Planning with Semantic Attachments: An
Object-Oriented View

AndreasHertle and Christian Dornhege and ThomasKeller and Bernhard Nebel®

Abstract. In recent years, domain-independent planning has beethe symbolic planner is precomputed by the lower level reasoners.
applied to a rising number of real-world applications. Usually, the de-This, however, is usually too costly for practical application.
scription language of choice is PDDL. However, PDDL is not suited Alternatively, Dornhege et al. introduced an approach that inte-
to model all challenges imposed by real-world applications. Dorn-grates high- and low-level planning more tightly: Semantic attach-
hege et al. proposed semantic attachments to allow the computationents compute the semantics of Boolean fluents by an external pro-
of Boolean fluents by external processes called modules during plarcess during planning [4]. They are realized as modules that imple-
ning. To acquire state information from the planning system a modment a generic interface in a user-provided library. PDDL/M is the
ule developer must perform manual requests through a callback irslightly modified version of PDDL that allows to attach such a mod-
terface which is both inefficient and error-prone. ule to a Boolean fluent. TFD/M is a version of the Temporal Fast
In this paper, we present the Object-oriented Planning LanguagBownward (TFD) planning system [6] which implements a domain-
OPL, which incorporates the structure and advantages of modndependent interface that calls a module to compute the semantics of
ern object-oriented programming languages. We demonstrate howthe Boolean fluent it is attached to. In the implementation of a mod-
domain-specific module interface that allows to directly access theile it is usually necessary to access the current planning state. The
planner state using object member functions is automatically gengeneric nature of the interface imposes restrictions on its usability:
erated from an OPL planning task. The generated domain-specifithe exchange of state information between the planning system and
interface allows for a safe and less error-prone implementation o&n external module is based on manual requests that are inefficient
modules. We show experimentally that this interface is more efficienaind error-prone to implement.
than the PDDL-based module interface of TFD/M. In this paper we propose a solution that improves both efficiency
and usability of module interfaces. We introduce the Object-oriented
Planning Language (OPL), which incorporates structure and advan-
1 INTRODUCTION tages of modern object-oriented programming languages like Java or
In recent years, domain-independent planning has been applied f&++. We use this structure to automatically generate domain-specific
a rising number of real-world applications, including battery charg-module interfaces based on the definitions in the planning domain.
ing [8], space applications [5], robotics [15, 21] or control of hybrid We prepare class definitions for module developers along the lines
systems [16]. In contrast to pre-scripted solutions as, for examplegf the OPL description, and objects as instances of these class def-
finite state automatae, automated planning enables a flexible solinitions reflecting the current internal planning state. This provides
tion that can easily be adapted to changing task specifications. It alggodule developers with type-safe and efficient access to the inter-
allows to be used in dynamic systems with the need to react intelnal state of the planning system, and is compatible with the generic
ligently to unforeseen situations. This makes planning attractive tanodule interface of TFD/M. Figure 1 illustrates the integration of the
researchers and application developers from other areas. automatically derived interface between the planner’s generic inter-
The most common description language for planning tasks is théace and a user-defined implementation.
Planning Domain Definition Language (PDDL), which is mostly ~Furthermore, we aim to create a system that lowers the learning
suited to describe planning problems on an abstract symbolic levegurve for application developers. We believe an object-oriented syn-
This is often not sufficient for the challenges imposed by real-worldtax to be a step towards this goal. In contrast to PDDL, OPL is cen-
planning applications. Subproblems that, for instance, involve geotered around object definitions, which contain member fluents and
metric computations like object manipulation or navigation cannot beactions and allow a natural domain representation. However, it is im-
modeled with PDDL, and are thereby beyond the scope of symboligerative that OPL can be used with state of the art planning systems
planners. A way to solve complex real-world planning problems isto be valuable. For this reason, we show the translation of OPL tasks
to decompose it into subtasks, and use a hierarchical combinaticie PDDL and provide the necessary tools, which allow easy integra-
where specialized planners refine the high-level symbolic plan. Th&on of OPL into any planning system capable of parsing PDDL.
assumption that the description given to the symbolic planning sys-
tem is on an abstraction level that permits a successful executio
of any generated plan is often not true, though. Instead of such 2 RELATED WORK
top-down approach, hierarchical composition can also be achieveﬁI

. :)) oved by considerable interest in planning solutions for real-world
in a bottom-up manner, where all information possibly relevant to

problems, several steps were taken towards more realistic domain de-
1 University of Freiburg, Germany, email{hertle, dornhege, tkeller, scriptions: PDDL 2.1 was introduced in 2003 [7], extending the basic
nebel @informatik.uni-freiburg.de STRIPS formulation by the possibility to express temporal and nu-

plan abstractly for later tasks in the plan and thus they can reach deep
OPL OPL planning horizons.

Domain | |Problem Dornhege at al. introduce semantic attachments that provide a
generic interface to integrate external reasoning procedures as mod-
ules in domain-independent planning systems [4]. They implement

Interface
Generation

Planning this (_:oncept in Hoff_mann and Nebe_l’s Fast Forward planner_ [14]
System Application and in TFD of Eyerich et al. [6], which performs forward-chained
search in timestamped state-space using the context-enhanced addi-
Canaiie BBmain tive heuristic. The work by Wurm et al. [21] adds cost modules that
Module Specific Module . also allow to compute an action’s cost or duration by an external pro-
[gieifecs QEoce Implementation cedure. In this paper we use TFD/M’s generic domain-independent
interface to implement modules based on OPL.

3 THE OBJECT-ORIENTED PLANNING
LANGUAGE

Plan In PDDL, type definitions are used to restrict the usage of objects in
parameter lists, thereby restricting the grounding of predicates and
operators. OPL places far greater importance on the specification of
custom types than PDDL. In addition to global fluents and actions,
an OPL task contains types with member fluents and actions, similar

) X i ! ! . to object-oriented programming languages’ class declarations. OPL
including semantic attachments are integrated with a plansystem. OPL K definiti di d . d bl d .
domain and problem are converted to PDDL and a domain-spetiéiface tf’"s _ efinitions are separated into a Omaln an a problem descrip-
is automatically generated. The interface works as an adaptereen the tion in the same way PDDL tasks are defined. Like PDDL, types can
generic module interface in the planner and the module impleatient inherit from other types, but will also inherit the super types’ member
fluents and actions.

)) o ~ OPL uses single inheritance. If no base type is specified, it de-
meric features; SAS+ [1] allows the use of variables in finite-domaingg 15 toObj ect , a built-in type with no members. The syntax ap-
representation (FDR); and the functional STRIPS formulation everhears similar to such languages as Java or C++ and names are case-
permits functional expressions to refer to objects [9], a mechanismagnsitive, which simplifies the generation of module interfaces for

finally adopted in PDDL 3.1 asbject fluents Independent from 456 _sensitive programming languages. Consider this excerpt from
PDDL, some planning systems model their internal state with variyne opL description for the BOMSCANNING domain:

ables in FDR, which are achieved by performing an invariant synthe-
sis [11]. We consider this process, which led to the introduction ofpormai n RoonScanni ng {
object-fluents and variables in FDR, as first steps towards an object- Type Pose {nunber x; nunber y; nunber th;}
oriented language. While the last step has previously been taken by Type ScanTarget : Pose {bool ean scanned;}
Vaquero et al. [19] and Simpson et al. [18], our approach combines Type Door {Pose approachPose;
object-orientation with semantic attachments and draws advantages bool ean open;}
of the overlap these topics entail. o)

Our approach covers a wide area of possible applications, most
notably scenarios demanding a model of the planning task thah type Poseis defined that contains numerical member fluents de-
is abstract enough to be represented in a language that domaiseribing a pose in 2D space. The subtypeanTargeinherits this
independent planning systems understand and can solve efficientlgpse and defines an additional Boolean flissanned
but at the same time not abstracting away necessary constraints thatThe dot. acts as the structure access operator in OPL: a member
allow a plan to be executed in the real world. A common field arefluent of a type can be referenced by obtaining an object (or object
space applications as, for example, the CASPER project [3, 5], ofluent) of that type and then applying theperator with the name
autonomous robots, which have become more and more capable of the fluent. The result of the expression will have the type of the
fulfilling complex tasks in real-world scenarios like mobile manip- referenced fluent. It is possible to chain such operations, if the refer-
ulation [10, 15, 20] or multi-robot coordination [21]. An area that enced fluent is an object fluent. The keywaié is used to address
is often mentioned in the literature dealing with this problem is thethe current object in member actions.
integration of task and motion planning Like PDDL actions, OPL actions have a name and parameters and

Earlier approaches link symbolic representations and geometridefine a (pre-)condition and an effect. For temporal planning, du-
representations directly in a specialized planner. The aSyMov sysative actions also need a duration. The condition and effect state-
tem [2], for example, additionally uses Metric-FF [13] to compute ments contain nested logical formulas that are semantically identical
heuristics on a symbolic abstraction of the task. The approach bjo their PDDL counterparts with a slightly changed syntax. Prefix-
Kaelbling and Lozano-Perez [15] computes new ground atoms dumotation is used with a function-style syntax consisting of a name
ing the planning process by suggesters and verifies collision-freand a comma separated parameter list enclosed in parentheses. The
robot paths by external procedures. They also follow a hierarchicatqualskeyword compares two numerical or object fluents.
planning approach that plans “in the now”, meaning that they exe- In contrastto PDDL/M, semantic attachments are easily integrated
cute actions immediately when a plan prefix has reached the deepeaato OPL domains by simply declaring the type of semantic attach-
level of the hierarchy and becomes executable. This allows them tment, its name and parameters. There is no need to specify an explicit

Figurel. This figure gives an overview of how OPL task descriptions

predi cat es
(ScanTar get _scanned ?this -

library call for PDDL/M as that will be generated automatically with (:

the domain-specific interface. They can be used as any other fluent. ScanTar get)

The ROOMSCANNING domain from above also defines a type (Door_open ?this - Door))
Robotthat has the robot'surrentPoses a member fluent. THRobot (: functi ons
type has arive action with one parametelestthat moves the robot (Pose_x ?this - Pose) - nunber
from its current pose to a destination. Additionally a cost module (Pose_y ?this - Pose) - number
driveCostwith one parametedestis defined that is used as the op- (Pose_th ?this - Pose) - nunber

erator's cost instead of a numerical fluent. The action also uses a (Door _approachPose ?this - Door) Pose

condition module defined at global scogathExistswill check if 2)

there is a patfrom one poseo a destination.

Finally, formulas in conditions and effects are replaced by their
PDDL analogues in prefix-notation. When using only global flu-
ents the translation is straight-forward. However, as we allow to
chain expressions over member fluents using.tbperator to ac-
cess structure elements, we need to translate such expressions to
PDDL. Chained expressions using structure element access are trans
lated recursively. Variables and ground names are translated by their
identity. When referring to the member fluent of an objectwith
the namanm, we translate this tom ?0 <par anet er s>), where
<par anet er s> is the recursive translation of the fluent’s param-
eters. Note that such a chained expression might contain object flu-
ents as parameters. See for exampleogpenDoor action from the

Domai n RoonfScanni ng {

Condi ti onModul e pat hExi st s(
Pose from Pose to);

Type Robot {
Pose current Pose;
Cost Modul e dri veCost (Pose dest);
Action drive(Pose dest) {
Cost {driveCost (dest);}
Condi tion {

and(not (equal s(this.currentPose, dest)), ROOMSCANNING domain. A global predicatenRange defines if
pat hExi st s(this. current Pose, dest));} two objects of typePose are directly reachable for the robot. The
Ef fect {assign(this.currentPose, dest);}} openDoor action does not have arBose parameter. Instead the

condition refers to the member object fluents of tfRos e from the

Like PDDL problem files, OPL problems define the initial state robot this) and thedoor.

and goal. This example defines the probl&uenariolfor the
ROOMSCANNING domain. bool ean i nRange(Pose pl, Pose p2);
Type Robot {

Probl em Scenari o1(RoonScanni ng) { Acti on openDoor (Door door) {

Pose p1; .
' C e oy o= 1. _ , Condi tion {and(
Pose p2 { x = ? y , E th,_ 0. ? } . i nRange(t hi s. current Pose, door . appr oachPose) ,
Target t1 { x =0; y =-13; th =0.5; } not (door . open)) : }
Robot r1 { currentPose = pl; } Effect {door ope’n' by}
Goal { and(equal s(r1.currentPose, p2), ' !

tl.explored); } }

Type instantiation and initialization is combined. The goal is simply(- predi cat es
stated as a formula like in PDDL. For a more precise definition of

The OPL actioropenDoor leads to the following PDDL action:

(inRange ?pl - Pose ?p2 - Pose))
OPL we refer to the work by Andreas Hertle [12]. (:action Robot openDoor

 paraneters
4 TRANSLATION TO PDDL (?this - Robot ?door - Door)

The previous section illustrated the syntax and elements of an OPL’
planning task. OPL is intended to be used by PDDL planning sys- (Door _appr oachPose ?door))
tems. Therefore we show how an OPL task can be converted to a (not (Door opeﬁ 2door)))
PDDL planning task here. In fact, the semantics of OPL is given by ceffect (Door open 2door)
a translation to PDDL — so this translation specifies the meaning and -
is at the same time the way to enable planning in OPL by employing
a PDDL planner. 5 AUTOMATIC GENERATION OF THE

We need to convert member fluents and actions to PDDL fluents DOMAIN-SPECIFIC MODULE INTERFACE
and actions. Member fluents and actions are specific to an object) .))
instance. When converting from OPL to PDDL this is resolved byThe |mplement§t|o_n of semantic attach_ments in TFD/M prowde_s
adding an additional parameter nanttisas the first parameter to a gengrlc domaln-lndependgnt modqlellnte.rfgce. As a result of its
each member fluent and action representing the object it belongs t§&Neric nature, the module interface is inefficient, and cumbersome

Additionally the name is prefixed by the type for uniqueness. Theand error-prone to implement for a module developer. Information is
OPL description of the BOMSCANNING domain will be translated exchanged via object names and the current planner state is accessed
to the following PDDL predicates and functions: via callback functions. Requests are manually created based on the

fluent name and its parameters, which have to be supplied by the

condi tion (and
(i nRange (Robot_currentPose ?this)

(:types module implementation. OPL provides a solution to this problem by
Door Pose - object automatically generating a domain-specific interface from an OPL
ScanTar get - Pose) domain description that acts as an adapter between TFD’s generic

interface and a domain-specific module implementation. Figure 1 ilthe current state changes between subsequent module calls, the state
lustrates this concept. pointer is updated without requiring additional copy operations.

The generated interface provides a safe and efficient way to im- In TFD/M, where a state is a single vector of floating point num-
plement modules. OPL objects are represented as classes, i.e. diers representing a task in FDR, tB&ateMappingmplementation
jects in an object-oriented programming language. For TFD/M, thisstores a tuplévar, val). When a Boolean fluent is requestgdar]
is realized in C++. Module calls receive object instances as paramés compared twal. For a numerical flueng[var] is returned.
ters rather than object names. The generated classes provide mem-
ber functions for egch member fluent to access t.he planner stat Object Fluent
Therefore, perforn_wmg an error-prone, work-intensive marvadl Mappings Mappings
back based on object and fluent names as part of the actual modv = =~ |
implementation is not necessary anymore. The name mappings a_|0itialization A A
the state access are efficiently encapsulated in the automatically ge RUntime
erated interface.

To demonstrate the generation process, considertteafSCAN-
NING domain from Section 3, where the cost moddtéveCostis Fluent
defined in theRobottype. The following call stub is automatically Internal Look-Up

generated: State <«———@)—| Method

doubl e Robot _dri veCost (
const State* currentState,
const Robot* thi sRobot,

const Posex dest); Figure2. This figure shows the state look-up process. A ground name is
constructed (1) that is used to retrieve a fluent mapping (2.fluent

The first argument is th&tateobject that allows access to global Mapping determines its value from the internal state (3). Bfgab fluents
fluents and also contains lists that allow to access all objects of each the object mappings map this value to@RLObject(4).
type. If the module is a member of an OPL type, the next argument is

an object of the corresponding type class. Then follow the arguments Using these mapping tables the methods for accessing member

of the module as specified in the domain. Co_ndltloq modules retuny g global fluents can be generated. The required steps are illustrated
Boolean values and cost modules return floating point numbers. in Figure 2

For each of the types in the OPL domain a corresponding class is
created. If a type extends a base type in the domain, the generated A key for querying the fluent mapping table is composed. The
class is derived from the base type’s generated class. Otherwise it is fluent name is appended with the names of the parameters forming
derived fromOPLObject a generic base class. Each member fluent the ground name of the fluent. Member fluents insert the object’s
of the OPL type will generate a member function with the same name name as the first parameter.
that retrieves the fluent’s value in the current state. Boolean fluen®& Next, the correspondirgtateMappinds retrieved from the fluent

lead tobool return values and numerical fluents retdioat values. mapping table.

Object fluents return a pointer to the class that was generated for tBe Now, the fluent value is retrieved from the internal state using

corresponding OPL type. the StateMappingbject. For Boolean and numerical fluents their
As an example consider the OPL typeor from Section 4 that value is returned.

contains an object fluent approachPose of typee and a Boolean 4. In case of object fluents, tHatateMappingequests the planner
fluent open. This leads to the following class declaration in the state in the same way, but is handed to the object mapping table

domain-specific interface: to retrieve arODPLODbjectpointer that is cast to the specific return
type.
cl ass Door : public OPLOnject {
public: If a member fluent does not have any parameters (besides the im-
const Pose+ approachPose() const; plicit this), the StateMappingloes not change for this fluent. There-
bool open() const; }; fore we can move step 1 and 2 to the initialization phase and store the

retrievedStateMappingdn the object instance. During planning these
We will now describe how implementations for such mem- steps are then skipped and thus no look-ups are performed for ac-
ber functions acquire a fluent’s value from the planner’s internalcessing Boolean and numerical fluents, and only the object mapping
state. The process requires a planner specific implementation of laok-up is performed for object fluents.
StateMappinglass. Such a state mapping represents the value of one By using this automatically generated interface module developers
ground fluent and is able to acquire the current value from a pointenow directly deal with objects instead of performing manual requests
to the planner’s internal state, for fluent values that are work-intensive and error-prone. Thisfu
First, two mapping tables are created during initialization: Fluenttionality is now performed by the interface. Additionally, in some
mappings map from each ground fluent name 8iateMappingb- cases, we can move look-ups to the initialization phase leading to a
ject and have to be provided by the planner as it depends on the emore performant implementation.
coding of the planner’s internal state. For Boolean and numerical flu-
ents they are used to acquire vaIu&_es dlrectl_y. For quect fluents, obje%t EXPERIMENTAL RESULTS
mappings are created wh@PLODbjectsare instantiated. They map
from aStateMappingo theOPLObjectinstance with the same name We conducted three experiments using OPL domains including se-
as the object th&tateMapping'®bject fluent value points to. When mantic attachments. The performance improvement of OPL can only

be measured in the presence of semantic attachments as otherwiImgs

a translated OPL task is a PDDL task and thus behaves the san

All experiments are conducted with the TFD/M planner developed

by Dornhege et al. [4]. We denote results achieved with the origina

generic module interface as TFD/M, and the combination of TFD/M

with our automatically generated domain-specific module interface

as OPL. |
The first experiment shows the computational overhead ofTFD/Nﬁ A

and OPL compared to a base line planner not using semantic attach- .

ments at all. We show representative results fromdRewPLAN-

NING domain in the temporal-satisficing track of the International

Planning Competition (IPC) 2008. The predicatailableoccurs in Figure3. The figure_iIIL_Jstrates th_e@bMSCANNlNG domain. The robot

most conditions of the domain. We add a condition module to the do-niggfntso .el.ﬁg?er?t 2&'?&8@2‘1 rg:/%r:\t/irésvegftgu%%e: ti‘;ﬁrstgg :%iet;m

main that is additionally called whene\erailableis used. The mod- example scene from executing a plan in the simulation envirohme

ule simply acquires the predicate from the planner state either with

the TFD/M generic module interface or via OPL's domain-specific

interface and returns its truth value. Thus the applicability of the op-S€€ if another package can be loaded by a semantic attachment that

erator is not changed and no additional computations are performe@hecks if the package fits geometrically into the truck given the cur-

To ensure comparative results independent of the actual search pl{fznt cargo. The module requests the sizes of all packages to be stored

cedure, we measured runtimes of testing operator applicability fol? the vehicle and the vehicle's capacity from the internal planner

each planner on an identical set of states that was derived from thate. We use the TFD/M module implementation as described by

closed list of the base line planner. Dornhege et al. [4] and created an equivalent OPL domain together
From the 30 problems of IPC 2008 we pick the last 20 problemg/ith an OPL module that implements the same algorithm.

as the size of the closed list generated for the first ten problems is too

small to yield discriminative results. We conduct 150 test runs for i I e | e s

each problem and compute the overhead of TFD/M and OPL com- 115 2 2 0.01 0.00 616

pared to the base line. The results in Table 1 show that the runtime g 12 § g g'éi (1)'8‘21' 'gzg

isnc;::IatlanscvevgrllI for both approaches, and is lower for OPL in all problems AR e oY o

5125 3 10 3.36 2.89 -13.9

| Base[s]| TFDM[s] [%] | OPL[s] [%] 6|3 4 12 87.53 | 17.92 -79.5
11 0.22 0.23 7.09 0.22 2.20 713 4 14 140.87 68.34 -51.5
12 0.24 0.26 7.19 025 251 8|45 4 18 54.42 29.17 -46.4
13 0.02 0.02 10.06 0.02 3.25
14 0.03 0.04 1013 0.03 179 Table2. This table shows the results of tieANSPORTexperiment. L, V,
15 0.02 0.02 10.78 0.02 2.85 P list the number of locations, vehicles and packages for paatiiem. The
16 0.20 0.22 5.56 0.21 1.47 last column gives the relative runtime of OPL compared to TFD/M.
17 0.24 0.26 5.76 0.25 2.60
18 0.34 0.35 3.19 034 111
19 0.68 071 3.89 069 161 We created eight problems with increasing complexity and com-
20 0.86 089 3.78 087 154 pare the TFD/M module with the OPL formulation. For each of the
21 1.00 1.04 4.64 1.02 237 eight problems 100 trials were conducted and we give the average
22 0.05 0.06 10.79 0.06 3.28 runtime. The standard deviation for all trials was lower than two per-
23 0.04 0.05 14.40 0.04 4.09 cent of the average runtime. The results in Table 2 show that the run-
24 0.06 0.07 10.61 0.06 3.47 time using the OPL module interface is significantly lower in most
25 0.56 059 5.09 057 2.08 cases than the original TFD/M interface’s. This is especially visible
26 0.56 0.58 4.69 0.57 1.75 in the more complex tasks (6 — 8) as in these cases the time for ini-
27 0.61 0.63 4.09 0.62 2.08 tialization is negligible. As problems three and four show, the initial-
28 1.83 1.87 2.03 1.84 0.66 ization time might dominate the positive runtime effects for simple
29 2.04 2.11 3.05 208 171 tasks.
30 2.11 219 394 2.14 1.66 The main objective of the third experiment is twofold. On the one

hand, it demonstrates the use of OPL in a real-world environment

Table1. This table shows the results of tB@EWPLANNING experiment. includi_ng the application in a realistic r(_)boti_cs sce:nario_. On the_ other

Runtimes in seconds are averaged over 150 trials. The corigmahat hand, it shows how a complex system is built easily by integrating an
overhead in percent is given in comparison to the base lifeowitmodules. existing path planner into TFD/M using the OPL planner interface.

The ROOMSCANNING domain that was used as an example in this

paper models an autonomous robot searching for items in various

The second experiment is based on HRANSPORFNUMERIC rooms (see Figure 3). The environment is an office space with mul-

domain from the satisficing track of IPC 2008 and is designed tdiple rooms, corridors and doors. Some of the doors might be closed

show the impact of acquiring fluent values from the planner stateand the robot has the ability to open doors. The robot has a metric

The domain models a logistics task where packages are transporteshp of the environment and knows the coordinates for good scan

by trucks. We replace the simple volume based condition check téocations in every room. The goal is to scan all target locations in a

minimal amount of time.

as well as by the German Aerospace Center (DLR) as part of the

The geometry of the world restricts the robot’s path to reach anKontiplan project (50 RA 1010).

other location. We implemented a module to compute the cost for

thedri ve action. The module implementation calculates the reaIREFERENCES

path cost by calling the external path planner used by the naviga-
tion component of the Robot Operating System (ROS) [17]. For thel[1l
experiment we created eight problems with varying complexity start- 2]
ing from two scan targets without closed doors in the first task, up to
eight scan targets and two closed doors in the last.

[3]
| Targets Doors | Searchtime [s] Total time [s]
1 2 0 0.09 7.69 [4]
2 3 1 0.13 11.92
3 4 1 1.05 17.23
4 5 1 1.76 23.54
5 5 2 2.37 24.44 (5]
6 6 2 4.64 33.18
7 7 2 6.17 41.90 [6]
8 8 2 11.79 55.24
Table3. _ Thi_s table s_hows th_e resglts of t_h@BMSCANNlNG experi_ment. 7]
Total time lists the time until the first valid plan was founda&sh time
excludes the time spent waiting for module computations.
(8l

As can be seen in Table 3, the time required to find the first valid
plan increases with problem complexity. We show the total time, i.e.,
the time the planner needed to come up with a plan, and the searchg]
time, i.e., the total time without the runtime of the path planner, sepf1q)
arately. The observed runtimes are still acceptable for use in a real-
world robotics system and could be improved by using a more effi-
cient path planner. [11]

7 CONCLUSION [12]

We presented the Object-oriented Planning Language OPL, a noviR]
description language for planning tasks, which incorporates structur?‘”
and advantages of modern object-oriented programming languages
like Java or C++, allowing the design of real-world scenarios in a
natural way. We furthermore support semantic attachments, a cofit5]
cept that was introduced to integrate external procedures to deter-
mine a fluent's semantics, and use the object-oriented structure H_JG]
generate a more efficient domain-specific interface that acts as an
adapter between the generic interface of a planning system and a
domain-specific module implementation. The automatic generation
of the domain-specific interface produces a convenient to use ard’]
type-safe implementation skeleton for external modules.

We also show how to translate OPL to PDDL, allowing any state of1g]
the art planner based on PDDL to solve OPL tasks if combined with
the tools that are described in this paper. We adapted the PDDL/M
interface of TFD/M to also support OPL modules and compare the
experimentally to PDDL/M modules. Our evaluation shows that the
automatically generated interface is more efficient than the previous
implementation of semantic attachments in TFD/M due to the im{20]
proved look-up process when accessing the planner state.

(21]
ACKNOWLEDGEMENTS

This work was partially supported by Deutsche Forschungsgemein-
schaft (DFG) in the PACMAN project within the HYBRIS research
group (NE 623/13-1) and in the Transregional Collaborative Re-
search CenteBFB/TR8 Spatial Cognitioproject R7-[PlanSpace],

C. Backstbm and B. Nebel, ‘Complexity results for SAS+ planning’,
Computational Intelligencel1(4), 625-655, (1995).

S. Cambon, F. Gravot, and R. Alami, ‘A robot task planer tharges
symbolic and geometric reasoning.’,European Conference on Artifi-
cial Intelligence (ECAI)pp. 895-899, (2004).

S. Chien, R. Knight, A. Stechert, R. Sherwood, and G. Reail, ‘In-
tegrated planning and execution for autonomous spacedratEEE
Aerospace Conference (IAG1L999).

C. Dornhege, P. Eyerich, T. Keller, S.Uig, M. Brenner, and B. Nebel,
‘Semantic attachments for domain-independent planning rexgstén
Proceedings of the International Conference on Automatetring
and Scheduling (ICAPS)p. 114-121. AAAI Press, (September 2009).
T. Estlin, D. Gaines, F. Fisher, and R. Castano, ‘Coatiilg multiple
rovers with interdependent science objectivAsitonomous Agents and
Multi-Agent Systems Conference (AAMAS)Ily 2005).

P. Eyerich, R. Mattriiller, and G. Rger, ‘Using the context-enhanced
additive heuristic for temporal and numeric planning’ Froceedings
of the International Conference on Automated Planning atee8uling
(ICAPS) pp. 130-137. AAAI Press, (September 2009).

M. Fox and D. Long, ‘An Extension to PDDL for Expressingriporal
Planning Domains'Journal of Artificial Intelligence Research0, 61—
124, (2003).

M. Fox, D. Long, and D. Magazzeni, ‘Automatic constructiof effi-
cient multiple battery usage policies’, Proceedings of the Interna-
tional Conference on Automated Planning and Schedulind\PIE)
(2011).

H. Geffner, Functional Strips: a more flexible language for planning
and problem solvingl88-209, Kluwer, 2000.

K. Hauser and J.C. Latombe, ‘Integrating task and PRM amogilan-
ning: Dealing with many infeasible motion planning queri@s1ICAPS
Workshop on Bridging the Gap between Task and Motion Plannin
(2009).

M. Helmert, ‘Concise finite-domain representations fBidR. planning
tasks’,Atrtificial Intelligence 173, 505-535, (2009).

A. Hertle,Design and Implementation of an Object-Oriented Planning
Language Master’s thesis, University of Freiburg, 2011.

J. Hoffmann, ‘Extending FF to numerical state variabl@sEuropean
Conference on Artificial Intelligence (ECA(R002).

J. Hoffmann and B. Nebel, ‘The FF planning system: Fash gjan-
eration through heuristic searcl¥ournal of Atrtificial Intelligence Re-
search 14, 253-302, (2001).

L.P. Kaelbling and T. Lozano-Perez, ‘Hierarchicalppténg in the now’,

in IEEE Conference on Robotics and Automation (ICRE) May
2011).

J. Lohr, P. Eyerich, T. Keller, and B. Nebel, ‘A planning baseahfe-
work for controlling hybrid systems’, ifProceedings of the Interna-
tional Conference on Automated Planning and Schedulind\IE)
(2012). To Appear.

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, Xils,
R. Wheeler, and A. Ng, ‘ROS: an open-source robot operatiatgsy,

in ICRA Workshop on Open Source Softw#B909).

R. M. Simpson, D. E. Kitchin, and T. L. McCluskey, ‘Plangidomain
definition using GIPO’, inThe Knowledge Engineering Revievol-
ume 22, pp. 117-134, (2007).

Tiago Stegun Vaquero, Victor Romero, Flavio Tonidandahd
Jose Reinaldo Silva, ‘itSIMPLE2.0: An integrated tool fa¥sijning
planning domains’, ifProceedings of the International Conference on
Automated Planning and Scheduling (ICAP@P07).

J. Wolfe, B. Marthi, and S. J. Russell, ‘Combined task anadion plan-
ning for mobile manipulation’, ifProceedings of the International Con-
ference on Automated Planning and Scheduling (ICASB)0).

Kai M. Wurm, Christian Dornhege, Patrick Eyerich, Clrtach-
niss, Bernhard Nebel, and Wolfram Burgard, ‘Coordinatgui@ation
with marsupial teams of robots using temporal symbolic plarining
Proceedings of the IEEE/RSJ International Conference oelligent
Robots and Systems (IRO&)ctober 2010).

