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Abstract
TheHSPandFF systemsarestate-of-the-art
domainindependentplanners. FF can his-
torically beseenasa successorof HSP. It is
basedon the sameideaslike HSP, but dif-
fers from its predecessorin a numberof de-
tails. FF outperformsHSPin many planning
domains. We have carriedout a large scale
experimentwherewe ran all configurations
of FF's new techniqueson a sizeablesetof
planningtasks.We describetheexperimen-
tal design,andpresentour findings. There-
sults give a clear picture of what the most
importantreasonsare for FF's performance
advantageoverHSP.

1 Intr oduction
TheHSPdomainindependentplanningsystem[Bonet
and Geffner, 1998] has successfullyparticipatedin
theAIPS-1998planningsystemscompetition[McDer-
mott, 2000]. This successhasinitiated a numberof
researchefforts, amongstothers[Bonet and Geffner,
1999;RefanidisandVlahavas,1999] Hoffmann's FF
system[Hoffmann,2000]. Both the HSPandthe FF
systemapproachplanningby heuristicsearch,andboth
usethesamebaseparadigm,first proposedby Bonetet
al. [1997], for deriving their heuristicfunctions.How-
ever, FF outperformsHSPon many planningdomains
btoh in termsof runningtime andin termsof solution
length. This hasfor examplebeenobservedin there-
cent AIPS-2000 planningsystemscompetition[Bac-
chusandNau,2001]. This raisesthequestion,if FF is
socloselyrelatedto HSP, thenwhy doesit performso
muchbetter?Whatmakesthedifferencebetweenthe
two systems?In thispaper, wedescribeanexperiment
thatwemadein orderto answerthatquestion.

FF, likeHSP, performssearchin thestatespace—the
spaceof all reachablestates—andestimatesthe diffi-
culty of searchstatesby ignoringnegativeinteractions.
FFdiffersfrom HSPin a numberof importantdetails:�
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1. FF computesits heuristicin a differentway than
HSP, takingaccountof positive interactions.

2. FF usesa differentvariantof Hill-climbing than
HSPdoes.

3. FF employs a pruning techniqueselectingthe
mostpromisingsuccessorsof any searchnode.

We have implementedexperimental code where
eachof FF's new techniquesis attachedto a switch,
making it possibleto turn them on and off indepen-
dentlyof eachother. Usingall configurationsof tech-
niques,we measuredruntimeandsolutionlengthper-
formanceon a largesetof planningtasks.Afterwards,
for eachpair of configurationsin all planningdomains
we used,we decidedwhetherperformancewassignif-
icantly improvedor degraded.In thefollowing we de-
scribethe experimentaldesign,and presentour find-
ings.

Section2 givesa shortsummaryof thebackground
in domainindependentplanningandin HSP'sandFF's
algorithms. Section3 describesour experimentalde-
sign,Sections4 and5 presentour findingsconcerning
runningtimeandsolutionlengthbehavior respectively.
Section6 concludes.

2 Background
One of the mostpopularplanningframeworks is the
STRIPS formalism[FikesandNilsson,1971], which
is basedon propositionallogics. A planningtask �
in STRIPS is a triple �����
	��

������ where 	 is the
setof actions,
 is the initial state,and � is the goal
condition. 
 and � aresetsof atomicfacts,andeach
action ����	 is a triple ����� pre������� add�
����� del�������
containingtheaction'sprecondition-,add-,anddelete-
lists, respectively, which areall setsof atoms. World
statesarealsorepresentedassetsof atoms.An action� is applicablein a state � if pre����� �!� . Then,the
resultingstate"$#&%('*),+��-�������$�.�
�0/ add�
���1�32 del����� .
A planis asequenceof actionsthat,whensuccessively
appliedto the initial state,yieldsa state � that fulfills
thegoalcondition, �4�5� .

HSPandFFbothsearchin thestatespace—thesetof
all reachablestates—startingat theinitial stateandter-
minatingwhena goalstateis found. Searchis guided
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by a heuristicfunction 6 that is basedon relaxingthe
planning7 taskas follows. For a task �8����	9�

:�;�<� ,
the relaxed taskto � is �9=>�?�
	@=-�

:�;��� where 	A=B�C � pre� add��DE�$FG� pre� add� del�H�I	KJ . In words,there-
laxationignoresnegativeinteractionsby assumingthat
all deletelists areempty. WhenHSPor FF consider
somesearchstate� , they bothobtain 6L�
�M� by estimat-
ing the solutionlengthof the relaxed task �
	@=-�����;��� ,
i.e., the lengthof a relaxedactionsequenceachieving
thegoal(thelengthof a shortestsuchsequencewould
beanadmissibleheuristic,but is NP-hardto compute).
While HSP's estimatesare basedon computingcer-
tain weightvaluesfor all facts—assumingall factsare
achieved independently—FFcomputesan explicit so-
lution to �
	 = �����;��� , whichcantakeaccountof positive
interactions.

Both HSP and FF use variationsof local search,
in the hope to find a goal state fast. While the
searchmechanismin HSPis a commonform of Hill-
climbing whereto eachsearchstateonebestsucces-
sor is pickedat random[BonetandGeffner, 1998], FF
usesa so-calledenforcedform of Hill-climbing [Hoff-
mann, 2000]. There, facing an intermediatesearch
state� , themechanismperformscompletebreadthfirst
searchuntil it finds a state �3= that is strictly better,
i.e., 6N�-�O=P�9QR6N�-�3� . HSP's searchmechanismoutputs
assolutionplanthesequenceof all actionsit hasused
on its way from theinitial stateto thegoal.FF outputs
the concatenationof all actionsequencesthat breadth
first searchfoundasconnectionfrom thestates� to � = .

Onefinal differencebetweenFF andHSPis that to
any searchstate � , FF expandsonly a subsetof the
state's successors,namelythosethat aregeneratedby
the so-calledhelpful actions S4�
�3� . Loosely speak-
ing, thoseareapplicableactionsthat have something
in commonwith therelaxedsolutionthatFF's heuris-
tic functionhascomputedto � [Hoffmann,2000].

Planning tasks are groupedtogether in domains,
which constitutea family of relatedtasks. For ex-
ample in the Blocksworld domain, the plannerfaces
a collection of blocks that are assembledin stacks
on a table, and needsto rearrangethe blocks. Plan-
ning tasks(instances)thendefinethe initial andgoal
stacksof all blocks. In our experiments,we have
lookedat a collectionof 20 domainsoftenusedin the
planningcommunity, including all domainsfrom the
AIPS-1998andAIPS-2000competitions:Assembly,
two Blocksworlds(with andwithoutrobotarm),Brief-
caseworld, Bulldozer, Freecell, Fridge, Grid, Gripper,
Hanoi, Logistics, Miconic-ADL, Miconic-SIMPLE,
Miconic-STRIPS, Movie, Mprime, Mystery, Sched-
ule, Tireworld, andTsp. Fifteenof theseareSTRIPS
domains,the othersarespecifiedin the moreexpres-
sive ADL language.

3 Experimental Design
As said, we have implementedexperimental code
where eachof FF's new techniquesis attachedto a

switch, turningthetechniqueon or off. Theeightdif-
ferent configurationsof the switchesyield eight dif-
ferent heuristicplanners. With all switchesoff, we
imitatedHSP. Concerningthe goal distanceestimates
switch and the pruning techniquesswitch, we imple-
mentedthe original methods. Concerningthe search
strategy, we usedthe following simple Hill-climbing
design:T

Always selectone bestevaluatedsuccessorran-
domly.T
Keepa memoryof paststatesto avoid cycles in
theHill-climbing path.T
Countthe numberof consecutive timesin which
thechild of a nodedoesnot improvetheheuristic
estimate.If thatcounterexceedsa threshold,then
restart,wherethe thresholdis U timesthe initial
state'sgoaldistanceestimate.T
Keepvisited nodesin memoryacrossrestarttri-
als in orderto avoid multiple computationof the
heuristicfor thesamestate.

In HSP, somemorevariationsof restarttechniques
areimplemented.In personalcommunicationwith Blai
BonetandHectorGeffner, we decidednot to imitate
thosevariations—whichaffect behavior only in a few
specialcases—andusethesimplestpossibledesignin-
stead.

To obtaindata,wesetupa largeexamplesuite,con-
taining a total of 939 planningtasksfrom our 20 do-
mains. In Hanoi, therewere V tasks—3to 10 discs
to be moved—intheotherdomains,we usedfrom WEX
to YEZ differentinstances.As very small instancesare
likely to producenoisydata,we tried to avoid thoseby
rejectingtasksthatweresolvedby FF in lessthan X\[]U
seconds.Instanceswereeither taken from published
distributionsor randomlygenerated.

For eachof theeightconfigurationsof switches,we
ran the respective planneron all tasksin our exam-
plesuite.ThoseconfigurationsusingrandomizedHill-
climbing were run five times on eachtask, and the
resultsaveragedafterwards. To completethe experi-
mentsin a reasonabletime,werestrictedmemorycon-
sumptionto 128MByte, andtime consumptionto 150
seconds. We examinedthe dataseparatelyfor each
domain,asour algorithmictechniquestypically show
similarbehavior for all taskswithin a domain.

4 Running Time
For our running time investigation,if a configuration
did not find a solutionplan to a giventask,we setthe
respective runningtime valueto the time limit of 150
seconds.In the following, we designateeachswitch
configurationby 3 letters: “H” standsfor helpful ac-
tionson,“E” standsfor EnforcedHill-climbing on,“F”
standsfor FF estimateson. If a switch is turnedoff,
the respective letter is replacedby a “ ^ ”: FF is con-
figuration“HEF”, our HSPimitation is “ ^_^`^ ”, and
“H ^K^ ”, for example,is Hill-climbing with HSPgoal
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distancesandhelpful actionspruning. For a first im-
pression7 of our runningtime results,seetheaveraged
valuesperdomainin Figure1.

Figure1 shows, for eachdomainandeachconfigu-
ration, theaveragedrunningtime over all instancesin
that domain. As the instancesin eachdomainarenot
all the samesize, but typically scalefrom smallerto
very largetasks,averagingover all runningtimesis of
courseaverycrudeapproximationof runtimebehavior.
Thedatain Figure1 providesa generalimpressionof
our runtimeresultsperdomain,andgivesa few hints
on the phenomenathat might be presentin the data.
Compare,for example, the valueson the right hand
side—thoseplannersusing helpful actions—tothose
on the left hand side—thoseplannersexpandingall
sonsof searchnodes.In Briefcaseworld andBulldozer,
theright handsidevaluesarehigher, but in almostall
otherdomains,they areconsiderablylower. This is es-
pecially true for the two rightmostcolumns,showing
valuesfor plannersusinghelpful actionsandEnforced
Hill-climbing. This indicatesthat themainsourcesof
performancelie in thepruningtechniqueandthesearch
strategy—lookingat therightmost“HE ^ ” and“HEF”
columns,which only differ in the goal distanceesti-
mate,thosetwo configurationvaluesareusuallyclose
to eachother, comparedto theotherconfigurationsin
thesamedomain.

To put our observationson a solid basis,we looked,
for eachdomain,ateachpairof configurationsin turn,
amountingto U�Xbadc;e�fg �ihEYEX pairs of plannerper-
formances. For eachsuchpair, we decidedwhether
one configurationperformedsignificantly better than
theotherone. To decidesignificance,we countedthe
numberof tasksthat one configurationsolved faster.
Wefoundthisto beamorereliablecriterionthanthings
likethedifferencebetweenrunningtimesfor eachtask.
As tasksgrow in size, rather than being taken from
a populationwith finite meansize, parametricstatis-
tical procedureslike computingsignificanceintervals
for runtimedifferencesmakequestionableassumptions
aboutthedistributionof data.Wethususedthefollow-
ing non-parametricstatisticaltest, known asthe two-
tailed sign test [Siegel andCastellan,1988]. Assume
thatbothplanners,A andB, performequallyonagiven
domain. Then,givena randominstancefrom the do-
main,theprobability thatB is fasterthanA shouldbe
equalto the probability that A is fasterthanB. Take
this as the null hypothesis.Under that hypothesis,if
A andB behave differently on an instance,thenB is
fasterthanA with probability jg . Thus,thetaskswhere
B is fasterare distributed over the taskswith differ-
entbehavior accordingto a Binomial distribution withk � jg . Computetheprobabilityof theobservedout-
comeunderthenull hypothesis,i.e.,if thereare l tasks
whereA andB behavedifferently, and m taskswhereB
is faster, thencomputethe probability that, according
toabinomialdistributionwith k � jg , atleastm positive
outcomesareobtainedin l trials. If that probability
is lessor equalthan [ X\n , then reject the null hypoth-

esisandsay that B performssignificantlybetterthan
A. Symmetrically, decidewhetherA performssignifi-
cantlybetterthanB. We remarkthatin all domainsex-
ceptMovie thetaskswheretwo configurationsbehaved
equallywereexactly thosethatcouldnot besolvedby
eitherof theconfigurations.In YEXpo of thecaseswhere
we found that oneconfigurationB performedsignifi-
cantly betterthananotherconfiguration,B wasfaster
onall instanceswith differentbehavior. In qrn&o , B was
fasteronall but onesuchinstance.

We are particularly interestedin pairs A and B of
configurationswhereB resultsfrom A by turningone
of theswitcheson, leaving the two othersunchanged.
Decidingaboutsignificantimprovementin suchcases
tells us aboutthe effect that the respective technique
hason performancein a domain.Thereare12 pairsof
configurationswhereoneswitchis turnedon. Figure2
showsourfindingsin thesecases.

Figure2 is to beunderstoodasfollows. It showsour
resultsfor the “F”, “E”, and“H” switches,which be-
comeactivein turn from left to right. For eachof these
switches,therearefour configurationsof thetwo other,
background,switches,displayedby four columnsin
the table. In eachcolumn,thebehavior of therespec-
tive backgroundconfigurationwith the active switch
turnedoff is comparedto thebehavior with theactive
switch turnedon. If performanceis improvedsignifi-
cantly, the tableshows a “ s ”, if it is significantlyde-
graded,the tableshows a “ ^ ”, andotherwisethe re-
spectivetableentryis empty. Forexample,considerthe
top left corner, wherethe“F” switchis active,andthe
backgroundconfigurationis “ ^K^ ”, i.e., Hill-climbing
without helpful actions.PlannerA is “ ^t^_^ ”, using
HSPdistances,andplannerB is “ ^K^ F”, usingFFdis-
tances.B'sperformanceis significantlybetterthanA's,
indicatedby a “ s ”.

Theleftmostfour columnsin Figure2 show our re-
sultsfor HSPdistanceestimatesversusFFdistancees-
timates.Clearly, thelatterestimatesaresuperiorin our
domains,in the sensethat for eachbackgroundcon-
figuration the behavior getssignificantly improved in
9 to 12 domains. In contrast,thereareonly 5 cases
altogetherwhereperformancegetsworse.Thesignifi-
cancesarequitescatteredover thedomainsandback-
groundconfigurations,indicatingthata lot of thesig-
nificancesresult from interactionsbetweenthe tech-
niquesthat occur only in the context of certain do-
mains.For example,performanceis improvedin Bull-
dozerwhenthebackgroundconfigurationdoesnotuse
helpful actions, but degradedwhen the background
configurationusesHill-climbing with helpful actions.
Thiskind of behavior cannotbeobservedin any other
domain. Thereare 4 domainswhereperformanceis
improvedin all but onebackgroundconfiguration.Ap-
parentlyin thesecasessomeinteractionbetweenthe
techniquesoccursonly in one specificconfiguration.
We remark that often running times with FF's esti-
matesareonly alittle betterthanwith HSP'sestimates,
i.e.,behavior getsimprovedreliablyoverall instances,
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uvudu u:u F u E u u EF H u:u H u F HE u HEF
Assembly 117.39 31.75 92.95 61.10 47.81 20.25 20.34 16.94
Blocksworld 4.06 2.53 8.37 30.11 1.41 0.83 0.27 6.11
Blocksworld-arm 0.60 8.81 80.02 56.20 1.21 10.13 25.19 40.65
Briefcaseworld 16.35 5.84 66.51 116.24 150.00 150.00 150.00 150.00
Bulldozer 4.47 3.24 31.02 15.74 81.90 126.50 128.40 141.04
Freecell 65.73 46.05 54.15 51.27 57.35 42.68 43.99 41.44
Fridge 28.52 53.58 31.89 52.60 0.85 0.69 1.88 2.77
Grid 138.06 119.53 115.05 99.18 115.00 95.10 18.73 11.73
Gripper 2.75 1.21 15.16 1.00 1.17 0.48 0.17 0.11
Hanoi 93.76 75.05 6.29 3.91 150.00 78.82 4.47 2.70
Logistics 79.27 102.09 79.77 111.47 36.88 39.69 10.18 11.94
Miconic-ADL 150.00 150.00 102.54 54.23 142.51 128.28 95.45 59.00
Miconic-SIMPLE 2.61 2.01 2.47 1.93 1.35 0.86 0.55 0.56
Miconic-STRIPS 2.71 2.32 4.84 1.53 1.44 1.01 0.64 0.36
Movie 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Mprime 73.09 69.27 82.89 81.43 47.09 58.45 18.56 26.62
Mystery 78.54 90.55 71.60 86.01 75.73 95.24 85.13 86.21
Schedule 135.50 131.12 143.59 141.42 77.58 38.23 12.23 13.77
Tireworld 135.30 110.38 119.22 121.34 121.13 105.67 97.41 85.64
Tsp 4.11 0.82 2.45 0.75 2.48 0.57 0.15 0.07

Figure1: Averagedrunningtimeperdomainfor all eightconfigurationsof switches.

but only by a small factor(to getan ideaof that,com-
parethedifferencesbetweenaveragerunningtimesin
Figure1, for configurationswhereonly thedistancees-
timatechanges).In 5 domains,FF'sestimatesimprove
performanceconsistentlyoverall backgroundconfigu-
rations,indicatingarealadvantageof thedifferentdis-
tanceestimates.

Comparing Hill-climbing versus Enforced Hill-
climbing,i.e.,lookingatthefourcolumnsin themiddle
of Figure2, theobservationis this. Thedifferentsearch
techniqueis a bit questionablewhen the background
configurationdoesnot usehelpful actions,but other-
wise EnforcedHill-climbing yields excellent results:
without helpful actionsperformancegetsdegradedal-
mostasmany timesasit getsimprovedwhereaswith
helpful actionsEnforcedHill-climbing improvesper-
formancesignificantly in 16 of our 20 domains,be-
ing degradedonly in Fridge. We draw two conclu-
sions. First, whetherone or the other searchstrat-
egy is adequatedependsvery muchon thedomain.A
simple examplefor that is the Hanoi domain,where
Hill-climbing always restartsbefore it can reachthe
goal—onall pathsto thegoal, thereareexponentially
many statetransitionswherethesonhasnobettereval-
uation than the father. Second,there is an interac-
tion betweenEnforcedHill-climbing and helpful ac-
tionspruningthatoccursconsistentlyacrossalmostall
of our planningdomains. This can be explainedby
the effect that the pruning techniquehason the dif-
ferentsearchstrategies. In Hill-climbing, helpful ac-
tionspruningpreventstheplannerfrom looking at too
many superfluoussuccessorson eachsinglestatethat
a pathgoesthrough. This saves time proportionalto
the lengthof the path. The effectson EnforcedHill-
climbingaremuchmoredrastic.There,helpfulactions

prunesoutunnecessarysuccessorsof eachstateduring
a breadthfirst search,i.e., it cutsdown the branching
factor, yielding performancespeedupsexponentialin
thedepthsthatareencountered.

We finally compareconsiderationof all actionsver-
susconsiderationof only the helpful ones. Look at
the rightmostfour columnsof Figure2. Theobserva-
tion is simply thathelpful actionsarereally helpful—
they improve performancesignificantly in almostall
of our planningdomains. This is especiallytrue for
thosebackgroundconfigurationsusingEnforcedHill-
climbing,dueto thesameinteractionthatwehaveout-
lined above. In somedomains,helpful actionspruning
imposesa very rigid restrictionon the searchspace:
in Schedulewe foundthatstatescanhave hundredsof
successors,whereonly about Upo of thoseareconsid-
eredhelpful. In otherdomainsonly a few actionsare
pruned,like in Hanoi whereat mostthreeactionsare
applicablein eachstatewhich areall consideredhelp-
ful in most of the cases.Even a small degreeof re-
strictiondoesusuallyleadto asignificantimprovement
in performance.In two domains,Briefcaseworld and
Bulldozer, helpfulactionscanpruneout toomany pos-
sibilities, i.e., they cut away solutionpaths.This hap-
pensbecausetherethe relaxedplan canignorethings
thatarecrucialfor solvingtherealtask.

5 Solution Length

We also investigatedthe effects that FF's new tech-
niqueshave on solution length. Comparingtwo con-
figurationsA andB, wetookasthedatasettherespec-
tive solutionlengthfor thosetasksthat both A andB
managedto solve—obviously thereis not muchpoint
in comparingsolutionlengthwhenoneplannercannot
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F E H
domain u:u u E H u HE u:u u F H u HF u:u u F E u EF
Assembly w w w w u w w w w w w
Blocksworld w w u w u w w w w w w
Blocksworld-arm w u u u u w w
Briefcaseworld w u u u u u u u
Bulldozer w w u u u u u u u u
Freecell w w w w w w w w w w w w
Fridge u u u u u w w w w
Grid w w w w w w w w w w
Gripper w w w w u w w w w w w w
Hanoi w w w w w
Logistics u u w u w w w w w w
Miconic-ADL w w w w w w w w w
Miconic-SIMPLE w w w w w w w w w w w
Miconic-STRIPS w w w w w w w w w w w
Movie w w w w
Mprime w w w w w w w w w
Mystery w w w w
Schedule w w u w w w w w w
Tireworld w w w u w w w w w
Tsp w w w w w w w w w w w w

Figure2: Theeffectof turningona singleswitch,keepingtheothersunchanged.Summarizedin termsof signifi-
cantlyimprovedor degradedrunningtimeperformanceperdomain,andperswitchconfigurations.

find a solutionat all. We thencountedthe numberl
of taskswhereA and B behaved differently, and the
numberm whereB's solutionwasshorter, anddecided
about significancelike describedin the last section.
Figure3 showsourresultsin thosecaseswhereasingle
switchis turned.

Thedatain Figure3 isorganizedin theobviousman-
ner analogousto Figure2. A first glanceat the table
tells us that FF's new techniquesare also useful for
shorteningsolution length in comparisonto HSP, but
not asusefulasthey arefor improving runtimebehav-
ior. Let us focuson the leftmost four columns,HSP
distanceestimatesversusFF distanceestimates.The
observationsare that, with EnforcedHill-climbing in
the background,FF estimatesoften result in shorter
plans,andthat therearetwo domainswheresolution
lengthsare improved acrossall backgroundconfigu-
rations. Concerningthe secondobservation,having a
closerlook at thosetwo domainswe found that there
FF's heuristicrecognizespropertiesof thedomainthat
HSP's heuristicdoesn't notice. Concerningthe first
observation,improvedsolutionlengthswhenEnforced
Hill-climbing is in the background,we do not have a
good explanationfor this. It seemsthat the greedy
wayin whichEnforcedHill-climbing buildsits plansis
justbettersuitedwhendistanceestimatesarecautious,
i.e., low.

Considerthefour columnsin themiddleof Figure3,
Hill-climbing versusEnforcedHill-climbing. There
aremany caseswherethedifferentsearchstrategy re-
sultsin shorterplans.We figurethat this is dueto the
differentplateaubehavior that thesearchmethodsex-
hibit, i.e., their behavior in flat regionsof the search

space.EnforcedHill-climbing entersa plateausome-
where,performscompletesearchfor astatewith better
evaluation,andaddsthe shortestpath to that stateto
its currentplan prefix. When Hill-climbing entersa
plateau,it strollsaroundmoreor lessrandomlyuntil it
hits a statewith betterevaluationor hasenoughof it
andrestarts.All theactionson its journey to thebetter
statearekeptin thefinal plan.

Finally, wecompareconsiderationof all actionsver-
susconsiderationof only the helpful ones,resultsde-
pictedin therightmostfour columnsof Figure2. Com-
ing a bit unexpected,there is only one single case
wheresolutionlengthperformanceis degradedby turn-
ing on helpful actions. This indicatesthat the actions
ontheshortestpathto thegoalare,in fact,usuallycon-
sideredhelpful—unlessall solution pathsare thrown
away, asis sometimesthe caseonly in the Briefcase-
world and Bulldozer domains. Pruning the search
spacewith helpfulactionssometimesevenleadsto sig-
nificantly shortersolution plans,especiallywhen the
underlyingsearchmethodis Hill-climbing. Though
this may soundparadoxical,thereis a simple expla-
nation to it. Considerwhat we said above aboutthe
plateaubehavior of Hill-climbing, randomlyaddingac-
tionsto thecurrentplanin thesearchfor a betterstate.
If sucha searchengineis armedwith the helpful ac-
tions successorschoice,focusingit into the direction
of the goals, it might well take lessstepsto find the
wayoff aplateau.

6 Conclusionand (some)Outlook
We have carried out a large-scaleexperimentcom-
paring different configurationsof FF with its prede-
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F E H
domain u:u u E H u HE u:u u F H u HF u:u u F E u EF
Assembly w w w w w w w
Blocksworld w w w w w w
Blocksworld-arm w w w w w w w w
Briefcaseworld w w w
Bulldozer w w
Freecell w w w w
Fridge u u w w w w w
Grid w w w w w w w
Gripper w w w w w u u
Hanoi
Logistics w u w w w w w w w
Miconic-ADL w w w w
Miconic-SIMPLE u w w w w w w w w w
Miconic-STRIPS w w w w w w w w w w
Movie u u u u
Mprime
Mystery
Schedule w u w w
Tireworld w w
Tsp

Figure3: Theeffectof turningona singleswitch,keepingtheothersunchanged.Summarizedin termsof signifi-
cantlyimprovedor degradedsolutionlengthperformanceperdomain,andperswitchconfigurations.

cessorHSP. The resultsshow that the main sources
of improved runtimeperformancein FF arethe help-
ful actionspruning techniqueand the EnforcedHill-
climbing searchstrategy, as well as their interaction.
Concerningimprovedsolutionlengthperformance,the
reasonfor that is mainly the new searchstrategy and
its (yet unexplained)interplay with the different dis-
tanceestimates.We believe that our experimenthas
alsovaluefor theplanningcommunityin that it gives
anexampleof a largescaleempiricalstudyoncompar-
ative plannerperformance.Studieslike thatareregret-
tably rarein theplanningliterature.

Oneideafor futureresearcharisesfromspecialcases
thatoccuredin ourexperiments.An exampleis Fridge.
While in mostotherdomainsEnforcedHill-climbing
with helpful actionspruningis mostadequate,in this
domainsimpleHill-climbing hasclearruntimeadvan-
tages.OtherunusualexamplesareBriefcaseworld and
Bulldozerwherehelpful actionscutsout thesolutions,
or LogisticswhereHSP's estimatessometimesleadto
betterruntimeperformance.The challengeis to find
waysof automaticallyrecognizingsuchspecialcases,
in orderto configurethemostappropriatesolvingtech-
nology.
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Geffner. HSP:Heuristicsearchplanner. In AIPS-
98PlanningCompetition, Pittsburgh,PA, 1998.

[BonetandGeffner, 1999] Blai Bonet and Héctor
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