Assessing the Expressivity of Planning Formalisms
through the Comparison to Formal Languages

Daniel Holler and Gregor Behnke and Pascal Bercher and Susanne Biundo
Institute of Artificial Intelligence, Ulm University, D-89069 Ulm, Germany
{daniel.hoeller, gregor.behnke, pascal.bercher, susanne.biundo} @uni-ulm.de

Abstract

From a theoretical perspective, judging the expressivity of
planning formalisms helps to understand the relationship of
different representations and to infer theoretical properties.
From a practical point of view, it is important to be able to
choose the best formalism for a problem at hand, or to ponder
the consequences of introducing new representation features.
Most work on the expressivity is based either on compilation
approaches, or on the computational complexity of the plan
existence problem. Recently, we introduced a new notion of
expressivity. It is based on comparing the structural complex-
ity of the set of solutions to a planning problem by interpret-
ing the set as a formal language and classifying it with respect
to the Chomsky hierarchy. This is a more direct measure than
the plan existence problem and enables also the comparison
of formalisms that can not be compiled into each other. While
existing work on that last approach focused on difterent hier-
archical problem classes, this paper investigates STRIPS with
and without conditional effects; though we also tighten some
existing results on hierarchical formalisms. Our second con-
tribution is a discussion on the language-based expressivity
measure with respect to the other approaches.

1 Introduction

There has been some work on comparing the expressivity
of different planning formalisms. From a theoretical point
of view, this is interesting in order to understand the rela-
tionship of alternative representations or to infer theoretical
properties. From a more practical point of view, it is use-
ful when pondering the consequences of introducing new
representation features and it may help when adapting ex-
isting heuristics to a new class of problems. When having a
new application domain at hand, it may also be insightful to
judge which formalism is rich enough to realize a meaning-
ful model without making reasoning too hard.

There are several ways to compare different planning for-
malisms. The comparison of the time complexity of the
plan existence problem is one of them, i.e. the problem
of deciding whether a planning instance has a solution or
not. This enables an indirect measure of the expressivity
of the representation language. For propositional STRIPS
planning, it ranges from P, for severely restricted problems,

Copyright (© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to PSPACE-complete for the full formalism (Bylander
1994). The complexity of this problem in Hierarchical Task
Network (HTN) planning ranges up to undecidable (Erol,
Hendler, and Nau 1994; 1996; Geier and Bercher 2011;
Alford, Bercher, and Aha 2015a). When allowing the in-
sertion of tasks apart from decomposition (this problem set-
ting is called HTN planning with task insertion, TI-HTN plan-
ning), the plan existence problem becomes decidable (Geier
and Bercher 2011) and is up to NEXPTIME-complete for
propositional representations and 2-NEXPTIME-complete
when having variables (Alford, Bercher, and Aha 2015b).

A second approach to compare different formalisms is
based on the compilation of planning problems under re-
strictions on (1) the space used for the generated represen-
tation, (2) the length of solutions, as well as (3) the runtime
of the transformation (Erol, Hendler, and Nau 1994; 1996,
Bickstrom 1995; Nebel 2000). Bickstrom (1995) uses poly-
nomial time compilations that do not change the length of
the resulting plans. Nebel (2000) makes no restrictions on
computation time and distinguishes different growths in plan
size up to polynomial space. Compilation is done without
regarding the initial state and goal description to guarantee
non-trivial solutions (Nebel 2000).

In (Holler et al. 2014) we introduced a new notion of ex-
pressivity. We interpreted the set of solutions to a planning
problem as a formal language and investigated which classes
of formal languages can be expressed by HTN planning for-
malisms under different restrictions. This enables a compar-
ison of how complex the structure of generated plans can
be. Compared to the runtime-based method, this is a more
direct measure of expressivity, though there are some inter-
esting connections between the approaches, because the plan
existence problem in planning equals the emptiness prob-
lem of the problem’s language (Behnke, Holler, and Biundo
2015). Further analogies between planning- and language-
related problems are given in the discussion. Compared to
compilation-based approaches, it enables also the compari-
son of formalisms that can not be compiled into each other.

This paper extends the work on the language-based ex-
pressivity measure by results concerning the STRIPS formal-
ism with and without conditional effects. We further give
some HTN-related results to make all subset relations strict.
The remaining results complement the language hierarchy
and show that all its intersections are non-empty. The dis-

cussion elucidates the properties of the approach and gives a
more detailed comparison to related work.

2 Formal Framework

This section introduces the formal framework used in the re-
maining paper. It first introduces the STRIPS and HTN plan-
ning formalisms, defines the language of a planning problem
and explains the notation used throughout the paper.

The used formalism is based on the HTN formalism by
Geier and Bercher (2011) that we also used in (Holler et
al. 2014). However, we aim to provide a unified formal-
ism both for STRIPS, STRIPS with conditional effects (de-
noted STRIPS-CE), and HTN planning, i.e. the definition of
our (slightly adapted) HTN formalism is an extension of the
STRIPS formalism. The definition of conditional effects is
based on the formalization by Roger, Pommerening, and
Helmert (2014), though unifying the formalisms required
some changes. A major change to the original formalism
is the introduction of a goal description in HTN planning.
This extension enables a more direct interpretation of TI-
HTN planning to be an extension of STRIPS planning. How-
ever, it is no problem to compile the goal description away
by introducing a new primitive task that occurs last in any
solution and that uses that goal description as precondition.
Section 4.1 is a discussion on the impact of this change on
the languages and on the results we build on.

2.1 STRIPS Planning

A STRIPS planning problem is a tuple P = (L, A, so,¢,0),
where L is a set of propositional environment facts, so C L
is the initial state and ¢ C L the goal description. A is a
set of action names that forms the set of terminal symbols
of the resulting language as well. We will often just refer
to its elements as actions, though these are just the names
that do not have the often-used tuple form. Their precon-
ditions and positive as well as negative effects are given
by the functions prec, add and del that are included in 6,
i.e. § = (prec, add, del). prec is defined as prec : A — 2L,
In case of ordinary STRIPS planning (not including condi-
tional effects), the functions add and del are defined in the
same way. In STRIPS-CE planning, the latter two functions
map action names to conditional effects, i.e. to (a set of)
pairs that each include a set of preconditions as well as a
set of effects as elements add, del : A — 22" x2" et ce
be a conditional effect. We will refer to its preconditions as
p-ce(ce) and to its effects as eff (ce).

The function 7 : A x 2 — {true, false} returns whether
an action is applicable to a state, i.e. 7(a, s) < prec(a) C s.
Whenever an action is applicable, the state transition func-
tion y : A x 2% — 2L returns the state resulting from apply-
ing an action to a state:

(a,5) = [s\ U

cecdel(a) with p-ce(ce)Cs
U eff (ce)
ce’€add(a) with p-ce(ce’)Cs

As STRIPS is a (syntactical) special case of STRIPS-CE,
we omit its definition of ~.

eff (ce)] U

A sequence (apa . . . ap,) of actions is applicable to a state
so when each action a; with 0 < ¢ < n is applicable to
the state s;. For 1 < ¢ < n + 1, the state s; is defined
as y(a;—1,8;—1). The state s,,.1 results from applying the
sequence, denoted by s,,11 = v*((agay - ..ay),s). A goal
state is a state s with ¢ C s. An action sequence is a plan
(also solution) to a problem if and only if it is applicable to
So and results in a goal state when applied to sg.

2.2 HTN Planning

In HTN planning, the objective is to fulfill an overall task
rather than to find a sequence of actions that transforms a
given state to a goal state. Therefore, so-called abstract (or
compound) tasks are decomposed iteratively into subtasks
until the level of abstraction is detailed enough to execute
the resulting tasks. These tasks are called to be primitive.
They can not be decomposed anymore and are equal to the
definition of actions given above. Like the action names A,
the set IV, defines the primitive task names. Further, § =
(prec, add, del), where prec, add, and del are functions f :
N, — 2%, Applicability and state transitions are defined as
given for STRIPS. Let N, be the set of abstract task names.
Note that we use the terms abstract task name and abstract
task synonymously. The set of all task names is abbreviated
by N = N, UN,.

Tasks are organized in so-called task networks. A task
network ¢n is a tuple (7, <, «), where T is a (possibly
empty) set of unique task identifier symbols, which are
mapped to their actual task names by the function o : T —
N. < C T x T defines a partial order on the task identifiers.
This enables a single task name to appear more than once in
a task network. Two task networks tn = (T, <,«) and
tn' = (T',<’,a’) are called isomorphic (written tn = ¢n’)
if they differ solely in their identifiers, i.e. there is a bijec-
tion o : T' — 1" so that for all identifiers ¢, ¢’ € T holds that
[(t,) € <] & [(o(t), o(t")) € <] and a(t) = o (0 (1)).

Abstract tasks are decomposed by the application of (de-
composition) methods. A method m is a pair (c, tn) that
maps the abstract task ¢ € N, to the task network ¢n, which
specifies the subtasks of c and their order. Each subtask can
be primitive or again abstract. More precisely, a method
(c,tn) decomposes a task network tn; = (T4, <1, 1)
into a task network tne = (Ty, <9, a9) if ¢ € Ty with
a1(t) = c and if there is a task network ¢tn’ = (77, <', o)
with tn’ 2 ¢tn and T) N T’ = (). The resulting task network
tno is defined as

tne =Ty \ {tH U T <" U=<p,(a;\{t—c})Ua)
<D Z{(tl,tg) | (tl,t) € <1,t2 € T/} U

{(t1,t2) | (t,t2) € <1,t1 € T'} U

{(tl,tg) | (tl,tg) € <1,t1 Zt Nty # t}

We will write tn —%.,, tn’ to denote that the task network
tn can be decomposed into the task network ¢n’ by applying
one or more decompositions.

In common HTN planning, decomposition is the only
way to refine a task network. However, there is another
variant of HTN planning that is called HTN planning with
task insertion (TI-HTN planning) (Geier and Bercher 2011;

Alford, Bercher, and Aha 2015b). It allows for the insertion
of primitive tasks into a task network. This possibility al-
lows for specifying only the basic structure of a solution in
the hierarchy and find the remaining tasks by task insertion,
but it also decreases the expressivity of the model (Holler
et al. 2014; Alford, Bercher, and Aha 2015b). The task
network tn’ = (717, <’,) resulting from inserting a task
p € N, into a task network tn = (7', <,) is defined as
T = TuU{t}witht ¢ T, <' = <and o = aU{(t = p)}.
We will write tn —%; tn' to denote that ¢n’ can be achieved
by inserting an arbitrary number of tasks into tn.

An HTN or TI-HTN planning problem is a tuple P =
(L, Ny, Ny, M, s, cr,g,9) where L is a set of propositional
environment facts, N, and N, are the sets of abstract and
primitive task names, M is the set of methods, sg € 2L is
the initial state, g € 2% is the goal description and ¢; the ini-
tial task. We will denote the task network containing solely
the initial task cy as tny.

A task network tng = (Ts,<g,as) is a solution to a
planning problem P if and only if

e All tasks are primitive and there is an applicable sequence
(t1ty...t,) of the task identifiers that is in line with <g
and s, = v*(a(t1)a(ts) ... a(t,), so) is a goal state.

e tn; —"p tng holds for a solution in HTN planning.

e tn; —%p tn’ and tn’ —%; tng holds for a solution in
TI-HTN planning.

Let Solgrn (P) and Solr; (P) be the set of all HTN and
TI-HTN solutions to the problem P, respectively.

2.3 The Language of a Planning Problem

In formal languages, a set of rules is given that describe the
structure of valid words and the language is the set of these
words. In planning there is a set of rules given that describe
the structure of a valid plan, so the set of all plans forms
the language of the problem. For STRIPS the language of a
problem P = (L, A, sg, g, 0) is defined as

L(P)={w=ajaz...ay |a; € A,n >0,
7" (w, s0) 2 g}

For HTN and TI-HTN planning the definition is more com-
plicated due to the partial order of the solutions. To be able
to compare their language with formal languages and other
planning formalisms, its language is defined as the set of all
applicable linearizations of the solution task networks:

L(P) ={w = alty)a(te) ... a(ty) | v*(w, s0) 2 g,
w is a linearization of a tn = (T, <, «) with
tn € Solgrn 1 (P)}

We will clarify the meaning of abbreviations by using dif-
ferent font styles. When mentioning a planning problem in
text, we will use small capitals and write e.g. STRIPS plan-
ning. For languages we will use a calligraphical font style
and write e.g. STRZIPS to denote the set of all languages
generated by STRIPS planning problems.

3 Languages

This section shows the relations between TI-HTN, STRIPS,
and acyclic HTN planning problems (denoted HTN-AC). Af-
terwards it gives results related to STRIPS-CE.

The following proposition simplifies some of the proofs in
this section. It states that applying an action more than once
subsequently does not change the state. It assumes that the
action is applicable (1) before its first and (2) after its first
application. Given that the state does not change anymore
afterwards, it stays applicable.

Proposition 1. Let a be an arbitrary (fixed) action without
conditional effects and sq an arbitrary (fixed) state. Given
that the action is applicable in sq and in v(a, so), it holds

7" (), s0) = 7" ((aa), 50) = --- = 7" ((aa.. . a), s0).

Proof Sketch. W.l.o.g. lets call the states after the first and
second application s; and so, respectively. Then it holds:

s1=(s0 \ del(a)) U add(a)
s2 = (((s0\ del(a)) U add(a)) \ del(a)) U add(a)

When « is applied the first time, the resulting state s; does
not contain state features in del(a) apart from those also in-
cluded in add(a). When applying a a second time, all state
features that have to be deleted are therefore exactly those
also included in add(a) and are added right after they have
been deleted. The second deletion does not change the state.
After the first application of a, the resulting state s; does,
by definition, contain all state feature included in add(a).
When it is applied the second time, add(a) inserts precisely
the state features in del(a) N add(a) and does therefore not
change the state. It holds s; = so. This argument can be
made recursively. [

Theorem 1 (STRIPS C TZ-HTN). The set of lan-
guages generated by STRIPS planning problems is a strict
subset of the languages generated by TI-HTN planning prob-
lems.

Proof. We show that for every STRIPS planning problem,
there is an TI-HTN planning problem with the same set
of solutions. Let P = (L, A, sg,g,d) be a STRIPS plan-
ning problem. We now define a TI-HTN planning problem
P = (L,{cr}, A {(c1, (0,0,0))}, s0,cr,9,8). P’ contains
a single initial task that can only be decomposed into an
empty task network, so every primitive task in a solution
is introduced by task insertion. The two problems share the
initial state, the goal description, the actions’ preconditions
and effects as well as the state transition function. Obviously
it holds that L(P) = L(P’).

Now we show that there is (at least) one planning problem
that can be expressed by TI-HTN planning, but not by STRIPS
planning. Consider the following TI-HTN planning problem:

Poin = (0,{cr},{a}, M,s0 =0,cr,g =0,5) with
M = {(cr, ({t1,t2},0,{(t1 = a), (t2 = a)})} and
d={a— 0}, {a— 0},{a— 0})

The initial task network ensures that at least two occur-
rences of a are included in every plan. Afterwards, the

planning system is allowed to include an arbitrary num-
ber of additional as. The language of P,2+. is obviously
[:(Pa2+n) = La2+n = {a" | n > 2}

This language can not be expressed in STRIPS. The action
a has to be applicable in the initial state and stays applica-
ble after an arbitrary number of applications. Due to Prop. 1,
the state of a STRIPS planning problem converges after the
first application of a. Thus, in STRIPS without conditional
effects, the state after the first application of a necessarily
fulfills the goal description, the word a is also included in
the language and it is not possible to enforce the second ap-
plication. O

So far we have seen that STRZPS is a strict subset of
TZ-HTN. In previous work we showed that TZ-HTN
is included in the regular languages (Holler et al. 2014,
Thm. 5). Intuitively, this is because planning systems may
stop any recursion at first possibility and add missing parts to
the plan by task insertion (Alford, Bercher, and Aha 2015b).
The set of tasks inserted by decomposition is in this case fi-
nite and thus regular. As STRIPS is in REG too, their
intersection is also regular.

However, in (Holler et al. 2014) we did not show if this
subset relation is strict. The next theorem states that it is.

Theorem 2 (TZ-HTN C REG). The set of languages gen-
erated by TI-HTN planning problems is a strict subset of the
regular languages.

Proof. We show that there is a regular language that can not
be generated by any TI-HTN planning problem. Consider
the following regular grammar (consisting of a terminal and
a non-terminal alphabet, the set of production rules and the
start symbol):

Ga?’" = ({a}7{50131752}7
{So — a51,51 — aSQ,SQ — aSO, Sg — a},So)

It generates the (regular) language including all words that
contain a number of as that can be divided by three.
L(Ggsn) = {a**™ | n € N}. Due to Prop. 1, it is not
possible to make any state change (in STRIPS) by applying
an action more than once. Thus it is not possible to gener-
ate the language given above by preconditions and effects.
Since TI-HTN planning systems are allowed to insert actions
apart from the hierarchy, there is no way to exclude words
having a different number of as. O

The last theorems introduce a strict inclusion hierarchy of
the language classes STRIPS (the least expressive class
considered here), TZ-HTN, and REG. Now we come
to another restriction on HTN planning problems that make
their language regular and classify its languages with respect
to the classes given so far. We denote the set of HTN plan-
ning problems without recursion as HTN-AC and will call it
acyclic or non-recursive. Intuitively, this means that when
a task is decomposed the same task can not be reached any-
more. Formally, it means that the size of possible decompo-
sition trees is limited by some constant (Holler et al. 2014,
Def. 8). We showed that HTN-AC, the set of languages
generated by such problems, is strictly included in the reg-
ular languages (Holler et al. 2014, Thm. 3). More precisely,

the set that is generated is exactly the set of all finite lan-
guages. Since there are finite languages that are expressible
in STRIPS, the next corollary holds:

Corollary 1 (STRZIPS N HTN-AC # 0). The intersec-
tion of STRIPS and HTN-AC is non-empry.

Because there are languages included in STRZPS that
are infinite, the following corollary holds:

Corollary 2 (STRIPS \ HTN-AC # (). There are
languages included in STRIPS that are not included in
HTN-AC.

Consider the language including the single word aaa.
Due to Prop. 1, it can not be expressed in STRIPS. Using the
initial task network of TI-HTN planning, one can introduce a
minimum number of as in each word. However, there is no
way to limit the number of as to three occurrences. Thus the
following corollary holds:

Corollary 3 (HTN-AC \ TZ-HTN # 0). There are
languages included in HTN-AC that are not included in
TL-HTN.

Intuitively, the initial task network of TI-HTN planning
problems allows to force specific tasks to be in every plan.
We have seen that this can be used to express languages that
can not be expressed by STRIPS. This raises the question
whether there is one such language that is finite and can thus
also be expressed in HTN-AC. The next theorem states that
there are such languages.

Theorem 3 ((TZ-HTN \ STRIPS) N HTN-AC) # D).
There are languages that can be expressed by both TI-HTN
and HTN-AC planning problems, but not by STRIPS.

The following proof shows that the language L_,,. =
{acb, bac, bca, cab, cba} of all permutations of the symbols
a, b and c except abc is such a language.

Proof. L-gpe € HTN-AC and L-ap. € TZ-HTN. We
give an HTN planning problem that is acyclic and prevents
task insertion by its preconditions and effects. Thus it forms
an HTN-AC as well as an TI-HTN planning problem that
generates the language L_ ..

Let P.gpe = (L,Ng,Np, M, cr,50,9,0) with L =
{pa,pb,pC}, N, = {CI}’ Np = {a,b,c}, g = (Z), 0 =
(prec, add, del) with prec = {a — pa,b — pb,c — pc},
add = {a — 0,b — 0,c — 0}, del = {a — pa,b —
pb, ¢ — pc} and sg = {pa, pb, pc}.

M = {(017 ({t17 ta, t3}a {(tla t2)7 (t27 t3)7 (tlv t3)}a Oé))

with a € {{t; — a,ts — ¢, t3 — b},
{tl — b,tz — a,ls — C},
{tl — b,tQ — c,t3 — a},
{tl — c,to — a,ts — b},
{tl —c,ty — b, ts — a}}}
When the ordinary HTN solution criterion (Criterion 2.a) is
applied to this acyclic problem, the initial task is decom-
posed into one of the desired words, so it obviously holds

that £(P-qpc) = L-abe- When the TI-HTN solution crite-
rion is applied, the preconditions and effects of the primitive

tasks prevent any action to be more than once in a solution.
Since the decomposition of the initial task inserts every ac-
tion once in a plan, there will be no task insertion at all and
we get the same language as with the HTN solution criterion.

Logpe € STRIPS. Suppose there is a STRIPS planning
problem P = (L, A, so, g,9) with§ = (prec, add, del) with
L(P) = L_gpe- W.Lo.g. A ={a,b,c}.

1. acb is in the language, i.e. a is applicable in sy and
7(a, so) holds.

2. bac is in the language, so 2 prec(b), b is applicable in the
initial state.

3. cab is in the language, i.e.

7(b,7(a,7(¢; %)) < ((((s0 \ del(c)) U add(c))
\del(a)) U add(a)) 2 prec(b)

Applying a to a state does not delete any state feature in-
cluded in prec(b), i.e. del(a) N prec(b) = O (assuming,
w.l.o.g., that del(a) N add(a) = 0).

4. cab is in the language, sg 2 prec(c).

5. Given that acb and bca are in the language, neither a nor
b does delete any state feature in prec(c).

Given (1) it holds that 7 (a,sg), including (2) and (3),
it holds 7 (b, (a,so)). Given (4) and (5) it holds that
7 (¢, (b,7 (a, 59))). The action sequence abc is applicable
m Sp.

It now has to be shown that the resulting state fulfills the
goal description. Given that the application of any order ex-
cept abe result in a goal state, it holds that s U add(a) U
add(b) U add(c) D g. Since cba, acb and bac are in the lan-
guage, neither of the actions deletes any environment prop-
erty that is in the goal description. Thus abc is applica-
ble to sy and results in a goal state. Our assumption that
there is a STRIPS planning problem generating L_ ;. must
be wrong.

Corollary 4 (TZ-HTN\STRIPS\HTN-AC # 0). The
language L 2+~ given in Thm. I is non-finite. So we have al-
ready introduced a language that is included in TZ-HTN,
not included in STRIPS (due to Thm. 1) and not included
in HTN-AC.

This corollary concludes the classification of HTN plan-
ning problems without recursion. It has been shown that it
has non-empty intersections with every language class intro-
duced so far.

Now we investigate another well-known planning for-
malism, STRIPS planning with conditional effects, denoted
STRIPS-CE. The next theorem states that the corresponding
set of languages STRIPS-CE equals the class of regular
languages.

Theorem 4 (STRIPS-CE = REG). The set of languages
generated by STRIPS-CE planning problems equals the set
of regular languages.

Proof. STRIPS-CE C REG. To proof that the class
STRIPS-CE is included in REG, we show that for ev-
ery STRIPS-CE planning problem P = (L, A, sg, g,d) with
0 = (prec, add, del), there is a deterministic finite automa-
ton (DFA) that accepts the language L£(P). Let dfa =
(%,S,d,i, F) be a DFA where X is its input alphabet, S
its set of states, ¢ its initial state, d : S x X — S its state-
transition function and F' its set of final states. We define
3> = A. The states of the DFA equal the set of possible
states in the planning problem, S = 2%, i.e. each state of
the DFA is given by the subset of L that holds in the corre-
sponding state of the planning problem. So i is the state of
the DFA that contains exactly the literals that hold in sy and
every state including the literals in g is included in F'. The
state transition function of the DFA is defined according to
the state transition function of the planning problem:

d(s,a) = { 5’7 Zﬁ (T(a, 8) A ’Y(G/, S) — S/)

undefined, else

The DFA has the same state space as the original problem.
By definition, those states that fulfill the goal description of
P are included in the final states. The state transition func-
tion simulates the state transitions of the planning problem.
For symbols that belong to actions that are not applicable in
the current state, d is undefined. Starting in the initial state
representing sg, the DFA accepts exactly the sequences of
actions transforming that state to a goal state of the planning
problem. Thus it accepts exactly the words in £L(P).

STRIPS-CE O REG. Here we show that for every reg-
ular language there is a STRIPS-CE planning problem that
generates it. For every regular language there is a DFA with-
out e-transitions that accepts it. Let dfa = (3, S, d, i, F') be
such a DFA. We assume that d is total (if it is not, it can be
made total by introducing a new state that forms a dead end
for the transformation). We define a STRIPS-CE planning
problem P = (L, A, so,{g},0) where L = S U {g} and
g € S. The initial state is so = {i}. Further, g is included
in sq if and only if ¢ € F. The set of actions A equals the
alphabet ¥ and the functions in § are defined as follows:

Va € A: prec(a) =0
add(a) = {({s},{s'}UG") | d(s,a) = s}
with G’ = { {9}, ifs'eF

0, else
del(a) = {(0,L)}

There is one action for every terminal symbol of the DFA.
Since d is total, every action has a conditional effect for ev-
ery state of the DFA, simulating the d function. The delete
effects delete all state features. Disregarding the goal de-
scription g, the number of state features that hold is not
changed by the application of an action. Starting planning
in the state where only the initial state of the DFA holds,
there holds (apart from g) exactly one state feature in every
reachable state; and action application simulates the state
transition of the DFA. The language accepted by dfa equals
the language of the planning problem L(P).

This completes the overall proof that STRZIPS-CE =
REG. O

4 Discussion and Related Work

We extended the HTN and TI-HTN formalism by adding a
goal description to obtain a unifying formalization for hier-
archical and non-hierarchical planning. Sec. 4.1 discusses
the impact of this alteration, in particular why previous re-
sults still hold despite the changes. Sec. 4.2 discusses the re-
sults of this paper with respect to related work on the formal-
language-based expressivity measure. We show the com-
plete dependencies between the Chomsky hierarchy and the
studied classes of planning problems. Sec. 4.3 elaborates
the connections between the expressivity measure regarding
formal languages and other measures known from the liter-
ature, such as the complexity of the plan existence problem
or compilation techniques.

4.1 Consequences of Adding a Goal State

We first want to discuss the consequences of adding a goal
description to the formalism. As we have seen in Thm. 1, it
enables an elegant overall formalism where TI-HTN comple-
ments the STRIPS formalism by adding an hierarchical part
of constraints that increase expressivity.

Since the case where there is no goal description is a spe-
cial case, the problem can not become simpler, but may be-
come harder. However, the goal description can be compiled
away by adding a primitive task to the initial task network
that is placed at the end of each plan and has the goal proper-
ties as precondition (Geier and Bercher 2011). For the HTN
formalization by Erol, Hendler, and Nau (1996), this was
first formally shown in the hardness proof of Thm. 5 stating
that HTN planning is at least as expressive as STRIPS plan-
ning. So, from a computational complexity point of view,
the impact of having a goal description is quite limited.

From the formal language point of view, there is an im-
pact: When there is one specific (technical) primitive task
at the end of every single solution, the language becomes
prefix-free, i.e. there can not be a solution that is the prefix
of a second solution. Of course, this is a quite marginal dif-
ference that could easily be eliminated by a post processing.
However, this is not allowed in the language-based approach
because it has a significant impact on the given classes. Con-
sider e.g. that a renaming of actions would be allowed, then
a STRIPS-CE action could be simulated by a set of STRIPS
actions that are renamed to their original names afterwards.
So, when allowing a post-processing, several classes of lan-
guages would fall together and it is prohibited.

Knowing that the given modification of the formalism
may change the planning problem’s language raises the
question whether our results in (Holler et al. 2014) still hold
in the formalism given here. So we have a closer look at the
given proofs and investigate whether they still hold.

One property used in several proofs is that the language
generated by an HTN planning problem can be regarded as
the intersection of two languages: (1) the language gener-
ated by the hierarchical part of the problem and (2) the lan-
guage generated by the non-hierarchical part (Holler et al.

2014, Sec.3.1). Since the language generated by the non-
hierarchical part of the problem is regular, several proofs
rely on the fact that a language class at hand is closed under
the intersection with regular languages. So we have to show
that the non-hierarchical part of the language is still regular.
As STRIPS is a special case of STRIPS-CE, this has already
been done in the first part of the proof for Thm.4. Thus,
Thms. 5, 6, 7 in (Holler et al. 2014) still hold.

The proof concerning HTN-AC is based on the fact that
the language is finite (this still holds). The results on plan-
ning formalisms not showing preconditions and effects are
trivially unaffected. These are Cors. 1, 2, 3 and Thms. 8, 9 in
(Holler et al. 2014). Thus the changed formalism does not
affect the results.

4.2 An Overview of Language-related
Expressivity Results

Now we discuss the relation of this paper to former
language-related results and give the resulting language hi-
erarchy of planning formalisms. First we summarize (Holler
et al. 2014) and add the results of this paper afterwards.

In (Holler et al. 2014, Thm. 8) we have shown that the
HTN planning formalism is able to express a strict (and non-
context-free) subset of the context-sensitive languages. This
is due to the partial ordering between abstract tasks that can
not be compiled away without committing to an ordering
relation between the subtasks they are decomposed into.

This means that the result holds also for problems that
lack preconditions and effects (called HTN-NOOP). The fact
that the subset relation between (full) HTN and HTN-NOOP
is strict follows trivially from the complexity of the corre-
sponding plan existence problems (Erol, Hendler, and Nau
1994; Alford et al. 2014) (cf. (Holler et al. 2014, Thm. 9)).

The set of languages generated by totally ordered HTN
planning problems (i.e. the initial task network as well as all
subtask networks of methods are totally ordered), denoted
HTN-ORD, equals the set of context-free languages, regard-
less of whether the problems include preconditions and ef-
fects or not (Holler et al. 2014, Thm. 6).

The set of languages generated by TI-HTN planning is in-
cluded in the set of regular languages (Holler et al. 2014,
Thm.5). Due to Thm.2 given in this paper, this subset-
relation is strict.

Using the modified formalism introduced in this paper,
TI-HTN is a straightforward extension of STRIPS and thus its
language is unsurprisingly a superset of the language gener-
ated by STRIPS (see Thm. 1). We have further seen that this
relation is strict.

Interestingly, the introduction of conditional effects re-
sults in a class of languages that equals the regular languages
(Thm.4). Thus there are two planning formalisms (HTN-
ORD and STRIPS-CE) that result in language classes already
known from the Chomsky hierarchy.

The remaining results complement the hierarchy and
show that all intersections of the regular language classes are
non-empty (see Cors. 1, 2, 3, 4 and Thm. 3). Fig. 1 gives the
overall language hierarchy including the results in (Holler et
al. 2014) and the results given in this paper.

(csc

(HTN

(HTN-NOOP

(CFL=HTN-ORD
REG = STRIPS-CE
TT-HTN :
LSTRIPS L 1

HTN-AC}

)

= =,
N)

Figure 1: Overview of the expressivity of different planning
formalisms. All given subset relations are strict and all given
intersections are non-empty. Two language classes gener-
ated by planning formalisms equal classes from the Chom-
sky hierarchy — STRIPS-CE equals the regular languages and
HTN-ORD the context-free languages.

4.3 Formal Languages as Measure for the
Expressivity of Planning Formalisms

The language-based approach to assess expressivity has
originally been motivated by parsing-related approaches to
plan and goal recognition (Holler et al. 2014). There has
been quite a lot of work on these approaches to that problem
(see (Carberry 2001; Kriiger et al. 2007; Ingrand and Ghal-
lab 2013; Sukthankar et al. 2014) for overviews). As the
models used in plan and goal recognition describe agents’
behavior, planning models are a nearby choice for its de-
scription. The given expressivity measure is interesting to
understand which class of languages has to be parsed when
choosing a planning formalism.

When we have a closer look at the problem of plan and
goal recognition in the context of the given language of
a planning problem, it is the problem to decide whether
there is a word in the language that has the given prefix
of observations. But there are other interesting connections
between the language and problems studied in automated
planning (Behnke, Holler, and Biundo 2015): The problem
of plan verification (see e.g. (Nebel and Bickstrom 1994;
Lang and Zanuttini 2012; Behnke, Holler, and Biundo
2015)) is similar to the problem of deciding whether a given
sequence of actions is included in the language, i.e. its word
problem. The maybe most studied problem in automated
planning is the plan existence problem, which resembles the
emptiness problem of the language.

Though one has to carefully regard the representation’s
blow-up when studying the relations between the different
planning- and formal-language-related problems, there are
interesting interconnections, as e.g. the (non-)decidability of
the emptiness problem of different planning formalisms, or
the complexity of the verification for classical as well as to-
tally/partially ordered HTN planning.

The property that the blow-up of the representation is not
respected in the approach has both advantages and disadvan-
tages. On one hand it is not as practical as the compilation-

or runtime-based view. Compilation (under some restriction
in compilation runtime and representation blowup) can be
applied quite directly in planning systems. The theoretical
runtime of the plan existence (i.e. emptiness) problem is, in
practical planning, of less importance than compilation, but
of course interesting when relaxing problems for the devel-
opment of heuristics.

On the other hand, there are also some counterintuitive
results (that are totally fine when looking at the original pur-
pose of the approaches) when using runtime or compilation
as a measure for expressivity: When using two representa-
tions of the same formalisms (e.g. a lifted and a grounded
representation), its “expressivity” may increase or decrease.
The language-based approach does not have these problems,
since it does not represent the blow-up. So it may be the
most theoretical approach. From a practical point of view,
the most interesting application seems to be plan and goal
recognition. But it may also help to choose the best-fitted
formalism for a problem at hand, since it enables a look at
how complex the structures in generated plans may be (and
that seems to be the thing to look at).

Compilations give a relative measure, the absolute value
of expressivity is lost, especially when compilation is not
possible anymore, e.g. from HTN to STRIPS planning. In the
lower regions of expressivity, the runtime of the compilation
as well as the change of representation size gives the rel-
ative measure between formalisms. In the language-based
approach, the Chomsky hierarchy gives a reference frame-
work that enables a more absolute measure.

Compared to the other approaches, runtime-based expres-
sivity is a more indirect measure. It does not state how much
can be expressed, but how hard some (interesting) problem
is when a specific representation is chosen.

5 Conclusion

In this paper we investigate the expressivity of the STRIPS
planning formalism with respect to the measure of expres-
sivity based on the classification with respect to formal lan-
guages. It turns out that STRIPS without conditional effects
is a strict subset of the languages generated by TI-HTN plan-
ning, i.e. it is included in the regular languages. Interest-
ingly, when allowing for conditional effects, the formalism
generates exactly the class of regular languages. We further
give some results related to the classes generated by hierar-
chical planning formalisms to show that all subset relations
in the language hierarchy of planning formalisms are strict
and that all intersections are non-empty. The overall hierar-
chy is given in Fig. 1. We concluded with a discussion of the
properties of the novel expressivity measure and its relation
to other approaches.

Acknowledgments

We want to thank the reviewers for their help to improve
the paper. This work was done within the Transregional
Collaborative Research Centre SFB/TRR 62 “Companion-
Technology for Cognitive Technical Systems” funded by the
German Research Foundation (DFG).

References

Alford, R.; Bercher, P.; and Aha, D. W. 2015a. Tight bounds
for HTN planning. In Proceedings of the Twenty-Fifth Inter-
national Conference on Automated Planning and Schedul-

ing (ICAPS 2015), 7-15. AAAI Press.

Alford, R.; Bercher, P.; and Aha, D. W. 2015b. Tight bounds
for HTN planning with task insertion. In Proceedings of the
Twenty-Fourth International Joint Conference on Artificial

Intelligence (IJCAI 2015), 1502—-1508. AAAI Press.

Alford, R.; Shivashankar, V.; Kuter, U.; and Nau, D. S. 2014.
On the feasibility of planning graph style heuristics for HTN
planning. In Proceedings of the Twenty-Fourth International
Conference on Automated Planning and Scheduling (ICAPS
2014), 2-10. AAAI Press.

Béckstrom, C. 1995. Expressive equivalence of planning
formalisms. Artificial Intelligence 76(1-2):17-34.

Behnke, G.; Holler, D.; and Biundo, S. 2015. On the com-
plexity of HTN plan verification and its implications for plan
recognition. In Proceedings of the Twenty-Fifth Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2015), 25-33. AAAI Press.

Bylander, T. 1994. The computational complexity of
propositional STRIPS planning. Artificial Intelligence 69(1-
2):165-204.

Carberry, S. 2001. Techniques for plan recognition. User
Modeling and User-Adapted Interaction 11(1-2):31-48.

Erol, K.; Hendler, J.; and Nau, D. S. 1994. HTN planning:
Complexity and expressivity. In Proceedings of the 12th
National Conference on Artificial Intelligence (AAAI 1994),
volume 94, 1123-1128. AAAI Press.

Erol, K.; Hendler, J. A.; and Nau, D. S. 1996. Complex-
ity results for HTN planning. Annals of Mathematics and
Artificial Intelligence 18(1):69-93.

Geier, T., and Bercher, P. 2011. On the decidability of HTN
planning with task insertion. In Proceedings of the 22nd
International Joint Conference on Artificial Intelligence (1J-
CAI 2011), 1955-1961. AAAI Press.

Holler, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2014.
Language classification of hierarchical planning problems.
In Proceedings of the 21st European Conference on Artifi-
cial Intelligence (ECAI 2014), 447-452. 10S Press.

Ingrand, F., and Ghallab, M. 2013. Robotics and artifi-
cial intelligence: a perspective on deliberation functions. Al
Communications 27:63-80.

Kriiger, V.; Kragic, D.; Ude, A.; and Geib, C. 2007. The
meaning of action — a review on action recognition and map-
ping. Advanced Robotics 21(13):1473-1501.

Lang, J., and Zanuttini, B. 2012. Knowledge-based pro-
grams as plans — the complexity of plan verification. In
Proceedings of the 20th European Conference on Artificial
Intelligence (ECAI 2012), 504-509. 10S Press.

Nebel, B., and Bickstrom, C. 1994. On the computational
complexity of temporal projection, planning, and plan vali-
dation. Artificial Intelligence 66(1):125-160.

Nebel, B. 2000. On the compilability and expressive power
of propositional planning formalisms. Journal of Artificial
Intelligence Research (JAIR) 12:271-315.

Roger, G.; Pommerening, F.; and Helmert, M. 2014. Op-
timal planning in the presence of conditional effects: Ex-
tending Im-cut with context splitting. In Proceedings of the
21st European Conference on Artificial Intelligence (ECAI
2014), 765-770. I0S Press.

Sukthankar, G.; Goldman, R. P.; Geib, C.; Pynadath, D. V.;
and Bui, H. H. 2014. Plan, Activity, and Intent Recogni-
tion. Elsevier. chapter An Introduction to Plan, Activity,
and Intent Recognition.

