
Efficient Extensible Path Planning on 3D Terrain
Using Behavior Modules

Andreas Hertle Christian Dornhege

Abstract— We present a search-based path planning system
for ground robots on three dimensional terrain. Effectively
negotiating such terrain often requires to utilize dedicated robot
hardware and to execute specific behaviors. Our base system
is independent from the actual robot configuration, but can
be customized to a robot’s abilities. We explicitly plan using a
full 3d representation, not requiring any projection or slicing
to a 2d world. The drivable surface manifold is automatically
extracted from the volumetric 3d representation and generic
motions are planned on these surface cells. This is achieved with
behavior modules that integrate robot skills with the search.
Such a behavior module is responsible for defining traversable
surfaces, computing if a motion can be executed, and its cost.
We implement two such modules: One for sloped ground and
ramps, and one for steps and stairs. The approach is evaluated
on simulated real-world environments.

I. INTRODUCTION

Path planning is a central task for a mobile robot system
as it enables the robot to operate in various locations in its
environment. Many approaches focus on generating plans
that only assume robot movements on flat ground, which is
usually due to the robot’s limitations in mobility. However, in
the field of urban search and rescue robots usually operate
in unstructured terrain, and even an intact human-centered
world poses many obstacles for ground robots, such as
ramps, stairs and simple steps, e.g. up a side walk. How
and if an obstacle can be tackled by a robot depends on
its locomotion abilities. Thus to generate paths in three
dimensional terrain it is necessary to take into account the
terrain itself and a robot’s mobility. A generic answer to
this problem is full body motion planning that enables to
plan for any terrain and robot (given the implementation
supports that). Often this is not necessary as robot skills can
be described by certain behaviors like driving up a ramp,
taking a step or simply driving on flat ground.

In this paper we present an efficient and extensible ap-
proach to behavior-based path planning in three dimensional
environments. To be able to adapt to different robots and
skill sets we build our approach around behavior modules.
Behavior modules expose robot skills to the path planner and
are integrated via a generic interface. The world is repre-
sented by a generic 3d occupancy grid using the well known
octomap library [1]. As a first step, we extract drivable
surface cells and their connectivity from 3d volumetric data.

The authors are with the University of Freiburg, Department of Computer
Science, 79110 Freiburg, Germany.

This work was supported by the German Research Foundation (DFG) as
part of the SFB/TR-8 Spatial Cognition project R7 and by the PACMAN
project within the HYBRIS research group (NE 623/13-1).

This reduces our possible search space to two dimensional
manifolds embedded in the 3d world.

Path planning is performed by using a search-based
planning procedure and the search itself is carried out by
the search-based planning library (SBPL) [2]. Its generic
motion primitives allow us to not only consider the robot’s
position, but also its orientation during planning – a feature
unquestionably necessary when dealing with three dimen-
sional terrain where an obstacle cannot be traversed or
even approached from any angle. We define the search
space for planning on the extracted 3d surfaces and relay
the actual state expansions requested by the search (i.e.
specific robot movements) to the behavior modules that
perform skill dependent tests on the 3d terrain along each
motion. Demonstrating the feasibility of this approach are the

Fig. 1. This figure shows an example plan generated by our algorithm. The
three dimensional terrain with ramps and stairs is handled by the specific
behavior modules.

implementations of two behavior modules that we provide:

• The ramp behavior provides the skill for ramps (flat
surfaces at arbitrary angles). A special case is the default
behavior on flat ground with no ramps as a ramp with
zero degrees.

• The step behavior considers steps and in the case of
multiple parallel steps can also handle stairs.

Although behavior modules can be robot specific, both
implementations are independent from the actual robot plat-
form and only require certain skill specific configuration
parameters as e.g. the maximum step height for the robot
platform to be known. An example plan is shown in Figure 1.

The remainder of this paper is structured as follows: After
discussing related work in the following section, we describe
our path planning approach in Section III and the behavior



modules we provide in Section IV. Section V presents an
evaluation of this approach and we conclude in Section VI.

II. RELATED WORK

Motion and path planning is a widely researched area
in robotics. Often applied is sampling based motion plan-
ning [3] that approximates the configuration space randomly.
Many applications have been shown for articulated robots
like planning footsteps for a legged robot through terrain [4].

Search-based planning uses generic search algorithms
as e.g. Anytime Repairing A* [5] to explore the robot’s
configuration space [6] and might use a sampling-based
approximation for that. More often, in this context the
configuration space is built explicitly by expanding actions
during the search. A lot of successful planning approaches
rely on this principle and have been applied to diverse
settings from planning full-body motions during navigation
of a mobile manipulation robot [7] to providing plans to
control autonomous cars [8]. A generic library, the Search-
Based Planning Library (SBPL) [2] is available that provides
search algorithms and allows to customize the search space
and expansions. This library is also used in this work.

Planning on rough terrain is a challenging task that
requires an expressive world model that goes beyond 2d
maps [9]. Even for wheeled or tracked locomotion one must
consider more than just collision-free paths such as the
stability of the robot [10]. In our approach this is mainly
handled by the behavior modules.

Many efficient approaches require a three dimensional
world model at least for collision checking, but are able to
plan in a two dimensional manner [11], when the environ-
ment allow this, even when a more expressive world model is
available [12]. The approach by Dornhege and Kleiner [12]
also uses behaviors, but is much more limited as only the
robot’s position is planned for neglecting the orientation.

Most approaches use 2d maps or 2.5d elevation maps,
which do not generalize to all environments. Consider the
scene in Figure 1, where the robot first traverses a bridge
and then drives beneath it. Richer formalisms like multi-
level surface maps [13] have been used, for example, for
driving in a multi-level parking structure [14]. Kuemmerle
et al. [14] split the graph underlying the representation
into levels to enable applying a two dimensional planning
approach with 3d collision checking. In our case we use
an octree representation for our world model [1]. We make
no assumptions that necessitate to project to a 2d planning
approach and plan directly on the 3d surfaces. Due to the
surface manifold extracted from the 3d data, the search space
is comparable to a 2.5d representation.

III. PATH PLANNING ON 3D GRID MAPS

We employ a search-based approach to path planning
using the SBPL library. Applying this generic approach to
our specific problem makes it necessary to specify: the state
space of the search, the successor function defining what
motions can be used in a state, and a cost function assigning
a cost to those motions.

Our state space S for the search consists of tuples
(x,y,z,ψ), where x,y,z define a position in 3d space and ψ

gives the yaw angle of the robot. Coordinates are discretized
to the map resolution and yaw angles are discretized into
K bins to match similar states and close them during the
search. In our experiments we use K = 16. A continuous 6-
dof pose (x,y,z,φ ,θ ,ψ) is attached to each state, where the
x,y,ψ coordinates are determined by the expansion and the z
coordinate, roll angle φ and pitch angle θ are derived given
the terrain.

The successor generation is based on motion primitives –
generic relative motions, e.g. move one meter forward, that
are applied to the current state by the SBPL library resulting
in queries in absolute coordinates. They allow to customize
the path planner to the robot’s locomotive capabilities. Each
behavior module encapsulates a specific navigation skill and
defines the possible motion primitives and if a motion is
applicable in a state and its cost.

A. Surface extraction from 3d terrain

(a)

(b)
Fig. 2. This figure shows the surface extraction for the behavior modules
introduced in Section IV. The input is a 3d occupancy map showing a steep
ramp and stairs (a). Extracted surface cells are shown in (b). Ground cells
are displayed in green, border cells in red and inflated cells in orange.

Grid maps provide a volumetric representation of 3d data.
However, path planning for ground robots only needs to
consider the surface when looking for valid paths as a
robot can never be inside or levitating above the actual
geometry. Other approaches split the world in multiple levels
and use a 2d search space within those levels, which is a
valid simplification for man-made structures like buildings.
However, as we are aiming for a more generic application



scenario this is not possible and given our system also not
necessary.

Surface cells are extracted as a fast preprocessing step.
We use generic and module specific conditions to determine
which cells are valid surface cells. Information computed in
this step is stored in the cells and forms the surface map. One
important feature for this step and also later considerations
is the surface normal. Normal vectors are computed from
raw sensor data by a multi-resolution plane segmentation
algorithm [15] while constructing the map and attached to
individual cells. This allows us to take advantage of the
full sensor resolution and thus increases the precision of the
surface normals.

A first generic condition is that there is a minimum of
zR free space above each cell, where zR is the height of
the robot in any configuration. The second generic condition
rules out all cells with surface normals that are tilted more
than the robot’s safe operation limits in pitch (θmax) and roll
(φmax) to the z-axis. In addition each module must declare
if it can traverse to any neighboring cell. As long as any
module names a cell traversable it is kept. It is important to
note that this is only a relaxed condition, i.e., a module must
not declare a cell untraversable, if there might be any way
to do so.

In particular this means that such tests are independent
from the actual robot pose. If a cell can be passed by a
specific motion is determined later during the actual search.
We denote all such cells that can be traversed ground cells
and cells that have a non-traversable neighbor by all modules
border cells. These cells are equivalent to obstacles in
traditional grid-based path planning. As a final preprocessing
step we perform “obstacle growing” for all ground cells
marking those that are closer to a border cell than the
interior radius of the robot’s footprint. This information is
used later for computing an efficient heuristic. An example
of the resulting cells is shown in Figure 2. The process is
illustrated in Figure 4.

B. Search-based planning with behavior modules

Each behavior module must provide two things related
to the actual search: a set of motion primitives and a
cost function. A motion primitive defines a displacement
(δx,δy,δψ) as shown in Figure 3(a). As we search in
discretized space we precompute discretized displacements
for each motion primitive and all K yaw angles and store the
set of all motion primitives M. The cost function assigns a
cost to each motion primitive for each state as cost : S×M→
R+ ∪{∞}. Returning infinite cost means that the motion is
not applicable.

The successor generation performs state expansions and
applies all motion primitives to the current state. Computa-
tion is then handed off to each module’s cost function. All
transitions that give finite cost are declared successor states
and thus entered in the open queue for the search procedure.

As it is common with search-based algorithms, we use
informed search with a heuristic estimate. We base our
heuristics on the predicted travel distance and the robot’s

(a) (b)
Fig. 3. This figure illustrates the use of motion primitives in a state
expansion. Three long distance motion primitives, and two primitives for
turning on the spot are shown (a). The long distance motion primitive with
start pose (black) and end pose (blue) is expanded. Yellow cells visualize the
robot footprint of the start pose, green cells visualize the cells intersected
by the robot footprint during this motion. (b)

velocity on flat ground under the assumption that in compar-
ison to flat ground any obstacle behavior will result in higher
costs, thus achieving an admissible estimate. Besides the
commonly used Euclidean distance metric, which we call he,
we also use a shortest path search on the ground cells denoted
as hSP. This heuristic is analogous to two dimensional grid-
based path planning methods with the distinction that the
ground cells are a subset of the three dimensional space
and its topology and in general cannot be projected to a
2d grid. We compute the shortest path through all connected
ground cells that are not inflated, i.e. so that the clearance to
the nearest border is greater or equal to the robot’s interior
radius. We can utilize the SBPL library’s A* implementation
for this. As no orientations or movements are considered this
heuristic considers a relaxation of the actual search.

IV. GENERIC BEHAVIOR MODULES

A. Ramped Ground Module

The ramped ground behavior module provides our default
behavior on ground, where no additional robot skills need to
be considered. The module handles flat pieces at arbitrary
angles that are connected without any notable steps, i.e.
connected ramps. Normal floors without any ramp angles
are just a special case with a zero degree angle.

If a robot can move on a certain ramp part is defined by
a number of limits determined by the robots mobility. When
negotiating obstacles robots usually move considerably slow
and thus we consider static parameters to determine a stable
pose. The slope expressed by the normal vectors of the
ground cells must not exceed the robot’s roll limit φmaxR or
pitch limit θmaxR , to prevent the robot from tipping over. A
robot will be able to move over small bumps without special
considerations, so any height difference smaller than the limit
∆zbump can be treated as continuous ground. In addition we
want to prevent dangerous changes in roll or pitch angle
between two successive poses in a path, e.g. when traversing
from a steep upward slope to a steep downward slope. Thus
we introduce a maximum roll angle difference ∆φmaxR and a
maximum pitch angle difference ∆θmaxR .

Expanding states during path planning must be as efficient
as possible. In particular, we want to avoid wasting resources
on motions that end up in unfeasible poses. We can provide
meaningful relaxed limits during the computation of the
surface map. ∆zbump is independent from the robot pose. We



enforce the ∆zbump limit in the surface map, by checking
the height difference between neighbor ground cells in the
map. To enforce angle limits a full 6d robot pose is required,
thus these limits can only be validated at state expansions
during planning. Instead we check a relaxed limit αmaxR =
max(φmaxR ,θmaxR). The intuition behind αmaxR is that the
robot cannot stand on ground more inclined than both, pitch
and roll limits, independent of its particular orientation.

For this module we provide seven motion primitives. Two
short distance motions, forward and backward, two turns on
the spot, clockwise and counter clockwise and three long
distance motions, one straight and the others slightly curved
left and right.

(a) (b)

(c) (d)
Fig. 4. Vertical cut through a map: (a) Occupied cells are shown gray, free
cells white. (b) Ground cells are colored green. Green lines indicate, which
cells must be unoccupied to be classified as ground. Red lines indicate,
where the ceiling is too low. (c) Green lines show the neighbor relation
between cells. Red lines show where cells lack neighbors. These border
cells are classified as obstacles. (d) Grown obstacle cells are colored orange.

When expanding a state during search, we apply the
displacement of each motion primitive to the robot pose of
the current state. This gives us x, y and ψ coordinates of
the newly generated state. From our surface map we can
retrieve all ground cells with these x and y coordinates. The
cell vertically closest to the expanded state determines the z
coordinate of the new state and the normal vector associated
with that ground cell. From the normal vector and the yaw
angle ψ we can compute the missing roll and pitch angles.
This full 6d pose allows to verify the safety limits.

In addition, we examine the intersecting cells associated
with the motion primitive (see Figure 3(b)). Should any limit
be violated or any intersecting cells not within the surface
map, this motion primitive is not applicable. This process
is equivalent to collision checking in traditional grid based
path planning.

After verifying the applicability of a motion primitive, we
calculate its costs. The cost of each motion cm is determined
by the linear distance dlinear and the angular distance dangular
traveled according to

cm = max(dlinear · vlinear,dangular · vangular)

where vlinear and vangular are the robot’s linear and angular
velocities. We penalize some primitives with a cost factor
cp. For backward motions cp = 5, for all others cp = 1.

In addition, getting close to safety limits is undesirable
and thus included in the costs. We collect all safety limits in
a vector LR and the matching actual values for this motion
in a vector L. The final costs for a motion are defined as

c = cm · cp ·

(
1+ ∑

(l,lR)∈(L,LR)

l
lR
·wl

)
where wl are weights for each limit that allow to adjust the
importance of the limits for the cost computation.

B. Step Module

The step module is designed to plan over steps and stairs.
In this context we define steps as regular structures with a
height difference that forms a straight line edge. This module
is not intended to plan over curved or jagged edges. Driving
over steps severely constrains the robot’s ability to maneuver.
For instance the friction between the tracks and the ground
is considerably lower, since the area of contact is reduced
to the edges of the steps. Therefore, we require the robot to
be aligned nearly orthogonal to a step’s edge (up to a limit
∆ψedge) and we do not allow rotating motions on steps. As
a result, this module can handle single steps and stairs with
parallel steps, but does not allow more generic cases as, e.g.
spiral stairs.

To find steps in our map, we identify ground cells, where
at least one neighbor has a certain height difference. The
maximum step height ∆zstep is derived from the robots ability
to climb. The minimum step height is identical to ∆zbump
from the ramp module, since any height difference below
that threshold is considered continuous ground. Any ground
cell with at least one neighbor within this height threshold
is classified as a possible step cell.

Since we disallow turns on steps, we only have motion
primitives for two straight forward motions – long and short
– and one short backward motion. During expansions we
examine the intersecting cells of motion primitives (as in
Figure 3(b)) and retrieve all step cells contained therein. The
goal is to find straight and parallel edges forming steps in
those cells. We fit lines into clusters of connected step cells
using a least squares method. With these extracted edges we
can easily detect step cells producing crooked or irregular
edges and do not expand over those cells. The extracted
edges are attached to the current state eliminating the need to
re-fit lines to the same step cells for subsequent expansions.
We compare the yaw angle ψ of the robot pose against the
direction of all extracted edges and do not expand this motion
should any edge differ more than the limit ∆ψedge.

At this stage we compute the missing coordinates of the
new pose, namely z, θ and φ . Unlike the ramped ground
module these values cannot be simply obtained form the
ground cells beneath the new pose. Instead, we consider
contact points between the robot and the extracted edges.
The limits we impose on the edges and the direction of
the robot greatly restrict the possible constellations between



robot and edges. Thus we can reduce the full 3d contact
point calculation to a 2d approximation by projecting onto
the plane spanned by the robot’s orientation and the z axis
in the map. Figure 5 illustrates the situation. We obtain one
contact point from each edge. Two additional contact points
are added, derived from the ground cells at the front and back
of the robot. In this simplified 2d situation a naive linear
time algorithm gives us the two contact points supporting
the robot base. From the line through both contact points we
get the z coordinate for the robot pose and the pitch angle
θ . The roll angle φ is obtained from the edge direction of
the contact point with the lowest z coordinate, as intuitively a
greater part of the robot’s weight pushes on the lower contact
point.

(a) (b)
Fig. 5. This figure illustrates the contact point computation of a robot
climbing stairs (side view). (a) The solid black line indicates where the robot
pose could be located once the z coordinate is determined. Four potential
contact points (yellow) are derived from steps edges and the extent of the
robot base (black dots). (b) The two contact points (green) are discovered
by iterating through potential contact points and comparing the slope of the
connecting line. Potential contact points below that line are discarded (red).
The intersection of the connecting line determines the z and θ coordinates
of the new pose (blue).

Once we know the full robot pose, we can enforce angle
and angle difference limits similar to the ramped ground
module. The cost is computed in the same way. However,
we provide different values for the roll and pitch limits and
weights for the step module since it might be intended to
further reduce the allowed roll and pitch angles on stairs,
depending on the mobility of the robot.

V. EVALUATION

We evaluate our algorithm on different maps recorded
from the Gazebo simulator. The terrain was modeled using
obstacles standardized by NIST for robot evaluations such
as ramps, steps and stairs that are also used in Robocup
Rescue [16]. A tool is available to create such worlds [17].
For mapping a 3d range sensor is moved through the envi-
ronment and its point clouds are input into normal extraction
and mapping with poses from the simulation. As an anytime
search algorithm we use the Anytime Repairing A* [5]. An
initial weight of w= 5 is used for planning and reduced when
a plan is found. When w = 1 the solution is optimal.

We use four maps in our experiments. An overview of the
maps is shown in Figure 6.
• Robocup German Open 2011 Rescue Arena

(go 2011) is a reconstruction of the actual Robocup
Rescue Arena from the competition in 2011. This map
was provided by the Darmstadt Rescue Robot Team.

(a) (b)

(c) (d)
Fig. 6. This figure shows an overview of the maps used in the experiments:
Robocup German Open 2011 Rescue Arena (a) Ramped Maze (b) Freiburg
Virtual Arena (c) Freiburg Virtual Arena with flat ground (d).

• The Ramped Maze (dc maze) is a reconstruction of a
test arena used during a response robot evaluation in the
Disaster City test site in Texas. It features a large scale
narrow maze with sloped ground. Like its real world
counterpart the complete area is tilted by 15 degrees.

• Freiburg Arena (fr arena) is a custom built map. Its
main features include criss-crossing ramps providing
a strong challenge for traditional path planning ap-
proaches, a second level connected by stairs and steep
ramps to the ground level and rubble blocking off parts
of the arena.

• Freiburg Flat Arena (fr flat) is a modification of the
Freiburg Arena with completely flat ground and no
ramps or rubble. The second level is inaccessible.

For each of our experiments we sample 7 random poses
on every map. Each pose may not be closer than 3 meters
to other poses ensuring good coverage of available terrain.
We produce plans for all permutations of start and end poses,
resulting in 42 plan requests. This is repeated with a different
random seed to get a total of 84 requests per map.

In our first experiment we compare our approach to
a conventional path planner performing a 2d grid based
expansion scheme that serves as a base line. This experiment
is conducted on the Freiburg Flat Arena, where conventional
path planning approaches are applicable. Table I shows the
results of the base line and our approach using the Euclidean
heuristic he and the shortest path heuristic hSP. Our algorithm
requires significantly more time to find the optimal solution
compared to the base line. However, when combined with
the shortest path heuristic a suboptimal first solution can be
found within a time span suitable for autonomous robots.

The second experiment evaluates the performance of our
algorithm on the remaining three maps with difficult terrain.
The base line comparison is not available as it cannot cope
with the terrain. The results can be seen in Table II. Our
algorithm combined with the Euclidean distance heuristic
finds the first path after about 10 to 20 seconds. Combined



base line he hSP

time [s] to first 0.03 ± 0.06 2.76 ± 4.57 0.66 ± 0.16
time [s] to optimal 0.12 ± 0.15 41.90 ± 46.54 40.75 ± 25.33

TABLE I
THIS TABLE SHOWS THE AVERAGE TIME IN SECONDS UNTIL THE FIRST

SOLUTION IS FOUND AND THE TIME UNTIL THE OPTIMAL SOLUTION IS

FOUND. WE COMPARE THE BASE LINE APPROACH USING A GRID BASED

2D EXPANSION TO OUR ALGORITHM THAT ADDITIONALLY CONSIDERS

LOCOMOTIVE CAPABILITIES OF THE ROBOT.

with the shortest path heuristic, this time is reduced to 0.81 -
3.25 seconds, making our algorithm feasible for online use.
The optimal path is found after no less than 80 seconds,
which is clearly infeasible for autonomous operation.

We also investigate the quality of the first solution that is
found. The suboptimality overhead computes the cost of the
first plan divided by the optimal path cost and thus indicates
how much more costly the first path actually is. While the
first path may be up to 25 percent longer than the optimal
path, it requires orders of magnitude less time and state
expansions to compute and still provides a reasonable path
to follow. We also observe that the shortest path heuristic
outperforms the Euclidean distance heuristic in finding the
first solution.

he hSP

go 2011

time to first [s] 7.61 ± 8.09 0.81 ± 0.38
time to optimal [s] 96.36 ± 111.16 79.13 ± 83.26

1000 exp to first 21.54 ± 23.02 0.81 ± 0.97
1000 exp to optimal 264.43 ± 294.31 198.29 ± 216.18

suboptimality 1.22 ± 0.20 1.25 ± 0.12

dc maze

time to first[s] 11.57 ± 25.28 0.93 ± 0.40
time to optimal[s] 102.28 ± 140.99 79.45 ± 89.76

1000 exp to first 34.26 ± 56.51 1.47 ± 1.30
1000 exp to optimal 295.29 ± 351.14 204.40 ± 200.70

suboptimality 1.06 ± 0.05 1.25 ± 0.09

fr arena

time to first [s] 21.20 ± 22.44 3.25 ± 2.94
time to optimal [s] 207.57 ± 193.89 149.93 ± 139.02

1000 exp to first 55.65 ± 57.39 6.57 ± 6.74
1000 exp to optimal 554.14 ± 516.19 367.43 ± 337.59

suboptimality 1.13 ± 0.08 1.17 ± 0.10

TABLE II
THIS TABLE SHOWS THE AVERAGE PERFORMANCE FOR OUR

ALGORITHM USING THE EUCLIDEAN DISTANCE HEURISTIC (he) AND

THE SHORTEST PATH HEURISTIC (hSP). WE RECORDED THE AVERAGE

TIME IN SECONDS AND NUMBER OF STATE EXPANSIONS IN THOUSANDS

UNTIL THE FIRST AND OPTIMAL SOLUTION WAS FOUND. ADDITIONALLY

WE GIVE THE SUBOPTIMALITY OVERHEAD, I.E. THE COST FOR THE

FIRST SOLUTION DIVIDED BY THE OPTIMAL PATH COSTS.

VI. CONCLUSION

We presented a path planning algorithm for difficult three
dimensional terrain that utilizes generic behavior modules
to adopt the planning process to the robot’s locomotive
capabilities. Our algorithm expands with motion primitives,
planning a path on the drivable manifold derived from a
full 3d representation of the environment. We also provided
two generic behavior modules that allow to plan on sloped

ground and over steps and stairs. For efficient search we
used a more informed heuristic than the ubiquitous Euclidean
distance and the evaluation showed that our algorithm is
able to produce plans in a reasonable time frame and an
acceptable loss of optimality.

In future work we plan to move beyond simulation and
evaluate our algorithm in greater depth on real robots as our
Mesa Element shown in Figure 1. Furthermore, we intent to
explore the full potential of our generic module interface by
integrating behavior modules that consider advanced robot
actuators like flippers.

REFERENCES

[1] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “Octomap: A probabilistic, flexible, and compact 3d map repre-
sentation for robotic systems,” in Proc. of the ICRA 2010 workshop on
best practice in 3D perception and modeling for mobile manipulation,
vol. 2, 2010.

[2] M. Likhachev, http://www.sbpl.net.
[3] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, “Probabilistic

roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp.
566–580, 1996.

[4] K. Hauser, T. Bretl, J. Latombe, and B. Wilcox, “Motion planning for
a six-legged lunar robot,” in Workshop on Algorithmic Foundations of
Robotics (WAFR), 2006.

[5] M. Likhachev, G. Gordon, and S. Thrun, “ARA*: Anytime A* with
provable bounds on sub-optimality,” in Proceedings of Advances in
Neural Information Processing Conference (NIPS). MIT Press, 2004.

[6] J. P. Gonzalez and M. Likhachev, “Search-based planning with prov-
able suboptimality bounds for continuous state spaces,” in Fourth
Annual Symposium on Combinatorial Search, 2011.

[7] A. Hornung, M. Phillips, E. Gil Jones, M. Bennewitz, M. Likhachev,
and S. Chitta, “Navigation in three-dimensional cluttered environments
for mobile manipulation,” in Proceedings of IEEE International Con-
ference on Robotics and Automation (ICRA). IEEE, 2012, pp. 423–
429.

[8] M. Likhachev and D. Ferguson, “Planning long dynamically-
feasible maneuvers for autonomous vehicles,” International Journal
of Robotics Research, vol. 8, pp. 933–945, 2009.

[9] P. Vernaza, M. Likhachev, S. Bhattacharya, S. Chitta, A. Kushleyev,
and D. D. Lee, “Search-based planning for a legged robot over rough
terrain,” in Proceedings of IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2009, pp. 2380–2387.

[10] M. Norouzi, F. D. Bruijn, and J. V. Mir, “Planning stable paths for
urban search and rescue robots,” in RoboCup 2011: Robot Soccer
World Cup XV, 2011.

[11] R. Kümmerle, M. Ruhnke, B. Steder, C. Stachniss, and W. Burgard,
“A navigation system for robots operating in crowded urban environ-
ments,” in Proc. of the IEEE Int. Conf. on Robotics and Automation
(ICRA), 2013, to appear.

[12] C. Dornhege and A. Kleiner, “Behavior maps for online planning of
obstacle negotiation and climbing on rough terrain,” in Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), San Diego, California, 2007, pp. 3005–3011.

[13] P. Pfaff and W. Burgard, “An efficient extension of elevation maps for
outdoor terrain mapping,” in Field and Service Robotics. Springer,
2006, pp. 195–206.

[14] R. Kümmerle, D. Hähnel, D. Dolgov, S. Thrun, and W. Burgard,
“Autonomous driving in a multi-level parking structure,” in Proc. of
the IEEE Int. Conf. on Robotics and Automation (ICRA), Kobe, Japan,
May 2009, pp. 3395–3400.

[15] B. Oehler, J. Stueckler, J. Welle, D. Schulz, and S. Behnke, “Efficient
multi-resolution plane segmentation of 3d point clouds,” in Proceed-
ings of the 4th international conference on Intelligent Robotics and
Applications. Springer-Verlag, 2011, pp. 145–156.

[16] A. Jacoff, B. Weiss, and E. Messina, “Evolution of a performance
metric for urban search and rescue robots,” in Performance Metrics
for Intelligent Systems, 2003.

[17] J. Simon and S. Kohlbrecher, http://ros.org/wiki/hector nist arenas
gazebo.


