
Planning with Semantic Attachments: An
Object-Oriented View

Andreas Hertle and Christian Dornhege and Thomas Keller and Bernhard Nebel1

Abstract. In recent years, domain-independent planning has been
applied to a rising number of real-world applications. Usually, the de-
scription language of choice is PDDL. However, PDDL is not suited
to model all challenges imposed by real-world applications. Dorn-
hege et al. proposed semantic attachments to allow the computation
of Boolean fluents by external processes called modules during plan-
ning. To acquire state information from the planning system a mod-
ule developer must perform manual requests through a callback in-
terface which is both inefficient and error-prone.

In this paper, we present the Object-oriented Planning Language
OPL, which incorporates the structure and advantages of mod-
ern object-oriented programming languages. We demonstrate how a
domain-specific module interface that allows to directly access the
planner state using object member functions is automatically gen-
erated from an OPL planning task. The generated domain-specific
interface allows for a safe and less error-prone implementation of
modules. We show experimentally that this interface is more efficient
than the PDDL-based module interface of TFD/M.

1 INTRODUCTION

In recent years, domain-independent planning has been applied to
a rising number of real-world applications, including battery charg-
ing [8], space applications [5], robotics [15, 21] or control of hybrid
systems [16]. In contrast to pre-scripted solutions as, for example,
finite state automatae, automated planning enables a flexible solu-
tion that can easily be adapted to changing task specifications. It also
allows to be used in dynamic systems with the need to react intel-
ligently to unforeseen situations. This makes planning attractive to
researchers and application developers from other areas.

The most common description language for planning tasks is the
Planning Domain Definition Language (PDDL), which is mostly
suited to describe planning problems on an abstract symbolic level.
This is often not sufficient for the challenges imposed by real-world
planning applications. Subproblems that, for instance, involve geo-
metric computations like object manipulation or navigation cannot be
modeled with PDDL, and are thereby beyond the scope of symbolic
planners. A way to solve complex real-world planning problems is
to decompose it into subtasks, and use a hierarchical combination
where specialized planners refine the high-level symbolic plan. The
assumption that the description given to the symbolic planning sys-
tem is on an abstraction level that permits a successful execution
of any generated plan is often not true, though. Instead of such a
top-down approach, hierarchical composition can also be achieved
in a bottom-up manner, where all information possibly relevant to

1 University of Freiburg, Germany, email:{hertle, dornhege, tkeller,
nebel}@informatik.uni-freiburg.de

the symbolic planner is precomputed by the lower level reasoners.
This, however, is usually too costly for practical application.

Alternatively, Dornhege et al. introduced an approach that inte-
grates high- and low-level planning more tightly: Semantic attach-
ments compute the semantics of Boolean fluents by an external pro-
cess during planning [4]. They are realized as modules that imple-
ment a generic interface in a user-provided library. PDDL/M is the
slightly modified version of PDDL that allows to attach such a mod-
ule to a Boolean fluent. TFD/M is a version of the Temporal Fast
Downward (TFD) planning system [6] which implements a domain-
independent interface that calls a module to compute the semantics of
the Boolean fluent it is attached to. In the implementation of a mod-
ule it is usually necessary to access the current planning state. The
generic nature of the interface imposes restrictions on its usability:
The exchange of state information between the planning system and
an external module is based on manual requests that are inefficient
and error-prone to implement.

In this paper we propose a solution that improves both efficiency
and usability of module interfaces. We introduce the Object-oriented
Planning Language (OPL), which incorporates structure and advan-
tages of modern object-oriented programming languages like Java or
C++. We use this structure to automatically generate domain-specific
module interfaces based on the definitions in the planning domain.
We prepare class definitions for module developers along the lines
of the OPL description, and objects as instances of these class def-
initions reflecting the current internal planning state. This provides
module developers with type-safe and efficient access to the inter-
nal state of the planning system, and is compatible with the generic
module interface of TFD/M. Figure 1 illustrates the integration of the
automatically derived interface between the planner’s generic inter-
face and a user-defined implementation.

Furthermore, we aim to create a system that lowers the learning
curve for application developers. We believe an object-oriented syn-
tax to be a step towards this goal. In contrast to PDDL, OPL is cen-
tered around object definitions, which contain member fluents and
actions and allow a natural domain representation. However, it is im-
perative that OPL can be used with state of the art planning systems
to be valuable. For this reason, we show the translation of OPL tasks
to PDDL and provide the necessary tools, which allow easy integra-
tion of OPL into any planning system capable of parsing PDDL.

2 RELATED WORK

Moved by considerable interest in planning solutions for real-world
problems, several steps were taken towards more realistic domain de-
scriptions: PDDL 2.1 was introduced in 2003 [7], extending the basic
STRIPS formulation by the possibility to express temporal and nu-

Figure 1. This figure gives an overview of how OPL task descriptions
including semantic attachments are integrated with a planning system. OPL
domain and problem are converted to PDDL and a domain-specific interface
is automatically generated. The interface works as an adapter between the
generic module interface in the planner and the module implementation.

meric features; SAS+ [1] allows the use of variables in finite-domain
representation (FDR); and the functional STRIPS formulation even
permits functional expressions to refer to objects [9], a mechanism
finally adopted in PDDL 3.1 asobject fluents. Independent from
PDDL, some planning systems model their internal state with vari-
ables in FDR, which are achieved by performing an invariant synthe-
sis [11]. We consider this process, which led to the introduction of
object-fluents and variables in FDR, as first steps towards an object-
oriented language. While the last step has previously been taken by
Vaquero et al. [19] and Simpson et al. [18], our approach combines
object-orientation with semantic attachments and draws advantages
of the overlap these topics entail.

Our approach covers a wide area of possible applications, most
notably scenarios demanding a model of the planning task that
is abstract enough to be represented in a language that domain-
independent planning systems understand and can solve efficiently,
but at the same time not abstracting away necessary constraints that
allow a plan to be executed in the real world. A common field are
space applications as, for example, the CASPER project [3, 5], or
autonomous robots, which have become more and more capable of
fulfilling complex tasks in real-world scenarios like mobile manip-
ulation [10, 15, 20] or multi-robot coordination [21]. An area that
is often mentioned in the literature dealing with this problem is the
integration of task and motion planning.

Earlier approaches link symbolic representations and geometric
representations directly in a specialized planner. The aSyMov sys-
tem [2], for example, additionally uses Metric-FF [13] to compute
heuristics on a symbolic abstraction of the task. The approach by
Kaelbling and Lozano-Perez [15] computes new ground atoms dur-
ing the planning process by suggesters and verifies collision-free
robot paths by external procedures. They also follow a hierarchical
planning approach that plans “in the now”, meaning that they exe-
cute actions immediately when a plan prefix has reached the deepest
level of the hierarchy and becomes executable. This allows them to

plan abstractly for later tasks in the plan and thus they can reach deep
planning horizons.

Dornhege at al. introduce semantic attachments that provide a
generic interface to integrate external reasoning procedures as mod-
ules in domain-independent planning systems [4]. They implement
this concept in Hoffmann and Nebel’s Fast Forward planner [14]
and in TFD of Eyerich et al. [6], which performs forward-chained
search in timestamped state-space using the context-enhanced addi-
tive heuristic. The work by Wurm et al. [21] adds cost modules that
also allow to compute an action’s cost or duration by an external pro-
cedure. In this paper we use TFD/M’s generic domain-independent
interface to implement modules based on OPL.

3 THE OBJECT-ORIENTED PLANNING
LANGUAGE

In PDDL, type definitions are used to restrict the usage of objects in
parameter lists, thereby restricting the grounding of predicates and
operators. OPL places far greater importance on the specification of
custom types than PDDL. In addition to global fluents and actions,
an OPL task contains types with member fluents and actions, similar
to object-oriented programming languages’ class declarations. OPL
task definitions are separated into a domain and a problem descrip-
tion in the same way PDDL tasks are defined. Like PDDL, types can
inherit from other types, but will also inherit the super types’ member
fluents and actions.

OPL uses single inheritance. If no base type is specified, it de-
faults toObject, a built-in type with no members. The syntax ap-
pears similar to such languages as Java or C++ and names are case-
sensitive, which simplifies the generation of module interfaces for
case-sensitive programming languages. Consider this excerpt from
the OPL description for the ROOMSCANNING domain:

Domain RoomScanning {
Type Pose {number x; number y; number th;}
Type ScanTarget : Pose {boolean scanned;}
Type Door {Pose approachPose;

boolean open;}
... }

A type Poseis defined that contains numerical member fluents de-
scribing a pose in 2D space. The subtypeScanTargetinherits this
pose and defines an additional Boolean fluentscanned.

The dot. acts as the structure access operator in OPL: a member
fluent of a type can be referenced by obtaining an object (or object
fluent) of that type and then applying the. operator with the name
of the fluent. The result of the expression will have the type of the
referenced fluent. It is possible to chain such operations, if the refer-
enced fluent is an object fluent. The keywordthis is used to address
the current object in member actions.

Like PDDL actions, OPL actions have a name and parameters and
define a (pre-)condition and an effect. For temporal planning, du-
rative actions also need a duration. The condition and effect state-
ments contain nested logical formulas that are semantically identical
to their PDDL counterparts with a slightly changed syntax. Prefix-
notation is used with a function-style syntax consisting of a name
and a comma separated parameter list enclosed in parentheses. The
equalskeyword compares two numerical or object fluents.

In contrast to PDDL/M, semantic attachments are easily integrated
into OPL domains by simply declaring the type of semantic attach-
ment, its name and parameters. There is no need to specify an explicit

library call for PDDL/M as that will be generated automatically with
the domain-specific interface. They can be used as any other fluent.

The ROOMSCANNING domain from above also defines a type
Robotthat has the robot’scurrentPoseas a member fluent. TheRobot
type has adrive action with one parameterdestthat moves the robot
from its current pose to a destination. Additionally a cost module
driveCostwith one parameterdestis defined that is used as the op-
erator’s cost instead of a numerical fluent. The action also uses a
condition module defined at global scope:pathExistswill check if
there is a pathfromone poseto a destination.

Domain RoomScanning {
...
ConditionModule pathExists(

Pose from, Pose to);

Type Robot {
Pose currentPose;
CostModule driveCost(Pose dest);
Action drive(Pose dest) {
Cost {driveCost(dest);}
Condition {
and(not(equals(this.currentPose, dest)),

pathExists(this.currentPose, dest));}
Effect {assign(this.currentPose, dest);}}

Like PDDL problem files, OPL problems define the initial state
and goal. This example defines the problemScenario1 for the
ROOMSCANNING domain.

Problem Scenario1(RoomScanning) {
Pose p1;
Pose p2 { x = 5; y = 1; th = 0.5; }
Target t1 { x = 0; y = -13; th = 0.5; }
Robot r1 { currentPose = p1; }
Goal { and(equals(r1.currentPose, p2),

t1.explored); } }

Type instantiation and initialization is combined. The goal is simply
stated as a formula like in PDDL. For a more precise definition of
OPL we refer to the work by Andreas Hertle [12].

4 TRANSLATION TO PDDL

The previous section illustrated the syntax and elements of an OPL
planning task. OPL is intended to be used by PDDL planning sys-
tems. Therefore we show how an OPL task can be converted to a
PDDL planning task here. In fact, the semantics of OPL is given by
a translation to PDDL – so this translation specifies the meaning and
is at the same time the way to enable planning in OPL by employing
a PDDL planner.

We need to convert member fluents and actions to PDDL fluents
and actions. Member fluents and actions are specific to an object
instance. When converting from OPL to PDDL this is resolved by
adding an additional parameter named?thisas the first parameter to
each member fluent and action representing the object it belongs to.
Additionally the name is prefixed by the type for uniqueness. The
OPL description of the ROOMSCANNING domain will be translated
to the following PDDL predicates and functions:

(:types
Door Pose - object
ScanTarget - Pose)

(:predicates
(ScanTarget_scanned ?this - ScanTarget)
(Door_open ?this - Door) ...)

(:functions
(Pose_x ?this - Pose) - number
(Pose_y ?this - Pose) - number
(Pose_th ?this - Pose) - number
(Door_approachPose ?this - Door) - Pose
...)

Finally, formulas in conditions and effects are replaced by their
PDDL analogues in prefix-notation. When using only global flu-
ents the translation is straight-forward. However, as we allow to
chain expressions over member fluents using the.-operator to ac-
cess structure elements, we need to translate such expressions to
PDDL. Chained expressions using structure element access are trans-
lated recursively. Variables and ground names are translated by their
identity. When referring to the member fluent of an object?o with
the namem, we translate this to(m ?o <parameters>), where
<parameters> is the recursive translation of the fluent’s param-
eters. Note that such a chained expression might contain object flu-
ents as parameters. See for example theopenDoor action from the
ROOMSCANNING domain. A global predicateinRange defines if
two objects of typePose are directly reachable for the robot. The
openDoor action does not have anyPose parameter. Instead the
condition refers to the member object fluents of typePose from the
robot (this) and thedoor.

boolean inRange(Pose p1, Pose p2);
Type Robot {
Action openDoor(Door door) {
Condition {and(
inRange(this.currentPose,door.approachPose),
not(door.open));}
Effect {door.open; } } }

The OPL actionopenDoor leads to the following PDDL action:

(:predicates
(inRange ?p1 - Pose ?p2 - Pose))

(:action Robot_openDoor
:parameters

(?this - Robot ?door - Door)
:condition (and
(inRange (Robot_currentPose ?this)

(Door_approachPose ?door))
(not (Door_open ?door)))

:effect (Door_open ?door)

5 AUTOMATIC GENERATION OF THE
DOMAIN-SPECIFIC MODULE INTERFACE

The implementation of semantic attachments in TFD/M provides
a generic domain-independent module interface. As a result of its
generic nature, the module interface is inefficient, and cumbersome
and error-prone to implement for a module developer. Information is
exchanged via object names and the current planner state is accessed
via callback functions. Requests are manually created based on the
fluent name and its parameters, which have to be supplied by the
module implementation. OPL provides a solution to this problem by
automatically generating a domain-specific interface from an OPL
domain description that acts as an adapter between TFD’s generic

interface and a domain-specific module implementation. Figure 1 il-
lustrates this concept.

The generated interface provides a safe and efficient way to im-
plement modules. OPL objects are represented as classes, i.e. ob-
jects in an object-oriented programming language. For TFD/M, this
is realized in C++. Module calls receive object instances as parame-
ters rather than object names. The generated classes provide mem-
ber functions for each member fluent to access the planner state.
Therefore, performing an error-prone, work-intensive manualcall-
back based on object and fluent names as part of the actual module
implementation is not necessary anymore. The name mappings and
the state access are efficiently encapsulated in the automatically gen-
erated interface.

To demonstrate the generation process, consider the ROOMSCAN-
NING domain from Section 3, where the cost moduledriveCostis
defined in theRobottype. The following call stub is automatically
generated:

double Robot_driveCost(
const State* currentState,
const Robot* thisRobot,
const Pose* dest);

The first argument is theStateobject that allows access to global
fluents and also contains lists that allow to access all objects of each
type. If the module is a member of an OPL type, the next argument is
an object of the corresponding type class. Then follow the arguments
of the module as specified in the domain. Condition modules return
Boolean values and cost modules return floating point numbers.

For each of the types in the OPL domain a corresponding class is
created. If a type extends a base type in the domain, the generated
class is derived from the base type’s generated class. Otherwise it is
derived fromOPLObject, a generic base class. Each member fluent
of the OPL type will generate a member function with the same name
that retrieves the fluent’s value in the current state. Boolean fluents
lead tobool return values and numerical fluents returnfloat values.
Object fluents return a pointer to the class that was generated for the
corresponding OPL type.

As an example consider the OPL typeDoor from Section 4 that
contains an object fluent approachPose of typePose and a Boolean
fluent open. This leads to the following class declaration in the
domain-specific interface:

class Door : public OPLObject {
public:
const Pose* approachPose() const;
bool open() const; };

We will now describe how implementations for such mem-
ber functions acquire a fluent’s value from the planner’s internal
state. The process requires a planner specific implementation of a
StateMappingclass. Such a state mapping represents the value of one
ground fluent and is able to acquire the current value from a pointer
to the planner’s internal state,

First, two mapping tables are created during initialization: Fluent
mappings map from each ground fluent name to aStateMappingob-
ject and have to be provided by the planner as it depends on the en-
coding of the planner’s internal state. For Boolean and numerical flu-
ents they are used to acquire values directly. For object fluents, object
mappings are created whenOPLObjectsare instantiated. They map
from aStateMappingto theOPLObjectinstance with the same name
as the object theStateMapping’sobject fluent value points to. When

the current state changes between subsequent module calls, the state
pointer is updated without requiring additional copy operations.

In TFD/M, where a states is a single vector of floating point num-
bers representing a task in FDR, theStateMappingimplementation
stores a tuple(var, val). When a Boolean fluent is requesteds[var]
is compared toval. For a numerical fluents[var] is returned.

Figure 2. This figure shows the state look-up process. A ground name is
constructed (1) that is used to retrieve a fluent mapping (2). The fluent

mapping determines its value from the internal state (3). For object fluents
the object mappings map this value to anOPLObject(4).

Using these mapping tables the methods for accessing member
and global fluents can be generated. The required steps are illustrated
in Figure 2.

1. A key for querying the fluent mapping table is composed. The
fluent name is appended with the names of the parameters forming
the ground name of the fluent. Member fluents insert the object’s
name as the first parameter.

2. Next, the correspondingStateMappingis retrieved from the fluent
mapping table.

3. Now, the fluent value is retrieved from the internal state using
theStateMappingobject. For Boolean and numerical fluents their
value is returned.

4. In case of object fluents, theStateMappingrequests the planner
state in the same way, but is handed to the object mapping table
to retrieve anOPLObjectpointer that is cast to the specific return
type.

If a member fluent does not have any parameters (besides the im-
plicit this), theStateMappingdoes not change for this fluent. There-
fore we can move step 1 and 2 to the initialization phase and store the
retrievedStateMappingin the object instance. During planning these
steps are then skipped and thus no look-ups are performed for ac-
cessing Boolean and numerical fluents, and only the object mapping
look-up is performed for object fluents.

By using this automatically generated interface module developers
now directly deal with objects instead of performing manual requests
for fluent values that are work-intensive and error-prone. This func-
tionality is now performed by the interface. Additionally, in some
cases, we can move look-ups to the initialization phase leading to a
more performant implementation.

6 EXPERIMENTAL RESULTS

We conducted three experiments using OPL domains including se-
mantic attachments. The performance improvement of OPL can only

be measured in the presence of semantic attachments as otherwise
a translated OPL task is a PDDL task and thus behaves the same.
All experiments are conducted with the TFD/M planner developed
by Dornhege et al. [4]. We denote results achieved with the original
generic module interface as TFD/M, and the combination of TFD/M
with our automatically generated domain-specific module interface
as OPL.

The first experiment shows the computational overhead of TFD/M
and OPL compared to a base line planner not using semantic attach-
ments at all. We show representative results from theCREWPLAN-
NING domain in the temporal-satisficing track of the International
Planning Competition (IPC) 2008. The predicateavailableoccurs in
most conditions of the domain. We add a condition module to the do-
main that is additionally called wheneveravailableis used. The mod-
ule simply acquires the predicate from the planner state either with
the TFD/M generic module interface or via OPL’s domain-specific
interface and returns its truth value. Thus the applicability of the op-
erator is not changed and no additional computations are performed.
To ensure comparative results independent of the actual search pro-
cedure, we measured runtimes of testing operator applicability for
each planner on an identical set of states that was derived from the
closed list of the base line planner.

From the 30 problems of IPC 2008 we pick the last 20 problems
as the size of the closed list generated for the first ten problems is too
small to yield discriminative results. We conduct 150 test runs for
each problem and compute the overhead of TFD/M and OPL com-
pared to the base line. The results in Table 1 show that the runtime
scales well for both approaches, and is lower for OPL in all problems
instances.

Base [s] TFD/M [s] [%] OPL [s] [%]

11 0.22 0.23 7.09 0.22 2.20
12 0.24 0.26 7.19 0.25 2.51
13 0.02 0.02 10.06 0.02 3.25
14 0.03 0.04 10.13 0.03 1.79
15 0.02 0.02 10.78 0.02 2.85
16 0.20 0.22 5.56 0.21 1.47
17 0.24 0.26 5.76 0.25 2.60
18 0.34 0.35 3.19 0.34 1.11
19 0.68 0.71 3.89 0.69 1.61
20 0.86 0.89 3.78 0.87 1.54
21 1.00 1.04 4.64 1.02 2.37
22 0.05 0.06 10.79 0.06 3.28
23 0.04 0.05 14.40 0.04 4.09
24 0.06 0.07 10.61 0.06 3.47
25 0.56 0.59 5.09 0.57 2.08
26 0.56 0.58 4.69 0.57 1.75
27 0.61 0.63 4.09 0.62 2.08
28 1.83 1.87 2.03 1.84 0.66
29 2.04 2.11 3.05 2.08 1.71
30 2.11 2.19 3.94 2.14 1.66

Table 1. This table shows the results of theCREWPLANNING experiment.
Runtimes in seconds are averaged over 150 trials. The computational

overhead in percent is given in comparison to the base line without modules.

The second experiment is based on theTRANSPORT-NUMERIC

domain from the satisficing track of IPC 2008 and is designed to
show the impact of acquiring fluent values from the planner state.
The domain models a logistics task where packages are transported
by trucks. We replace the simple volume based condition check to

Figure 3. The figure illustrates the ROOMSCANNING domain. The robot
needs to explore a building and might need to open doors to reach different

rooms. The left side shows an overview of such a task, the rightside an
example scene from executing a plan in the simulation environment.

see if another package can be loaded by a semantic attachment that
checks if the package fits geometrically into the truck given the cur-
rent cargo. The module requests the sizes of all packages to be stored
in the vehicle and the vehicle’s capacity from the internal planner
state. We use the TFD/M module implementation as described by
Dornhege et al. [4] and created an equivalent OPL domain together
with an OPL module that implements the same algorithm.

L V P TFD/M [s] OPL [s] Relative [%]

1 5 2 2 0.01 0.00 -61.6
2 10 2 4 0.12 0.04 -67.7
3 15 3 6 0.52 1.02 94.0
4 20 3 8 1.31 2.10 60.1
5 25 3 10 3.36 2.89 -13.9
6 30 4 12 87.53 17.92 -79.5
7 35 4 14 140.87 68.34 -51.5
8 45 4 18 54.42 29.17 -46.4

Table 2. This table shows the results of theTRANSPORTexperiment. L, V,
P list the number of locations, vehicles and packages for eachproblem. The

last column gives the relative runtime of OPL compared to TFD/M.

We created eight problems with increasing complexity and com-
pare the TFD/M module with the OPL formulation. For each of the
eight problems 100 trials were conducted and we give the average
runtime. The standard deviation for all trials was lower than two per-
cent of the average runtime. The results in Table 2 show that the run-
time using the OPL module interface is significantly lower in most
cases than the original TFD/M interface’s. This is especially visible
in the more complex tasks (6 – 8) as in these cases the time for ini-
tialization is negligible. As problems three and four show, the initial-
ization time might dominate the positive runtime effects for simple
tasks.

The main objective of the third experiment is twofold. On the one
hand, it demonstrates the use of OPL in a real-world environment
including the application in a realistic robotics scenario. On the other
hand, it shows how a complex system is built easily by integrating an
existing path planner into TFD/M using the OPL planner interface.

The ROOMSCANNING domain that was used as an example in this
paper models an autonomous robot searching for items in various
rooms (see Figure 3). The environment is an office space with mul-
tiple rooms, corridors and doors. Some of the doors might be closed
and the robot has the ability to open doors. The robot has a metric
map of the environment and knows the coordinates for good scan
locations in every room. The goal is to scan all target locations in a

minimal amount of time.
The geometry of the world restricts the robot’s path to reach an-

other location. We implemented a module to compute the cost for
the drive action. The module implementation calculates the real
path cost by calling the external path planner used by the naviga-
tion component of the Robot Operating System (ROS) [17]. For the
experiment we created eight problems with varying complexity start-
ing from two scan targets without closed doors in the first task, up to
eight scan targets and two closed doors in the last.

Targets Doors Search time [s] Total time [s]

1 2 0 0.09 7.69
2 3 1 0.13 11.92
3 4 1 1.05 17.23
4 5 1 1.76 23.54
5 5 2 2.37 24.44
6 6 2 4.64 33.18
7 7 2 6.17 41.90
8 8 2 11.79 55.24

Table 3. This table shows the results of the ROOMSCANNING experiment.
Total time lists the time until the first valid plan was found. Search time

excludes the time spent waiting for module computations.

As can be seen in Table 3, the time required to find the first valid
plan increases with problem complexity. We show the total time, i.e.,
the time the planner needed to come up with a plan, and the search
time, i.e., the total time without the runtime of the path planner, sep-
arately. The observed runtimes are still acceptable for use in a real-
world robotics system and could be improved by using a more effi-
cient path planner.

7 CONCLUSION

We presented the Object-oriented Planning Language OPL, a novel
description language for planning tasks, which incorporates structure
and advantages of modern object-oriented programming languages
like Java or C++, allowing the design of real-world scenarios in a
natural way. We furthermore support semantic attachments, a con-
cept that was introduced to integrate external procedures to deter-
mine a fluent’s semantics, and use the object-oriented structure to
generate a more efficient domain-specific interface that acts as an
adapter between the generic interface of a planning system and a
domain-specific module implementation. The automatic generation
of the domain-specific interface produces a convenient to use and
type-safe implementation skeleton for external modules.

We also show how to translate OPL to PDDL, allowing any state of
the art planner based on PDDL to solve OPL tasks if combined with
the tools that are described in this paper. We adapted the PDDL/M
interface of TFD/M to also support OPL modules and compare them
experimentally to PDDL/M modules. Our evaluation shows that the
automatically generated interface is more efficient than the previous
implementation of semantic attachments in TFD/M due to the im-
proved look-up process when accessing the planner state.

ACKNOWLEDGEMENTS

This work was partially supported by Deutsche Forschungsgemein-
schaft (DFG) in the PACMAN project within the HYBRIS research
group (NE 623/13-1) and in the Transregional Collaborative Re-
search CenterSFB/TR8 Spatial Cognitionproject R7-[PlanSpace],

as well as by the German Aerospace Center (DLR) as part of the
Kontiplan project (50 RA 1010).

REFERENCES
[1] C. Bäckstr̈om and B. Nebel, ‘Complexity results for SAS+ planning’,

Computational Intelligence, 11(4), 625–655, (1995).
[2] S. Cambon, F. Gravot, and R. Alami, ‘A robot task planer thatmerges

symbolic and geometric reasoning.’, inEuropean Conference on Artifi-
cial Intelligence (ECAI), pp. 895–899, (2004).

[3] S. Chien, R. Knight, A. Stechert, R. Sherwood, and G. Rabideau, ‘In-
tegrated planning and execution for autonomous spacecraft’, in IEEE
Aerospace Conference (IAC), (1999).

[4] C. Dornhege, P. Eyerich, T. Keller, S. Trüg, M. Brenner, and B. Nebel,
‘Semantic attachments for domain-independent planning systems’, in
Proceedings of the International Conference on Automated Planning
and Scheduling (ICAPS), pp. 114–121. AAAI Press, (September 2009).

[5] T. Estlin, D. Gaines, F. Fisher, and R. Castano, ‘Coordinating multiple
rovers with interdependent science objectives’,Autonomous Agents and
Multi-Agent Systems Conference (AAMAS), (July 2005).

[6] P. Eyerich, R. Mattm̈uller, and G. R̈oger, ‘Using the context-enhanced
additive heuristic for temporal and numeric planning’, inProceedings
of the International Conference on Automated Planning and Scheduling
(ICAPS), pp. 130–137. AAAI Press, (September 2009).

[7] M. Fox and D. Long, ‘An Extension to PDDL for Expressing Temporal
Planning Domains’,Journal of Artificial Intelligence Research, 20, 61–
124, (2003).

[8] M. Fox, D. Long, and D. Magazzeni, ‘Automatic construction of effi-
cient multiple battery usage policies’, inProceedings of the Interna-
tional Conference on Automated Planning and Scheduling (ICAPS),
(2011).

[9] H. Geffner,Functional Strips: a more flexible language for planning
and problem solving, 188–209, Kluwer, 2000.

[10] K. Hauser and J.C. Latombe, ‘Integrating task and PRM motion plan-
ning: Dealing with many infeasible motion planning queries’,in ICAPS
Workshop on Bridging the Gap between Task and Motion Planning,
(2009).

[11] M. Helmert, ‘Concise finite-domain representations for PDDL planning
tasks’,Artificial Intelligence, 173, 505–535, (2009).

[12] A. Hertle,Design and Implementation of an Object-Oriented Planning
Language, Master’s thesis, University of Freiburg, 2011.

[13] J. Hoffmann, ‘Extending FF to numerical state variables’, in European
Conference on Artificial Intelligence (ECAI), (2002).

[14] J. Hoffmann and B. Nebel, ‘The FF planning system: Fast plan gen-
eration through heuristic search’,Journal of Artificial Intelligence Re-
search, 14, 253–302, (2001).

[15] L.P. Kaelbling and T. Lozano-Perez, ‘Hierarchical planning in the now’,
in IEEE Conference on Robotics and Automation (ICRA), (7 May
2011).

[16] J. Löhr, P. Eyerich, T. Keller, and B. Nebel, ‘A planning based frame-
work for controlling hybrid systems’, inProceedings of the Interna-
tional Conference on Automated Planning and Scheduling (ICAPS),
(2012). To Appear.

[17] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Ng, ‘ROS: an open-source robot operating system’,
in ICRA Workshop on Open Source Software, (2009).

[18] R. M. Simpson, D. E. Kitchin, and T. L. McCluskey, ‘Planning domain
definition using GIPO’, inThe Knowledge Engineering Review, vol-
ume 22, pp. 117–134, (2007).

[19] Tiago Stegun Vaquero, Victor Romero, Flavio Tonidandel, and
Jose Reinaldo Silva, ‘itSIMPLE2.0: An integrated tool for designing
planning domains’, inProceedings of the International Conference on
Automated Planning and Scheduling (ICAPS), (2007).

[20] J. Wolfe, B. Marthi, and S. J. Russell, ‘Combined task andmotion plan-
ning for mobile manipulation’, inProceedings of the International Con-
ference on Automated Planning and Scheduling (ICAPS), (2010).

[21] Kai M. Wurm, Christian Dornhege, Patrick Eyerich, Cyrill Stach-
niss, Bernhard Nebel, and Wolfram Burgard, ‘Coordinated exploration
with marsupial teams of robots using temporal symbolic planning’, in
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), (October 2010).

