
Identifying Good Poses When Doing Your Household Chores:
Creation and Exploitation of Inverse Surface Reachability Maps

Andreas Hertle Bernhard Nebel

Abstract— In current approaches to combined task and
motion planning, usually symbolic planning and sampling based
motion-planning are integrated. One problem is here to come
up with good samples. We address the problem of identifying
useful poses for a robot close to working surfaces such as tables
or shelves. Our approach is based on reachability inversion
which answers the question: where should the robot be located
in order to reach a certain object? We extend the concept from
point-based objects to flat polygonal surfaces in order to enable
the robot to have a a good grasping position for many objects.
Our approach allows to quickly sample multiple distinct poses
for the robot from an prior computed distribution. Further we
show how sampling from an inverse reachability distribution
can be integrated into a CTAMP system.

I. INTRODUCTION

Much research effort is devoted to bring autonomous
robots to our households. There is a huge potential: robots
could clean up the living space, assist the owner in the
kitchen and clean up the table after meals. Such support
is in particular helpful, when the owner is not capable of
performing these tasks. While special purpose robots like
autonomous vacuum cleaners are a success story, so far
general purpose personal household robots are not commer-
cially available. Besides unsolved challenges in the fields
of perception and mechanical articulation, the integration of
diverse skills and their coordination is one of the obstacles.

For instance consider the problem a robot has to solve in
order to clean a table. First, the robot would need to get
close to the table in order to observe the state of the table
and to identify possible objects on it. Depending on the
observations, the robot might need to remove dirty dishes
before wiping the table. Most likely, the robot needs to
relocate multiple times in order to reach all the dishes or
the dirty parts of the table.

Symbolic planning is one possible approach to solve such
problems on an abstract level. It allows the robot to explore
how to apply its skills in order to reach a certain goal.
The skills of the robot are encoded as symbolic actions,
where the complex geometry is abstracted away. Because
of this abstraction, symbolic planners can explore the huge
state space resulting from applying all actions efficiently.
However robots move through and interact with a three
dimensional world. It can not be expected to generate only
executable plans when geometry is abstracted away. A trade

The authors are with the University of Freiburg, Department of Computer
Science, 79110 Freiburg, Germany.

This work was supported by the PACMAN project within the HYBRIS
research group (NE 623/13-1). This work was also supported by the
DFG grant EXC1086 BrainLinks-BrainTools to the University of Freiburg,
Germany.

off between symbolic efficiency and geometric feasibility
is necessary. This is known as the combined task and mo-
tion planning problem. In CTAMP symbolic and geometric
planning is interleaved: symbolic planning leverages the
strength of abstraction to explore efficiently towards a goal
while geometric planning ensures that the produced plan are
geometrically correct and executable on the robot. In order to
gear the combined planning process into the right direction,
it is necessary to restrict the number of poses a robot can
take to those that are useful.

In this paper we address the problem of identifying useful
poses for a robot close to working surfaces such as tables
or shelves. Our approach is based on reachability inversion
which answers the question: where should the robot be
located in order to reach a certain object? We extend the
concept from point-based objects to flat polygonal surfaces
in order to enable the robot to have a good grasping position
for many objects. Our approach allows to quickly sample
multiple distinct poses for the robot from an prior computed
distribution. Further we show how sampling from an inverse
reachability distribution can be integrated into a CTAMP
system.

Fig. 1: The robot needs to determine a suitable pose close
to the table in order to interact with objects on the table.

II. MOTION AND TASK PLANNING

As mentioned, when a robot has to plan and act in a com-
plex environment, it is necessary to plan its different tasks as
well as to plan its motions. So, if we consider this combined
planning problem, it is planning in the product space of these
two planning problems. Given that both of these problems
are already highly intractable, the combination is, of course,
worse.

A. Semantic Attachments

A number of approaches have been developed to deal with
this problem. One approach is based on a generic interface
between a symbolic planner and an embed planner, such as
a motion or manipulation planner. The symbolic planner is
extended by so-called semantic attachments [1], [2], which
provide the interface to the embedded planner.

A classical symbolic planning task is represented as a finite
number of objects of certain type and Boolean facts about
objects and relations between objects. A state represents
a particular valuation for every fact in the planning task.
Actions define the transition between states. Before an action
can be applied its preconditions must be satisfied by the
current state. The application of an action produces the
successor state according to the specification of its effects
on the facts. The planning process succeeds when an action
sequence from the initial state to a state fulfilling the goal
condition is found.

For example, the initial state of the example in the intro-
duction could be described by stating which objects are on
the table, where actions are picking up objects, putting down
objects and cleaning the table. This all does not include any
geometric information, despite the abstract relationship of
being standing on the table.

Of course, for developing feasible plans, the geometric
information has also to be taken into account. This is done
by using different forms of semantic attachments that refer
to continuous variables, describing the exact geometrical
position of all objects, the pose of the robot as well as
the pose of the affecter. There are three different forms
of such attachments. First there are the condition checker
attachment that check the continuous state space for certain
conditions, e.g., whether an object is graspable. Second,
there are the effect attachment that effectively change parts
of the continuous state space. This could be, for instance,
a new pose after a movement. Both of these attachments
are completely deterministic and deliver the same result if
evaluated in the same state (symbolic and continuous).

B. Sampling Poses

While planning, the symbolic planner branches over all
possible actions in order to look for a plan that leads to a goal
state. In order to be complete, it also needs to branch over
all (reasonable) values in the continuous state space, e.g.,
poses of the robots and grasp positions. For this purpose, we
have introduced a grounding attachment that returns samples
from the continuous state space. So, we do not have to
discretized the world before starting the planning process,
but can interleave the sampling with the planning process.
The important point to note here is that this kind of branching
over samples is interleaved with branching over possible
actions, leading to a potentially infinitely branching search
tree.

Of course, one is interested in reasonable samples in order
to steer the search for a plan into the direction where a goal
state can be expected. And precisely at this point, inverse
reachability maps come into play.

III. SURFACE INVERSE REACHABILITY

We extend the concept of reachability inversion from
point-based objects as introduced by Vahrenkamp et al. [3]
to flat polygonal surfaces like tables or shelves. A point-
centered inverse reachability map is referred to as point map
in order to contrast it with surface inverse reachability map
or surface map for short. The intent of a surface map is to
quickly sample poses for a robot in order to interact with the
surface or (previously unknown) objects on it.

A robot pose is defined as p = 〈x, y, z, θ〉 where x,y,z
are the spatial coordinates and θ corresponds to the planar
orientation of the robot. The reference frame of the pose can
be chosen for the specific robot: For wheeled robots it might
be advantageous use the base frame. For legged robots the
torso frame might be more practical. The point map assigns
each robot pose p a reachability index RP , a normalized
measure of quality:

p 7→ RP , RP ∈ [0, 1]. (1)

It can be interpreted as how many different grasp solutions
are valid from that particular pose. Our surface map analo-
gously provides a surface reachability index RS for each pose
p around the given polygon. RS intuitively corresponds to
the percentage of surface area that the robot can reach from
each pose.

A. Construction of a Surface Map

To construct a surface map we need the polygon of the
surface and a point map for the robot manipulator and con-
sequently the surface map is only valid for that polygon and
manipulator. The idea is to evaluate the point map on various
sampled points inside the surface polygon and accumulate
the quality measures. To simplify the accumulation process
we construct the surface map with the same resolution as
the point map and align the orientation of both maps, so
when we move the point map to a sampled point we can
transform between point map and surface map with simple
vector additions. Furthermore we can restrict the sampled
points to a grid with the same resolution as the point
map, since sampling finer grained does not provide more
information. Before we can transfer the quality measures
form the point map to the surface map each robot pose has
to be validated. The robot must be able to assume the pose
without colliding with the surface polygon. Also a collision
free inverse kinematic solution to reach the sampled point
must exist. Without the IK verification the surface map would
incorrectly count instances where the robot is able to reach
the target from below through the surface polygon. During
validation it is also possible to add robot specific constraints
to filter invalid poses and reduce the computational effort.
For instance the z coordinates could be restricted based on
the height of the robot and the working surface.

The accumulation procedure is as follows: We sample a
point inside the polygon and shift the origin of the point
map to that point. Then we transfer the quality measures
RP for any valid pose to the surface map. Quality measures
from previously sampled points are added to the new ones.

(a) Point map

(b) Surface map

Fig. 2: On the left the point map (a) that was used to construct
the surface map (b) is shown. The bottom shows horizontal
slices through both maps. Red colors indicate a low, blue
colors a high reachability.

Finally we normalize the magnitude of the accumulated
quality measures as shown in equation (2):

RS =
1

n

n∑
i=1

RP i, (2)

where n is the number of sampled points inside the surface
polygon.

So far we only considered robots with one manipulator.
However it is easy to combine multiple surface maps.
Let’s assume we have a robot with two manipulators and
corresponding surface maps. If we take the maximum of
RS = max(RS1, RS2) for a pose, the resulting reacha-
bility will indicate how good any manipulator can reach
the surface. If on the other hand we take the minimum
RS = min(RS1, RS2) we know how good both manipulators
reach the working surface, which is useful for two-handed
robot skills. It is possible to combine surface maps offline
and produce a surface map for both manipulators. However
since the RS lookup is highly efficient the maps can also be
kept separately for increased flexibility.

B. Sampling from a surface map

When the robot needs a good pose close to a working
surface we are not interested in exactly the pose with the
best RS , we only want a reasonably good pose.

To obtain a robot pose with a reasonable RS we sample
random (continuous) pose candidates inside the bounding
box of the surface map. Each candidate is put trough a
number of test to ensure validity. The candidate can be
discarded if:

1) the reachability index RS = 0 as it is impossible to
reach the surface from this candidate;

2) it is located outside operational environment, e.g. de-
termined by a navigation cost map;

3) the robot would collide with the environment or other
objects, determined by a full state collision check.

Each test is computationally more expensive than the pre-
vious to eliminate invalid candidates with as little effort
as possible. Once we have a certain number N of valid
candidates we commit to the one with the highest RS .

(a) without discount (b) discounted

Fig. 3: Sampling 500 consecutive poses without (a) and with
(b) reachability discount. The discount pushes consecutive
poses apart and helps covering the whole range of possible
poses.

Successfully completing a task could require the robot to
move various poses around the surface. When repeatedly
sampling poses from a surface map it is crucial not to receive
the same ”best” pose. Instead we would like them to be
spread out so that the whole surface can be approached.
Therefore we keep track of previously sampled poses and
discount the RS of poses close to it. We use the normalized
Euclidean distance since it allows to weight dimensions
individually and to compare linear distances and angular
distances. The computation of the discount factor is shown
in equation (3)

w =
∏
pi∈P

min

(
1,
√

(c− pi)TS−1(c− pi)

)
(3)

where P is the set of previously sampled poses and c is the
current pose candidate. S is a normal distribution that defines
the closeness measure; we use a diagonal matrix with S =
(0.5, 0.5, 0.5, π/4). The difference between taking previous
poses into account and simple consecutive sampling is shown
in figure 3.

C. Surface Maps for CTAMP

With our surface maps we implemented two different
semantic attachments.

When the robot plans to interact with a working surface or
objects on it, we need to ensure the pose in that future state
is close enough to the surface. Thus we have a condition
attachment to query the reachability for a pose, a simple
lookup in the surface map for that surface. This condition
is added to actions like inspect-surface or pickup-object.
Should the retrieved reachability be RS = 0, the action can

be discarded before more expensive computations would be
performed.

Furthermore we implemented a grounding attachment that
allows to create new poses for the robot by sampling from a
surface map. Without the ability of adding new poses during
planning process, it has to be decided beforehand how many
poses the robot will need to solve a task and where those are
located. If too few poses are given the task might become
unsolvable. If too many poses are given the complexity of the
planning task is increased unnecessarily. With this attachment
the planning system is able to gradually increase the number
of poses should the previously sampled poses be insufficient
to solve the task.

IV. RELATED WORK

Our work is embedded in the area of combined task and
motion planning as well as in the area of precomputing
reachability maps, inverse reachability maps and similar
concepts.

A. Combined Task and Motion Planning

In the area of combined task and motion planning, there
are a number of related approaches. However, similar to
the the one sketched here, most of them are based on
sampling-based robot motion planning integrated with sym-
bolic planning [4], [5], [6], [7]. They differ on how the
integration is performed, and on what kind of planning
strategies are used, but they all contain as one important
part the sampling of poses. A somewhat different approach
is the one by Toussaint, who considers the CTAMP problem
as an optimization problem [8].

B. Sampling the Pose Space

Selecting good samples is, as mentioned above, one
important subtask. Here, we find a number of interesting
approaches that inspired our work.

Zacharias et al. [9] introduced a representation of a robots
arm kinematic capabilities in its workspace: the so-called
capability map. This map is built offline to support online
queries. With the help of such maps, a robot can easily
compute how to reach a target configurations in 3D space.
A scaled down version of this map is the reachability map
that does not contain the solution for the inverse kinematic
query but simply a quality measure of how good an object
can be grasped.

Vahrenkamp et al. [3], [10] presented an approach to
invert a workspace representation to build a so-called inverse
reachability map with the goal to select appropriate robot
base positions for executing grasp tasks. In their work, they
use an extended manipulability measurement as a quality
index capturing the robots maneuverability in the workspace.
In order to find suitable base poses for object manipulation,
the inverse reachability map is placed at the targets pose.
In a next step, a robots base pose is sampled and followed
by an inverse kinematic query to find a joint configuration
that reaches the goal position while avoiding collisions.
Unfortunately, they assume that the pose of how to grasp the

object is already known, which in real-world applications is
not always the case. Similarly to Vahrenkamp et al., Burget
and Bennewitz [11] also employ inverse reachability maps.
However, they use them on a legged platform instead of a
wheeled one.

Another related approach is the one by Stulp et al. [12].
They try to identify so-called action related places. These
places are not single base poses, but are collections of
positions with each one possessing a probability for the
success of a given manipulation action. Further, they use
a transformational planner in order to come up with a
combined task and manipulation task.

V. EXPERIMENTAL EVALUATION

We evaluate our surface maps and their integration into a
CTAMP system with a PR2 robot simulated in Gazebo. The
PR2 robot features two 7-DOF manipulators, a laser range
finder mounted on the base for localization and obstacle
detection and a Kinect sensor mounted on the head. The
robot operates in a small room with two tables and a number
of small objects on them, like cans and cups.

The robot is controlled by a planning system with the
Temporal Fast Downward planner with semantic attachments
at its core. The planner is embedded in a continual planning
loop that interfaces the planner with the robot system: The
state of the robot and the environment is observed and
converted to a symbolic representation. When a plan is found
the symbolic actions trigger corresponding robotic skills.
After each action is executed the state is re-estimated to
verify that the remaining plan continues to be valid. Should
an unexpected event occur, like an action not producing a
desired effect or the discovery of new objects, re-planning is
started.

We modeled a the robot’s capabilities in our mobile-pick-
and-place PDDL domain. The move-robot action allows the
robot to relocate to a another location. With the inspect-
surface action the robot observes a table with the Kinect
camera to detect and recognize objects on the table. The
pickup-object action allows the robot to grasp previously
recognized objects with either manipulator. Once grasped
the object can be held to the camera in order to inspect-
object. Finally, a grasped object can be placed on a table
with the putdown-object action. Each action where the robot
moves is accompanied by a cost attachment and an effect
attachment. The cost attachments compute more realistic
expected durations for the actions and at the same time
verify the geometric correctness. The effect attachments
propagate the geometric information like object coordinates
to subsequent states. We previously implemented this system
on a PR2 robot in the Tidy-Up Robot project [13]. However,
without surface maps the robot was only able navigate to
predefined poses, a shortcoming we want to address in this
work.

A. Data Structure and Generation

The data structure behind surface maps is a custom exten-
sion of OctoMap [14]. When retrieving the reachability for

a certain pose, the coordinates x, y, z and θ are discretized
according to a resolution of the surface map. x, y and z
signify which voxel needs to be found and the voxel stores
reachability values for θ if RS > 0. If no entry is retrieved
the reachability is implicitly 0. The complexity of the lookup
operation for a random poses is in O(d) + O(logn), where
d is the tree depth and n is the number of discrete θ angles.

The computational effort to generate a surface map
strongly depends on the chosen resolution. For instance
consider a rectangular table surface with the dimensions
1.4m times 0.65m. When using coarse resolution of 0.1m
and 2π

16 radians we get 14 ∗ 6 = 84 sample points on the
surface to evaluate. The constructed surface map contains
reachability values for approximately 1 million robot poses.
It was generated within approximately 2 hours on a 3 GHz
processor. For the finer resolution of 0.05m the number
of samples on the table increases to 28 ∗ 13 = 364 with
reachability information for a total of 20 million poses.
Computation for the finer resolution took approximately 2.5
days. The resulting OctoMap file size is merely 3 MB.

For the following experiments we use the finer resolution
of 0.05m with a an angular resolution of 2π

16 . When sampling
new poses we return the best of 40 candidates. Subsequent
sampling of new poses is discounted according to distances
to previous poses when closer than 0.5m or π/4 rad.

B. Plan Viability with Sampled Poses

In this experiment the robot has the task to inspect every
object found on a table. To inspect the objects the robot
has to pick them up and hold them in front of the camera.
Initially the robot is located away from the table and has no
knowledge of the objects on the table. Only when moving
to a table and inspecting it, the robot perceives the objects
and can interact with them.

Fig. 4: Initial situation for the inspect objects task. The blue
arrows indicate the predefined poses.

Between 1 and 4 objects are added on top of the table.
First, the robot is given a number of predefined poses that
have been recorded manually. Second, we sample poses from
a surface map. The results are shown in table I.

The total execution time between individual runs can vary
to a large degree, depending on which poses the robot
chooses to approach first. With the predefined poses some
tasks can not be solved, because some objects can not be

TABLE I: Total execution time in minutes with predefined
poses and poses sampled form a surface map.

1 object 2 objects 3 objects 4 objects
1 pose 7.9 - - -

2 poses 8.6 19.5 - -
3 poses 10.7 31.4 43.0 -
4 poses 8.6 16.9 34.5 87.9

sampling 15.3 36.4 37.0 64.1

reached from any of the given poses. Overall the robot can
solve the task in a comparable amount of time when sampling
poses. Thus when sampling from surface maps the system
works with less given information and solves more tasks.

C. Influence on Plan Quality

In the second experiment we asses the influence of sam-
pled poses on the overall plan quality. The task is again
to inspect every object found on a table. Initially the robot
is located away from the table and has no knowledge of
the objects. The experiment is repeated seven times with
predefined poses and another seven times with sampled
poses. We recorded the total execution time until the task
was solved, the amount of time spent planning and how
many re-planning attempts were necessary. Furthermore we
recorded how often the robot would move to a different pose
and how many non-move actions were executed during each
run. The results are shown in table II. The total execution
time in minutes is denoted T and the time spent re-planning
tp. Furthermore, the table shows the number of re-planning
processes, the number of move actions and the number of
other actions executed by the robot while solving the task.

TABLE II: Solving the task of inspecting three objects with
predefined poses (top) and sampled poses (bottom).

1 2 3 4 5 6 7 average
T [min] 43 35 44 36 35 37 37 38.0
tp [min] 10.3 5.1 13.5 5.2 3.7 5.8 5.8 7.0
re-plan 9 5 13 6 4 7 7 7.3

move 5 3 3 3 4 5 4 3.9
other 27 29 34 26 27 28 27 28.3

1 2 3 4 5 6 7 average
T [min] 37 25 32 42 31 29 28 32.0
tp [min] 9.3 4.0 10.8 11.8 5.0 5.23 5.9 7.42
re-plan 8 6 15 16 6 7 7 9.3

move 4 1 1 1 3 2 3 2.1
other 24 26 30 39 28 27 26 28.6

When looking at the runs with predefined poses the first
and the third runs are noticeable for their long execution
time. During run 1 the robot moved five times; clearly
sub-optimal with only four predefined poses. The planning
system produces sub-optimal plans fast and then tries to
improve the solution. In this case it did not manage to
optimize away the extra move action. For the third run a lot
of time is spent re-planning. A detailed analysis of the action
log revealed that one manipulation action was repeatedly

failing for unknown reasons, sending the system into re-
planning.

When examining the results of the runs with sampled
poses in the lower half of table II, the runs 1 and 4 have the
longest execution time. It seems run 1 was unlucky when
sampling poses and had to relocate three more times before
the task was solved. Run 4 and to a lesser extend run 3
were again suffering from execution failures as indicated by
the increased number of re-planning steps and manipulation
actions. However, the frequent failing of actions might also
result from sampling a pose from where it is difficult to grasp
a certain object. On the other hand in some runs the sampling
produced exceptionally good poses so that the robot could
inspect all objects without relocating. Overall during the runs
with sampled poses fewer move actions were necessary and
the total execution time was on average 5 minutes lower than
with predefined poses.

VI. CONCLUSIONS

In this work we addressed the problem of choosing suit-
able robot poses close to tables, shelves or other working
surfaces. Initially the robot does not know if or where objects
are located on the working surface. So our approach derives
suitable robot poses based on the shape of the working
surface and the robots manipulation capabilities.

The capability of a robot can be encoded in a reachability
map, that allows to decide quickly which objects are in reach
given the robot pose. Such a map can be inverted to provide
suitable poses for the robot given the object coordinates. We
showed how the concept of inverse reachability maps can
be extended to find good poses for the robot close to flat
polygonal surfaces. Such surface maps are computed offline
and are afterwards available for efficient online queries.

We demonstrate how surface maps can be integrated into
a symbolic planning system. We implemented two semantic
attachments. A condition attachment quickly verifies whether
the robot is positioned correctly in order to interact with the
surface. A grounding attachment adds a pose to the planning
state allowing the planner to evaluate alternative robot poses.
The planning system is able to adopt the number of poses
as necessitated by the task at hand.

In our experiments we examined the influence of sampled
poses on task solving. When sampling poses from surface
maps the robot relies less on a priori given expert knowledge.
In some cases the system could even find a solution, where
predefined poses were insufficient to solve the task. On
average the task could be solved faster and with fewer robot
movements.

REFERENCES

[1] W. Burgard, C. Stachniss, G. Grisetti, B. Steder, R. Kümmerle,
C. Dornhege, M. Ruhnke, A. Kleiner, and J. D. Tardós, “A comparison
of SLAM algorithms based on a graph of relations,” in 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems, October
11-15, 2009, St. Louis, MO, USA, 2009, pp. 2089–2095. [Online].
Available: http://dx.doi.org/10.1109/IROS.2009.5354691

[2] A. Hertle, C. Dornhege, T. Keller, and B. Nebel, “Planning with
semantic attachments: An object-oriented view,” in ECAI 2012
- 20th European Conference on Artificial Intelligence. Including
Prestigious Applications of Artificial Intelligence (PAIS-2012) System
Demonstrations Track, Montpellier, France, August 27-31 , 2012,
2012, pp. 402–407. [Online]. Available: http://dx.doi.org/10.3233/978-
1-61499-098-7-402

[3] N. Vahrenkamp, T. Asfour, and R. Dillmann, “Robot placement
based on reachability inversion,” in 2013 IEEE International
Conference on Robotics and Automation, Karlsruhe, Germany,
May 6-10, 2013, 2013, pp. 1970–1975. [Online]. Available:
http://dx.doi.org/10.1109/ICRA.2013.6630839

[4] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. J. Russell,
and P. Abbeel, “Combined task and motion planning through
an extensible planner-independent interface layer,” in 2014 IEEE
International Conference on Robotics and Automation, ICRA 2014,
Hong Kong, China, May 31 - June 7, 2014, 2014, pp. 639–646.
[Online]. Available: http://dx.doi.org/10.1109/ICRA.2014.6906922

[5] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and
motion planning in the now,” in IEEE International Conference
on Robotics and Automation, ICRA 2011, Shanghai, China,
9-13 May 2011, 2011, pp. 1470–1477. [Online]. Available:
http://dx.doi.org/10.1109/ICRA.2011.5980391

[6] E. Erdem, K. Haspalamutgil, C. Palaz, V. Patoglu, and T. Uras,
“Combining high-level causal reasoning with low-level geometric
reasoning and motion planning for robotic manipulation,” in IEEE
International Conference on Robotics and Automation, ICRA 2011,
Shanghai, China, 9-13 May 2011, 2011, pp. 4575–4581. [Online].
Available: http://dx.doi.org/10.1109/ICRA.2011.5980160

[7] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling,
“Backward-forward search for manipulation planning,” in 2015
IEEE/RSJ International Conference on Intelligent Robots and
Systems, IROS 2015, Hamburg, Germany, September 28 -
October 2, 2015, 2015, pp. 6366–6373. [Online]. Available:
http://dx.doi.org/10.1109/IROS.2015.7354287

[8] M. Toussaint, “Logic-geometric programming: An optimization-
based approach to combined task and motion planning,” in
Proceedings of the Twenty-Fourth International Joint Conference
on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina,
July 25-31, 2015, 2015, pp. 1930–1936. [Online]. Available:
http://ijcai.org/Abstract/15/274

[9] F. Zacharias, C. Borst, and G. Hirzinger, “Capturing robot workspace
structure: representing robot capabilities,” in 2007 IEEE/RSJ
International Conference on Intelligent Robots and Systems, October
29 - November 2, 2007, Sheraton Hotel and Marina, San
Diego, California, USA, 2007, pp. 3229–3236. [Online]. Available:
http://dx.doi.org/10.1109/IROS.2007.4399105

[10] N. Vahrenkamp and T. Asfour, “Representing the robot’s
workspace through constrained manipulability analysis,” Auton.
Robots, vol. 38, no. 1, pp. 17–30, 2015. [Online]. Available:
http://dx.doi.org/10.1007/s10514-014-9394-z

[11] F. Burget and M. Bennewitz, “Stance selection for humanoid
grasping tasks by inverse reachability maps,” in IEEE International
Conference on Robotics and Automation, ICRA 2015, Seattle, WA,
USA, 26-30 May, 2015, 2015, pp. 5669–5674. [Online]. Available:
http://dx.doi.org/10.1109/ICRA.2015.7139993

[12] F. Stulp, A. Fedrizzi, and M. Beetz, “Action-related place-based
mobile manipulation,” in 2009 IEEE/RSJ International Conference
on Intelligent Robots and Systems, October 11-15, 2009, St.
Louis, MO, USA, 2009, pp. 3115–3120. [Online]. Available:
http://dx.doi.org/10.1109/IROS.2009.5354281

[13] C. Dornhege and A. Hertle, “Integrated symbolic planning in
the tidyup-robot project,” in AAAI Spring Symposium - Designing
Intelligent Robots: Reintegrating AI II, Mar. 2013. [Online].
Available: http://www.informatik.uni-freiburg.de/ ki/papers/dornhege-
hertle-aaai13ss.pdf

[14] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss,
and W. Burgard, “OctoMap: An efficient probabilistic 3D
mapping framework based on octrees,” Autonomous Robots, 2013,
software available at http://octomap.github.com. [Online]. Available:
http://octomap.github.com

