
Accuracy of Admissible Heuristic Functions in Selected Planning Domains

Malte Helmert and Robert Mattmüller
Albert-Ludwigs-Universität Freiburg, Germany
{helmert,mattmuel}@informatik.uni-freiburg.de

Abstract

The efficiency of optimal planning algorithms based on
heuristic search crucially depends on the accuracy of the
heuristic function used to guide the search. Often, we are in-
terested in domain-independent heuristics for planning. In or-
der to assess the limitations of domain-independent heuristic
planning, we analyze the (in)accuracy of common domain-
independent planning heuristics in the IPC benchmark do-
mains. For a selection of these domains, we analytically
investigate the accuracy of the h+ heuristic, the hm family
of heuristics, and certain (additive) pattern database heuris-
tics, compared to the perfect heuristic h∗. Whereas h+ and
additive pattern database heuristics usually return cost esti-
mates proportional to the true cost, non-additive hm and non-
additive pattern-database heuristics can yield results underes-
timating the true cost by arbitrarily large factors.

Introduction
Heuristic search with A∗ and similar algorithms remains the
most popular method for optimal sequential planning, with
significant effort spent on perfecting old heuristic estima-
tors (Haslum et al. 2007) or deriving new ones (Helmert,
Haslum, and Hoffmann 2007). While methods not based
on state-space search have achieved remarkable success in
addressing related problems, such as optimal parallel plan-
ning (Kautz and Selman 1996; 1999), the state of the art
in optimal sequential planning is still defined by heuristic
search almost exclusively. Symbolic state-space exploration
(Edelkamp and Helmert 2001) is the only non-classical ap-
proach that sometimes outperforms heuristic search.

Considering the important role of admissible heuristics
for optimal sequential planning, or search in general, the
question arises how to evaluate the quality of a given heuris-
tic. A popular method is to run a search algorithm against
some benchmark tasks and count the number of node expan-
sions. The fewer nodes an algorithm expands, the better.

While experiments of this kind are certainly useful, there
are some questions they cannot address. In particular, their
results can almost exclusively be interpreted with relative,
i. e., comparative statements: “Heuristic h expands fewer
nodes than heuristic h′ for benchmark suite X .” Unless ex-
periments show polynomial scaling behavior on a family of

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

benchmark tasks of growing size, which they very rarely do,
the data usually does not lend itself to absolute statements
of the type “Heuristic h is well-suited for solving tasks from
benchmark suite X .” In this contribution, we address this
issue by providing absolute quality results for certain popu-
lar planning heuristics on some popular benchmark domains
taken from the first four International Planning Competi-
tions (McDermott 2000; Bacchus 2001; Long and Fox 2003;
Hoffmann and Edelkamp 2005), in the form of comparisons
to the perfect heuristic function h∗.

Planning Domains
We consider the planning domains GRIPPER, LOGISTICS,
BLOCKSWORLD, MICONIC-STRIPS, MICONIC-SIMPLE-
ADL, SCHEDULE and SATELLITE. Familiarity with the do-
mains is assumed. For an in-depth treatment, we refer to the
literature (Helmert 2008).

Heuristics
We compare the accuracy of h+, hm, non-additive and addi-
tive pattern database (PDB) heuristics relative to the perfect
heuristic h∗. An admissible heuristic h maps states s to op-
timistic estimates of the true cost of reaching a goal state
from s. Whenever the planning task to which s belongs, in-
cluding the available operators and the goal description, is
clear from the context, we will simply write h(s) without
explicitly mentioning operators or goal.

The h∗ Heuristic The perfect heuristic h∗ assigns to
each state s the length of a shortest plan from s to a goal
state. Computing h∗ for the initial state of a planning task is
PSPACE-equivalent in general (Bylander 1994), but can be
easier for fixed domains. For the domains we consider, the
problem is NP-equivalent, with the exception of GRIPPER
and SCHEDULE, where it is polynomial (Helmert 2008).

The h+ Heuristic The h+ heuristic (McDermott 1996;
Bonet and Geffner 2001; Hoffmann 2005) assigns to each
state s of a task T the length of a shortest plan leading from
s to a goal state in the relaxed task T +. Evaluating h+ is NP-
equivalent in general (Bylander 1994), but easier for many
of the domains we consider.

The hm Family of Heuristics The hm, m = 1, 2, . . .,
family of heuristics (Haslum and Geffner 2000) is based on

the relaxation where the cost of reaching a state with n sat-
isfied atoms is approximated by the highest cost of reaching
a subset with at most m satisfied atoms. It can be computed
in polynomial time, with the degree of the polynomial de-
pending on m. Recently, the hm family has been extended
by introducing additive hm heuristics (Haslum, Bonet, and
Geffner 2005). The results we present for the hm family do
not apply to their additive counterpart.

PDB Heuristics PDB heuristics (Culberson and Schaef-
fer 1998) are computed by projecting the state space onto a
subset of the state variables and computing the shortest plan
in the resulting abstract state space. As these abstractions
are solution preserving, abstract solutions are never longer
than corresponding concrete ones, making the heuristic ad-
missible. In the case of PDB heuristics we will argue about
multi-valued state variable representations instead of binary
ones, because this is what all existing PDB planners use.

Possible PDB heuristics for a task are parametrized by
the set of variables retained in the abstraction (the pattern).
The maximum number M of such state variables should be
small since the number of states in the abstract task as well
as the time to compute and the memory to store a PDB for
M variables is exponential in M . PDB heuristics can be
computed in polynomial time in the task size n only if M ∈
O(log n). We will in the following adhere to this restriction.

Additive PDB Heuristics Most search algorithms that
use PDB heuristics consider more than one pattern for de-
riving their heuristic estimates. Two patterns are considered
additive (Haslum et al. 2007) if no operator modifies vari-
ables from both patterns. If patterns are additive, then sum-
ming up the entries from the PDB is still guaranteed to yield
a value not greater than the true cost, i. e., the heuristic ob-
tained by summation is admissible.

An additive PDB heuristic assigns to each state such a
sum of additive pattern values. As in the case of regular
PDBs, we must restrict the size of individual patterns by
O(log n) for task size n for polynomial-time computability.

Note that it is common to not just consider one sum of in-
dividual pattern heuristics, but maximize over several such
sums. For example, Haslum et al. (2007) define the canoni-
cal heuristic function for a set of patterns as a maximum over
all additive sums of pattern heuristics. In this work, we limit
ourselves to additive PDB heuristics without maximization
over several sums, leaving this extension for future work.

Accuracy
By definition, the h∗ heuristic is exact, i. e., it returns the
length of a shortest plan. For the other heuristics, we give
domain-dependent worst-case bounds on the accuracy rela-
tive to h∗ and show that these bounds are tight in the sense
that there are families of increasing-size tasks for which the
accuracy tends towards the respective bound.

Formally, given a planning domain D and heuristic h,
we want to find the asymptotic accuracy of h in D. More
precisely, we want to find a value α ∈ R such that (a)
for all legal initial states s in all tasks T of domain D,
h(s) ≥ αh∗(s) + o(h∗(s)), and (b) there is a family of
tasks (Tn)n∈N in D and solvable initial states (sn)n∈N such

that sn belongs to Tn, h∗(sn) → ∞ for n → ∞ and
h(sn) ≤ αh∗(sn) + o(h∗(sn)).

In other words, h is never worse than αh∗ (plus a sublin-
ear term), and it can become as bad as αh∗ (plus a sublinear
term) for arbitrarily large inputs. These conditions can only
be satisfied for a single value α; moreover, there must be
a value α ∈ [0, 1] which satisfies them for a given heuristic
and domain. We denote this constant by α(h,D). Moreover,
by α(h, s) we denote the ratio h(s)/h∗(s) (we only consider
non-goal states; otherwise α(h, s) is undefined). We simply
write α(s) when the heuristic is clear from the context.

Results
Accuracy of h+

First, we investigate the accuracy of the h+ heuristic. As
a general observation, h+(s), if not infinite, is always
bounded by a linear term in the number of propositional state
variables of the task. Therefore, for all domains D where
there exists a family of tasks (Tn)n∈N of growing size where
optimal solution lengths grow super-linearly with task size
(formally, h∗(sn) = ω(‖Tn‖) for states sn of Tn), we must
have α(h+,D) = 0. However, none of the benchmark do-
mains we study has this property – they can all be solved by
linear-sized plans.

GRIPPER Let sn be a state with n > 0 balls still at their
start location. We assume the robot is at the balls’ start loca-
tion, both grippers are empty and n is even. Otherwise, the
h∗ and h+ values can increase by a small constant. The op-
timal plan consists of n pick-up and drop actions each, n/2
forth moves (holding two balls) and n/2 − 1 back moves
(with empty grippers). Thus, h∗(sn) = 3n − 1. In the re-
laxed task, the robot can be at both locations simultaneously
after having performed its first move action. Together with
the 2n pick-up and drop actions still necessary, this gives
an optimal relaxed plan length of h+(sn) = 2n + 1. Thus,
α(sn) = (2n+1)/(3n−1) > 2/3. On the other hand, for the
family (sn)n∈N of tasks described above, limn→∞ α(sn) =
2/3. Thus, α(h+,GRIPPER) = 2/3.

LOGISTICS Consider a state sn with n cities, no airports,
and for each city ci, two locations `i1 and `i2, one truck ti
located at `i1, and one package with origin `i2 and destina-
tion `i1. An optimal plan consists of 4n actions, namely two
drive, one pick-up and one drop action in each city. An op-
timal relaxed plan only needs three actions per city since
the second drive action can be omitted because the atom
at(ti, `i1) holding initially is never deleted. Thus, we get
α(h+, LOGISTICS) ≤ 3/4.

For the other direction, we show that h+ ≥ 3/4h∗ for
all LOGISTICS tasks. Of the results presented in this pa-
per, this one has the most complicated proof, which we can
only sketch here for space reasons. The delivery graph of
a LOGISTICS task is the directed multigraph which contains
an arc from location u to location v if some package needs
to be moved from u to v. We can show that it is sufficient
to consider the case where the delivery graph is weakly con-
nected and satisfies certain additional properties, such as all
vertices having an indegree and outdegree of at least 1, and

there is only one airplane. For that case, we consider a par-
ticular three-phase plan: first, collect packages in each city
and deliver them to the airport, if necessary; second, solve
the (MICONIC-STRIPS-like) task for the airplane optimally;
third, distribute packages in the cities. We can show that the
length L of this plan is at most 4/3h+(s). Since obviously
L ≥ h∗(s), this implies that h+ ≥ 3/4h∗. Together with the
upper bound, we get α(h+, LOGISTICS) = 3/4.

BLOCKSWORLD Let us first consider the family (sn)n∈N
of states where sn consists of one stackB1, . . . , Bn+1 (from
top to bottom) and another singleton stack Bn+2 and the
goal is to produce the stack B1, . . . , Bn, Bn+2, with the po-
sition ofBn+1 not being important. One optimal plan for sn
consists of n − 1 pairs of unstack and put-down actions to
put the blocks B1, . . . , Bn−1 on the table, one unstack and
stack action to move Bn from Bn+1 to Bn+2, and n − 1
pairs of pick-up and stack actions to rebuild the stack on top
of block Bn. Thus, h∗(sn) = 4n − 2. In order to solve
the relaxed task, we have to unstack blocks B1, . . . , Bn

in order to add the holding(Bn) proposition. We can un-
stack all blocks without emptying the hand as the proposi-
tion handempty is true initially and is never falsified. To sat-
isfy the goal, we then only need to stack Bn on Bn+2. The
rest of the stack does not need to be rebuilt, as all propo-
sitions on(Bi, Bi+1) for i < n still hold. This means that
limn→∞ α(sn) = limn→∞(n+ 1)/(4n− 2) = 1/4.

For the other direction of the proof, we will show that
h+(s) ≥ 1/4h∗(s) + d for a constant d ∈ N in all non-goal
BLOCKSWORLD states. Consider a block B. If B is not
touched in an optimal plan, it is not touched in an optimal
relaxed plan either. If it is touched in an optimal plan, there
are at most four actions moving B around, as it is always
sufficient to pick-up/unstack and put-down/stack B once or
twice. At least one of those up to four actions is also needed
in an optimal relaxed plan. Therefore, h+(s) ≥ 1/4h∗(s),
and thus α(h+,BLOCKSWORLD) = 1/4.

MICONIC-STRIPS Consider a state sn with 2n + 1
locations, where location 0 is the elevator start location.
There are 2n passengers, one waiting at each location i =
1, . . . , 2n. The destination of the passenger at location i is
i + 1 if i is odd and i − 1 if i is even. The optimal so-
lution contains precisely seven actions per passenger pair,
i. e., h∗(sn) = 7n. In the relaxed task, a shortest plan is es-
sentially the same as in the original task, the only exception
being the fact that we can save one move action per loca-
tion pair (the second move action back to the location visited
twice). Therefore, h+(sn) = 6n and limn→∞ α(sn) = 6/7.

To see that h+(s) ≥ 6/7h∗(s) + d for all MICONIC-
STRIPS states s and a suitable constant d, note that the only
actions that can potentially be saved in a relaxed plan are
move actions when a location has to be visited twice. There
is never a need to visit a location ` more than twice. A lo-
cation may only need to be visited twice if it is part of a
cycle in the graph defined by the “passenger edges”. The
shortest such cycle consists of just two locations. This is
exactly the case in the task family described above. In that
case, one in seven actions can be saved in a relaxed plan.
If some passenger origin or destination locations are shared,

the ratio of actions that can be skipped in a relaxed plan only
decreases. The same holds if the length of the “passenger cy-
cles” increases. Therefore, at least 6 out of 7 actions from
an optimal plan are also needed in an optimal relaxed plan.
Consequently, α(h+,MICONIC-STRIPS) = 6/7.

MICONIC-SIMPLE-ADL Assume that there are n floors
and each floor is origin or destination of at least one pas-
senger. Let K∗ be the size of a minimum feedback ver-
tex set for the dependency graph given by the passengers’
origin-destination arcs. Then, in an optimal plan, there are
n + K∗ or n + K∗ − 1 move and n + K∗ stop actions. In
a corresponding relaxed plan, the n + K∗ stop actions are
still necessary, but n − 1 move actions are sufficient as the
lift-at(f) propositions once added are never removed. This
gives an accuracy bounded by (2n+K∗−1)/(2n+2K∗) ≥
1− (n+ 1)/(2n+ 2n)→ 3/4. This bound is reached if the
dependency graph is complete, which can be achieved for
tasks of any size by including n(n − 1) passengers in the
task that need to move from each floor to each other floor.
We thus get α(h+,MICONIC-SIMPLE-ADL) = 3/4.

SCHEDULE The objective in the SCHEDULE domain is to
change certain attributes of (some of) the parts to work on,
which can include their shape, surface condition and color.
Parts also have a temperature, but there are no goals defined
on that. We consider states sn defined as follows: All ma-
chines and parts are currently available, and there are n parts
which are currently polished, colored blue, and have no par-
ticular shape. The goal is to have all these parts polished,
blue, and in cylindrical shape. Observe that in the SCHED-
ULE domain there are two types of actions, namely transfor-
mation actions and time-step actions, but in a relaxed plan
the latter are never necessary. In particular, a relaxed plan
for sn simply applies the do-lathe operator to each part, so
h+(sn) = n. An actual optimal plan must however ap-
ply a sequence of three operators for each part, including
the do-lathe operator, the do-polish operator, and either do-
spray-paint or do-immersion-paint. The latter are necessary
because the do-lathe operator, which is necessary for ob-
taining the cylindrical shape, removes the polish and color
from the part. (There are certain ordering constraints be-
tween these operators, but we do not discuss them in detail.)
Moreover, n + 1 time-step actions are necessary: n time-
step actions are needed until all parts have been lathed and
the last lathed part is available again, and then one more
time-step action is needed to polish and paint the last part (a
time-step action is not needed at the end of the plan). Thus,
limn→∞ α(sn) = limn→∞ n/(4n+ 1) = 1/4.

We now show that the h+ heuristic is never worse than
1/4h∗ + d. For this, consider a state s where n parts need
to be processed (i. e., have a defined goal that is not already
satisfied). Clearly, h+(s) ≥ n. To obtain an upper bound
on h∗(s), we describe a particular plan for s: First, classify
the parts into different groups according to their current and
goal attributes. The set C of possible classes is constant, i. e.,
fixed for all SCHEDULE tasks. For each class C ∈ C, we
can find a sequence of at most 3 transformation actions that
creates the goal attributes for the parts in C. (This is always
possible.) If there are mC objects in the class, all parts in

C can then be transformed into their goal states by using at
most 3mC transformation actions and at most mC + 2 time-
step actions, after which all machines are available again.
Thus, altogether we need no more than

∑
C∈C(4mC + 2) =

4n + 2|C| = 4n + d actions, where d := 2|C|. For our
analysis, the additive constant does not matter, so we get
α(h+, SCHEDULE) = 1/4.

SATELLITE Only pointing, power-avail, calibrated and
power-on propositions appear in delete lists. Consider the
family of states (sn)n∈N where sn is described by one satel-
lite with n cameras, each only supporting one mode which is
different for each camera, all cameras having the same cali-
bration target (different from the current pointing direction)
and the same image target (different from the calibration
target and the current pointing direction) in their respective
modes. In an optimal plan, six actions per image are neces-
sary, namely powering the i-th camera on, turning towards
the calibration target, calibrating, turning towards the im-
age target, taking the image, and switching the i-th camera
off. (The last step can be omitted for the last image.) In an
optimal relaxed plan, only two turn actions and no switch-
off actions are necessary. Otherwise, it is identical to the
non-relaxed plan. The power-on, calibrate, and take-image
actions are still necessary. Therefore, in the limit, optimal
relaxed plans are merely half as long as non-relaxed optimal
plans, and limn→∞ α(sn) = 1/2.

For the other direction, i. e., h+(s) ≥ 1/2h∗(s) for all
states s, we first observe that there exists an optimal re-
laxed plan that only uses a camera after it has been pow-
ered on and calibrated and before the next camera has been
powered on and calibrated. (For example, first move all
take-image actions to the end of the plan, then group them
by the used camera, then move the power-on and calibrate
actions before each corresponding group of take-image ac-
tions.) This optimal relaxed plan can then be transformed
into a plan for the original task by adding an appropriate
power-off action before each power-on action in order to
ensure power availability, and adding turn-to actions before
each calibrate and take-image action. Thus, optimal plans
are at most twice as long as optimal relaxed plans. We con-
clude that α(h+, SATELLITE) = 1/2.

Synopsis In all considered domains, the h+ heuristic
yields results within a constant factor of the perfect heuristic
values. The concrete factors vary from domain to domain.

Accuracy of hm
For the accuracy of the hm family of heuristics, we get
the same result for all domains, namely α(hm,D) = 0.
The common reason for this is that we can find families
of states (sn)n∈N such that h∗(sn) is unbounded as n ap-
proaches infinity, whereas there exists a function f such that
hm(sn) ≤ f(m) for all m ∈ N. For each fixed m ∈ N,
f(m) is fixed and h∗(sn) can get arbitrarily large, so the
accuracy of the hm heuristic tends towards zero.

Note that hm(sn) can always be bounded from above by
the cost of reaching an m-elementary subgoal set from sn,
maximized over all such subgoals. Thus, it suffices to show
that for the states we consider, every m-elementary subgoal

set can be reached in a number of steps that only depends on
m, but not on n. (We are interested in behavior in the limit,
so we can always safely assume n ≥ m.)

The unboundedness of h∗(sn) for growing n is trivial for
the states we present, so we will not mention it explicitly.

GRIPPER From any GRIPPER state, it is possible to move
m balls to the goal room with at most 4m+1 actions (drop a
ball to free a gripper if necessary, then move, pick up, move,
drop for each ball).

LOGISTICS Each subgoal set of size m can be reached
in at most 12m steps, up to 12 for each goal (move truck,
pick up, move truck, drop; move airplane, pick up, move
airplane, drop; move truck, pick up, move truck, drop).

BLOCKSWORLD Consider a family of states sn with n
blocks on the table to be stacked into a single tower. Then
each m-elementary subgoal can be reached in 2m steps.

MICONIC-STRIPS and MICONIC-SIMPLE-ADL Con-
sider states with n passengers to be served with n different
origin floors, different from the current elevator location. All
subgoals of size m, i. e., transporting m passengers to their
goals, can be reached in 4m steps (for each passenger: move
to origin, pick up/stop, move to destination, drop/stop).

SCHEDULE Consider states with n parts to be processed.
Any subset of m parts can be processed in 6m steps (each
part needs up to three transformations as argued earlier, and
each can be preceded by a time-step action to guarantee
availability of the machines).

SATELLITE Consider states sn with n remaining image
goals. Any subset of m goals can be satisfied in 6m steps
(for each objective: power off an instrument if necessary,
power on an instrument, turn to calibration target, calibrate,
turn to objective, take image).

Synopsis In all considered domains, there are families of
increasing-size tasks with h∗ values roughly proportional
to n and hm values roughly proportional to m. As h∗ in-
creases indefinitely for growing n, whereas hm never ex-
ceeds a domain-dependent constant which is a function of
m, the accuracy of hm tends to zero in all domains.

Accuracy of PDB Heuristics
The accuracy of the hPDB family depends on the choice of
the pattern. We assume that the PDB has a size limit poly-
nomial in the input size n, say O(nm). Then a pattern may
contain no more thanO(log nm) = O(m log n) = O(log n)
state variables in order to respect the limit. This implies that
hPDB(s) cannot be greater than the cost of reaching the most
expensive subgoal set of cardinality O(log n).

As the proofs in the previous section showed, in all con-
sidered domains there exist families of states (sn)n∈N for
which h∗ grows linearly with n but m-elementary subgoal
costs only grow linearly with m. Since O(log n)/Ω(n)→ 0
for n→∞, we obtain the same results for hPDB as for hm:
for all domains, α(hPDB,D) = 0. Note, however, that while
for hm, the heuristic estimates were always bounded by con-
stants for a fixed value of m, for PDB heuristics with suit-
ably chosen patterns they are bounded by values that grow

logarithmically with n. In that sense, PDB heuristics are
more powerful than hm in these domains.

Accuracy of Additive PDB Heuristics
As in the previous section, we need to bound the size of
individual patterns by O(log n) for tasks of size n. How-
ever, for additive PDB heuristics, multiple such patterns are
considered, and their values summed. We remark that since
patterns in these domains need to be disjoint to be additive,
there cannot be more than n pairwise additive patterns for a
task with n state variables, so there is no need to impose a
bound on the number of patterns to ensure polynomial time
and space requirements.

GRIPPER We can restrict attention to states sn with n
balls in the initial room, the robot in the initial room, and
no balls currently carried. Violating these restrictions only
changes overall costs by a constant.

Using an additive PDB with singleton patterns for each
ball location variable, hPDB

add (sn) = 2n, whereas the op-
timal cost is 3n − 1 if n is even and 3n if n is odd.
In either case, the accuracy tends towards 2/3, so we get
α(hPDB

add ,GRIPPER) ≥ 2/3.
On the other hand, this value cannot be asymptotically

improved for large tasks with any pattern collection: At most
one pattern, which can represent only O(log n) many balls,
can include the robot location and hence estimate the cost for
the balls in the pattern accurately. All other patterns must
ignore the movement costs for the robot. We thus obtain
hPDB
add (sn) = 2n + O(log n) compared to h∗(n) = 3n, so

that α(sn) = (2n + O(log n))/3n approaches 2/3 in the
limit. Therefore, we have α(hPDB

add ,GRIPPER) = 2/3.

LOGISTICS Again, by using singleton patterns for each
goal variable, we obtain a heuristic which accurately cap-
tures all pick-up and drop actions needed to reach the goal.
An optimal solution to a LOGISTICS task never requires
more movements than pick-up and drop actions combined,
so the accuracy is at least 1/2.

To prove a lower bound, consider the family (sn)n∈N of
tasks defined as follows. There is a single truck in a city
with 2n+1 locations. There are n packages, all to be moved
within this city. All initial and goal locations of the packages
are different from each other and from the initial truck loca-
tion. The optimal cost for this task is clearly h∗(sn) = 4n.
Similar to the GRIPPER proof, only one pattern in the pattern
collection, which includes no more than O(log n) package
variables, can include the variable representing the truck lo-
cation. For all packages not included in this pattern, only the
pick-up and drop actions are counted by hPDB

add (sn). Thus,
α(sn) = (2n+ O(log n))/4n, approaching 1/2 in the limit.
We thus get α(hPDB

add , LOGISTICS) = 1/2.

BLOCKSWORLD Consider the state sn consisting of a
stack B1, . . . , Bn, Bn+1 to be transformed into the stack
B1, . . . , Bn+1, Bn. In other words, the two bottommost
blocks must be swapped. The true cost is 4n.

There are only two variables whose current values differ
between sn and the goal, and hence all but two patterns in
the additive PDB heuristic must assign heuristic values of

0 (since, relative to these patterns, the goal has already been
reached). Thus, at most two patterns contribute to hPDB

add , and
again their magnitude is bounded byO(log n) since they can
only incorporate O(log n) variables and BLOCKSWORLD
tasks of size k can be solved with O(k) steps.

Therefore, additive PDB heuristics for BLOCKSWORLD
can get arbitrarily inaccurate. We obtain an accuracy of
α(hPDB

add ,BLOCKSWORLD) = 0.

MICONIC-STRIPS This domain is a special case of LO-
GISTICS, so from the result for that domain, we can con-
clude α(hPDB

add ,MICONIC-STRIPS) ≥ 1/2. On the other
hand, the family of tasks used for showing the LOGIS-
TICS upper bound are also MICONIC-STRIPS tasks, so
α(hPDB

add ,MICONIC-STRIPS) = 1/2.

MICONIC-SIMPLE-ADL We assume an encoding with
one elevator location variable and one variable for each pas-
senger indicating its status (at origin, boarded, or served).
Let sn be a state with n passengers, all at their origin floor,
which is the same for all passengers and identical to the
current elevator floor. The destination floors are different
for each passenger. The optimal plan length is 2n + 1.
Since stopping at the start floor affects all passenger vari-
ables, no two passengers can appear in different patterns or
the additivity requirement would be violated. Hence, only
one pattern can contain passengers and thus contribute to
the hPDB

add value. Since the size of the pattern is bounded
by O(log n), we have hPDB

add (sn) = O(log n) and hence
α(hPDB

add ,MICONIC-SIMPLE-ADL) = 0.

SCHEDULE Consider the pattern collection where there
is one pattern for each part, containing all attribute variables
describing that part (i. e., its color, surface condition, shape,
temperature, and has-hole variables). These patterns are all
additive and only comprise a constant number of variables
each. With this collection, an additive PDB heuristic cap-
tures the costs of all necessary transformation actions cor-
rectly, but ignores all time-step actions. In general, there
are never more time-step than other actions (because two
time-step actions in sequence can be collapsed) and there
never is a time-step action at the end of an optimal plan, so
hPDB
add (s) ≥ 1/2h∗(s) for all states s.
On the other hand, there exist state families (sn)n∈N for

which this bound is tight. In particular, consider states where
n parts need to be polished, the polisher and the parts are
available, and there are no further goals. An optimal solu-
tion requires 2n − 1 actions, whereas hPDB

add (s) = n for the
pattern collection we described. By using a different pat-
tern collection, the result cannot be improved significantly;
similar to the previous proofs, we could only capture the
interaction between the polish and time-step actions for log-
arithmically many parts without exceeding the pattern size
bound. Consequently, α(hPDB

add , SCHEDULE) = 1/2.

SATELLITE As argued in the section on hm, the optimal
solution length from any SATELLITE state with n goals is at
most 6n. An additive PDB heuristic with singleton patterns
for the goal variables achieves a heuristic estimate of n, so
α(hPDB

add , SATELLITE) ≥ 1/6.

Domain h+ hm hPDB hPDB
add

GRIPPER 2/3 0 0 2/3
LOGISTICS 3/4 0 0 1/2
BLOCKSWORLD 1/4 0 0 0
MICONIC-STRIPS 6/7 0 0 1/2
MICONIC-SIMPLE-ADL 3/4 0 0 0
SCHEDULE 1/4 0 0 1/2
SATELLITE 1/2 0 0 1/6

Figure 1: Accuracy of the h+, hm, and (additive) PDB
heuristics in selected planning domains.

For the other direction, consider a state sn with a single
satellite and two pointing directions, A and B. There are n
image modes, and the satellite has n2 instruments support-
ing one mode each (n for each mode). A is the calibration
target of all instruments, and B is the initial pointing direc-
tion of the satellite. The goal is to take images of B in each
mode. An optimal plan has length 6n− 1. The key observa-
tion is that a pattern for a given image goal cannot include
variables for each instrument that can take that image, be-
cause there are n > O(log n) such instruments. Hence, in
the pattern database abstraction, images can be taken by an
uncalibrated, powered-off instrument, so that only the take-
image action is counted for each goal. We get α(sn) =
n/6n = 1/6, and hence α(hPDB

add , SATELLITE) = 1/6.

Synopsis Except for the BLOCKSWORLD and MICONIC-
SIMPLE-ADL domains, where all additive PDB heuristic
can perform arbitrarily badly, additive PDB heuristics with
suitably chosen patterns do not perform worse than a con-
stant factor times the perfect heuristic value.

Conclusion
As far as we are aware, we have presented the first detailed
analysis of domain-specific accuracy results for a number
of popular planning heuristics (summarized in Fig. 1). One
(maybe unsurprising, but still interesting) observation is that
the hm heuristic family and plain PDB heuristics become
arbitrarily inaccurate as task size increases.

With the exception of the SCHEDULE domain, we gen-
erally got the best results for the h+ heuristic. However, in
interpreting this result, one should not forget that this heuris-
tic is NP-hard to compute in general, which makes additive
PDB heuristics attractive.

For these, we remark that the problem of optimizing the
pattern collections – a task we performed by hand in our
analysis – is of critical importance for obtaining good per-
formance. On the other hand, with the sole exception of the
SCHEDULE domain, all our results already hold when using
singleton patterns exclusively. Moreover, current techniques
for the automatic selection of pattern collections (Haslum et
al. 2007) have the potential to improve on this baseline.

Finally, we point out some open issues. One important
omission is that we did not discuss additive hm heuristics
and restricted the discussion of additive PDBs to the case of
a single sum. Extending our analysis beyond these restric-
tions is an interesting and important avenue for future work.

Acknowledgments
Carmel Domshlak and Michael Katz suggested the proof
that additive pattern database cannot achieve a better bound
than 1/6 in the SATELLITE domain. They also provided some
very helpful comments on an earlier version of this paper.

This work was partly supported by the German Research
Council (DFG) as part of the Transregional Collaborative
Research Center “Automatic Verification and Analysis of
Complex Systems” (SFB/TR 14 AVACS). See http://www.
avacs.org/ for more information.

References
Bacchus, F. 2001. The AIPS’00 planning competition. AI
Magazine 22(3):47–56.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. AIJ 129(1):5–33.
Bylander, T. 1994. The computational complexity of
propositional STRIPS planning. AIJ 69(1–2):165–204.
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3):318–334.
Edelkamp, S., and Helmert, M. 2001. The model check-
ing integrated planning system (MIPS). AI Magazine
22(3):67–71.
Haslum, P., and Geffner, H. 2000. Admissible heuristics
for optimal planning. In Proc. AIPS 2000, 140–149.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In Proc.
AAAI 2007, 1007–1012.
Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admis-
sible heuristics for domain-independent planning. In Proc.
AAAI 2005, 1163–1168.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexible
abstraction heuristics for optimal sequential planning. In
Proc. ICAPS 2007, 176–183.
Helmert, M. 2008. Understanding Planning Tasks – Do-
main Complexity and Heuristic Decomposition, volume
4929 of LNAI. Springer-Verlag.
Hoffmann, J., and Edelkamp, S. 2005. The deterministic
part of IPC-4: An overview. JAIR 24:519–579.
Hoffmann, J. 2005. Where ‘ignoring delete lists’ works:
Local search topology in planning benchmarks. JAIR
24:685–758.
Kautz, H., and Selman, B. 1996. Pushing the envelope:
Planning, propositional logic, and stochastic search. In
Proc. AAAI 1996, 1194–1201.
Kautz, H., and Selman, B. 1999. Unifying SAT-based and
graph-based planning. In Proc. IJCAI 1999, 318–325.
Long, D., and Fox, M. 2003. The 3rd International Plan-
ning Competition: Results and analysis. JAIR 20:1–59.
McDermott, D. 1996. A heuristic estimator for means-ends
analysis in planning. In Proc. AIPS 1996, 142–149.
McDermott, D. 2000. The 1998 AI Planning Systems com-
petition. AI Magazine 21(2):35–55.

