 409 409 409 409 409 409 409 409
LASTFOUND 11212 20249 7335 4343 3632 17862 5533 43875

set of all intervals contained in [0,M) that have integer nodes

DM = {[p, q]|p, q ∈ Z, 0 ≤ p < q < M},
and use uniform distribution to choose random intervals. It
is easy to see that the size of the domain is M(M − 1)/2.
Note that to converge fast and generate all entries, we need to
choose an appropriate M . If M is too small, then it is pos-
sible that some c-triads can not be instantiated. On the other
hand, if M is too big, relations that require one or more ex-
act matches (such as m in IA and m= in the INDU calculus
to be introduced in the next example) is very hard to gener-
ate, i.e. the probability of generating such an instance is very
small. For a new qualitative calculus, there is no general rules
for choosing M . Usually, pilot experiments are necessary to
better understand the characteristics of the calculus.

Table 2 summarises the results for M = 4 to M = 20. In
the experiment, we generate one million instances of triples
of elements for each domain DM . In all cases the dynamic
table becomes stable in less than 50,000 loops. When the
table becomes stable, the numbers of triads computed are not
always the correct one (that is 409). This is mainly because
the domain is too small. ForM bigger than or equal to six, we
always get the correct number of triads.2 The loops needed
(i.e. LASTFOUND) vary from less than a thousand to more
than 43 thousand (see Table 2). In general, the smaller the
domain is the more efficient the algorithm is.

Table 3: Implementation for INDU
M 6 7 8 9 10 11 12 13

TRIAD 1045 1531 1819 1987 2041 2053 2053 2053
LASTFOUND 3766 5753 10417 35201 35891 25031 12512 27728

M 14 15 16 17 18 19 20
TRIAD 2053 2053 2053 2053 2053 2053 2053

LASTFOUND 17223 24578 14758 22491 29034 49693 19772

2The 3-completeness of D6 follows from the fact that each con-
sistent IA network involving three variables has a solution in D6.

Example 3.2 (INDU calculus). The INDU calculus [16] is a
refinement of IA. For each pair of intervals a, b, INDU allows
us to compare the durations of a, b. This means, some IA re-
lations may be split into three sub-relations. For example, b
is split into three relations b<,b=,b>. Similar situations ap-
ply to m,o,oi,mi, and bi. The other seven relations have no
proper sub-relations. Therefore, INDU has 25 basic relations.

INDU is quite unlike IA. For example, it is not closed un-
der composition, and a path-consistent basic network is not
necessarily consistent [3].

Applying our algorithm to INDU, we use the same subdo-
main DM as for IA. From Table 3 we can see that D6 is no
longer 3-complete: more than 1000 c-triads do not appear in
the stable table. The table becomes complete in D11, which
has 2053 c-triads. The 3-completeness of D11 is confirmed
by the following proposition.

Proposition 3.2. INDU has at most 2053 c-triads.

Proof (sketch). For any three INDU relations α?1 , β?2 , γ?3

(?1, ?2, ?3 ∈ {<,=, >}), it is easy to see that 〈α?1 , γ?2 , β?3〉
is a valid c-triad of INDU only if 〈α, γ, β〉 is a valid
c-triad of IA and 〈?1, ?2, ?3〉 is a valid c-triad of PA.
We note that for IA relations in {d, s, f,eq, si, fi,di}, only
d<, s<, f<,eq=, si>, fi>,di> are valid INDU relations. It is
routine to check that there are only 2053 triples of INDU re-
lations that satisfy the above two constraints. We recall that
IA has 409 c-triads, and PA has 13 c-triads.

Since 2053 valid c-triads are recorded by running the algo-
rithm on D11 for INDU, we know INDU has precisely 2053
c-triads, and D11 is 3-complete for INDU. It seems that this
is the first time that the CT of INDU has been computed.

3.2 The Oriented Point Relation Algebra
In the OPRAm calculus, where m is a parameter character-
izing its granularity, each object is represented as an oriented
point (o-point for short) in the plane. Each o-point has an ori-
entation. Based on which, 2m − 1 other directions are intro-
duced according to the chosen granularity. Any other o-point
is located on either a ray or in a section between two con-
secutive rays. Each of these rays and sections is assigned an
integer from 0 to 4m−1. The relative directional information
of two o-points A,B is uniquely encoded in a pair of integer
numbers (s, t), where s is the ray or section of A in which B
is located, and t is the ray or section of B in which A is lo-
cated. Such a relation is also written as Am∠t

sB. In the case
that the locations of A and B coincide, the relation between
A and B is written as m∠sB, where s is the ray or section of
A in which the orientation of B is located. Therefore, there
are 4m(4m+ 1) basic relations in OPRAm.

There are two natural ways to represent o-points. One uses
the Cartesian coordinate system, the other use polar coordi-
nate system. We next show the choice of coordinate system
will significantly affect the experimental results, which are
compared with that of [15].

In the Cartesian coordinate system, an o-point P is repre-
sented by its coordination (x, y) and its orientation φ.
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(a) (b)

Figure 1: o-points in OPRA2 (a) 2∠2
7 and (b) 2∠1.

Definition 3.2. Let M1 and M2 be two positive integers. We
define a Cartesian based subdomain of OPRAm as

Dc(M1,M2) = {((x, y), φ) : x, y ∈ [−M1,M1]∩Z, φ ∈ ΦM2
},

where ΦM2 ≡ {0, 2π/M2, · · · , (M2 − 1)/M2 × 2π}.

Table 4: Implementation for OPRA1 on a Cartesian coordi-
nated domain Dc(M1,M2)

M2 2 3 4 5 6 8 10 12 16
TRIAD 148 1024 1056 1024 1024 1440 1024 1408 1440

M1 2 4 6 8 10
LASTFOUND (M2 = 8) 8082 35932 411893 881787 > 1000000

LASTFOUND (M2 = 16) 18618 295936 174490 > 1000000 > 1000000

Our experimental results show that, forOPRA1, the algo-
rithm converges and generates the correct CT for subdomains
with M1 ≥ 2 and M2 ∈ {8, 16}. That is, the smallest 3-
complete subdomain is Dc(2, 8).

For OPRA2, however, the algorithm does not compute
the desired CT in ten million loops. Actually, it is impossible
to compute the desired CT if we use Cartesian coordination.
Consider the following example. Suppose A,B,C are three
o-points, such that 4ABC is an acute triangle, and the ori-
entation of A is the same as the direction from A to B, the
orientations of B and C are similar. In this configuration,
we have A2∠1

0B, B2∠1
0C, and A2∠0

1C. This configuration,
however, cannot be realised in a Cartesian based subdomain.3

Based on the above observation, we turn to the polar co-
ordinated representation. In the polar coordinate system, an
o-point P is represented by its polar coordination (ρ, θ) and
its orientation φ.
Definition 3.3. Let M1 and M2 be two positive integers. We
define a polar coordinated subdomain of OPRAm as

Dp(M1,M2) = {((ρ, θ), φ) : ρ ∈ [0,M1] ∩ Z, θ, φ ∈ ΦM2},
where ΦM2

≡ {0, 2π/M2, · · · , (M2 − 1)/M2 × 2π}.
As in Cartesian based subdomains, the parameter M2 de-

termines if a domain is complete, while M1 determines
the efficiency of the algorithm. For OPRA1, we have

3The proof of this statement is much involved and omitted in this
paper.

Table 5: Implementation for OPRA2 on a Cartesian coordi-
nated domain Dc(M1,M2)

M2 2 4 6 8 10 12 16
TRIAD 2704 2704 21792 23616 21792 21792 35232

D(M1,M2) is a 3-complete subdomain if M1 ≥ 2 and
M2 = 6, 8, 10, 12, 16 (see Table 6); for OPRA2, we have
D(M1,M2) is 3-complete if M1 ≥ 4 and M2 = 6, 10, 12, 16
(see Table 7).

Table 6: Implementation for OPRA1 on a polar coordinated
domain Dp(M1,M2)

M2 2 3 4 5 6 8 10 12 16
TRIAD 52 1024 1032 1408 1440 1440 1440 1440 1440

M1 4 6 8 10 16
LASTFOUND (M2 = 8) 3072 4868 22327 10363 38843

LASTFOUND (M2 = 16) 26219 45831 121542 71205 146536

Table 7: Implementation for OPRA2 on a polar coordinated
domain Dp(M1,M2)

M2 2 3 4 6 8 10 12 16
TRIAD 400 24672 2128 36256 23616 36256 36256 36256

3.3 The Region Connection Calculus
Our algorithm works very well for simple objects like points
and intervals. We next consider a region-based topological
calculus RCC-8. It is worth noting that an automated deriva-
tion of the composition table was reported in [8] for a similar
calculus (the 9-intersection model).
Example 3.3 (RCC-8). Let U be the set of bounded plane
regions (i.e. nonempty regular closed sets in the plane). Five
binary relations are defined below. The RCC-8 algebra [17]
is the Boolean algebra generated by these five relations, the
identity relation EQ, and the converses of TPP and NTPP.

Relation Meaning
DC a ∩ b = ∅
EC a ∩ b 6= ∅, a◦ ∩ b◦ = ∅
PO a 6⊆ b, b 6⊆ a, a◦ ∩ b◦ 6= ∅

TPP a ⊂ b, a 6⊂ b◦
NTPP a ⊂ b◦

Plane regions are much more complicated to represent than
intervals or o-points. In most cases they are approximated by
polygons or digital regions (i.e., a subset of Z2). Further-
more, it is natural to take a shot on simple objects at the be-
ginning, since they are easy to deal with and important in ap-
plications. For RCC-8, we make experiments over two subdo-
mains: rectangles and disks. The experiments show that these
subdomains are good enough for our purpose, but when nec-
essary, we could also consider general polygons or bounded
digital regions.

We first consider subdomains whose elements are rectan-
gles sides of which are parallel to the two axes. We introduce
one parameter M , and require the four nodes be points in
[0,M)× [0,M)∩Z2. The complete RCC-8 CT has 193 table
entries. Since EQ ◦ EQ = EQ, we know 〈EQ,EQ,EQ〉
is a c-triad. The other 192 c-triads can be confirmed using
our algorithm. In Table 8, we show the results of running the
algorithm 10 million times and require M vary from 4 to 20.
We can see from the table that DM is a 3-complete subdo-
main only if M ≥ 6.

We next consider subdomains consisting of disks (see
Table 9). We introduce one parameter M , and require
x, y ∈ [0,M ] ∩ Z, r ∈ [1,M ] ∩ Z, where (x, y) and r
are, respectively, the centre and the radius of the closed disk
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Table 8: Implementation for RCC-8 using rectangles
M 4 5 6 8 10 15 20

TRIAD 114 177 192 192 192 192 192
LASTFOUND 14776 6513 2332646 56067 198255 261729 1521173

Table 9: Implementation for RCC-8 using disks
M 4 5 6 8 10 15 20

TRIAD 188 192 192 192 192 192 192
LASTFOUND 1759 8913 9489 25955 113757 942914 2961628

B((x, y), r)). In this case, M = 5 is good enough to gen-
erate all c-triads. We notice that the number of loops needed
(i.e. LASTFOUND) increases quickly as M increases. For
example, when M = 20, the dynamic table becomes stable
after nearly 3 million loops. This is mainly due to that an in-
stance of the c-triad 〈NTPP,NTPP,NTPP〉 is very hard
to generate. The ‘hard’ c-triad is, however, easy to prove.

4 Conclusion

In this paper, we introduced a general and simple semi-
automatic method for computing the composition tables of
qualitative calculi. The described method is a very natural
approach, and similar idea was used to derive composition
tables for an elaboration of RCC with convexity [6], and for
a ternary directional calculus [5]. The table computed in [6]
was acknowledged there as incomplete. The table computed
in [5] is complete, but its completeness was guaranteed by
manually checking all geometric configurations that satisfy
the table. Except these two works, very little attention has
been given to this natural approach in the literature on compo-
sition tables. We think a systematic examination is necessary
to discover both the strong and weak points of this approach.

We implemented the basic algorithm for several well-
known qualitative calculi, including the Interval Algebra,
INDU, OPRAm for m = 1 ∼ 4, and RCC-8. Our ex-
periments suggest that the proposed method works very well
for point-based calculi, but not so well for region-based cal-
culi. In particular, we established, as far as we know, for the
first time the correct CT for INDU, and confirmed the va-
lidity of the algorithm reported for the OPRA calculi [15].
Our method can be easily integrated into existing qualitative
solvers e.g. SparQ [21] or GQR [22]. This provides a partial
answer to the challenge proposed in [7].

Recently, Wolter proposes (in an upcoming article [23]) to
derive composition tables by solving systems of polynomial
(in)equations over the reals. This approach works well for
several point-based calculi, but not always generates the com-
plete composition table.

Our method relies on the assumption that the qualitative
calculus has a small ‘discretised’ 3-complete subdomain. All
calculi considered in this paper satisfy this property. It is still
open whether all interesting calculi appeared in the literature
satisfy this property. Future work will also discuss the appli-
cations of our method for reasoning with a customised com-
position table.
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