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Abstract

The HSPandFF systemsarestate-of-the-art
domainindependenplanners. FF can his-
torically be seenasa successoof HSR It is
basedon the sameideaslike HSR but dif-
fersfrom its predecessan a numberof de-
tails. FF outperformsHSPin mary planning
domains. We have carriedout a large scale
experimentwherewe ran all configurations
of FF's new techniqueson a sizeableset of
planningtasks. We describethe experimen-
tal design,andpresenbpur findings. There-
sults give a clear picture of what the most
importantreasonsare for FF's performance
adwantageover HSP

1 Intr oduction

The HSPdomainindependenplanningsystem Bonet
and Geffner, 1999 has successfullyparticipatedin

the AIPS-1998planningsystemsompetition McDer-

mott, 2004. This succesdasinitiated a numberof

researchefforts, amongstothers[Bonet and Geffner,

1999; Refanidis and Vlahavas, 1999 Hoffmann's FF

system[Hoffmann,200d. Both the HSP andthe FF

systemapproactplanningby heuristicsearchandboth

usethesamebaseparadigmfirst proposedy Bonetet

al. [1997], for deriving their heuristicfunctions. How-

ever, FF outperformsHSP on mary planningdomains
btohin termsof runningtime andin termsof solution
length. This hasfor examplebeenobsenedin there-

cent AIPS-2000 planning systemscompetition[Bac-

chusandNau,2001]. Thisraiseshe questionjf FFis

socloselyrelatedto HSE thenwhy doesit performso

muchbetter? What makesthe differencebetweernthe

two systems?n this paperwe describeanexperiment
thatwe madein orderto answetthatquestion.

FF, like HSR performssearchin thestatespace—the
spaceof all reachablestates—andstimateghe diffi-
culty of searclstatedy ignoringnegative interactions.
FF differsfrom HSPin anumberof importantdetails:
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1. FF computests heuristicin a differentway than
HSR takingaccounbf positive interactions.

2. FF usesa differentvariantof Hill-climbing than
HSPdoes.

3. FF employs a pruning techniqueselectingthe
mostpromisingsuccessorsf any searcmode.

We have implementedexperimental code where
eachof FF's new techniqueds attachedo a switch,
makingit possibleto turn themon and off indepen-
dently of eachother Usingall configurationsof tech-
niques,we measureduntimeandsolutionlengthper
formanceon a large setof planningtasks.Afterwards,
for eachpair of configurationsn all planningdomains
we used,we decidedwhetherperformanceavassignif-
icantlyimprovedor degraded.In thefollowing we de-
scribethe experimentaldesign,and presentour find-
ings.

Section2 givesa shortsummaryof the background
in domainindependenplanningandin HSP'sandFF's
algorithms. Section3 describesur experimentalde-
sign, Sections4 and5 presenbur findingsconcerning
runningtime andsolutionlengthbehaior respectiely.
Section6 concludes.

2 Background

One of the most popularplanning frameworks is the
STRIPS formalism[FikesandNilsson,1971], which
is basedon propositionallogics. A planningtask P
in STRIPS is atriple P = (A,Z,G) whereA is the
setof actions,Z is the initial state,andG is the goal
condition. Z and G aresetsof atomicfacts,andeach
actiono € A is atriple o = (pre(o),add o), del(o))
containingtheaction's precondition-add-,anddelete-
lists, respectrely, which areall setsof atoms. World
statesarealsorepresentedssetsof atoms.An action
o is applicablein a stateS if pre(o) € S. Then,the
resultingstateResult(S,0) = (S U addo)) \ del(o).
A planis asequencef actionsthat,whensuccessiely
appliedto theinitial state,yieldsa stateS thatfulfills
thegoalcondition,G C S.

HSPandFFbothsearchn thestatespace—thsetof
all reachablestates—startingttheinitial stateandter
minatingwhena goal stateis found. Searchs guided



by a heuristicfunction h thatis basedon relaxingthe
planningtaskasfollows. For atask? = (4,Z,0),
therelaxedtaskto P is P! = (4',7,G) whered’ =
{(pre,add 0) | (pre,add del) € A}. In words,there-
laxationignoresnegative interactiondy assuminghat
all deletelists areempty WhenHSP or FF consider
somesearctstateS, they bothobtainh(S) by estimat-
ing the solutionlength of the relaxed task (4, S, G),
i.e., thelengthof arelaxed actionsequenceachiezing
the goal (the lengthof a shortessuchsequencevould
beanadmissibleneuristic,butis NP-hardto compute).
While HSP' estimatesare basedon computingcer
tain weightvaluesfor all facts—assumingll factsare
achieved independently—FEomputesan explicit so-
lutionto (4', S, G), which cantake accounbf positive
interactions.

Both HSP and FF use variationsof local search,
in the hope to find a goal state fast. While the
searchmechanismn HSPis a commonform of Hill-
climbing whereto eachsearchstateone bestsucces-
soris pickedat random[BonetandGeffiner, 1999, FF
usesa so-calledenforcedform of Hill-climbing [Hoff-
mann, 200d. There, facing an intermediatesearch
stateS, themechanisnperformscompletebreadtHirst
searchuntil it finds a stateS’ that is strictly better
i.e., h(S") < h(S). HSPs searchmechanisnoutputs
assolutionplanthe sequencef all actionsit hasused
onits way from theinitial stateto the goal. FF outputs
the concatenatiomf all actionsequencethat breadth
first searcfoundasconnectiorfrom thestatesS to S'.

Onefinal differencebetweenFF andHSPis thatto
ary searchstateS, FF expandsonly a subsetof the
states successorgjamelythosethat aregeneratedy
the so-calledhelpful actions H(S). Loosely speak-
ing, thoseare applicableactionsthat have something
in commonwith therelaxed solutionthat FF's heuris-
tic functionhascomputedo S [Hoffmann,200d.

Planning tasks are groupedtogetherin domains,
which constitutea family of relatedtasks. For ex-
amplein the Blocksworld domain, the plannerfaces
a collection of blocks that are assembledn stacks
on a table, and needsto rearrangethe blocks. Plan-
ning tasks(instances}hendefinethe initial and goal
stacksof all blocks. In our experiments,we have
looked at a collectionof 20 domainsoften usedin the
planningcommunity including all domainsfrom the
AIPS-1998 and AIPS-2000 competitions: Assembly
two Blocksworlds (with andwithoutrobotarm), Brief-
casevorld, Bulldozer Freecell Fridge Grid, Gripper;
Hanoi Logistics Miconic-ADL, Miconic-SIMPLE,
Miconic-STRIPS, Movie, Mprime, Mystery, Sched-
ule, Tireworld, and Tsp Fifteenof theseare STRIPS
domains,the othersare specifiedin the more expres-
sive ADL language.

3 Experimental Design

As said, we have implementedexperimental code
where eachof FF's new techniquess attachedto a

switch, turningthetechniqueon or off. The eightdif-
ferent configurationsof the switchesyield eight dif-
ferent heuristic planners. With all switchesoff, we
imitated HSP Concerningthe goal distanceestimates
switch and the pruning techniquesswitch, we imple-
mentedthe original methods. Concerningthe search
stratgy, we usedthe following simple Hill-climbing
design:

¢ Always selectone bestevaluatedsuccessoran-
domly.

o Keepa memoryof paststatesto avoid cyclesin
theHill-climbing path.

e Countthe numberof consecutie timesin which
thechild of anodedoesnotimprove the heuristic
estimatelf thatcounterexceedsathresholdthen
restart,wherethe thresholdis 2 timesthe initial
states goaldistanceestimate.

o Keepvisited nodesin memoryacrossrestarttri-
alsin orderto avoid multiple computationof the
heuristicfor the samestate.

In HSR somemore variationsof restarttechniques
areimplementedIn personatommunicatiomwith Blai
Bonetand Hector Geffner, we decidednot to imitate
thosevariations—whichaffect behaior only in a few
specialcases—andsethe simplestpossibledesignin-
stead.

To obtaindata,we setup alargeexamplesuite,con-
taining a total of 939 planningtasksfrom our 20 do-
mains. In Hanoj therewere 8 tasks—3to 10 discs
to be moved—inthe otherdomainswe usedfrom 30
to 69 differentinstances.As very smallinstancesare
likely to producenoisydata,we tried to avoid thoseby
rejectingtasksthatweresolved by FF in lessthan0.2
seconds. Instanceswere either taken from published
distributionsor randomlygenerated.

For eachof the eight configurationf switcheswe
ran the respectie planneron all tasksin our exam-
ple suite. ThoseconfigurationaisingrandomizedHill-
climbing were run five times on eachtask, and the
resultsaveragedafterwards. To completethe experi-
mentsin areasonabléime, we restrictedmemorycon-
sumptionto 128 MByte, andtime consumptiorio 150
seconds. We examinedthe data separatelyfor each
domain,asour algorithmictechniquegypically shov
similar behaior for all taskswithin adomain.

4 Running Time

For our runningtime investigation,if a configuration
did not find a solutionplanto a giventask,we setthe
respectie runningtime valueto the time limit of 150
seconds.In the following, we designateeachswitch
configurationby 3 letters: “H” standsfor helpful ac-
tionson,“E” standdor EnforcedHill-climbing on,“F”

standsfor FF estimateson. If a switchis turnedoff,

the respectie letteris replacedby a “—": FFis con-
figuration“HEF”, our HSPimitationis “— — —", and
“H—-", for example,is Hill-climbing with HSPgoal



distancesand helpful actionspruning. For a first im-
pressionof our runningtime results,seethe averaged
valuesperdomainin Figurel.

Figurel shaws, for eachdomainandeachconfigu-
ration, the averagedrunningtime over all instancesn
thatdomain. As the instancesn eachdomainare not
all the samesize, but typically scalefrom smallerto
very largetasks,averagingover all runningtimesis of
courseavery crudeapproximatiorof runtimebehaior.
The datain Figurel providesa generalimpressionof
our runtimeresultsper domain,and givesa few hints
on the phenomenahat might be presentin the data.
Compare,for example, the valueson the right hand
side—thoseplannersusing helpful actions—tothose
on the left hand side—thoseplannersexpandingall
sonsof searcmodes.In BriefcasevorldandBulldozer,
theright handsidevaluesarehigher, but in almostall
otherdomainsthey areconsiderablyower. Thisis es-
pecially true for the two rightmostcolumns,shaving
valuesfor plannerausinghelpful actionsandEnforced
Hill-climbing. This indicatesthatthe main sourcesf
performancdie in thepruningtechniqueandthesearch
stratggy—Ilooking at the rightmost*HE —" and“HEF”
columns,which only differ in the goal distanceesti-
mate,thosetwo configurationvaluesare usuallyclose
to eachother comparedo the otherconfigurationdn
thesamedomain.

To putour obsenationson a solid basis,we looked,
for eachdomain,at eachpair of configurationsn turn,
amountingto 20 x 8’2‘—7 = 560 pairs of plannerper
formances. For eachsuchpair, we decidedwhether
one configurationperformedsignificantly betterthan
the otherone. To decidesignificance we countedthe
numberof tasksthat one configurationsolved faster
We foundthisto beamorereliablecriterionthanthings
likethedifferenceébetweerrunningtimesfor eachtask.
As tasksgrow in size, ratherthan being taken from
a populationwith finite meansize, parametricstatis-
tical proceduresike computingsignificanceintervals
for runtimedifferencesnake questionablassumptions
aboutthedistribution of data.We thususedthefollow-
ing non-parametrictatisticaltest, known asthe two-
tailed signtest[Siegel and Castellan,1984. Assume
thatbothplannersA andB, performequallyonagiven
domain. Then, given a randominstancefrom the do-
main, the probabilitythatB is fasterthanA shouldbe
equalto the probability that A is fasterthanB. Take
this asthe null hypothesis. Underthat hypothesisjf
A andB behae differently on aninstancethenB is
fasterthanA with probability%. Thus,thetaskswhere
B is fasterare distributed over the taskswith differ-
entbehaior accordingto a Binomial distribution with
p= % Computethe probability of the obsened out-
comeunderthenull hypothesisi.e.,if therearen tasks
whereA andB behae differently, andk taskswhereB
is faster thencomputethe probability that, according
toabinomialdistributionwith p = % atleastk positive
outcomesare obtainedin n trials. If that probability
is lessor equalthan .01, thenrejectthe null hypoth-

esisand saythat B performssignificantly betterthan
A. Symmetrically decidewhetherA performssignifi-

cantlybetterthanB. We remarkthatin all domainsex-

ceptMoviethetaskswheretwo configurationdbehaed
equallywereexactly thosethatcould not be solved by

eitherof theconfigurationsIn 60% of thecasesvhere
we found that one configurationB performedsignifi-

cantly betterthananotherconfiguration,B wasfaster
onall instancesvith differentbehaior. In 71%, B was
fasteron all but onesuchinstance.

We are particularly interestedin pairs A and B of
configurationsvhereB resultsfrom A by turningone
of the switcheson, leaving the two othersunchanged.
Decidingaboutsignificantimprovementin suchcases
tells us aboutthe effect that the respectre technique
hason performancén adomain.Thereare12 pairsof
configurationsvhereoneswitchis turnedon. Figure2
shavs our findingsin thesecases.

Figure?2 is to beunderstooasfollows. It shavs our
resultsfor the “F”, “E”, and“H” switches,which be-
comeactivein turnfrom left to right. For eachof these
switchestherearefour configuration®f thetwo other,
background switches,displayedby four columnsin
thetable. In eachcolumn,the behaior of therespec-
tive backgroundconfigurationwith the active switch
turnedoff is comparedo the behaior with the active
switchturnedon. If performanceds improved signifi-
cantly thetableshavsa“+", if it is significantlyde-
graded,the table shavs a “—", andotherwisethe re-
spectvetableentryis empty For exampleconsidethe
top left corner wherethe“F” switchis active, andthe
backgrounctonfigurationis “—-", i.e., Hill-climbing
without helpful actions. PlannerA is “— — —", using
HSPdistancesandplannerB is “——F”, usingFF dis-
tancesB's performancés significantlybetterthanA's,
indicatedby a“+".

The leftmostfour columnsin Figure2 showv our re-
sultsfor HSPdistanceestimatewversus-F distancees-
timates.Clearly, thelatterestimategresuperiornin our
domains,in the sensethat for eachbackgroundcon-
figurationthe behaior getssignificantlyimprovedin
9 to 12 domains. In contrastthereareonly 5 cases
altogethemhereperformanceetsworse. The signifi-
cancesarequite scatteredver the domainsandback-
groundconfigurationsjndicatingthata lot of the sig-
nificancesresult from interactionsbetweenthe tech-
niquesthat occur only in the context of certaindo-
mains.For example, performances improvedin Bull-
dozerwhenthebackgroundtonfigurationrdoesnot use
helpful actions, but degradedwhen the background
configurationusesHill-climbing with helpful actions.
This kind of behaior cannot be obsenedin any other
domain. Thereare 4 domainswhere performances
improvedin all but onebackgroundtonfiguration Ap-
parentlyin thesecasessomeinteractionbetweenthe
techniquesoccursonly in one specificconfiguration.
We remark that often running times with FF's esti-
matesareonly alittle betterthanwith HSP's estimates,
i.e.,behaior getsimprovedreliably overall instances,



| I ———-] ——F] -E-= [ -EF] H—— ] H-F] HE- | HEF]
Assembly 117.39| 31.75 92.95 61.10| 47.81 20.25 20.34 16.94
Blocksworld 4.06 2.53 8.37| 30.11 1.41 0.83 0.27 6.11
Blocksworld-arm 0.60 8.81| 80.02| 56.20 1.21] 10.13| 25.19| 40.65
Briefcasevorld 16.35 5.84 | 66.51| 116.24| 150.00| 150.00| 150.00| 150.00
Bulldozer 4.47 3.24 31.02 15.74| 81.90| 126.50| 128.40| 141.04
Freecell 65.73 | 46.05 54.15 51.27 57.35| 42.68| 43.99| 41.44
Fridge 28.52 53.58 31.89 52.60 0.85 0.69 1.88 2.77
Grid 138.06| 119.53| 115.05| 99.18| 115.00| 95.10 18.73 11.73
Gripper 2.75 1.21 15.16 1.00 1.17 0.48 0.17 0.11
Hanoi 93.76| 75.05 6.29 3.91| 150.00| 78.82 4.47 2.70
Logistics 79.27 | 102.09| 79.77| 111.47| 36.88 39.69 10.18 11.94
Miconic-ADL 150.00| 150.00| 102.54| 54.23| 142.51| 128.28| 95.45 59.00
Miconic-SIMPLE 2.61 2.01 2.47 1.93 1.35 0.86 0.55 0.56
Miconic-STRIPS 2.71 2.32 4.84 1.53 1.44 1.01 0.64 0.36
Movie 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Mprime 73.09 69.27 82.89 81.43| 47.09 58.45 18.56 26.62
Mystery 78.54 90.55 71.60 86.01 75.73 95.24 | 85.13 86.21
Schedule 135.50| 131.12| 143.59| 141.42| 77.58 38.23 12.23 13.77
Tireworld 135.30| 110.38| 119.22| 121.34| 121.13| 105.67| 97.41 85.64
Tsp 411 0.82 2.45 0.75 2.48 0.57 0.15 0.07

Figurel: Averagedunningtime perdomainfor all eightconfigurationf switches.

but only by a smallfactor(to getanideaof that,com-
parethe differencedetweeraveragerunningtimesin
Figurel, for configurationsvhereonly thedistancees-
timatechanges)in 5 domainsFF's estimatesmprove
performanceonsistentlyover all backgroundonfigu-
rations,indicatinga realadvantageof thedifferentdis-
tanceestimates.

Comparing Hill-climbing versus Enforced Hill-
climbing,i.e.,lookingatthefour columnsn themiddle
of Figure2, theobsenationis this. Thedifferentsearch
techniqueis a bit questionablevhenthe background
configurationdoesnot usehelpful actions,but other
wise EnforcedHill-climbing yields excellentresults:
without helpful actionsperformancegetsdegradedal-
mostasmary timesasit getsimprovedwhereaswith
helpful actionsEnforcedHill-climbing improvesper
formancesignificantly in 16 of our 20 domains,be-
ing degradedonly in Fridge We drav two conclu-
sions. First, whetherone or the other searchstrat-
egy is adequatelependvery muchon the domain. A
simple examplefor thatis the Hanoi domain,where
Hill-climbing always restartsbeforeit canreachthe
goal—onall pathsto the goal, thereare exponentially
mary statetransitionsvherethesonhasno bettereval-
uation than the father Second,thereis an interac-
tion betweenEnforcedHill-climbing and helpful ac-
tionspruningthatoccursconsistentlyacrossalmostall
of our planningdomains. This can be explained by
the effect that the pruning techniquehason the dif-
ferentsearchstratgies. In Hill-climbing, helpful ac-
tions pruningpreventsthe plannerfrom looking at too
mary superfluousuccessoren eachsingle statethat
a pathgoesthrough. This savestime proportionalto
the length of the path. The effects on EnforcedHill-
climbingaremuchmoredrastic.There helpfulactions

prunesoutunnecessarguccessorsf eachstateduring
a breadthfirst searchj.e., it cutsdown the branching
factor yielding performancespeedup®xponentialin

thedepthghatareencountered.

We finally compareconsideratiorof all actionsver-
sus consideratiorof only the helpful ones. Look at
the rightmostfour columnsof Figure2. The obsenra-
tion is simply that helpful actionsarereally helpful—
they improve performancesignificantly in almostall
of our planningdomains. This is especiallytrue for
thosebackgroundconfigurationsusing EnforcedHill-
climbing, dueto the sameinteractionthatwe have out-
lined above. In somedomainshelpful actionspruning
imposesa very rigid restrictionon the searchspace:
in Schedulave foundthatstatescanhave hundredof
successorsyhereonly about2% of thoseare consid-
eredhelpful. In otherdomainsonly a few actionsare
pruned,like in Hanoiwhereat mostthreeactionsare
applicablein eachstatewhich areall consideredhelp-
ful in mostof the cases. Even a small degreeof re-
strictiondoesusuallyleadto a significantimprovement
in performance.In two domains,Briefcasevorld and
Bulldozer, helpfulactionscanpruneouttoo mary pos-
sibilities, i.e., they cut away solutionpaths. This hap-
pensbecausdaherethe relaxed plan canignorethings
thatarecrucialfor solvingtherealtask.

5 Solution Length

We also investigatedthe effects that FF's new tech-
niqueshave on solutionlength. Comparingtwo con-
figurationsA andB, wetook asthedatasettherespec-
tive solutionlengthfor thosetasksthatboth A and B

managedo solve—olviously thereis not muchpoint
in comparingsolutionlengthwhenoneplannercannot
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Figure2: Theeffectof turningon a singleswitch,keepingthe othersunchangedSummarizedn termsof signifi-
cantlyimprovedor degradedrunningtime performancegerdomain,andperswitchconfigurations.

find a solutionat all. We then countedthe numbern

of taskswhere A and B behaed differently, and the
numberk whereB's solutionwasshorter anddecided
about significancelike describedin the last section.
Figure3 shavsourresultsn thosecasesvhereasingle
switchis turned.

Thedatain Figure3is organizedn theobviousman-
ner analogoudo Figure2. A first glanceat the table
tells us that FF's new techniquesare also useful for
shorteningsolutionlengthin comparisorto HSR, but
not asusefulasthey arefor improving runtimebeha-
ior. Let usfocuson the leftmostfour columns,HSP
distanceestimates/ersusFF distanceestimates.The
obsenationsare that, with EnforcedHill-climbing in
the background,FF estimatesoften resultin shorter
plans,andthat therearetwo domainswheresolution
lengthsare improved acrossall backgroundconfigu-
rations. Concerningthe secondobsenation, having a
closerlook at thosetwo domainswe found that there
FF's heuristicrecognizepropertieof the domainthat
HSPSs heuristicdoesnt notice. Concerningthe first
obsenation,improvedsolutionlengthswhenEnforced
Hill-climbing is in the backgroundwe do not have a
good explanationfor this. It seemsthat the greedy
way in which EnforcedHill-climbing buildsits plansis
just bettersuitedwhendistanceestimatesrecautious,
i.e.,low.

Considethefour columnsin themiddleof Figure3,
Hill-climbing versusEnforcedHill-climbing. There
aremary caseswherethe differentsearchstratey re-
sultsin shorterplans. We figure thatthis is dueto the
differentplateaubehaior thatthe searchmethodsex-
hibit, i.e., their behaior in flat regions of the search

space.EnforcedHill-climbing entersa plateausome-
where performscompletesearcHor a statewith better
evaluation,and addsthe shortestpath to that stateto
its currentplan prefix. When Hill-climbing entersa
plateaujt strollsaroundmoreor lessrandomlyuntil it
hits a statewith betterevaluationor hasenoughof it
andrestarts All theactionsonits journey to the better
statearekeptin thefinal plan.

Finally, we compareconsideratiorof all actionsver-
susconsideratiorof only the helpful ones,resultsde-
pictedin therightmostfour columnsof Figure2. Com-
ing a bit unexpected,thereis only one single case
wheresolutionlengthperformancés degradedy turn-
ing on helpful actions. This indicatesthat the actions
ontheshortespathto thegoalare,in fact,usuallycon-
sideredhelpful—unlessall solution pathsare thrown
away, asis sometimeghe caseonly in the Briefcase-
world and Bulldozer domains. Pruning the search
spacewith helpfulactionssometimegvenleadsto sig-
nificantly shortersolution plans, especiallywhenthe
underlying searchmethodis Hill-climbing. Though
this may soundparadoxicalthereis a simple expla-
nationto it. Considerwhat we said above aboutthe
platealbehaior of Hill-climbing, randomlyaddingac-
tionsto the currentplanin the searchfor a betterstate.
If sucha searchengineis armedwith the helpful ac-
tions successorshoice,focusingit into the direction
of the goals, it might well take lessstepsto find the
way off aplateau.

6 Conclusionand (some)Outlook

We have carried out a large-scaleexperimentcom-
paring different configurationsof FF with its prede-
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Figure3: Theeffectof turningon a singleswitch,keepingthe othersunchangedSummarizedn termsof signifi-
cantlyimprovedor degradedsolutionlengthperformancgerdomain,andperswitchconfigurations.

cessorHSP The resultsshav that the main sources
of improved runtime performancen FF arethe help-
ful actionspruning techniqueand the EnforcedHill-
climbing searchstrateyy, aswell astheir interaction.
Concerningmprovedsolutionlengthperformancethe
reasonfor thatis mainly the new searchstratgy and
its (yet unexplained)interplay with the differentdis-
tanceestimates. We believe that our experimenthas
alsovaluefor the planningcommunityin thatit gives
anexampleof alargescaleempiricalstudyon compar
ative plannermperformanceStudiedik e thatareregret-
tably rarein the planningliterature.

Oneideafor futureresearclarisedrom speciakases
thatoccuredn ourexperiments An exampleis Fridge
While in mostotherdomainsEnforcedHill-climbing
with helpful actionspruningis mostadequatein this
domainsimpleHill-climbing hasclearruntimeadvan-
tages.Otherunusualexamplesare Briefcasevorld and
Bulldozerwherehelpful actionscutsout the solutions,
or LogisticswhereHSP's estimatesometimedeadto
betterruntime performance.The challengeis to find
ways of automaticallyrecognizingsuchspecialcases,
in orderto configurethemostappropriatesolvingtech-
nology:.

References

[BacchusandNau,2001] Fahiem Bacchusand Dana
Nau. The 2000Al planningsystemscompetition.
TheAl Magazing 2001. Forthcoming.

[BonetandGeffiner, 1999 Blai Bonet and Héctor
Geffner. HSP:Heuristicsearchplanner In AIPS-
98 PlanningCompetition Pittskurgh, PA, 1998.

[BonetandGeffner, 1999 Blai Bonet and Héctor
Geffner. Planningasheuristicsearch:New results.
In Proc. ECP-99 SpringerVerlag,Septembet 999.

[Bonetetal., 1997 Blai Bonet, Gabor Loerincs,and
Héctor Geffner. A robustandfastactionselection
mechanisnfor planning. In Proc. AAAI-97, pages
714—-719MIT Press,July 1997.

[FikesandNilsson,1971 Richard E. Fikes and Nils
Nilsson. STRIPS:A new approacho the applica-
tion of theoremproving to problemsolving. Artifi-
cial Intelligence 2:189-208,1971.

[Hoffmann,200d Jorg Hoffmann. A heuristicfor do-
main independenplanning and its usein an en-
forcedhill-climbing algorithm. In Proc. ISMIS-0Q
page216-227 SpringerVerlag,0October2000.

[McDermott,200d Drew McDermott. The 1998 Al
planning systemscompetition. The Al Magazine
21(2):35-552000.

[RefanidisandVlahavas,1999 loannisRefanidisand
loannis Vlahavas. GRT: a domain independent
heuristicfor STRIPSworlds basedon greedyre-
gressiortables. In Proc. ECP-99 SpringefVerlag,
Septembel999.

[SiegelandCastellan1989 S. Siegel and Jr. N. J.
Castellan.Nonpamametric Statisticsfor the Behav-
ioral SciencesMcGraw-Hill, 2ndedition,1988.



