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Abstract. We focus on checking safety properties in networks of extended timed
automata, with the well-known UPPAAL system. We show how to use predicate
abstraction, in the sense used in model checking, to generate search guidance, in
the sense used in Artificial Intelligence (AI). This contributes another family of
heuristic functions to the growing body of work on directed model checking. The
overall methodology follows the pattern database approach from AI: the abstract
state space is exhaustively built in a pre-process, and used as a lookup table during
search. While typically pattern databases use rather primitive abstractions ignor-
ing some of the relevant symbols, we use predicate abstraction, dividing the state
space into equivalence classes with respect to a list of logical expressions (pred-
icates). We empirically explore the behavior of the resulting family of heuristics,
in a meaningful set of benchmarks. In particular, while several challenges remain
open, we show that one can easily obtain heuristic functions that are competitive
with the state-of-the-art in directed model checking.

1 Introduction

When model checking safety properties, the ultimate goal is to prove the absence of
error states. This can be done by exploring the entire reachable state space. UPPAAL
is a tool doing this, for networks of extended timed automata.5 UPPAAL has a highly
optimized implementation, but still the reachable state space often is prohibitively large
in realistic applications. A potentially much easier task is to try to falsify the safety
property, by identifying an error path: for this, we can use a heuristic that determines in
what order the states are explored. If the heuristic is perfect, then only the states on a
shortest error path will have to be explored.

More formally, a heuristic, or heuristic function, is a function that maps states to
integers, estimating the state’s distance to the nearest error state. The heuristic is called

? Contact author. Email: joerg.hoffmann@deri.org
5 Such (networks of) automata feature synchronization, integer variables, and real-valued clock

variables. We assume the reader is (vaguely) familiar with these concepts; a brief explanation
will be given. The ideas and results of the paper should be easily accessible without detailed
background knowledge.
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admissible if it provides a lower bound on the real error state distance. The search
gives a preference to states with lower h value. There are many different ways of doing
the latter. The A∗ method, where the search queue is a priority queue over start state
distance plus the value of h, guarantees to find an optimal (shortest possible) solution
(error) path if the heuristic is admissible. Herein, we instead use greedy best-first search.
There, the search queue is a priority queue over the value of h. This does not give any
guarantee on the solution length, but tends to be much faster than A∗ in practice.

The application of heuristic search to model checking was pioneered a few years
ago by Edelkamp et al [6, 7], christening this research direction directed model check-
ing, and inspiring various other approaches of this sort, e.g. [5, 9, 13, 15]. The main
difference between all the approaches is how they define and compute the heuristic
function: How does one estimate the distance to an error state?

A brief overview of the heuristic functions defined so far is this. Edelkamp et al [6]
base their heuristics on the “graph distance” within each automaton – the number of
edge traversals needed, disregarding synchronization and all state variables. This yields
a rather simplistic estimation, but can be computed very quickly. Groce and Visser
[9] define heuristics inspired from the area of testing, with the idea to prefer covering
yet unexplored branches in the program. Qian and Nymeyer [15] ignore some of the
state variables to define heuristics which are then used in a pattern database approach
(see below). Kupferschmid et al [13] adapt a heuristic method from the area of AI
Planning, based on a notion of “monotonicity” where it is assumed that a state variable
accumulates, rather than changes, its values. Dräger et al [5] iteratively “merge” a pair
of automata, i.e., compute their product and then merge locations until there are at most
N locations left, where N is an input parameter. The heuristic function is read off the
overall merged automaton.

We add another family of heuristic functions into the above arsenal, based on an
abstraction method already established quite broadly in model checking – predicate
abstraction [8]. A predicate abstraction of a system is defined by a set of logical ex-
pressions – the predicates. In general, one could use arbitrary expressions; herein, we
consider expressions of the form lfn(X) ./ c where lfn(X) is a linear function in vari-
able set X , ./∈ {<,≤,=,≥, >}, and c is a constant (a number). The idea is to divide
the state space into equivalence classes with respect to the truth values of the predicates:
the abstraction of a system state s is a tuple b̄ of truth values, stating which of the pred-
icates are true or false in s; we have an abstract transition b̄ → b̄′ for every transition
s→ s′ of the original system. The abstract system thus over-approximates the real sys-
tem, which enables us to analyze the abstract system in order to draw (certain kinds of)
conclusions about the real system. If an error state (condition) is not reachable in the
abstract system, then it is neither reachable in the real system. Such methods have been
extremely successful in the verification of temporal safety properties, e.g. [1, 2, 10].

Herein, predicate abstraction is, for the first time as far as we are aware, used to
define heuristic functions instead. In a manner reminiscent of the pattern database ap-
proach [3], we build the (entire) abstract state space before search starts; during search,
the abstract state space is used as a lookup table, i.e., states are mapped onto their ab-
stract counterparts, and the error distance of the counterpart is taken as the heuristic
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estimate. In difference to our approach, pattern databases traditionally use simple ab-
stractions, mostly (like [15] above) based on ignoring some of the relevant symbols.

An important characteristic of our method (which it shares with traditional pattern
databases) is that it yields a very large family of heuristics, rather than just a single
one. Every different set of predicates yields a different abstract state space, which gives
a different heuristic function. The main question is: How should we choose the predi-
cates? This is the same “main” question as in the standard use of predicate abstraction.
However, in our approach the abstraction does not have to be precise enough to verify
the property of interest, in order to be useful. So we got much more freedom of design.
Herein, we explore two approaches. The first one simply collects the predicates from
the syntax (e.g. transition guards) of the automata network, which is not likely to be
property-preserving. The second one uses the standard error path guided abstraction
refinement life cycle: (1) start with an empty set of predicates; (2) find an error path;
(3) check if the error is real or spurious; (3a) if it is real, stop; (3b) if it is spurious,
analyze the error path to create new predicates that exclude this path, and goto (2). For
our purposes, we can stop the process at any time – we do not have to wait until a real
error path is found. In our experiments, we simply fix a number of refinement iterations
(which becomes an input parameter).6 Generating the predicates using abstraction re-
finement is, we think, particularly promising: this technique has the power to adapt the
heuristic function quite flexibly and intelligently to the individual problem instance at
hand. Surprisingly, we weren’t yet able to obtain entirely convincing results with the
technique; we believe there is hope for the future. This will be discussed in detail later.

Apart from the parameterization given by the choice of predicates, we explore an-
other parameter defining how the automata network is split into several parts. It turns
out that predicate abstraction is much too time-consuming when done on the entire net-
work. So we apply another abstraction method beforehand. We define a partitioning of
the set of automata (we “split” the network), and hand each part to the predicate ab-
straction engine in separate. The splits are made so that few potential “interactions” are
violated. The transition guards responsible for the violated interactions are removed.
During search, a heuristic value is looked up in each part (in the corresponding abstract
state space). These values are aggregated by taking their sum as the overall heuristic
value. Since we removed the guards responsible for violated interactions, this aggre-
gated heuristic value is still admissible. There are many possible strategies for making
the split. We use a simple greedy strategy parameterized by the split bound b – the max-
imal number of automata in a single part of the partitioning (the maximal number of
automata considered within a single predicate abstraction).

For testing, we use a set of benchmarks that is meaningful in that it includes exam-
ples from two industrial case studies [4, 12]. Table 1 gives a summary of our results.
Examples “FAn” and “FBn” are variants of the Fischer protocol for mutual exclusion,
examples “Mi”, “Ni”, and “Ci” come from the industrial case studies (some more de-
tails are given later). In Table 1, “RDF” is standard UPPAAL’s fastest search strategy, a
randomized depth-first search. “[13]-best” gives, for each example, the better result of

6 We will see that, by using abstraction refinement for a heuristic – combining abstraction refine-
ment and state space search – we can solve examples that cannot be solved by either method
(abstraction refinement or blind state space search) alone.
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Exp. RDF [13]-best [5]-N50 Syntax-b2 ARMC-b3-r4
FA5 526/0.0 27/0.0 80/0.1 0.0/80/0.1 0.3/29/0.3
FA10 6371/0.4 42/0.0 130/0.2 0.0/130/0.1 0.4/44/0.4
FA15 20010/1.3 57/0.0 180/0.5 0.1/180/0.1 0.6/59/0.6
FB5 356/0.0 74/0.0 21/0.0 0.1/21/0.1 0.5/23/0.5
FB10 7885/0.5 274/0.0 36/0.1 0.3/36/0.3 0.5/38/0.5
FB15 58793/3.8 599/0.1 51/0.4 0.5/51/0.5 0.5/53/0.5
M1 29607/0.7 5656/0.7 19063/0.9 1.1/23257/1.8 3.9/12121/4.1
M2 118341/3.3 30743/2.8 46545/1.5 1.2/84475/3.9 4.0/50599/5.1
M3 102883/4.6 18431/2.0 64522/2.0 1.1/92548/4.4 4.0/28022/4.4
M4 543238/6.1 88537/9.9 168692/3.3 1.3/311049/11.4 4.5/116570/5.8
N1 41218/2.0 16335/2.4 27275/2.0 1.0/36030/3.8 7.3/12439/8.1
N2 199631/10.1 132711/9.9 102097/5.2 1.4/178333/14.0 7.8/97219/11.3
N3 195886/9.7 28889/3.3 135783/6.8 1.3/196535/15.4 7.5/43159/9.6
N4 878706/43.5 226698/23.1 483623/23.1 1.2/983344/75.1 8.2/469363/24.4
C1 25219/0.9 2368/0.8 871/0.5 2.8/1588/2.8 10.8/1172/10.8
C2 65388/1.0 5195/1.5 1600/0.6 3.0/3786/3.1 12.2/3256/12.2
C3 85940/1.7 6685/1.7 2481/0.8 2.6/3846/2.7 12.5/4278/12.5
C4 892327/9.7 55480/6.5 22223/1.4 4.6/30741/5.0 14.3/46837/14.8
C5 8.0e+6/81.9 465796/41.9 160951/3.2 5.0/185730/8.0 15.4/473470/20.0
C6 – 4.5e+6/353.0 1.7e+6/15.5 5.2/1.9e+6/33.9 16.5/2.6e+6/42.5

Table 1. Summary of results. Number of explored states/runtime (sec.) for RDF, [13]-best, and
[5]-b50. Overhead/number of explored states/runtime (sec.) for Syntax-b2 and ARMC-b3-r4.
Explanation see text.

the two heuristic functions defined in [13]. “[5]-N50” gives the result for the heuristic
from [5] withN = 50.7 “Syntax-b2” is predicate abstraction based on automata syntax,
with split bound 2. “ARMC-b3-r4” is predicate abstraction based on abstraction refine-
ment, with split bound 3 and 4 refinement iterations. The implementation interfaces
to ARMC [14, 16], which does the abstraction refinement. The “overhead” given for
“Syntax-b2” and “ARMC-b3-r4” is the total time taken to build abstract state spaces.

“Syntax-b2” and “ARMC-b3-r4” are, overall, the most successful configurations, of
the many possible configurations of our code, that we found in our experiments. The
experiments, in particular the effects of the different parameters on performance, are
described in detail later (Sections 4 and 5). From a quick glance at Table 1, one sees
that our new heuristics are indeed competitive with the heuristics defined by [13] and
[5] (which, in turn, have been shown to outperform [6] and some other simple heuristics
in these examples). “[13]-best” explores very few states in the “Mi” and “Ni” examples,
“[5]-N50” and “Syntax-b2” are best in the “Ci” examples. Note that the blind search
“RDF” cannot solve C6 (consumes more than 1GB memory). It is also notable that
“[13]-best” takes more time to compute than the other heuristics – e.g., this can be seen
in C5 where “[13]-best” takes 41.9 seconds to explore 465796 states, but “ARMC-b3-
r4” takes only 4.6 seconds (20.0-15.4) to explore a slightly larger number of states.8

The main surprise in the data, for us, was the good performance of syntax-based
predicate abstractions, like “Syntax-b2”: we didn’t expect that one can do so good with

7 This is the sweet-spot; when increasing N , the number of explored states does not decrease
much, but the overhead for merging the automata increases a lot.

8 “[13]-best” is the only one of the tested heuristics that is not organized as a lookup table (the
abstract problem has to be solved in every search state). Note that the results reported in [13]
are better than those in Table 1; this is due to the additional “bitstate hashing” technique used
there. Here, we focus exclusively on the heuristic functions.
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such a simple form of abstraction predicates. In particular, we expected abstraction
refinement to yield much better heuristics. The reason why this is not (yet) the case
appears to lie in the following oddity. One would expect that a more refined heuristic
yields a smaller search space.9 However, in disquietingly many cases, refining the ab-
straction yielded a larger search space in our experiments. We believe there is hope to
overcome this with modified refinement strategies; see Section 5.

The paper is organized as follows. The next section provides a brief background of,
and some notations for, predicate abstraction. Section 3 summarizes the technical details
of our approach: the formal definition of the predicate abstraction heuristic, a method
to implement the needed “lookup tables” efficiently, and the technicalities of our net-
work split operation. Section 4 gives detailed empirical observations for syntax-based
predicate abstractions, Section 5 gives detailed empirical observations for predicate ab-
stractions based on abstraction refinement. Section 6 concludes.

2 Predicate Abstraction

In principle, the idea behind this sort of abstraction is very simple. Say we have a
transition system, specified declaratively via a set of transition rules, and a set X of
variables. The state space of the system is the directed graph S where the nodes are all
states (variable valuations) s, and the edges are the possible state transitions, as induced
by the transition rules; we will use S also to denote the set of states. A predicate ab-
straction is defined by a finite set P of predicates over X . In our context, as said earlier,
each p ∈ P has the form lfn(X) ./ c. Denote by a bitvector for P any conjunction
that contains (exactly) each p ∈ P , possibly negated. For a bitvector b̄, denote by [b̄]
the extension of b̄, [b̄] := {s | s ∈ S, s |= b̄}. The [b̄] are equivalence classes in S;
for s ∈ [b̄], we denote [s] := [b̄]. The abstract state space for P , denoted [S]P , is the
directed graph where the nodes are all bitvectors for P , and there is an edge from b̄1 to
b̄2 iff there exist s1 ∈ [b̄1] and s2 ∈ [b̄2] so that there is an edge from s1 to s2 in S.
Obviously, [S]P is an over-approximation of S: if s2 is reachable from s1 in S, then
[s2] is reachable from [s1] in [S]P .

Matters get a little more complicated once one starts to think about how to actu-
ally handle this sort of abstraction. When building the abstract state space, one has to
frequently decide if there is an edge from a bitvector b̄1 to a bitvector b̄2. Enumerat-
ing [b̄1] and [b̄2] is, of course, nonsense. Instead, one formulates the transition rules of
the real system as (conjunctions of) constraints on variable values (before and after the
transition), so that the needed test comes down to the satisfiability of a conjunction of
constraints. Both our own implementation and ARMC use this method, regressing from
the error condition in a breadth-first manner to build the fraction of the abstract state
space that is reachable from that condition. Concretely, both methods repeatedly con-
sider a formula φ that formulates the properties of the state(s) that should be inserted
next into the state space: φ is initially the error condition, and later the conjunction
of the constraints given by the regressed abstract state, and the transition. The precise
method to find the corresponding abstract states would be to enumerate all bitvectors

9 It is easy to see that a more refined heuristic dominates a less refined heuristic; see Section 3.
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and check if they are satisfiable in conjunction with φ. Instead, both our own implemen-
tation and ARMC additionally use a “cartesian” abstraction, and set the resulting state
to

∧
{p | p ∈ P, φ |= p} ∧

∧
{¬p | p ∈ P, φ |= ¬p}. That is, one just checks which

“bits” are definitely implied, and leaves the others unspecified. We denote such partial
bitvectors with c̄, keeping the notation [c̄] := {s | s ∈ S, s |= c̄}. By [cS]P we denote
the abstract state space – the graph of partial bitvectors – built in this way.

3 Technicalities

Before we start explaining the technical details of our approach, we fill in some details
on the framework. As said, we consider networks of extended timed automata, which
are finite automata (whose “states” are called “locations” in here) annotated with: 1.
Effects and guards (constraints on edge executability) on integer variables; 2. Effects
and guards on real-valued clock variables. The latter are a restricted form of real-valued
variables: they always increase with the same speed as a linear function over time; their
only allowed guards take the form x ./ c or x − y ./ c; their only allowed effects take
the form x := c (where c denotes a constant). Networks of extended timed automata
feature a set of such automata, that can share global integer and clock variables, and that
can synchronize via synchronization actions. The latter actions generally take the form
“send signal a” or “receive signal b”. If (and only if) “a” and “b” match, the two edges
can (and must) be taken simultaneously, as a single transition of the system. Arbitrarily
many edges may be involved in such a transition if, e.g., the “send” action is a broadcast.
In our implementation, so far we allow binary synchronization only, involving exactly
two automata (one sender, one receiver).

Our safety properties take the form of formulas φ. In our implementation, so far
we restrict to reachability, i.e., the question of whether a state fulfilling φ is reachable,
where φ specifies a set of target locations and/or conditions on the clocks and integer
variables.

UPPAAL tests safety properties in networks of extended timed automata by enumer-
ating the space of reachable states. The search states correspond not to single system
states, but to sets of such states. Namely, instead of concrete clock valuations, of which
there are infinitely many, UPPAAL considers clock regions, whose (relevant) number
is finite. A clock region is given in the form of a (normalized) set of unary or binary
constraints on the clock values, called difference bound matrix.

3.1 Predicate Abstraction Heuristics

To turn a predicate abstraction into a heuristic function, we simply map the state into
the abstract state space, and read the error distance from there. Precisely, if φ is the error
condition, P is the predicate set, and s is a system state, we get:

hP(s) := min{distP(c̄1, c̄2) | c̄1, c̄2 ∈ [cS]P , s ∈ [c̄1],∃s′ ∈ [c̄2] : s′ |= φ}.

Here, distP(., .) is graph distance in [cS]P , which is∞ if there is no path from the first
to the second argument. Note here that, since the bitvectors c̄ in [cS]P are partial, there
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may be several c̄1 so that s ∈ [c̄1]. hP(s) = ∞ if no error state is reachable in [cS]P

from any such c̄1, which implies that no error state is reachable in S from s. Since we
minimize over all c̄1 (and c̄2), hP is admissible:

Proposition 1. For any non-temporal formula φ, predicate set P , and s ∈ S, we have
hP(s) ≤ min{dist(s, s′) | s′ ∈ S, s′ |= φ}, where dist(., .) is graph distance in S.

Another interesting property of this kind of heuristics is that they are monotone in
the predicate set, in the following sense:

Proposition 2. For any non-temporal formula φ, predicate sets P1 and P2 such that
P1 ⊆ P2, and s ∈ S, we have hP1(s) ≤ hP2(s).

This is simply because, in particular, [S]P2 makes all distinctions that [S]P1 makes.
What it tells us is that, if we refine a predicate set P by inserting new predicates into
it, we obtain a heuristic function that dominates the previous one, in that it provides a
(potentially) better lower bound.

For use in UPPAAL, we have to modify the definition of hP to work on UPPAAL
search states – which correspond to sets of system states. Let s be a UPPAAL search
state, and [s] be the corresponding set of system states. We define:

hP(s) := min{distP(c̄1, c̄2) | c̄1, c̄2 ∈ [cS]P , [s] ∩ [c̄1] 6= ∅,∃s′ ∈ [c̄2] : s′ |= φ}.

Obviously, again this leads to an admissible heuristic function, and the monotonicity in
the predicate set is preserved. While the definition looks fairly complicated, we will see
in the next section that, once the abstract state space [cS]P is built, the function can be
implemented quite efficiently.

3.2 Predicate Abstraction Pattern Databases

For every search state UPPAAL encounters, the heuristic function must be computed.
This makes it time-critical to implement that function efficiently. Our two main tricks
are: 1. We formulate the mapping of search states into [cS]P as a “bitset” inclusion
problem; 2. We use a tree data structure to address that inclusion problem efficiently.

Remember that the abstract states in [cS]P are partial bitvectors c̄: sets of possibly
negated predicates from P – sets of bits. Given a UPPAAL search state s, by φ(s) we
denote the constraint conjunction corresponding to s: location and integer valuations
plus difference bound matrix. We define the following bitset:

c̄(s) := {p | φ(s) |= p} ∪ {¬p | φ(s) |= ¬p} ∪ {p,¬p | φ(s) 6|= p, φ(s) 6|= ¬p}.

In words, c̄(s) contains all bits that may possibly be true in s (that are satisfied by at
least one system state in [s]). While the definition of c̄(s) involves entailment checks,
due to our particular circumstances c̄(s) can be computed efficiently. First, the UPPAAL
search state contains precise valuations for all locations and integer variables; the uncer-
tainty is exclusively about the clocks. So predicates not involving clocks can simply be
evaluated in s. Second, since UPPAAL itself allows only clock constraints of the form
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x ./ c or x− y ./ c, it is reasonable to also restrict to such constraints in the predicate
sets. Whether such a predicate is implied by s or not can be read off from a single pass
over the difference bound matrix of s. We observe:

[s] ∩ [c̄1] 6= ∅ ⇔ c̄(s) ⊇ c̄1.

This is because [s] ∩ [c̄1] 6= ∅ iff c̄1 contains no bit that is known to be false in s – in
other words, if all bits contained in c̄1 may be true in s. We obtain:

hP(s) = min{distP(c̄1, c̄2) | c̄1, c̄2 ∈ [cS]P , c̄(s) ⊇ c̄1,∃s′ ∈ [c̄2] : s′ |= φ}.

This is a syntactic characterization except for ∃s′ ∈ [c̄2] : s′ |= φ; but that we have
dealt with already when building [cS]P : we simply mark, during that pre-process, the
respective c̄2 (namely, the start state in our backward search) as error states. Of course,
we also annotate each state c̄ with its distance to the nearest error state (building [cS]P

backward breadth-first, we get that distance for free).
We are left with the problems to: 1. In the pre-process, store [cS]P as a set of bitsets

annotated with their error distance; 2. During search, quickly find all bitsets that are
contained in c̄(s). Both can be accomplished using a data structure called Unlimited
Branching Tree [11]. In a nutshell, this is a tree structure that stores sets of sets, ex-
ploiting shared elements between the sets to optimize space usage and access time for
answering subset queries of the precise kind we need here. The details are not essential
for the paper at hand, so we omit them. (A node in the tree may have as many branches
as there are distinct elements in the sets, hence the name.)

3.3 Network Splitting

A very simple abstraction method is to partition the set of automata contained in a net-
work. As said, we use this abstraction prior to predicate abstraction, in order to make
the latter feasible. One simply considers each part of the partitioning – a subset of the
automata – in separate. The only problem with this approach is that, of course, the
automata typically interact with each other in various ways, and cannot be split with-
out violating such interactions. We identify a possible definition of what “interaction”
means. We approximate that definition to obtain an admissible splitting strategy.

Let e be an edge of automaton a, and e′ be an edge of automaton a′ 6= a. Let ψ be an
effect of e (an assignment to a variable, or a synchronization action), and let φ be a guard
of e′ (a constraint over variables, or a synchronization action). We say that ψ affects φ
if there is an execution trace P (a path in S) so that: e occurs before e′ on P ; when
removing ψ from e and simulating the execution of P by ignoring the guards between e
and e′, φ is no longer satisfied at the point where e′ should be executed. Similarly, this
definition is made also for location invariants φ. We say that an automaton a affects an
automaton a′ if there is an effect of an edge in a that affects a guard of an edge, or a
location invariant, in a′. We say that a and a′ interact if a affects a′, or vice versa.

Proposition 3. Say we have a network with automata A, a set of target locations φ,
and a set A1 ⊆ A such that no automaton in A\A1 affects any automaton in A1. Then,
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for any s ∈ S, we have min{dist|1(s|1, s′) | s′ ∈ S|1, s′ |= φ|1} ≤ min{dist(s, s′) |
s′ ∈ S, s′ |= φ}, where s|1 is s restricted to the locations and variables mentioned in
A1, S|1 is the state space of A1, φ|1 is the subset of φ mentioned in A1, and dist(., .)
(dist|1(., .)) is graph distance in S (S|1).

In words, the isolated automata A1 provide an admissible distance estimate. The
reason for this is, simply, that we can take any solution path for A, and restrict it onto
the edges present in A1, to obtain a solution for A1 in isolation – otherwise, if that
restricted path wasn’t a solution for A1, a constraint in A1 would be unsatisfied, and we
could construct a contradiction since an edge on the sub-path for A \A1 would have to
affect that constraint. Note that, in particular, Proposition 3 says that, if A is solvable,
then A1 in isolation is also solvable. We further have:

Proposition 4. Say we have a network with automata A, a set of target locations φ,
and a partioning A1, . . . , Am of A so that no pair of automata a ∈ Ai, a′ ∈ Aj , i 6= j,
interacts. Then, for any s ∈ S , we have

∑m
i=1min{dist|i(s|i, s′) | s′ ∈ S|i, s′ |=

φ|i} ≤ min{dist(s, s′) | s′ ∈ S, s′ |= φ}, where the notations are as in Proposition 3.

This tells us that we can safely add the individual heuristic values. The reason is
that we can partition any solution path for A into (independent) solution paths for each
of A1, . . . , Am.

What we have just seen is not yet practical since there normally is no split that
doesn’t violate any interaction (otherwise there would be no point in posing both parts
of the network within the same problem). We become practical by finding potential
interactions, and simply removing guards that constitute violated potential interactions.
Concretely, we use the simplistic notion saying that effect ψ can not affect condition φ
if the variable x affected by ψ, and any variable that can, transitively, be affected by the
value of x, does not appear in φ. For example, x := 1 can affect x + y > 2. On the
other hand, x := 1 can affect y > 2 if there also is an effect y := x somewhere, but
not if there is no chain of variables from x to y. In our pre-process, we simply consider
all pairs of occuring ψ and φ, and see if they satisfy this criterion; if not, we say that
they have a potential interaction. We then greedily put automata together (into one part
of the partitioning) so that few potential interactions to automata in other parts remain.
For those interactions that do remain, we remove the responsible φ. Note that the latter
will, in particular, remove synchronization actions that also occur in other parts.

With Proposition 4, our resulting heuristic function is still admissible, except for
the effects of synchronization. In a solution path to A, a set of synchronized edges
will be counted as a single transition, while in the partitioned network every edge will
be counted separately.10 We feel that this potential non-admissibility is benign. For
example, if only binary synchronization is allowed, then the real error state distance
is over-estimated by at most a factor 2 – in the worst case, which one can realistically
expect to be far away from the typical case. We ran a number of tests using our heuristics
with A∗, and never obtained a sub-optimal solution.

10 Note that the automata network “A” we have here, in the application of Proposition 4, is no
longer the original network, but one where several synchronization actions have been removed.
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Exp. Syntax-b1 Syntax-b2 Syntax-b3 Syntax-b4 Syntax-all
FA5 0.1/80/0.1 0.0/80/0.1 0.3/80/0.3 0.2/80/0.2 1.5/27/1.5
FA10 0.1/130/0.1 0.2/130/0.2 0.4/130/0.4 0.6/130/0.6 7.4/42/7.4
FA15 0.1/180/0.1 0.3/180/0.3 0.7/180/0.7 1.2/180/1.2 28.8/57/28.8
FB5 0.1/21/0.1 0.1/21/0.1 0.2/21/0.2 0.3/21/0.3 0.7/21/0.7
FB10 0.1/36/0.1 0.3/36/0.3 0.4/36/0.4 0.5/36/0.5 2.1/36/2.1
FB15 0.1/51/0.1 0.5/51/0.5 0.8/51/0.8 0.9/51/0.9 3.4/51/3.4
M1 0.3/16446/0.8 1.1/23257/1.8 6.3/12780/6.8 6.6/12780/7.0
M2 0.3/68956/3.5 1.2/84475/3.9 9.6/37780/10.3 37.1/34947/37.8
M3 0.3/62731/2.6 1.1/92548/4.4 9.1/55726/11.5 36.5/55098/37.8
M4 0.4/275433/7.0 1.3/311049/11.4 13.5/198407/20.5 57.3/139875/62.6 –/
N1 0.5/22304/2.7 1.0/36030/3.8 8.8/17357/9.9 8.5/17357/10.2
N2 0.5/122398/8.1 1.4/178333/14.0 11.7/87471/19.8 47.8/63596/53.3
N3 0.5/140201/8.7 1.3/196535/15.4 11.2/115074/21.7 46.8/96202/56.7
N4 0.6/738680/37.9 1.2/983344/75.1 16.3/720350/78.8 70.1/445359/120.3 –/
C1 0.9/1455/1.1 2.8/1588/2.8 9.5/4698/9.6 –/ –/
C2 1.4/3273/1.4 3.0/3786/3.1 9.5/10843/9.6 35.7/10507/35.9 –/
C3 1.4/5879/1.5 2.6/3846/2.7 9.7/10375/9.8 35.7/10195/35.9 –/
C4 1.6/44837/2.3 4.6/30741/5.0 21.2/66336/22.7 104.3/66761/105.7 –/
C5 1.8/301065/6.4 5.0/185730/8.0 21.7/436678/34.0 109.4/435309/121.5 –/
C6 1.6/2.8e+6/39.8 5.2/1.9e+6/33.9 26.7/4.1e+6/137.2 103.2/3.8e+6/230.0 –/

Table 2. Results for syntax-based abstractions. Notation as in Table 1; empty entries are identical
to their left neighbour; “–/” means time-out during pre-processing.

4 Syntax-Based Abstractions

In our syntax-based abstractions, as indicated before, the abstraction predicates are sim-
ply read off the description of the automata network. Given a setA of automata, the cre-
ated set of predicates consists of all expressions e that appear as a transition guard, or
as a location invariant, of some automaton in A. Further, the abstraction distinguishes
between the locations (which is equivalent to including the predicate loc(a) = l for
each a ∈ A and location l of a).

Simply collecting all mentioned constraints, there is no parameterization to this sort
of abstraction – except the need to split the automata network before the abstraction is
applied. Table 2 shows our results. The data, and all other data reported herein, were
obtained on a PC running at 1.2GHz with 1GB main memory and 1024KB cache run-
ning Linux. We set a time-out of 300 seconds for pre-processing. Search always ran out
of memory before we ran out of patience (within a few minutes, that is).

Before considering the data, let us describe the examples in some more detail. Recall
that our aim is falsification of safety properties, i.e., the systems we consider are unsafe
in that an error state is reachable. Since the examples we considered were originally
safe, we injected an error into them.

Examples “FAn” and “FBn” are variants of the Fischer protocol for mutual ex-
clusion, which asks if at least two of n similar automata can be in a certain location
simultaneously. We made the error possible by weakening one of the temporal condi-
tions in the automata (from “>” to “≥”). The variants differ in the way they encode
the error condition. Variant A adds additional automata with synchronisation. Variant
B selects and specifies two of the automata for the error condition. Examples “Mi” and
“Ni”, i = 1, . . . , 4, come from a study called “Mutual Exclusion”. This study models a
real-time protocol to ensure mutual exclusion of states in a distributed system via asyn-
chronous communication. The protocol is described in full detail in [4]. By increasing
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an upper time bound in the model we got a flawed specification that we transformed
into its timed automata semantics by applying various abstractions techniques. Exam-
ples “Ci”, i = 1, . . . , 6, come from a case study called “Single-tracked Line Segment”.
This study stems from an industrial project partner of the UniForM-project [12] and
the problem is to design a distributed real-time controller for a segment of tracks where
trams share a piece of track. A distributed controller was modeled in terms of PLC-
Automata [4, 12], and translated into timed automata. We injected an error by manip-
ulating a delay such that the asynchronous communication between some automata is
faulty. The given set of PLC-Automata had eight input variables and we constructed six
models with decreasing size by abstracting more and more of these inputs.

In Table 2, the split bound increases from left to right as obvious; in “Syntax-all”
there is no split bound, meaning that the entire network is handed to the abstraction
engine in one piece. The foremost observation is that the latter is bad – except in the
Fischer toy examples and the smaller “M” and “N” cases, the abstract state space could
never be built within the alloted time (300 sec). (“M1” .. “M3” and “N1” .. “N3” have
≤ 4 automata so there is no change from “Syntax-b4” to “Syntax-all”.) Consider the
“M” and “N” examples, and what happens as b increases from 1 to 4. The overhead
increases sharply, quickly becoming larger than the time spent in search. Strangely,
the number of explored states also grows, from b = 1 to b = 2, before decreasing
again from b = 2 to b = 4. It is unclear to us what causes this behavior. The smallest
search spaces are obtained with b = 4, the smallest overall runtimes are obtained with
b = 1. Note that the “M” and “N” examples can all be solved quite quickly even with a
blind search, c.f. Table 1. The “C” examples are more interesting in that respect (blind
search scales badly). They exhibit very similar behavior in terms of the overhead.11 The
number of explored states now decreases sharply from b = 1 to b = 2, and increases
sharply from b = 2 to b = 3. Again, the reason for this behavior is unclear. C6 is the
first example (in the scaling pattern here) where the larger overhead pays off in runtime
– “Syntax-b2” is faster than “Syntax-b1” due to the reduced search space. Note here
that C6 is the most relevant example.

All in all, the syntax-based abstractions give surprisingly good performance – e.g.
“Syntax-b2” is very competitive in the “C” examples – but they don’t seem to have
much potential for further improvements. One could try to allow more freedom in
the selection of the predicates, but such an approach is likely to be wild guesswork,
at least without a deeper analysis of the system. An idea worth trying is to integrate
syntax-based predicate selection into abstraction refinement: as a start, one could select
(amongst others) the guards that are not satisfied by the spurious error path.

5 Abstraction Refinement

We implemented this sort of abstraction via an interface to the ARMC tool [14, 16].
This is a recent model checker based on error path guided abstraction refinement. Pred-
icates are generated from spurious error paths by an analysis using a constraint based

11 C1 is exceptionally hard for the pre-process since there are only 4 automata, which have a
large abstract state space together; in C2 . . . C6, one of these automata is split away.
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interpolation [17] to find a concise reason for the failure (the spuriousness) of the path.
We modified ARMC to feature a maximal number of iterations as an input parameter.
If ARMC finds a correct abstraction (no error paths), it stops with no output, causing
our overall program to terminate – if there is no abstract error path, then there is no real
one. (In our examples, of course this did not happen.) If ARMC finds a feasible (real)
error path, it stops and outputs the abstract state space.12 The same happens otherwise,
i.e. if the maximum iteration is reached. The abstract state space is read in, and stored
in a UBTree structure for lookup.

The configuration of our heuristic function now has two parameters: the split bound,
and the number of refinement iterations. This makes our data field 3-dimensional. Ta-
ble 3 restricts to the “C” examples – which are the most relevant anyway – to save space.
The data are arranged in a slightly unusual way, grouped by example rather than by con-
figuration parameters, to ease observing how the behavior for an example changes as a
function of the configuration parameters.

Let us start with some of the simpler observations to be made in Table 3. First, we
see that, like for the syntax-based abstractions, without network splitting we don’t get
far. The overhead needed with “-b all” is huge with 0 or 1 refinement iterations (“-r 0”
or “-r 1”) already, exhausting the available runtime for C6 respectively C5.13 With 4
or more refinement iterations, runtime is exhausted in even the smallest example C1.
Second, for “-b 1” and “-b 2”, the table entry with “-r 7” is always identical to that with
“-r 4”. This is because ARMC finds feasible error paths. Precisely, with “-b 1” ARMC
finds feasible error paths, in all examples and in all parts of the partitionings (mean-
ing, in each single automaton), in 4 refinement iterations. So increasing the maximum
number of refinement iterations beyond 4 does not have any effect. With b = 2, ARMC
finds feasible error paths in 3 refinement iterations already.

Now, consider what happens as we let the configuration parameters vary. Consider
first the split bound “-b”: compare the data when moving up or down in the table.
Like for the syntax-based abstractions in Table 2, the overhead consistently grows over
growing split bound, particularly much when the number of refinement iterations is
high.14 The number of explored search states, on the other hand, behaves more stably,
and a little more expectedly, than for the syntax-based abstractions in Table 2. In most
cases, the number stays the same, or decreases, over increasing split bound. Particularly
with many refinement iterations, there is a relatively sharp monotonic decrease over
increasing split bound. Notable exceptions to this rule are a few configurations for C1,
and the increase from 2.6e+6 states to 3.8e+6 states when moving from “-b 3” to “-b 4”
in C6. We observe that the decreased search space size never pays off in runtime: when
moving downwards in a column within one part of the table (within one example), the
runtime (almost) always increases monotonically.

12 Since ARMC gets only parts of the network, i.e. due to our splitting operation, a feasible error
path here is not a solution to the overall problem.

13 The observations for C6 here show that combining ARMC and UPPAAL enables us to solve
examples that neither tool can solve on its own. ARMC, if it can solve C6, would definitely
run for a very long time. UPPAAL, as said before, runs out of memory on this example.

14 Regarding the huge overhead for C1 with split bound 4, see Footnote 11.
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-b \ -r 0 1 4 7
C1

1 0.8/19778/1.0 0.8/17330/1.0 1.6/2806/1.6
2 1.9/8769/2.0 2.6/8861/3.1 6.0/1508/6.0
3 1.7/8769/1.8 3.0/8861/3.1 10.8/1172/10.8 36.2/6362/36.2
4 10.0/16291/10.3 32.9/12044/33.0 176.0/3630/174.3 –/
all 30.2/8769/30.2 120.2/9627/120.2 –/ –/

C2
1 1.0/62046/1.4 1.2/59031/1.7 1.5/8143/1.6
2 1.7/39710/2.0 3.1/35245/3.4 6.3/4898/6.3
3 1.7/39710/2.0 4.1/35245/4.4 12.2/3256/12.2 38.2/25601/38.4
4 2.1/39710/2.6 5.2/35245/5.5 17.2/3256/17.2 63.8/25601/63.9
all 43.0/39710/43.1 189.1/40122/189.8 –/ –/

C3
1 0.9/88015/1.6 0.9/89194/1.6 1.6/10191/1.7
2 1.6/67166/2.2 3.1/53616/3.4 6.4/5583/6.4
3 1.6/67166/2.2 3.8/53616/4.2 12.5/4278/12.6 40.2/30407/40.4
4 2.0/67166/2.5 5.2/53616/5.6 18.0/4278/18.0 67.6/30407/67.8
all 44.6/67166/45.0 198.2/52042/198.9 –/ –/

C4
1 1.2/897900/6.8 1.5/872580/7.2 2.0/79069/2.7
2 2.1/516282/5.8 3.0/511180/6.8 6.8/41831/7.1
3 2.1/516282/5.8 4.8/511180/8.6 14.3/46837/14.8 45.6/279374/47.4
4 2.1/516282/5.8 6.0/511180/9.9 20.6/46837/21.0 73.3/279374/74.9
all 67.6/516282/71.2 288.9/540013/291.7 –/ –/

C5
1 1.1/9.0e+6/64.1 1.3/8.4e+6/61.0 2.4/1.1e+6/11.8
2 2.2/4.9e+6/38.8 3.2/6.8e+6/57.0 7.6/425264/11.6
3 2.2/4.9e+6/38.8 5.2/6.8e+6/59.1 15.4/473470/20.0 48.7/2.3e+6/66.2
4 2.2/4.9e+6/38.8 7.0/6.8e+6/62.2 24.1/288614/26.7 79.9/1.9e+6/94.3
all 94.1/4.9e+6/132.2 –/ –/ –/

C6
1 /– /– 2.4/4.4e+6/40.5
2 /– /– 7.9/2.8e+6/34.1
3 /– /– 16.5/2.6e+6/42.5 /–
4 /– /– 30.5/3.8e+6/63.4 /–
all /– –/ –/ –/

Table 3. Results for abstraction refinement based abstractions. Notation as in Table 1; “-r”: num-
ber of refinement iterations in ARMC; “-b”: split bound; empty entries are identical to their left
neighbour; “–/” means time-out during pre-processing; “/–” means out of memory during search.

In terms of runtime, the number of refinement iterations definitely is a better param-
eter to invest overhead in: most notably, C6 is not solved with less than 4 refinement
iterations. Then again, refining “too much” apparently isn’t a good idea, either. We get
back to this below. First, observe that, when moving from left to right in the table (when
increasing the number of refinement iterations), as expected we get a consistent increase
of overhead. The number of explored search states consistently (with few exceptions)
decreases a little when stepping from “-r 0” to “-r 1”, decreases sharply when stepping
from “-r 1” to “-r 4”, and increases sharply when stepping from “-r 4” to “-r 7”. In
terms of runtime, the decrease in search space size does not pay off (due to the larger
overhead) in C1 .. C4, but does pay off in C5 and C6, when the search spaces explode.

The most curious observation in this data is definitely the increase in search space
size that we often get when we make the abstraction more refined. Particularly, this is a
surprise since, c.f. Section 3.1, every time we refine the abstraction we obtain a heuristic
that dominates the previous one. At first sight, we were irritated this is even possible –
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a heuristic that dominates another one, but yields a larger search space. Looking more
closely, however, this is possible quite naturally. Imagine a state has two successors s
and s′, of which s leads to an error state on a narrow path (not much branching) of
length 10, while s′ is the start of a huge part of the state space containing no error state
at all. Let’s say h(s) = 5 and h(s′) = 8. Let’s further say h′(s) = 9 and h′(s′) = 8.
Obviously, h′ is a more precise heuristic than h – it refined h in its judgement of s – but
will yield a much larger search space. The “mistake” made in the refinement step here is
that the focus of the refinement is exclusively on s, not on s′. This sort of thing may be
precisely what happens (sometimes) when we do a refinement step with ARMC. In fact,
the defining characteristic of the refinement step is that it excludes the detected spurious
error path – which means, one shortest spurious error path (ARMC does a breadth-first
search) is removed. But other spurious error paths of the same length may remain. The
heuristic values “along” the removed spurious error path will increase (that region of
the state space is refined), but the heuristic values “along” the other spurious error paths
will remain the same. If the removed spurious error path happens to be the (only) one
that actually corresponds to a real solution, then the refinement will increase our search
space in pretty much the way as illustrated with s and s′ in the example above.

Our intuition was confirmed quite clearly when we ran the following test on example
C4 with split bound 3 (middle row of C4 part of Table 3). We incrementally increased
the number of refinement iterations, and measured the search space size as well as the
length of the shortest error path found in the abstractions at the maximum level. The
partitioning for this example in this setting has two parts, giving us two abstractions.
The data we obtained are as follows. “-r 0”: 516282 nodes, error path lengths 6 and 5.
“-r 1”: 511180, lengths 9 and 7. “-r 2”: 49384, lengths 13 and 10. “-r 3”: 56081, lengths
13 and 12. At this point, we first notice the hypothesized effect. In difference to before,
the error path length of the first abstraction didn’t increase, and promptly the search
space size went (slightly) up. The error path in the second abstraction became feasible
at this level, so it stays fixed and we don’t report it from now on. “-r 4”: 46837, length
13. “-r 5”: 63606, length 13. “-r 6”: 279374, length 13 – this step seems to correspond
most closely to the example above. “-r 7”: 279374, length 13. “-r 8”: 279374, length 13.
“-r 9”: 361555, length 13. “-r 10”: 50060, length 16. In this step, the error path length
finally increases again, and promptly the search space size goes sharply down. The error
path found in refinement step 10 is feasible, so here our experiment stops.

One can try to overcome this phenomenon by making the refinement mechanism
less focussed on a single error path, trying to exclude the spurious error paths more
“broadly”. The straightforward idea is to introduce predicates so that all shortest spu-
rious error paths are removed (not just a single one). This may require too much over-
head. It remains to be seen if one can define successful selection heuristics and greedy
strategies that remove the most “relevant” error paths, and/or that introduce only the
most “relevant” predicates (an idea for the latter may be to define relevance of a predi-
cate based on how many error paths it serves to remove). Another idea might be to use
a sort of perimeter search within the abstraction, where the error condition would be
“broadened” to the final layer of a depth-bounded backwards breadth-first search. Al-
ternatively, of course, one can use our above observations simply to design an automatic
selection of the number of refinement steps: refine until, in an iteration k, the length of
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the shortest spurious error path does, for the first time, not increase; take the heuristic
function defined by the abstract state space from iteration k − 1.

6 Conclusion

There clearly is promise in defining heuristic functions for model checking based on
predicate abstraction. It is straightforward to spell this idea out formally. Apart from
the idea, we have contributed a method to efficiently store and query the heuristic infor-
mation, a method to split an automata network without losing admissibility, and a first
empirical exploration. Our (empirical) results are not yet at a level that would be thor-
oughly satisfying, but we are competitive with the other techniques that have been tried
so far. It remains to be seen if, how, and in what sort of applications this kind of heuris-
tic can be made more efficient. We are optimistic that a refinement-based approach will
eventually turn out to be quite useful.
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