Local Search Topologyin Planning Benchmarks: An Empirical Analysis

Jorg Hoffmann
Institutefor ComputerScience
Albert LudwigsUniversity
Geoges-kKohlerAllee, Geh 52
79110Freilurg, Germary

Abstract

Many state-of-the-atheuristicplannergerivetheir
heuristicfunction by relaxingthe planningtaskaat
hand, where the relaxationis to assumethat all

deletelists are empty Looking at a collection
of planningbenchmarkswe measureopological
propertieof statespacesith respecto thatrelax-
ation. The resultssuggesthat, given the heuris-
tic basedon the relaxation,mary planningbench-
marksaresimplein structure. This sheddight on
therecentsucces®f heuristicplannersemploying

local search.

1 Intr oduction

In the lasttwo years,planningsystemshasedon the ideaof
heuristicsearchhave beenverysuccessfulAt theAIPS-1998
planningsystemsompetition HSP1comparedvell with the
other systems[McDermott, 2004, and at the AIPS-2000
competitionput of five awardedfully automatiplannersfFF
andHSP2werebasedn heuristicsearchwhile anothertwo,
Mips and STAN, were hybrids that incorporated,amongst
otherthings,heuristicsearcH BacchusandNau, 2001].

Interestingly four of thesefive plannersusethe samebase
approacHor deriving their heuristicfunctions:they relaxthe
planningtaskdescriptionby ignoring all deletelists, andes-
timate,to eachsearchstate the lengthof anoptimalrelaxed
solutionto that state. This generalideahasfirst beenpro-
posedby Bonetet al. [1997]. Thelengthof an optimalre-
laxedsolutionwould yield anadmissibleheuristic.However,
aswasprovenby Bylander[1994],computingtheoptimalre-
laxed solutionlengthis still NP-hard.Therefore Bonetet al.
introducecdatechniquefor approximatingoptimalrelaxedso-
lution length,which they usein bothversionsof HSP[Bonet
andGeffner, 2001]. The heuristicenginesin FF [Hoffmann,
200d andMips [Edelkamp,200d usedifferentapproxima-
tion techniques.

Threeof theabove plannersHSP1,FF, andMips, usetheir
heuristicestimatesn variationsof local searchalgorithms,
wherethe searchspaceto a taskis the statespace;.e., the
spaceof all statesthat are reachablefrom the initial state.
Now, the behaior of local searchdependscrucially on the
problemstructure,i.e., on the topologyof the searchspace.

Thus, the succes®f theseheuristicplannerson mary plan-
ning tasksgivesrise to the suspicionthat thosetask’s state
spaceshave a simple structurewith respectto relaxed goal
distancesin this paperwe shedlight on thatsuspicion.Fol-
lowing Franket al. [1997], we definea numberof structural
phenomenan searchspacesinderheuristicevaluation,im-
pactingthe performancef local searchalgorithms.We com-
pute the optimal relaxed solution lengthto reachablestates
in small planning tasks,and measurestructuralproperties.
Our resultssuggesthat, in fact,the taskscontainedn mary
benchmarlplanningdomainshave asimplestatespaceopol-
ogy, atleastwhenusingtheoptimalrelaxedheuristic.To give
anexampleof how thisobsenationcarriesoverto theapprox-
imation techniquesusedby existing heuristicplanners,we
applythe sametechniqueof datacollectionto the FF heuris-
tic. As it turnsout, the resultsare similar. Specifically it
follows that FF's searchalgorithmis a polynomial solving
mechanisnin anumberof planningbenchmarldomainsun-
derthe hypothesighatthe largerinstancesehae similar to
thesmallerones.

Section? introducesour generabpproachSection3 gives
the basicdefinitions. Sections4 and5 definestructuralphe-
nomendn searctspacesinderheuristicevaluation,andgive
empiricaldata. Section6 summarizeshe resultsin a taxon-
omy for planningdomains. Section7 appliesthe methodol-
ogy to the FF heuristic. Section8 concludesand gives an
outlookonfurtherresearch.

2 General Approach

In our experimentswe usedsolvableplanningtasksonly, as
we are interestedin finding out why local searchcan suc-
ceedsoquickly on mary benchmarkasks.We looked at in-
stancedrom 20 differentSTRIPSand ADL benchmarldo-
mains. Dueto spacerestrictionswe only presentheresults
for the domainsusedin the competitionshere,asthosedo-
mainsarewell known in the planningcommunity

To obtaindataon how planningtasksbehae with respect
to the relaxation,ratherthanwith respectto ary of the ap-
proximationtechniqueausedby existing heuristicplanners,
we considetheoptimalrelaxedsolutionlengthasourheuris-
tic. Asdetermininghatoptimallengthis NP-hardjt canonly
be computedfor small planninginstances.We build an ex-
plicit statespacerepresentatioto suchinstancesandlook at
thetopologyin detail. This yields a clearpictureof the fun-



damentalstructuraldifferencesbetweeninstancesrom dif-
feramtplanningdomains.In that context, we statesomehy-
pothesesA pieceof futurework is to verify those.

In total,thecompetitiongeaturedl3STRIPSandADL do-
mains: Assembly Blocksworld, Freecell Grid, Gripper, Lo-
gistics Miconic-ADL, Miconic-SIMPLE Miconic-STRIPS
Movie, Mprime, Mystery, and Schedule In 11 of thesedo-
mains,we usedrandomtaskgeneratiorsoftwareto produce
smallinstancesat least100 per domain. In Gripper, there
is only oneinstanceof eachsize: n ballsto be transported.
In Movie, every instanceof the AIPS-1998suite was small
enoughto belookedatin detail.

Sometimesyve depictscalingbehaior. As our instances
areall quite smallanyway, we need for thatpurposeafiner
distinction betweeninstanceghan obvious criteria like the
numberof objects. We definethe difficulty of a taskto be
the length of an optimal solution plan, and order our in-
stanceswithin any domainby increasingdifficulty. Except
in the Movie domain(whereall instancesn the AIPS-1998
suite have the samedifficulty), largerinstancesare on aver
agemoredifficult thansmallerones. The maximaldifficulty
of ary instancewe couldlook atis 21 in the Gripperdomain,
20 in the AssemblyandLogisticsdomains 18 in Grid, and16
in the Blocksworld. In Movie, all instance$have difficulty 7,
andin the remainingdomainsour maximaldifficulty ranges
from 10 to 14.

3 BasicDefinitions

The competition domains contain tasks specified in the
STRIPSandADL languages!n both casesa planningtask
‘P is specifiedn termsof a setof objectsO, aninitial stateZ,
agoalformulag, andasetof operatoischemat#. Z, G, and
O arebasedon a collectionof predicatesymbols. Planning
tasksfrom the samedomainsharethe samesetsof predicate
symbolsand operatorschemata. Instantiatingthe operator
schematawith all objectsyields the actions A to the task.
Statesare setsof logical atoms,i.e., instantiatedpredicates.
Any actionhasa preconditionwhich is a formulathat must
holdin a statefor the actionto beapplicable Also, anaction
hasanadd-anda delete-list. Thesearesetsof atoms,where
eachatomhasa conditionformulaattachedo it (in STRIPS,
theseconditionformulaearetrivially TRUE). If anactionis
applied,the atomswith satisfiedconditionin theaddlist are
addedto the state,andthosewith satisfiedconditionin the
deletelist areremoved from the state. A planis a sequence
of actionsthat, whensuccessiely appliedto theinitial state,
yieldsa statethatsatisfiegshe goalformula.

Ignoringthe deletelists simplifiesataskonly if all formu-
laearenggationfree. In STRIPSthisis thecaseby definition.
In generalfor afixeddomain,arny taskcanbe polynomially
transformedo have thatproperty:computethe negationnor-
mal form to all formulae(negationsonly in front of atoms),
thenintroducefor eachnegatedatom—B a new atomnot-B
andmake sureit is TRUE in astateiff B is FALSE [Gazerand
Knoblock, 1997. In the following, we assumdormulaeto
be negationfree. We will investigatepropertiesof the opti-
mal relaxed heuristich™. For ary states in a planningtask
with actionsA andgoalconditiongG, therelaxedtaskto s is

thetaskdefinedoy the samegoalconditiong, theinitial state
s, andtheactionsetA’, whichis identicalto A exceptthatall
deletelists areempty Then,ht(s) is thelengthof a shortest
planthatsolvestherelaxedtaskto s, or h*(s) = o if there
is nosuchplan.

We will belooking at the topology of searchspaceswith
heuristicevaluation. The structuralpropertieswve will intro-
ducedonotdependntheplanningframevork. We therefore
definethemin a generalmanney embeddingplanningstate
spacessaspecialcase.

Definition 1 A searchspacds a 4-tuple (S, E, G, so), whee
S is thesetof states E C S x S are the statetransitions
() # G C S arethegoalstatesandsg € S istheinitial state

Givenaplanningtask,the searctspacewe look atis what
is usually referredto asthe statespace There,sq is sim-
ply theinitial stateZ of the task. S is the setof statesthat
arereachabldrom theinitial stateby successiely applying
actionsfrom A, andE containsall pairs(s, s') whereoneac-
tion, executedn s, yieldsthestates'. G is thesetof all states
that satisfythe goal condition. Looking only at solvablein-
stancesthereis atleastonesuchstate.

Definition 2 Givena seach space(S, E, G, s¢). Thegoal
distanceofs € S'is

gd(s) := min{dist(s,s') | s' € G}

The distancedist(s,s') betweenary two statesis the
length of a shortestpathfrom s to s’ in the directedgraph
givenby S andFE, or dist(s, s') = oo if thereis no suchpath.
Heuristicfunctionsapproximategyd.

Definition 3 Givena seach space(S, E, G, so). A heuristic
is a functionh : S — Np U {0}, sud thath(s) = 0 &
gd(s) = 0.

We requirethata heuristicrecognizegoalstatesyielding
h(s) = 0if andonly if gd(s) = 0, which is equivalentto
s € G. We allow heuristicsto returnh(s) = oo, assearch
spacesancontaindeadends

4 DeadEnds

Becausestatetransitionsn a searchspaceare,in generaldi-
rectedtherecanbe statefrom which no goal stateis reach-
able.

Definition 4 Givenaseach space(S, E, G, s¢). A states €
S isadeadend if gd(s) = oo.

If alocal searchalgorithmrunsinto a deadend,it is lost.
A heuristicfunction canreturnh(s) = oo to indicatethat s
might be a deadend. Desirably it doesso only on statess
thatreally aredeadends.

Definition 5 Given a seach space (S, E,G, sp) with a
heuristich. h is completenespreservingif h(s) = co =
gd(s) = oc.

With a completeness-preservitgeuristic, we can safely
prunestateswhereh(s) = oo. For planningtasks,if atask
cannotbesolvedevenwhenignoringthedeletdlists, thenthe
taskis unsohable. Thereforethe h™ functionis complete-
nesspreserving.For the restof the paper we only consider
thosestateswvherethe heuristicvalueis lessthanco.



Definition 6 Given a seach space (S, E, G, sp) with a
completeness-peervingheuristich. Therelevantpartof the
seach spaceis {s € S | h(s) < oo}.

Any searchspacewith heuristicevaluationfallsinto oneof
thefollowing four classeswith respecto deadends.

Definition 7 Given a seach space (S, E,G,so) with a
completeness-peservingheuristich. Theseach spaceis

1. undirectedif V(s,s') € E: (s',s) € E

2. harmlessif 3(s,s') € E : (s',s) € E, andVs € S :
gd(s) < o0

3. recognizedif 3s € S : gd(s) = oo, andVs € S :
9d(s) = 00 = h(s) = o0

4. unrecognizedf 3s € S : gd(s) = 00 A h(s) < o0

For eachof our planninginstanceswe verified which of

the above classeghe statespacebelongedto. We saythat

a domainbelongsto classi if the statespacef all our in-
stancesbelongto a classj < 4, and at leastone instance

belonggo classi. We foundthefollowing.
1. Blocksworld, Gripper and Logistics have undirected
graphs.

2. Grid, Miconic-STRIPS Miconic-SIMPLE, and Movie
aredirected put do not have deadends.

3. In AssemblyandScheduleall deadendsarerecognized.

4. Freecell Miconic-ADL, Mprime, and Mystery contain
unrecognizedieadends.

In additionto our empirical analysis,the resultsfrom 1.
and 2. canbe shovn analytically For undirectedgraphs,
suchamethods describedy KoehlerandHoffmann[2000].
For thedomainsn classfour, it is alsointerestingo seehow
mary unrecognizedleadendsthereare.We measurdghe per
centageof suchstatesn the relevant part of the statespace,
seeFigurel.

| Domain || Ip | I | I | I3 | I4 |
Freecell 0.0 1.1 1.2 2.6 3.0
Miconic-ADL 0.0 00| 25| 97| 9.8
Mprime 18.8] 29.3] 50.0 | 58.0 | 69.6
Mystery 195] 379 54.0| 66.4 | 84.6

Figure1l: Percentagef unrecognizedieadendsin the rele-
vantpart of the statespace.Meanvaluesfor increasingask
difficulty in differentdomains.

For each single domain in Figure 1, the sequenceof
columnsgivesa picture of how the valuesdevelop with in-
creasingaskdifficulty. In eachdomain, thetasksaredivided
into five groups.Thedifficulty of ataskin groupi lieswithin
interval I;, wherely ... I, divide our rangeof difficulty in
thatdomaininto five partsof samesize. Note thatthe inter
vals I; aredifferentfor eachdomain,so the valueswithin a
columnarenotdirectly comparable.

As Figurel shaws,the MprimeandMysterytaskscancon-
tain alot of unrecognizedleadends,andhave thetendeny
to containmore of suchdeadendsthe more difficult they
get. For Freecelland Miconic-ADL, we can not conclude

muchmorethanthattherecanbeunrecognizedieadends.It
seemghatthe percentaggrows with taskdifficulty, andthat
taskswith high percentagare out of the rangeof difficulty
we couldlook at.

5 Search SpaceTopology

For SAT problemsthetopologyof searctspacesvith respect
to thebehaior of local searchhasbeeninvestigatedy Frank
etal. [1997]. As thebasisof theirwork, Franketal. formally
definea partitioningof the searchspaceinto plateauof dif-
ferentkinds. For our purposeswe extendtheir definitionsto
dealwith our generalnotion of searchspaceswith heuristic
evaluation,whereedgesanbedirected.

Definition 8 Given a search space (S, E, G, sg) with a
completeness-pservingheuristich. Forl € Ny U {0}, a
plateauP of level [ is a maximalsubsebdf S for which thein-
ducedsubgrphin (S, E) is stronglyconnectedandh(s) = I
foreath s € P.

Plateausare regions that are equivalent under reachabil-
ity aspectsandlook the samefrom the point of view of the
heuristicfunction. Obviously, eachstates lies onexactlyone
plateau.

Definition 9 Given a search space (S, E,G,sg) with a
completeness-pservingheuristic A, and a plateauP. A
states € P is anexit of P, if thereis a states’ ¢ P suc
that(s,s') € E andh(s') < h(s). s is animproving exit, if,
for atleastonesud s', h(s') < h(s).

Exits arestatefrom which onecanleave a plateauwithout
increasingthe value of the heuristicfunction. In undirected
graphsike areconsideredy Franket al. [1997], leaving a
plateauimplies changingthe value of the heuristicfunction,
soall exits areimproving there. Accordingto the proportion
of exits on a plateau,Franket al. divide plateaudnto four
classestocal minima,benchesg¢ontoursandglobalminima.
Takingaccounbf directededgeswe have two typesof exits,
anddefinethefollowing six differentclasses.

Definition 10 Given a seach space (S, E,G,sq) with a
completeness-pservingheuristich.

1. Arecognizedleadendis a plateauP of level h = oo.

2. Alocal minimumis a plateauP’ of level0 < h < o0
thathasno exits.

3. Aplainis a plateauP of level 0 < h < oo thathasat
leastoneexit, but noimprovingones.

4. A benchis a plateauP of level0 < h < oo that has
at leastoneimproving exit, and at leastonestatethatis
notanimproving exit.

5. A contouris a plateauP’ of level0 < h < oo thatcon-
sistsentirely of improving exits.

6. A globalminimumis a plateauP of level0.

Eachplatealbelongdo exactlyoneof theaboveclassesin
oursolvableinstancesglobalminimaareexactlytheplateaus
of level 0. With a completeness-preservitguristic,recog-
nizeddeadendsareirrelevant,andcanbeignored.Fromlocal
minima, thereis no directway of gettingcloserto the goal.



Frombenchesthereis. Fromcontourspnecangetcloserim-
mediately Plainsbehae asa kind of entrancdo eitherlocal
minimaor benches.

Definition 11 Given a seach space (S, E,G, sq) with a
completeness-peervingheuristic h. A flat pathis a path
whete all stateson the path havethe sameheuristic value
For a plateauP, theflat region FR(P) from P is the setof
all plateausP’ such thattheris aflat pathfromsomes € P
tosomes’ € P’.

For aplain P, if thereis atleastonebenchor contourin
FR(P), thenP behaessimilarto a benchwith atleastone
improving exit beingwithin reach. Otherwise startingin P,
withoutincreasinghevalueof theheuristicfunction,onewill
inevitably endupin alocal minimum.

Definition 12 Given a seach space (S, E,G,sq) with a
completeness-peervingheuristic h. A plain P leadsto
benchesf FR(P) containssomebend or contour Other
wise P leadsto local minima

Basedntheaboredefinitions,andusinganexplicit search
spacerepresentatiopne canmeasurell kinds of structural
parametersDueto spacerestrictionswe only discusssome
of themostinterestingparameterfere.

5.1 Local Minima

First, we areinterestedn the percentagef stateghatlie on

local minima. Before doing this, we needto take a closer
look at the definition of local minima. Theseareflat regions
whereall neighborshave higherevaluation. Steppingon to

oneof theseneighborsdoesnot necessarilymprove the sit-

uation,though: it might be, for example,thatthe only exits

onthatneighboreadbackto thelocal minimum. In general,
alocal minimumis only the bottomof a valley, wherewhat
we reallywantto know aboutis thewholevalley. Valleys are
characterizedby the propertythat one cannot reacha goal

statewithoutincreasinghevalueof the heuristicfunction.

Definition 13 Given a seach space (S, E, G, s¢) with a
completeness-peservingheuristich. A states € S hasa
full exit path if thereis a pathfrom s to a goal states’ suc
that the heuristic value of the stateson the path deceases
monotonically

Onestateon a plateaunasa full exit pathif andonly if all
statesonthatplateawdo so. If aplateathasnofull exit paths,
thenit is partof avalley.

Definition 14 Given a seach space (S, E, G, s¢) with a
completeness-peservingheuristich. A valley is a maximal
setV of plateaussud thatno P € V hasfull exit paths,no
P € V isarecgnizeddeadend,andforall P,P' € V, Pis
strongly connectedo P’.

Theexistenceof valleysis, in ary searctspacegquivalent
to the existenceof local minima. It turnsoutthat,in 7 of the
13 competitiondomainsthe statespace®f all ourinstances
do not containary localminimaatall.

Hypothesisl Let P be a planning task from any of
the Assembly Grid, Gripper Logistics Miconic-SIMPLE,
Miconic-STRIPS or Movie domains. Then,the statespace

of P doesnotcontainanylocal minimaunderevaluationwith
ht.

In Figure2, we shav themeanpercentagef statesonval-
leys for thosedomainswherewe foundlocal minima.

| Domain || Ip | I | I | I3 | o |
Blockswvorld 98 28.1] 37.5] 50.1] 55.6
Freecell 0.0 1.1 1.2 2.6 3.0
Miconic-ADL 0.0] 00| 25| 97| 938
Mprime 18.8| 29.9| 50.7| 58,5 70.7
Mystery 195 385 55.1| 68.0] 89.4
Schedule 20.0| 256 36,5 31.8| 35.3

Figure2: Percentagef stateson valleys in the relevantpart
of the statespace.Meanvaluesfor increasingaskdifficulty
in differentdomains.

Any unrecognizedleadend statelies in a valley. There-
fore, the percentagef valleys is at leastashigh asthe per
centageof unrecognizedeadendsfor thedomainsshovn in
Figurel. In FreecelandMiconic-ADL, thestateson valleys
are exactly the unrecognizedieadendsin all our examples.
In Mprime and Mystery, therecanbe morevalley states.In
Blocksworld and Schedulevaluesseemto approachan up-
per limit on our mostdifficult tasks. Computingmaximum
insteadof the meanvaluesshavn in Figure2, we foundthat
someof our Scheduleaskscontainupto 74.1% valley states.
In our Blocksworld suite,however, the maximumvalley per
centages constantly59.3%, irrespectve of difficulty.

5.2 Contours

We also measurehe averagepercentagef stateslying on
contoursthat are not part of a valley—regionsin the state
spacethat are dominatedby suchcontoursare likely to be
passedjuickly by a local searchalgorithm. In Movie, the
percentagds constantly98.4%. In Assembly Logistics
Miconic-SIMPLE, Miconic-STRIPSand Schedulebetween
30% and60% of therelevantstatespacdie onsuchcontours
in our examplesandthereis no cleartendeng thatthe val-
uesdecreasavith taskdifficulty. In theremaining7 domains,
thereis sucha tendeng. Valuesare particularlylow in the
Blocksworld, goingdown to 3.8% in our mostdifficult tasks.

5.3 Benches

For benchesthe percentagef statesaloneis not a very in-
formative parameterasary plateaus a benchgivenit hasat
leastoneimproving exit. Whatreally matterds, how difficult
is it to find suchanexit? Possiblecriteriafor this arethe size
of benchespr the proportionof improving exits. Here,we
defineanothercriterionthatis—aswill be shavn in the next
section—especiallyelevantfor FF's searchalgorithm. The
criterion is namedmaximalexit distance We measurdahat
distancefor whatwe call bend-relatedplateaus.Theseare
benchesandplainsleadingto benchesRecallDefinitions11
and12.

Definition 15 Given a seach space (S, E,G,sq) with a
completeness-pservingheuristic h. For a states on a
bend-relatedplateau theexit distancesd(s) is thelengthof



ashortesflat pathfroms to somes’ sucthattheris somes”
with (s',s") € E, h(s") < h(s"). Themaximalexit distance
of a bend-relatedplateau P is med(P) := max{ed(s) |
s € P}.

The maximal exit distancein a searchspaceis the max-
imum over the maximal exit distancesof all bench-related
plateauspr 0 if thereareno bench-relateghlateaus.lt turns
out that, in 5 of the competitiondomains,the maximal exit
distances constantacrossall our examples.

Hypothesis2 To any of the Gripper, Logistics Miconic-
SIMPLE, Miconic-STRIPS or Movie domains,there is a
constant, sud that, for all tasksP in thatdomain themax-
imal exit distancein the statespaceof P is at mostec under
evaluationwith AT.

In thelisted domainsall our exampleshave maximalexit
distancel, so the constantc = 1 fulfills the hypothesized
propertythere. The crucial pointis that,in those5 domains,
thereapparentlyis an upperlimit to the maximal exit dis-
tance.In contrastto this, computingmeanvalues,we found
thatthe meanmaximalexit distancegrows with difficulty in
our suitesfrom 7 of the remaining8 domains. In Mprime,
meanvaluesshav a lot of variance,makingit hardto drav
ary conclusionsSeeFigure3.

| Domain || Io | I | I | I3 | I |
Assembly 0]12]16]24] 35
Blocksworld 28] 33[38]49]5.0
Freecell 0 0 1 1115
Grid 26]32[31]38] 4.3
Miconic-ADL 1 1 1114123
Mprime 19 26| 21]20] 2.2
Mystery 11141 15[ 12 23
Schedule 1 111211920

Figure3: Maximal exit distance Meanvaluesfor increasing
taskdifficulty in differentdomains.

6 A Planning Domain Taxonomy

Our approachdivides planningdomainsinto a taxonomyof
differentclasseswith respecto the At heuristic,depending
onwhich deadendclassthey belongto, whethertherecanbe
localminima,andwhetherthereis anupperlimit to themax-
imal exit distance Seea schematioverview of ourresultsin
Figure4.

Remembethat the existenceof unrecognizedleadends
impliesthe existenceof valleys, which implies the existence
of localminima. Theoverview in Figure4 givesanappealing
impressiorof thekind of domainghatstate-of-the-atheuris-
tic plannerswork well on: The “simple” domainsarein the
left bottomcorner while the“demanding’onesarein thetop
right corner In fact,in the AIPS-2000competitionthe Free-
cell and Miconic-ADL domainsconstitutedmuchmoreof a
problemto the heuristicplannershan,for example,the Lo-
gisticsdomaindid.

The majority of the competitiondomainslie on the “sim-
ple” left bottom side of our taxonomy In fact, this phe-
nomenorgetsevenstrongemwhenlookingatothercommonly

| Mystery
' : Mprime
Schedule Miconic-ADL
: i Freecell

- Assembly |

| Miconic-SIMPLE!
Logistics | Miconic-STRIPS
Gripper ‘ Movie
\

Blocksworldi

med <c

| ks
! recognized ! unrecognized

no local minima local minima

undirected harmless

Figure4d: A taxonomyfor planningdomainspverviewing our
results.

usedplanningbenchmarldomains:Fromour20domains,14
do not exhibit arny local minima. In 8 of those1l4 domains,
themeanmaximalexit distancedoesnotgrow with difficulty.
In the Briefcasevorld, for example thedistancds apparently
boundedoy ¢ = 3.

For domainswithoutlocalminimaandwith boundednax-
imal exit distancewe canbe preciseaboutsimplicity. Con-
sider the following algorithm, working on a searchspace
(S, E,G, so) with aheuristich.

8 .= 8¢

while h(s) # 0 do
do breadthfirst searctor s, h(s') < h(s)
s:=s

endwhile

ThisalgorithmhasbeentermedEnforcedHill-climbing by
Hoffmann[2000], andis usedin FF

Proposition1 LetD be a setof seach spaceswith heuris-
tics, sudh that no seach spacecontainsa local minimum,
andmed is an upperlimit to the maximalexit distance Say
we havea seach space(S, E, G, so) € D, with heuristich.
Letb bethe maximalnumberof outgoingedgesof any state
Then,startedon (S, E, G, so), Enforced Hill-climbing will
find a goal stateafter consideringD (h(so) * b™e?+1) states.

Without local minima, eachiteration of Enforced Hill-
climbing crossesa bench-relatedegion or a contour so it
finds a betterstateat maximaldepthmed + 1, considering
O(bmed+1) states Eachiterationimprovestheheuristicvalue
by atleastone,so afterat mosth(so) iterations,a goal state
is reached.

Reconsidetheterminologyintroducedat the beginningof
Section3. Saywe have a planningdomainwith operator
schematad. Any taskspecifies,amongstotherthings,the
setof objectsO, yielding the actionset A. An ohbviousup-
perlimit to the numberof outgoingedgesn the task's state
spacas |A|. Furthermoreif thelongestaddlist of ary action
hassizek, then,for nondeadendstatess, h*(s) < k * |A|.
This is becauseavith empty deletelists, eachatom needsto
be addedat mostonce. Finally, |A| andk arepolynomialin
|O] for fixed ©. Thus, consideringonly the solvable tasks
from a domain,applyingPropositionl getsusthefollowing.
If kT doesnotyield any local minima, and producesa con-
stantmaximalexit distancethenEnforcedHill-climbing, us-
ing AT, findsa goalsstateto eachtaskby looking ata number



of stategpolynomialin |O|.

7 Explaining FF's Runtime Behavior

To give anexampleof how our resultsunderevaluationwith
h* carry over to existing approximationtechniquesyve ran
the sameexperimentsusingthe FF heuristic. Theresultsare
summarizedn Figure5.

' Mystery

| | Mprime
Blocksworld; g | Schedule | Miconic-ADL

| Miconic-SIMPLE| Assembly | Freecell

e

Logistics | Miconic-STRIPS!
Gripper ‘ Movie ‘
\

no local minima local minima
med < c

| s
! recognized ! unrecognized

undirected harmless

Figure5: Resultsoverview for the FF heuristic.

ComparingFigure5 with Figure4, oneseeghatthereare
threedomainswherelocal minimaarise,whenusingthe FF
heuristicinsteadof hT. However, the averagedvalley per
centageis below 6% in Grid, belav 2% in Assembly and
below 0.3% in Miconic-SIMPLE Four of the domainsthat
aresimplewith AT staysimplewith the FF heuristic.

As Hoffmann [2000] describesthe FF systemusesthe
EnforcedHill-climbing algorithmasits searchmethod. For
STRIPSplanningtasks,it is easyto seethat, like it is the
casefor the h* heuristic,FF's heuristicestimateto ary state
is boundedby the numberof actions. Thus,if Hypothesed
and 2 aretrue for the STRIPSdomainsGripper, Logistics
Miconic-STRIPS and Movie, underevaluationwith the FF
heuristic,then EnforcedHill-climbing, usingthat heuristic,
solvesthetasksin eachof thesedomainsby evaluatingpoly-
nomially mary states.

8 Conclusionand Outlook

The intuition that mary planningbenchmarksare “simple”
in somesensds not new to the planningcommunity What
the authorpersonallflikesmostaboutthe presentedvork is
thatit providesa formal notion of what simplicity, in that
context, might mean.We give empiricaldatasupportinghat

mary benchmarksare, in fact, simplein that formal sense.

The work providesinsightsinto fundamentaktructuraldif-
ferencedetweendifferentplanningdomains,andoffers ex-
plaining the succes®f FF—andpossiblyof other state-of-
the-artheuristicplanners—agitilizing the simplicity of the
benchmarks.

The presentedesultsarepreliminaryto the effect thatob-
senationsare madeon a collection of comparatiely small
planningtasks. The statedhypothesesnustbe verified. For

In domainswherethis holds,decidingplan existenceis in NP:
To ary solvabletask,thereis a solutionplanwith at mosth™ (Z) *
(med + 1) stepsj.e.,aplanof polynomiallength.

theh™ function,we aregoingto prove our hypotheseanalyt-
ically. For the FF andHSP heuristicfunctions,we aregoing
to take sampledgrom the statespace®f largertasks.
Practically we seethe benefitsof our resultsin mainly
threeareas. Firstly—whichis aline of work thatwe arecur-
rently exploring—onecantry to recognizesimple planning
tasksautomaticallyandtherebypredictthe runtimebehaior
of FF or otherheuristicplanners.Secondly knowing about
the strengthsand weaknessesf existing heuristicfunctions
may help in designingbetterones. Finally, a betterunder
standingof the structuraldifferencesbetweenplanningdo-
mainsmay helpin designingnorechallengingoenchmarks.
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