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Abstract— Task coordination for autonomous mobile service
robots typically involves a substantial amount of background
knowledge and explicit action sequences to acquire the relevant
information nowadays. We strive for a system which, given a
task, is capable of reasoning about task-relevant knowledge to
automatically determine whether that knowledge is sufficient.
If missing or uncertain, the robot shall decide autonomously on
the actions to gain or improve that knowledge. In this paper we
present our baseline system implementing the foundations for
these capabilities. The robot has to analyze a tabletop scene and
increase its object type confidence. It plans motions to observe
the scene from multiple perspectives, combines the acquired
data, and performs a recognition step on the merged input.

I. INTRODUCTION

For flexible and adaptive autonomous mobile robots, it
is crucial to develop systems that require little a priori
knowledge to operate in new and dynamic habitats. Hybrid
reasoning, which for one means combining symbolic task
and geometric motion planning and for another to combine
qualitative and quantitative aspects of knowledge represen-
tation and reasoning, plays an important role in this context.

In our project, we strive to combine these aspects into a
coherent system that will allow the robot to plan not only
the sequence of locomotion and manipulation actions that
is necessary to achieve the physical goals (e.g. moving an
object or turning on an appliance), but also to reason on
the information that is necessary to do so. In other words,
we want to make information acquisition an integrative part
of the overall task execution to enable the robot to actively
explore what it needs to solve a task.

Starting out from symbolic approaches like classical plan-
ning on PDDL-defined domains and problems, and reasoning
with projection using GOLOG [1] as a modeling language,
research questions that follow are
• how to represent quantitative data like uncertainty or

object positions in the knowledge base?
• how to represent and reason about incomplete knowl-

edge using an explicit epistemic state?
• when to query geometric planners without incurring an

infeasible overhead?
• if and how to acquire the task-relevant knowledge?

While all of these questions got attention on their own, to the
best of our knowledge a holistic robotic system integrating
all of these aspects is still missing.

The particular issue we address in this paper is the
frequent insufficiency of sensor data and uncertainty about
extracted information if a scene is only viewed from a single

perspective. We describe our baseline system that is capable
of active perception, i.e. taking action to acquire the needed
information with sufficient certainty. For now, we focus on
analyzing a tabletop scene from varying perspectives. The
required building blocks on a PR2 robot are the task planner
that creates the sequence of observation points, database
recording facilities, multi-perspective point cloud merging to
combine data from multiple perspectives, and a recognition
module that can determine confidences per object and type.
The system has been created with integration points for
future extensions towards deliberative hybrid reasoning for
mobile manipulation tasks. The most important future exten-
sion will be an epistemic state reasoning component, which
explicitly represents and reasons about the robot’s belief of
the world and whether and how to acquire more information.
Further development will also improve data fusion and object
recognition approaches, and consider manipulation actions to
augment perception results.

To render the problem feasible for now, we specified
the domain as tabletop scenes in household environments.
The tasks are to either identify all objects on a table with
high confidence, or to search for a particular object. These
constraints allow us to re-use as much existing prior work
as possible regarding tasks that are required but not the
core of our work, like perception or motion planning. Still
both of these tasks are building blocks for a larger context.
For instance, identifying all objects could be done in an
explorative situation when the robot familiarizes itself with
a new environment and search for a particular object is
obviously required for fetch-and-carry-like tasks.

The rest of the paper is organized as follows. In Section II
we present related work and give some background informa-
tion about our system. We then describe the action planning
component in Section III. The automated data recording is
explained in Section IV. In Section V we detail the multi-
perspective point cloud merging and object detection and
recognition, followed by a description of our experiments in
Section VI. We conclude in Section VII.

II. RELATED WORK AND BACKGROUND

As we are presenting an integrated robot system the body
of related work is vast. Hence we chose works related to
particularly important aspects of our system.

Robot Database: The method to store any and all data
acquired, processed, and communicated between components
to a database has been proposed in [2]. Certain criteria for
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Fig. 1. Experimental setup The top right image shows our experimental setup for object recognition, with the corresponding perspective of the robot’s
camera depicted in the lower right corner (cropped). The left image visualizes the object classification results after merging the point clouds from the
different perspectives according to our approach, where detected cups are depicted by green cylinders.

storage systems are defined and MongoDB [3] is identified
as a suitable system. As an example the database is applied
in fault analysis. In [4] MongoDB is employed to record
information about detected objects (in terms of planes and
clusters) for semantic querying and change detection.

Perception: In terms of perception relevant work includes
the Point Cloud Library (PCL) [5] which we use for point
cloud merging, alignment, and processing to detect objects. It
provides the required basic operations like plane extraction,
iterative closest point alignment, and clustering. A real-time
approach for generating dense, volumetric reconstruction is
KinectFusion [6]. It combines depth information and tracks
the sensor’s position on a frame-by-frame basis to create a
surface model for scene analysis. Compared to our approach
it produces a higher accuracy model of the environment, but
at vastly increased computational effort and power consump-
tion, which is a concern in particular on a mobile robot.

Active perception: Several approaches address the prob-
lem of active perception for service robots. Stampfer et al.
presented an approach by which a robot classifies objects on
a table [7]. Initially objects are classified based on features
obtained from a Kinect camera. For individual objects the
classification is refined from additional viewpoints. The
viewpoints are selected based on the expected detection
quality. More recently, the authors extended their approach
and presented a system for object recognition and pose
estimation by fusing the results for multiple algorithms in a
probabilistic framework [8]. This improves results in many
cases where a system based on a single detection algorithm
would fail. In similar work, Eidenberger and Scharinger
developed a system for probabilistic active perception plan-
ning [9]. A POMDP planner computes the next best view
pose in order to improve the hypotheses for objects in the
scene, which consist of an object class and pose information.
Similarly, Aydemir et al. present an approach relying on
spatial relations between objects to select search strategies

when searching for a particular object [10]. These spatial
relations, e.g. in or on, describe possible object locations in
the scene. A Markov Decision Process then evaluates this
a priori knowledge and chooses appropriate sensing actions
and strategies to find the desired object. In our approach,
we combine percepts from multiple viewpoints to build a
better representation of the scene, which in turn improves
the quality of the object classification.

Hybrid reasoning: Kaelbling et al. present a hierarchical
approach to integrate task and motion planning [11]. By
committing early to choices made by the planner, the plan
length is reduced, in turn decreasing the amount of planning
time exponentially. Geometric suggesters compute numerical
values for operators during the planning process, therefore
eliminating the necessity of prior discretization of continuous
geometry. Wolfe et al. propose hierarchical task networks for
robotic manipulation tasks [12]. These HTNs allow symbolic
reasoning on the higher levels, while integrating geometric
planners at the lowest level, producing kinematic feasible
high quality plans. Furthermore, the computed kinematic
trajectories are reused during planning to increase efficiency.
Contrary to our area of research, the initial state is assumed
to be known and no exploration of the world is considered.

System: The system is integrated using the Fawkes [13]
and ROS [14] robot software frameworks and middlewares.
Bridge modules between the two let us incorporate com-
ponents from both middlewares into our system and reuse
prior work. In principle the approach described in this
paper is independent of robot performing the manipulation
and information gathering tasks. For now we conduct our
experiments with a PR2 robot, with the option to corroborate
them on our custom built robot Caesar in the future.

III. ACTION PLANNING FOR SCENE OBSERVATION

As robotic applications grow in complexity, integrating
heterogeneous skills becomes a problem. Maintaining scripts
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or state machines becomes difficult as the number of skills
available to the robot increases. Symbolic planning offers one
possible solution. Robot skills formulated as actions allow
a domain-independent planner to compose a sequence of
actions to reach a desired goal state.

Despite recent advancements through planning compe-
titions, only classical planning with deterministic closed
world domains provides sufficient performance for high level
control of a robot. Such planners usually cannot easily
process geometric information. Consider a robot picking
up an object from a table: it is difficult to express in
symbolic logic if a kinematic solution for an arm motion
to the object exists. However this information is crucial to
produce executable plans. Therefore our planner Temporal
Fast Downward/Modules (TFD/M) provides a mechanism to
integrate external geometric reasoners into the planning pro-
cess via semantic attachments [16]. For example, the action
to move the robot inquires a navigation planner computing
a path to determine the validity and estimated costs of this
action. Furthermore, the robot has to deal with the real world,
where sensors are noisy, actions can fail for various reasons
and other agents might interfere with the world. Therefore
our approach relies on continual planning [15]: TFD/M is
wrapped in an execution, monitoring and re-planning loop
that creates a new plan when actions have unexpected results
or new information about the world is gained.

In household or workplace environments, the robot will be
required to solve tasks such as finding and fetching specific
objects. The challenges is to produce a plan to locate these
objects in the environment. The objects might be located in
cup boards or in a fridge in different rooms and the view
might be obstructed. The robot must decide where to search
for these objects. When objects are not completely visible
the robot could move obstacles out of the way or move to
observe the scene form another perspective. Another way to
deal with occlusions could be picking up the object to bring
it directly into the sensors field of view.

For now we have a simple planning domain, which allows
the robot to move to a number of locations around a table and
to inspect the table from each location. The action to inspect
the scene is formulated with the effect that new information
is gained, without specifying what this new information
will be. We formulate our planning goal so the robot will
gather information by inspecting the scene on the table from
all locations. However, after inspecting the scene from a
perspective the robot can decide that it knows enough about
the scene and therefore skip inspecting the other locations.

IV. AUTOMATED DATA RECORDING TO MONGODB

Today most mobile robots do not have the ability to
recall recent events, or even just recent pieces of data.
Some processing modules do keep a bounded buffer of
observations, e.g. to track object positions. But it is typically
not possible to reference arbitrary data seen recently by time
or other criteria. A robot memory is required to store the data
encountered to recall recent events or data, for instance to
generate a combined view or to remember object positions.

This memory needs to be bounded in storage capacity on the
robot or in time to maintain relevancy of the data.

In [2] we have defined requirements to a robot storage
system that can record data at run-time. The system must
be able to store any and all data in real-time and provide
powerful retrieval features to query specific data. This allows
us to accomplish the (time- or storage-bounded) persistent
memory we determined to be lacking for most current robots.

We continue to use the document-oriented, schema-less
database MongoDB [3] for this purpose. The database groups
key/value pairs into (possibly nested) documents and does
neither require nor enforce predefined data schemas. In that
it strongly differs from classical relational databases. This
aspect provides us with the flexibility to generate direct
mappings from data structures used for communication to
database documents, allowing us to seamlessly record new
data types as they are introduced and to sustain developer
knowledge about data exchange (and now storage) formats.

Modern robot systems often follow a component-based
paradigm, where functionality is encapsulated in modules.
These exchange relevant data which useful to another mod-
ule via an inter-component communication middleware, for
example following a blackboard approach like Fawkes or a
publisher/subscriber model as ROS. The recording software
taps into the middlewares and can record any and all data
transmitted with only minimal configuration. MongoDB’s
virtual file system GridFS is used to store arbitrarily large
files by splitting the data into suitably sized chunks. In
our scenario the relevant data to record are point clouds,
transforms, and images. Meta data for point clouds and
images is stored in documents with references to the actual
data kept in GridFS.

V. MULTI-PERSPECTIVE PERCEPTION

Occlusions in the perceived 3D point clouds often have a
severe influence on the perception results. Objects of interest
might be completely hidden, whereas partially-visible ones
can be misclassified by the perception system. In many
practical situations, the robot will not be able to cover the
entire scene from a single perspective. Therefore, our goal is
to combine point clouds from multiple distinct perspectives
into one. We then apply our perception pipeline on the
aligned point clouds to identify the objects of interest. We
now describe our pipeline in more detail.

Point Cloud Merging and Alignment
The point cloud merging and alignment procedure consists

of four principal steps. An example run of the described
procedure is shown in Figure 2. The input are time stamps
for which to retrieve the data to generate the combined point
cloud. The time stamps are determined by the task planner.

0. Restore Data Given the time stamps from the task
planner, the point clouds closest in time are retrieved from
the database. For a certain time window all transforms are
restored into a temporary buffer to be used in the next step.

1. Initial Alignment To align the point clouds recorded from
different locations around the table, our system uses the
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(a) Initial alignment in map frame (b) First ICP alignment (biased by table plane)

(c) Plane removal and second ICP alignment (d) Final alignment side view

Fig. 2. Intermediate and final result images of the multi-perspective point cloud merging pipeline.

robot’s pose at the corresponding time computed by Adaptive
Monte Carlo Localization (AMCL) [17] in a given map of
the environment. Together with the given pose of the sensor
(in our case a Kinect camera mounted on the robot’s head),
this information is used to transform the point clouds from
the sensor frame to a global reference frame (Figure 2a).
2. Filtering and Down-sampling Our system then filters the
point clouds for outliers in terms of height over the ground
support plane down-samples them to a voxel size of 1 cm3.
3. First ICP Alignment We then apply the iterative closest
point algorithm (ICP) [18] to the point clouds to align
them more closely. This alignment is particularly biased by
the table plane in the different perspectives, as it typically
accounts for most of the points (Figure 2b).
4. Plane Removal and Secondary Alignment In this step,
dominant planes are detected and removed from the resulting
point clouds. These are in particular the table plane and
partial walls that happen to be within the filtering range.
We then perform a second iteration of the ICP algorithm,
which now favors the alignment of the actual objects on the
table, as most other points have been removed (Figure 2c).

Figure 2d shows the final result of the point cloud merging
and alignment procedure. In the following section, we de-
scribe the perception pipeline applied to the merging result.

Tabletop Scene Perception

In this step, we run our perception pipeline on the point
cloud resulting from the merging and alignment procedure.
In our experimental scenario, the robot is searching for
specific cups of known dimensions on the table. Our system
processes the point cloud to determine if the desired cups are

in the observed scene, i.e. on the table. This involves first
determining the most likely table plane and estimating its
convex hull and normal vector. After eliminating all points
corresponding to the table surface, the system computes the
number of objects on the table through a clustering process
applied to the remaining points. Each detected cluster is
assumed to belong to one unique object. For each cluster
(object), we compute a score representing its similarity to
one of the cups the robot is looking for. This encompasses the
similarity with respect to both the shape and size of the cup,
where the shape is approximated by a cylinder for simplicity.

The size similarity measure, simsize , takes into account
the three dimensions of the bounding box of the detected
object. It is of the form e−|d

′−d|/α, where d′ is the measured
dimension of the observed object, d is the true dimension of
the cup, and α is a scaling parameter. The overall simsize

score is the product of the similarities with respect to all three
(x, y, z) dimensions, resulting in a value between 0 and 1.

To compute the shape similarity simshape of a cluster to a
cup, we run a sample consensus segmentation process using
a cylindrical model to fit the best cylinder to the cluster. We
then compute simshape as the ratio of inliers (i.e. points lying
on the computed cylinder or within a small distance from its
surface) to the total number of points comprising the cluster.

The system then computes the overall similarity of a
detected object to a specific cup as the average of both
simsize and simshape above. Finally, each cluster is assigned
the identity of the cup it resembles the most or is determined
to be an unknown object if the overall score is less than a
certain threshold θ. As we focus on laying the foundations of
an active perception system that combines data from different
perspectives to overcome occlusions, we use this simple



Fig. 3. The first two images respectively show the first and last perspectives of the robot’s camera for the same scene. The third image shows the cup
detection from the first perspective. Only two cups are recognized since one is occluded by the large box, whereas the other is too far and is only partially
visible such that shape and size matching fail. The last image shows the proper detection after merging data from all five perspectives.

criterion tailored to our experimental scenario. One can
replace this heuristic by more sophisticated object detectors
utilizing more comprehensive features, e.g. [19].

VI. EXPERIMENTS

In this section, we present an experimental evaluation of
our system with its data recording, planning and perception
modules. We focus on how our multi-perspective perception
approach improves the detection rates of objects in the scene
compared to detection from a single point of view.

Experimental Setup

Our setup consisted of a table with several objects on it,
which we want the robot to label either as cups or discard
them as unknown objects (see Figure 1). As background
knowledge, we provided the system with the dimensions of
two different cups. When classifying the objects, the robot
matched the different objects to either category according to
their resemblance to those cups, as described in section V.
The robot can capture point clouds of the scene from
five different locations, which were recorded a priori. We
conducted four runs, each with a different arrangement of
four cups and three or four other objects on the table. Objects
like cardboard boxes were used to provide occlusions so that
some object could not be observed from certain locations as
shown in Figure 3.

System Performance

Three components are of particular relevance when it
comes to the performance of our system. The task planner
solves the problem at hand in less than 50 ms, which is
negligible compared to the execution time for the robot
movements. We expect the planning time to increase once
we have more diversity in the required actions, e.g. once we
employ manipulation for active perception.

The general database recording performance has been
evaluated in-depth in [2]. Point clouds and images were
stored regularly at 2 Hz at typical data rates of 12 MB/sec.
Explicit periodic flushing was used to prevent data transfer
congestion. Coordinate transforms in ROS and Fawkes are
kept in a tree, where nodes represent reference frames and
edges the transformation from the source (parent) to the
target (child) frame. Each transform for an edge is published
periodically. On the PR2, transforms are sent at typical rates
of more than 3500 transforms per second. A single-host
database can introduce undesirable latencies for this number

of inserts. Therefore, we group transforms in intervals of
2 sec into a single document per transform link leading to
insertion rates of only some 50 documents/sec, which the
database could easily handle. With these improvements we
achieved a steady data recording.

The point cloud merging procedure has typical run-times
of about 300 ms, including loading from the database and
alignment. The perception pipeline is capable of operating
at 30 Hz for single-view observations, and therefore easily at
the speed of the merging step.

Perception System Accuracy

For each run, we recorded the number of correct object
classifications made by the robot from each of the five
perspectives. We compared the results for two setups. In the
first, the robot ran the object recognition pipeline on the indi-
vidual point clouds captured from the different perspectives
independent of each other. In the second, the robot used the
merged and aligned point clouds gathered from the different
perspectives of the same scene and provided detection results
after each merging operation. The results after each of the
five perspectives are summarized in Fig. 4 averaged over the
four runs. The charts depict the precision and recall based
on the number of true positives (correct labeling of a cup),
true negatives (correct labeling of an unknown object), false
positives (labeling an unknown object as a cup), and false
negatives (labeling a cup as an unknown object). If a cup was
completely undetected due to an occlusion, it was counted
as a false negative.

Notice how the system based on single views of a scene
is susceptible to many misclassifications compared to one
which combines data from different perspectives. Partial
point clouds captured of an object can easily result in wrong
shape estimates compared to a merged point cloud capturing
two or more sides of the object. The single-view setup there-
fore reported significantly more false positive cup detections
leading to a low precision compared to our approach. On the
other hand, our approach was more robust to false positives
with a precision increasing in general with more added views.
From some perspectives, our merging approach reported a
false positive like labeling a mug with a handle as a cup,
since it resembles the cups from most perspectives. This
was typically corrected after adding a point cloud from a
perspective that captures the handle as well, as the shape of
the object is not consistent with a cylindrical model anymore.
Moreover, we observed a consistent increase in recall after
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Fig. 4. Object classification results for two setups: using point clouds from
individual perspectives only (single) versus using the merged point clouds
from the consecutive perspectives of each scene (merged). Combining data
from different perspectives resulted in better precision and recall at the
end of each run (i.e. after going around the table). On the other hand,
the precision of cup detection for the single setup was significantly more
sensitive to the occlusions and shadows specific to the different perspectives.

each added perspective of the table using our approach. In
other words, the robot was able to detect all cups by the end
of each run even though some were occluded at first. A video
of an example run from our experiments can be found at
http://hybrid-reasoning.org/projects/c1.

VII. CONCLUSION AND OUTLOOK

Today, when developing a robot application, actions for
knowledge acquisition are often explicitly encoded into the
task description. In this paper, we have presented an archi-
tecture and building blocks of a system we intend to use
as a baseline system for epistemic reasoning. That means
the robot will reason if and how to gain the necessary
information to accomplish its task.

For the current system, we have developed a system that
combines persistent memory and multi-perspective percep-
tion with continual planning to deal with object (partial)
occlusions. We have points for further extensions that will
allow us to easily implement and test new methods.

In the future we want to decide on the next observa-
tion position that promises the highest information gain by
querying geometric planners using semantic attachments.
A knowledge-based reasoner will explicitly represent the
epistemic state combining qualitative and quantitative infor-
mation to infer whether to acquire more information or to
decrease uncertainty, and which actions to take to accomplish
this. The persistent memory might cover more types of data
to remember in the future, for example previously discovered
object positions. Our current object recognition system is
a simple approach, but one which already provides the
necessary interfaces to plugin more elaborate approaches. It
also illustrates the value of combining data from different
time steps to improve the quality of the acquired information.
The multi-perspective merging can be made more efficient
in the future by using OctoMap [20], for example.

For the tabletop scenario, the multi-perspective approach
has already significantly improved our perception results and
provides a capable baseline system with suitable extension
points. We are currently developing a reasoning system
that can automatically determine the information required to

complete a task and an active perception system to acquire
it.
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“Semantic Attachments for Domain-Independent Planning Systems,”
in Int. Conf. on Automated Planning and Scheduling (ICAPS), 2009.

[16] C. Dornhege and A. Hertle, “Integrated symbolic planning in the
tidyup-robot project,” in AAAI Spring Symposium - Designing Intelli-
gent Robots: Reintegrating AI II, 2013.

[17] D. Fox, “KLD-Sampling: Adaptive Particle Filters,” in Conf. on Neural
Information Processing Systems (NIPS), 2001.

[18] P. J. Besl and N. D. McKay, “A method for registration of 3-D shapes,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 14, no. 2, 1992.

[19] B. Steder, R. B. Rusu, K. Konolige, and W. Burgard, “Point feature
extraction on 3D range scans taking into account object boundaries,”
in IEEE Int. Conf. on Robotics and Automation (ICRA), 2011.

[20] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “OctoMap: A probabilistic, flexible, and compact 3D map rep-
resentation for robotic systems,” in ICRA Workshop on Best Practice
in 3D Perception and Modeling for Mobile Manipulation, 2010.

Hervorheben

Hervorheben




