
Local Search Topologyin Planning Benchmarks: An Empirical Analysis

Jörg Hoffmann
Institutefor ComputerScience

Albert LudwigsUniversity
Georges-K̈ohler-Allee, Geb. 52

79110Freiburg, Germany

Abstract

Many state-of-the-artheuristicplannersderivetheir
heuristicfunction by relaxingthe planningtaskat
hand, where the relaxationis to assumethat all
delete lists are empty. Looking at a collection
of planningbenchmarks,we measuretopological
propertiesof statespaceswith respectto thatrelax-
ation. The resultssuggestthat, given the heuris-
tic basedon the relaxation,many planningbench-
marksaresimplein structure.This shedslight on
therecentsuccessof heuristicplannersemploying
localsearch.

1 Intr oduction
In the last two years,planningsystemsbasedon the ideaof
heuristicsearchhavebeenverysuccessful.At theAIPS-1998
planningsystemscompetition,HSP1comparedwell with the
other systems[McDermott, 2000], and at the AIPS-2000
competition,outof fiveawardedfully automaticplanners,FF
andHSP2werebasedonheuristicsearch,while anothertwo,
Mips and STAN, were hybrids that incorporated,amongst
otherthings,heuristicsearch[BacchusandNau,2001].

Interestingly, four of thesefive plannersusethesamebase
approachfor deriving theirheuristicfunctions:they relaxthe
planningtaskdescriptionby ignoringall deletelists, andes-
timate,to eachsearchstate,the lengthof anoptimal relaxed
solution to that state. This generalideahasfirst beenpro-
posedby Bonetet al. [1997]. The lengthof an optimal re-
laxedsolutionwouldyield anadmissibleheuristic.However,
aswasprovenby Bylander[1994],computingtheoptimalre-
laxedsolutionlengthis still NP-hard.Therefore,Bonetetal.
introducedatechniquefor approximatingoptimalrelaxedso-
lution length,which they usein bothversionsof HSP[Bonet
andGeffner, 2001]. Theheuristicenginesin FF [Hoffmann,
2000] andMips [Edelkamp,2000] usedifferentapproxima-
tion techniques.

Threeof theaboveplanners,HSP1,FF, andMips,usetheir
heuristicestimatesin variationsof local searchalgorithms,
wherethe searchspaceto a task is the statespace,i.e., the
spaceof all statesthat are reachablefrom the initial state.
Now, the behavior of local searchdependscrucially on the
problemstructure,i.e., on the topologyof the searchspace.

Thus,the successof theseheuristicplannerson many plan-
ning tasksgivesrise to the suspicionthat thosetask's state
spaceshave a simplestructurewith respectto relaxed goal
distances.In thispaper, weshedlight on thatsuspicion.Fol-
lowing Franket al. [1997],we definea numberof structural
phenomenain searchspacesunderheuristicevaluation,im-
pactingtheperformanceof localsearchalgorithms.Wecom-
pute the optimal relaxed solution length to reachablestates
in small planning tasks,and measurestructuralproperties.
Our resultssuggestthat,in fact,thetaskscontainedin many
benchmarkplanningdomainshaveasimplestatespacetopol-
ogy, at leastwhenusingtheoptimalrelaxedheuristic.To give
anexampleof how thisobservationcarriesoverto theapprox-
imation techniquesusedby existing heuristicplanners,we
applythesametechniqueof datacollectionto theFF heuris-
tic. As it turns out, the resultsaresimilar. Specifically, it
follows that FF's searchalgorithm is a polynomial solving
mechanismin anumberof planningbenchmarkdomains,un-
der thehypothesisthat the larger instancesbehave similar to
thesmallerones.

Section2 introducesourgeneralapproach,Section3 gives
thebasicdefinitions.Sections4 and5 definestructuralphe-
nomenain searchspacesunderheuristicevaluation,andgive
empiricaldata.Section6 summarizestheresultsin a taxon-
omy for planningdomains.Section7 appliesthemethodol-
ogy to the FF heuristic. Section8 concludesand gives an
outlookon furtherresearch.

2 GeneralApproach
In our experiments,we usedsolvableplanningtasksonly, as
we are interestedin finding out why local searchcan suc-
ceedsoquickly on many benchmarktasks.We lookedat in-
stancesfrom 20 differentSTRIPSandADL benchmarkdo-
mains.Dueto spacerestrictions,we only presenttheresults
for the domainsusedin the competitionshere,asthosedo-
mainsarewell known in theplanningcommunity.

To obtaindataon how planningtasksbehave with respect
to the relaxation,ratherthanwith respectto any of the ap-
proximationtechniquesusedby existing heuristicplanners,
weconsidertheoptimalrelaxedsolutionlengthasourheuris-
tic. As determiningthatoptimallengthis NP-hard,it canonly
be computedfor small planninginstances.We build an ex-
plicit statespacerepresentationto suchinstances,andlook at
thetopologyin detail. This yieldsa clearpictureof the fun-



damentalstructuraldifferencesbetweeninstancesfrom dif-
ferent� planningdomains.In thatcontext, we statesomehy-
potheses.A pieceof futurework is to verify those.

In total,thecompetitionsfeatured13STRIPSandADL do-
mains:Assembly, Blocksworld, Freecell, Grid, Gripper, Lo-
gistics, Miconic-ADL, Miconic-SIMPLE, Miconic-STRIPS,
Movie, Mprime, Mystery, andSchedule. In 11 of thesedo-
mains,we usedrandomtaskgenerationsoftwareto produce
small instances,at least100 per domain. In Gripper, there
is only oneinstanceof eachsize: � balls to be transported.
In Movie, every instanceof the AIPS-1998suitewassmall
enoughto belookedat in detail.

Sometimes,we depictscalingbehavior. As our instances
areall quitesmallanyway, we need,for thatpurpose,a finer
distinction betweeninstancesthan obvious criteria like the
numberof objects. We definethe difficulty of a task to be
the length of an optimal solution plan, and order our in-
stanceswithin any domainby increasingdifficulty. Except
in the Movie domain(whereall instancesin theAIPS-1998
suitehave the samedifficulty), larger instancesareon aver-
agemoredifficult thansmallerones.Themaximaldifficulty
of any instancewecouldlook at is

���
in theGripperdomain,���

in theAssemblyandLogisticsdomains,
���

in Grid, and
��	

in theBlocksworld. In Movie, all instanceshave difficulty 
 ,
andin theremainingdomainsour maximaldifficulty ranges
from

���
to

���
.

3 BasicDefinitions
The competition domains contain tasks specified in the
STRIPSandADL languages.In bothcases,a planningtask


is specifiedin termsof asetof objects� , aninitial state� ,
agoalformula � , andasetof operatorschemata� . � , � , and
� arebasedon a collectionof predicatesymbols.Planning
tasksfrom thesamedomainsharethesamesetsof predicate
symbolsand operatorschemata.Instantiatingthe operator
schematawith all objectsyields the actions � to the task.
Statesaresetsof logical atoms,i.e., instantiatedpredicates.
Any actionhasa precondition,which is a formulathatmust
hold in a statefor theactionto beapplicable.Also, anaction
hasanadd-anda delete-list.Thesearesetsof atoms,where
eachatomhasa conditionformulaattachedto it (in STRIPS,
theseconditionformulaearetrivially TRUE). If an actionis
applied,theatomswith satisfiedconditionin theaddlist are
addedto the state,andthosewith satisfiedcondition in the
deletelist areremovedfrom the state.A plan is a sequence
of actionsthat,whensuccessively appliedto theinitial state,
yieldsa statethatsatisfiesthegoalformula.

Ignoringthedeletelists simplifiesa taskonly if all formu-
laearenegationfree.In STRIPS,thisis thecaseby definition.
In general,for a fixeddomain,any taskcanbepolynomially
transformedto havethatproperty:computethenegationnor-
mal form to all formulae(negationsonly in front of atoms),
thenintroducefor eachnegatedatom ��� a new atomnot-�
andmakesureit is TRUE in astateiff � is FALSE [Gazenand
Knoblock, 1997]. In the following, we assumeformulaeto
be negationfree. We will investigatepropertiesof the opti-
mal relaxedheuristic ��� . For any state � in a planningtask
with actions� andgoalcondition � , the relaxedtaskto � is

thetaskdefinedby thesamegoalcondition � , theinitial state
� , andtheactionset ��� , whichis identicalto � exceptthatall
deletelistsareempty. Then, ������� � is thelengthof a shortest
planthatsolvestherelaxedtaskto � , or �!�"�#���%$'& if there
is nosuchplan.

We will be looking at the topologyof searchspaceswith
heuristicevaluation. Thestructuralpropertieswe will intro-
ducedonotdependontheplanningframework. Wetherefore
definethemin a generalmanner, embeddingplanningstate
spacesasa specialcase.

Definition 1 A searchspaceis a
�
-tuple �#(�)+*,).-/).��0�� , where

( is the setof states, *213(546( are the statetransitions,798$:-;1<( are thegoalstates, and � 0>= ( is the initial state.

Givena planningtask,thesearchspacewe look at is what
is usually referredto as the statespace. There, � 0 is sim-
ply the initial state� of the task. ( is the setof statesthat
arereachablefrom the initial stateby successively applying
actionsfrom � , and * containsall pairs �#�?)@���A� whereoneac-
tion,executedin � , yieldsthestate��� . - is thesetof all states
thatsatisfythe goal condition. Looking only at solvablein-
stances,thereis at leastonesuchstate.

Definition 2 Givena search space ��(B)+*,).-/).� 0 � . Thegoal
distanceof � = ( is

CED ��� �GFH$:IKJL��M D JN��OP�#�?)@� � ��Q�� � = -SR
The distance D JT��OP���U).� � � betweenany two statesis the

lengthof a shortestpath from � to ��� in the directedgraph
givenby ( and * , or D JT��OP���U).���V�W$X& if thereis nosuchpath.
HeuristicfunctionsapproximateCYD .

Definition 3 Givena search space��(B)+*,).-/).��0 � . A heuristic
is a function �5FZ(;[\^]_0�`aMb&:R , such that �c�#���d$ �fe
CYD �#���W$ �

.

We requirethata heuristicrecognizesgoalstates,yielding
�g��� �h$ �

if andonly if CED ��� �h$ �
, which is equivalentto

� = - . We allow heuristicsto return �g��� �i$3& , assearch
spacescancontaindeadends.

4 DeadEnds
Becausestatetransitionsin asearchspaceare,in general,di-
rected,therecanbestatesfrom which no goalstateis reach-
able.

Definition 4 Givena search space��(B)+*,).-/).� 0 � . A state � =
( is a deadend, if CYD �#� �W$X& .

If a local searchalgorithmrunsinto a deadend,it is lost.
A heuristicfunctioncanreturn �g��� �j$k& to indicatethat �
might be a deadend. Desirably, it doesso only on states�
thatreallyaredeadends.

Definition 5 Given a search space ��(�).*,)+-/)@� 0 � with a
heuristic � . � is completenesspreserving, if �c�#���S$l&nmCYD �#���W$5& .

With a completeness-preservingheuristic,we can safely
prunestateswhere �c�#� �j$o& . For planningtasks,if a task
cannotbesolvedevenwhenignoringthedeletelists,thenthe
taskis unsolvable. Therefore,the ��� function is complete-
nesspreserving.For the restof thepaper, we only consider
thosestateswheretheheuristicvalueis lessthan & .



Definition 6 Given a search space ��(�).*,)+-/)@� 0 � with a
completeness-prp eservingheuristic � . Therelevantpartof the
search spaceis M � = (qQ��g��� �"r<&:R .

Any searchspacewith heuristicevaluationfalls into oneof
thefollowing four classes,with respectto deadends.

Definition 7 Given a search space ��(�).*,)+-/)@��0 � with a
completeness-preservingheuristic � . Thesearch spaceis

1. undirected, if s��#�U).���t� = *;F!�����#).� � = *
2. harmless, if uv���U).���V� = *wFx�#���y)@��� 8= * , and sv� = (;FCYD �#� �Gr:&
3. recognized, if u!� = (zF CED ��� �{$|& , and sv� = (}FCYD �#� �W$X&~m~�c�#���x$�&
4. unrecognized, if u!� = (aF CED ��� �W$5&}�K�c�#����r<&
For eachof our planninginstances,we verified which of

the above classesthe statespacebelongedto. We say that
a domainbelongsto classJ if the statespacesof all our in-
stancesbelongto a class �'�wJ , and at leastone instance
belongsto classJ . We foundthefollowing.

1. Blocksworld, Gripper, and Logistics have undirected
graphs.

2. Grid, Miconic-STRIPS, Miconic-SIMPLE, and Movie
aredirected,but donothavedeadends.

3. In AssemblyandSchedule, all deadendsarerecognized.

4. Freecell, Miconic-ADL, Mprime, andMystery contain
unrecognizeddeadends.

In addition to our empiricalanalysis,the resultsfrom 1.
and 2. can be shown analytically. For undirectedgraphs,
suchamethodis describedby KoehlerandHoffmann[2000].
For thedomainsin classfour, it is alsointerestingto seehow
many unrecognizeddeadendsthereare.Wemeasuretheper-
centageof suchstatesin the relevantpart of thestatespace,
seeFigure1.

Domain ��� ��� �P� ��� ���
Freecell 0.0 1.1 1.2 2.6 3.0
Miconic-ADL 0.0 0.0 2.5 9.7 9.8
Mprime 18.8 29.3 50.0 58.0 69.6
Mystery 19.5 37.9 54.0 66.4 84.6

Figure1: Percentageof unrecognizeddeadendsin the rele-
vantpartof thestatespace.Meanvaluesfor increasingtask
difficulty in differentdomains.

For each single domain in Figure 1, the sequenceof
columnsgivesa pictureof how the valuesdevelop with in-
creasingtaskdifficulty. In eachdomain,thetasksaredivided
into fivegroups.Thedifficulty of a taskin group J lieswithin
interval ��� , where ��0Z�����+�P� divide our rangeof difficulty in
thatdomaininto five partsof samesize. Note that the inter-
vals � � aredifferentfor eachdomain,so the valueswithin a
columnarenotdirectlycomparable.

As Figure1 shows,theMprimeandMysterytaskscancon-
tain a lot of unrecognizeddeadends,andhave the tendency
to containmore of suchdeadendsthe more difficult they
get. For Freecelland Miconic-ADL, we can not conclude

muchmorethanthattherecanbeunrecognizeddeadends.It
seemsthatthepercentagegrowswith taskdifficulty, andthat
taskswith high percentageareout of the rangeof difficulty
wecouldlook at.

5 Search SpaceTopology
For SAT problems,thetopologyof searchspaceswith respect
to thebehavior of localsearchhasbeeninvestigatedby Frank
etal. [1997]. As thebasisof theirwork, Franketal. formally
definea partitioningof thesearchspaceinto plateausof dif-
ferentkinds. For our purposes,we extendtheir definitionsto
dealwith our generalnotion of searchspaceswith heuristic
evaluation,whereedgescanbedirected.

Definition 8 Given a search space ��(�).*,)+-/)@��0 � with a
completeness-preservingheuristic � . For � = ] 0 `6Mb&:R , a
plateau� of level � is a maximalsubsetof ( for which thein-
ducedsubgraphin �#(�)+*_� is stronglyconnected,and �g��� �W$��
for each � = � .

Plateausare regions that are equivalent underreachabil-
ity aspects,andlook thesamefrom thepoint of view of the
heuristicfunction.Obviously, eachstate� liesonexactlyone
plateau.

Definition 9 Given a search space ��(�).*,)+-/)@� 0 � with a
completeness-preservingheuristic � , and a plateau � . A
state � = � is an exit of � , if there is a state ��� 8= � such
that �#�?)@� � � = * and �g��� � �����g��� � . � is an improving exit, if,
for at leastonesuch ��� , �g�����V�Gr<�g��� � .

Exitsarestatesfrom whichonecanleaveaplateauwithout
increasingthe valueof the heuristicfunction. In undirected
graphs,like areconsideredby Franket al. [1997], leaving a
plateauimplieschangingthevalueof theheuristicfunction,
soall exits areimproving there.Accordingto theproportion
of exits on a plateau,Franket al. divide plateausinto four
classes:localminima,benches,contours,andglobalminima.
Takingaccountof directededges,wehavetwo typesof exits,
anddefinethefollowing six differentclasses.

Definition 10 Given a search space ��(�).*,)+-/)@� 0 � with a
completeness-preservingheuristic � .

1. A recognizeddeadendis a plateau� of level �h$5& .

2. A local minimum is a plateau � of level
� rk��ro&

thathasnoexits.

3. A plain is a plateau � of level
� r;�ar�& that hasat

leastoneexit, but no improvingones.

4. A benchis a plateau � of level
� r3�5r3& that has

at leastoneimprovingexit, andat leastonestatethat is
notan improvingexit.

5. A contouris a plateau � of level
� r5��r�& that con-

sistsentirelyof improvingexits.

6. A globalminimum is a plateau� of level
�
.

Eachplateaubelongstoexactlyoneof theaboveclasses.In
oursolvableinstances,globalminimaareexactlytheplateaus
of level

�
. With a completeness-preservingheuristic,recog-

nizeddeadendsareirrelevant,andcanbeignored.Fromlocal
minima, thereis no directway of gettingcloserto the goal.



Frombenches,thereis. Fromcontours,onecangetcloserim-
mediately� . Plainsbehave asa kind of entranceto eitherlocal
minimaor benches.

Definition 11 Given a search space ��(�).*,)+-/)@� 0 � with a
completeness-preservingheuristic � . A flat path is a path
where all stateson the path havethe sameheuristicvalue.
For a plateau � , theflat region �>�/�y�j� from � is thesetof
all plateaus�>� such that there is a flat pathfromsome� = �
to some��� = �>� .

For a plain � , if thereis at leastonebenchor contourin
�>�/�y�j� , then � behavessimilar to a bench,with at leastone
improving exit beingwithin reach.Otherwise,startingin � ,
withoutincreasingthevalueof theheuristicfunction,onewill
inevitably endup in a localminimum.

Definition 12 Given a search space ��(�).*,)+-/)@��0b� with a
completeness-preservingheuristic � . A plain � leads to
benchesif �>�/�y�j� containssomebench or contour. Other-
wise, � leadsto localminima.

Basedontheabovedefinitions,andusinganexplicit search
spacerepresentation,onecanmeasureall kindsof structural
parameters.Dueto spacerestrictions,we only discusssome
of themostinterestingparametershere.

5.1 Local Minima
First, we areinterestedin thepercentageof statesthat lie on
local minima. Beforedoing this, we needto take a closer
look at thedefinitionof local minima. Theseareflat regions
whereall neighborshave higherevaluation. Steppingon to
oneof theseneighborsdoesnot necessarilyimprove thesit-
uation,though: it might be, for example,that the only exits
on thatneighborleadbackto thelocalminimum. In general,
a local minimumis only thebottomof a valley, wherewhat
wereallywantto know aboutis thewholevalley. Valleysare
characterizedby the propertythat onecannot reacha goal
statewithout increasingthevalueof theheuristicfunction.

Definition 13 Given a search space ��(�).*,)+-/)@� 0 � with a
completeness-preservingheuristic � . A state � = ( hasa
full exit path, if there is a pathfrom � to a goal state ��� such
that the heuristic value of the stateson the path decreases
monotonically.

Onestateon a plateauhasa full exit pathif andonly if all
statesonthatplateaudoso.If aplateauhasnofull exit paths,
thenit is partof avalley.

Definition 14 Given a search space ��(�).*,)+-/)@��0b� with a
completeness-preservingheuristic � . A valley is a maximal
set � of plateaussuch that no � = � hasfull exit paths,no
� = � is a recognizeddeadend,andfor all �").�>� = � , � is
stronglyconnectedto �>� .

Theexistenceof valleys is, in any searchspace,equivalent
to theexistenceof local minima. It turnsout that,in 7 of the
13 competitiondomains,thestatespacesof all our instances
donotcontainany localminimaatall.

Hypothesis1 Let



be a planning task from any of
the Assembly, Grid, Gripper, Logistics, Miconic-SIMPLE,
Miconic-STRIPS, or Movie domains.Then,the statespace

of



doesnotcontainanylocal minimaunderevaluationwith
��� .

In Figure2, weshow themeanpercentageof statesonval-
leys for thosedomainswherewefoundlocalminima.

Domain � � � � � � � � � �
Blocksworld 9.8 28.1 37.5 50.1 55.6
Freecell 0.0 1.1 1.2 2.6 3.0
Miconic-ADL 0.0 0.0 2.5 9.7 9.8
Mprime 18.8 29.9 50.7 58.5 70.7
Mystery 19.5 38.5 55.1 68.0 89.4
Schedule 20.0 25.6 36.5 31.8 35.3

Figure2: Percentageof stateson valleys in therelevantpart
of thestatespace.Meanvaluesfor increasingtaskdifficulty
in differentdomains.

Any unrecognizeddeadendstatelies in a valley. There-
fore, the percentageof valleys is at leastashigh asthe per-
centageof unrecognizeddeadendsfor thedomainsshown in
Figure1. In FreecellandMiconic-ADL, thestatesonvalleys
areexactly the unrecognizeddeadendsin all our examples.
In Mprime andMystery, therecanbemorevalley states.In
Blocksworld andSchedule, valuesseemto approachan up-
per limit on our mostdifficult tasks. Computingmaximum
insteadof themeanvaluesshown in Figure2, we foundthat
someof ourScheduletaskscontainupto 
 � � � � valley states.
In our Blocksworld suite,however, themaximumvalley per-
centageis constantly�?��� � � , irrespectiveof difficulty.

5.2 Contours
We also measurethe averagepercentageof stateslying on
contoursthat are not part of a valley—regions in the state
spacethat aredominatedby suchcontoursare likely to be
passedquickly by a local searchalgorithm. In Movie, the
percentageis constantly � � � �Y� . In Assembly, Logistics,
Miconic-SIMPLE, Miconic-STRIPS, andSchedule, between
� �E� and

	?���
of therelevantstatespacelie onsuchcontours

in our examples,andthereis no cleartendency that theval-
uesdecreasewith taskdifficulty. In theremaining7 domains,
thereis sucha tendency. Valuesareparticularly low in the
Blocksworld, goingdown to ��� ��� in ourmostdifficult tasks.

5.3 Benches
For benches,the percentageof statesaloneis not a very in-
formativeparameter, asany plateauis a benchgivenit hasat
leastoneimprovingexit. Whatreallymattersis, how difficult
is it to find suchanexit? Possiblecriteriafor thisarethesize
of benches,or the proportionof improving exits. Here,we
defineanothercriterionthat is—aswill beshown in thenext
section—especiallyrelevant for FF's searchalgorithm. The
criterion is namedmaximalexit distance. We measurethat
distancefor what we call bench-relatedplateaus.Theseare
benches,andplainsleadingto benches.RecallDefinitions11
and12.

Definition 15 Given a search space ��(�).*,)+-/)@��0b� with a
completeness-preservingheuristic � . For a state � on a
bench-relatedplateau,theexit distance� D ��� � is thelengthof



ashortestflatpathfrom � to some��� suchthatthereissome��� �
with �����#).��� �V� = *,)@�c�#��� ����r��c�#���A� . Themaximalexit distance
of a bench-relatedplateau � is I � D �y�j�¡FH$¢I £U¤cM�� D ��� �¡Q
� = �SR .

The maximalexit distancein a searchspaceis the max-
imum over the maximal exit distancesof all bench-related
plateaus,or

�
if thereareno bench-relatedplateaus.It turns

out that, in 5 of the competitiondomains,the maximalexit
distanceis constantacrossall ourexamples.

Hypothesis2 To any of the Gripper, Logistics, Miconic-
SIMPLE, Miconic-STRIPS, or Movie domains,there is a
constant¥ , such that, for all tasks



in thatdomain,themax-

imal exit distancein thestatespaceof



is at most ¥ under
evaluationwith �!� .

In the listeddomains,all our exampleshave maximalexit
distance

�
, so the constant¥¦$ �

fulfills the hypothesized
propertythere.Thecrucialpoint is that, in those5 domains,
thereapparentlyis an upperlimit to the maximal exit dis-
tance.In contrastto this, computingmeanvalues,we found
that themeanmaximalexit distancegrows with difficulty in
our suitesfrom 7 of the remaining8 domains. In Mprime,
meanvaluesshow a lot of variance,makingit hardto draw
any conclusions.SeeFigure3.

Domain � � � � � � � � � �
Assembly 0 1.2 1.6 2.4 3.5
Blocksworld 2.8 3.3 3.8 4.9 5.0
Freecell 0 0 1 1 1.5
Grid 2.6 3.2 3.1 3.8 4.3
Miconic-ADL 1 1 1 1.4 2.3
Mprime 1.9 2.6 2.1 2.0 2.2
Mystery 1.1 1.4 1.5 1.2 2.3
Schedule 1 1 1.2 1.9 2.0

Figure3: Maximal exit distance.Meanvaluesfor increasing
taskdifficulty in differentdomains.

6 A Planning Domain Taxonomy
Our approachdividesplanningdomainsinto a taxonomyof
differentclasseswith respectto the ��� heuristic,depending
onwhichdeadendclassthey belongto, whethertherecanbe
localminima,andwhetherthereis anupperlimit to themax-
imal exit distance.Seeaschematicoverview of our resultsin
Figure4.

Rememberthat the existenceof unrecognizeddeadends
implies theexistenceof valleys,which implies theexistence
of localminima.Theoverview in Figure4 givesanappealing
impressionof thekind of domainsthatstate-of-the-artheuris-
tic plannerswork well on: The “simple” domainsarein the
left bottomcorner, while the“demanding”onesarein thetop
right corner. In fact,in theAIPS-2000competition,theFree-
cell andMiconic-ADL domainsconstitutedmuchmoreof a
problemto theheuristicplannersthan,for example,theLo-
gisticsdomaindid.

Themajority of thecompetitiondomainslie on the “sim-
ple” left bottom side of our taxonomy. In fact, this phe-
nomenongetsevenstrongerwhenlookingatothercommonly
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Figure4: A taxonomyfor planningdomains,overviewingour
results.

usedplanningbenchmarkdomains:Fromour20domains,14
do not exhibit any local minima. In 8 of those14 domains,
themeanmaximalexit distancedoesnotgrow with difficulty.
In theBriefcaseworld, for example,thedistanceis apparently
boundedby ¥%$§� .

For domainswithout localminimaandwith boundedmax-
imal exit distance,we canbepreciseaboutsimplicity. Con-
sider the following algorithm, working on a searchspace
��(B)+*,).-/).��0 � with a heuristic� .

� := � 0
while �g��� � 8$ �

do
dobreadthfirst searchfor ��� , �g�������Gr:�c�#���
� := ���

endwhile

ThisalgorithmhasbeentermedEnforcedHill-climbing by
Hoffmann[2000],andis usedin FF.

Proposition1 Let ¨ be a setof search spaceswith heuris-
tics, such that no search spacecontainsa local minimum,
and IK� D is an upperlimit to themaximalexit distance. Say
wehavea search space�#(�)+*,).-/).� 0 � = ¨ , with heuristic � .
Let © bethemaximalnumberof outgoingedgesof anystate.
Then,startedon ��(�).*,)+-/)@��0�� , Enforced Hill-climbing will
finda goalstateafterconsidering�/���g��� 0 �cª"©�«�¬T­@�g®�� states.

Without local minima, each iteration of EnforcedHill-
climbing crossesa bench-relatedregion or a contour, so it
finds a betterstateat maximaldepth I � D/¯ �

, considering
�/��©P«"¬°­@�g®�� states.Eachiterationimprovestheheuristicvalue
by at leastone,soafterat most �g��� 0 � iterations,a goalstate
is reached.

Reconsidertheterminologyintroducedat thebeginningof
Section3. Say we have a planningdomainwith operator
schemata� . Any taskspecifies,amongstother things, the
setof objects � , yielding the actionset � . An obviousup-
per limit to thenumberof outgoingedgesin the task's state
spaceis Q �SQ . Furthermore,if thelongestaddlist of any action
hassize ± , then,for nondeadendstates� , �!���#���²�5±_ªjQ �iQ .
This is becausewith emptydeletelists, eachatomneedsto
beaddedat mostonce.Finally, Q �iQ and ± arepolynomialin
Q �,Q for fixed � . Thus, consideringonly the solvable tasks
from a domain,applyingProposition1 getsusthefollowing.
If ��� doesnot yield any local minima,andproducesa con-
stantmaximalexit distance,thenEnforcedHill-climbing, us-
ing ��� , findsagoalstateto eachtaskby lookingatanumber



of statespolynomialin Q �,Q .1

7 Explaining FF's Runtime Behavior
To give anexampleof how our resultsunderevaluationwith
��� carry over to existing approximationtechniques,we ran
thesameexperiments,usingtheFF heuristic.Theresultsare
summarizedin Figure5.
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Figure5: Resultsoverview for theFFheuristic.

ComparingFigure5 with Figure4, oneseesthatthereare
threedomainswherelocal minimaarise,whenusingtheFF
heuristicinsteadof ��� . However, the averagedvalley per-
centageis below

	��
in Grid, below

�U�
in Assembly, and

below
� � � � in Miconic-SIMPLE. Four of the domainsthat

aresimplewith �!� staysimplewith theFFheuristic.
As Hoffmann [2000] describes,the FF systemusesthe

EnforcedHill-climbing algorithmasits searchmethod. For
STRIPSplanningtasks,it is easyto seethat, like it is the
casefor the ��� heuristic,FF's heuristicestimateto any state
is boundedby thenumberof actions.Thus,if Hypotheses1
and2 are true for the STRIPSdomainsGripper, Logistics,
Miconic-STRIPS, andMovie, underevaluationwith the FF
heuristic,then EnforcedHill-climbing, using that heuristic,
solvesthetasksin eachof thesedomainsby evaluatingpoly-
nomiallymany states.

8 Conclusionand Outlook
The intuition that many planningbenchmarksare “simple”
in somesenseis not new to the planningcommunity. What
theauthorpersonallylikesmostaboutthepresentedwork is
that it provides a formal notion of what simplicity, in that
context, might mean.We give empiricaldatasupportingthat
many benchmarksare, in fact, simple in that formal sense.
The work providesinsightsinto fundamentalstructuraldif-
ferencesbetweendifferentplanningdomains,andoffersex-
plaining the successof FF—andpossiblyof otherstate-of-
the-artheuristicplanners—asutilizing the simplicity of the
benchmarks.

Thepresentedresultsarepreliminaryto theeffect thatob-
servationsaremadeon a collectionof comparatively small
planningtasks.Thestatedhypothesesmustbeverified. For

1In domainswherethis holds,decidingplanexistenceis in NP:
To any solvabletask,thereis a solutionplanwith at most ³Y´�µH¶g·¹¸
µ�º/»�¼x½�¾P· steps,i.e.,aplanof polynomiallength.

the �!� function,wearegoingto proveourhypothesesanalyt-
ically. For theFF andHSPheuristicfunctions,we aregoing
to take samplesfrom thestatespacesof largertasks.

Practically, we seethe benefitsof our resultsin mainly
threeareas.Firstly—whichis a line of work thatwe arecur-
rently exploring—onecan try to recognizesimpleplanning
tasksautomatically, andtherebypredicttheruntimebehavior
of FF or otherheuristicplanners.Secondly, knowing about
the strengthsandweaknessesof existing heuristicfunctions
may help in designingbetterones. Finally, a betterunder-
standingof the structuraldifferencesbetweenplanningdo-
mainsmayhelpin designingmorechallengingbenchmarks.

Acknowledgments
TheauthorthanksBernhardNebelfor discussionsonthepre-
sentedwork in all stagesof its development.Thanksalsogo
to MalteHelmertfor many usefulcommentsonanearlyver-
sionof thepaper.

References
[BacchusandNau,2001] Fahiem Bacchusand Dana Nau.

The2000AI planningsystemscompetition.TheAI Mag-
azine, 2001.Forthcoming.

[BonetandGeffner, 2001] Blai Bonet and Héctor Geffner.
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