
Fast, Accurate, and Robust Self-Localization in Polygonal Environments

Jens-Steffen Gutmann Thilo Weigel Bernhard Nebel

Albert-Ludwigs-Universität Freiburg, Institut für Informatik

Am Flughafen 17, D-79110 Freiburg, Germany

fgutmann,weigel,nebelg@informatik.uni-freiburg.de

Abstract

Self-localization is important in almost all robotic tasks.

For playing an aesthetic and effective game of robotic soc-

cer, self-localization is a necessary prerequisite. When we

designed our robotic soccer team for RoboCup’98, it turned

out that all existing approaches did not meet our require-

ments of being fast, accurate, and robust. For this reason,

we developed a new method, which is presented and ana-

lyzed in this paper. We additionally present experimental

evidence that our method outperforms other methods in the

RoboCup environment.

1. Introduction

Robotic soccer is an interesting scientific challenge [14]

and an ideal domain for testing new ideas and demonstrat-

ing existing techniques. One of our main intentions in par-

ticipating in last year’s RoboCup’98 [1] was to demonstrate

the usefulness of self-localization techniques that we have

developed [12]. It turned out, however, that all existing

self-localization techniques were not efficient enough for

a dynamic environment such as robotic soccer. Further-

more, most of the techniques are not robust enough. For

this reason, we developed a new technique that exploits

one particular characteristic of the RoboCup environment,

namely, its purely polygonal structure. Based on that we

were able to come up with a very fast, accurate, and robust

self-localization technique, which was most likely one of

the key factors for the victory of our team CS Freiburg in

RoboCup’98 [11, 26].

Solving the self-localization problem—the problem of

determining the position and orientation of the robot—is

necessary for almost all tasks. In robotic soccer it seems

even to be impossible to play an effective and aesthetic

game if the soccer agents do not know where they are and

how they are oriented. As a matter of fact, some of the

problems displayed in the games of the middle size league

at RoboCup’97 [13] seemed to have to do with the fact that

the soccer robots had the wrong idea about their positions,

which led to erratic movements and a number of own goals.

The self-localization problem can be addressed using a

wide range of sensors (e.g. odometry, sonars, vision, com-

passes, laser range finders, other sensors, or combinations

thereof) and a wide range of methods. As vision is one

the main sensors for playing robotic soccer, a vision based

self-localization method would be desirable. However, such

a method is difficult to realize or requires additional land-

marks [25] which are not allowed in the middle size league.

Therefore, in our self-localization approach we only con-

sider the combination of data from the odometry and from

laser range finders (LRF), since the latter provide accurate

and reliable data, which can also be interpreted with much

less computational effort than data from a vision system.

Self-localization can be based on recognizing known

landmarks or on dense sensor matching. In the first ap-

proach, features are extracted from the sensor inputs and

matched with the features of the landmarks in order to de-

termine the locations of the landmarks. However, in the

RoboCup environment, there are only few natural land-

marks that are always visible to the sensors and for this

reason we did not consider this approach. In the second ap-

proach, all sensor inputs are matched against the expected

sensor inputs for a given model. Two competing methods

for dense sensor matching are grid-based Markov localiza-

tion [4, 3] and Kalman filtering using scan matching [7, 12].

As it has been demonstrated, Markov localization is more

robust, because it always generates some position hypothe-

ses and because it can recover from catastrophic failures.

However, self-localization using Kalman filtering based on

scan matching is more accurate [9], since it does not rely

on grids. Other schemes use feature tracking [8, 16, 2] for

position estimation where each feature is treated indepen-

dently from the others for updating the robot pose. How-

ever, we believe that these methods are more sensitive to

outliers than scan-matching is because binary constraints

between features are ignored.

For robotic soccer, we need robustness, accuracy, and ef-

ficiency, whereby the latter property means that we want to

estimate the position and orientation in a few milliseconds.

Unfortunately, none of the approaches described above sat-

isfies all three requirements. For this reason, we designed a

new scan-matching approach that extracts features from the

raw sensor inputs, namely, straight lines that are matched

against an a priori model. Using the scan match, which can

be computed efficiently, the new position estimation is then

derived by combining it with the odometry reading using

Kalman filtering.

The rest of the paper is structured as follows. The next

section sketches scan matching methods and how they can

be used to estimate the position using Kalman filtering. Sec-

tion 3 describes our own method and gives an analysis of

the run-time complexity. Based on that, we describe in Sec-

tion 4 experiments that we have made in order to compare

different scan matching methods in the RoboCup environ-

ment. Finally, in Section 5 we conclude and sketch future

work.

2. Scan Matching

Scan matching is the process of translating and rotating

a range scan (obtained from a range device such as a laser

range finder) in such a way that a maximum overlap be-

tween sensor readings and a priori map emerges. Most of

the scan matching methods presume an initial pose estima-

tion that must be close to the true pose in order to limit the

search space.

The robot pose and its update from scan matching are

modeled as single Gaussian distributions. This has the ad-

vantage that robot poses can be calculated with high preci-

sion, and that an efficient method for computing the update

step can be used, namely, Kalman filtering.

The extended Kalman filter method has the following

form. The probability of a robot pose is modelled as a Gaus-

sian distribution l(t) � N(�

l

;�

l

), where �
l

= (x; y; �)

T is

the mean value and �

l

its 3� 3 covariance matrix.

On robot motion a � N((Æ; �)

T

;�

a

) where the robot

moves forward a certain distance Æ and then rotates by �,

the pose is updated according to:

�

l

:= E(F (l; a)) =

0

�

x+ Æ os(�)

y + Æ sin(�)

� + �

1

A

�

l

:= rF

l

�

l

rF

T

l

+rF

a

�

a

rF

T

a

Here E denotes the expected value of the function F and

rF

l

and rF
a

are its Jabobians with respect to l and a.

From scan matching a pose update s � N(�

s

;�

s

) is ob-

tained and the robot pose is updated using standard Kalman

filter equations [20]:

�

l

:= (�

�1

l

+�

�1

s

)

�1

� (�

�1

l

�

l

+�

�1

s

�

s

)

�

l

:= (�

�1

l

+�

�1

s

)

�1

The success of the Kalman filter depends heavily on the

ability of scan matching to correct the robot pose. There are

a number of methods for matching scans:

Cox [7] matches sensor readings with the line segments

of a hand-crafted CAD map of the environment. He assigns

scan points to line segments based on closest neighborhood

and then searches for a translation and rotation that mini-

mizes the total squared distance between scan points and

their target lines.

Scans can also be matched by correlating occupancy

grids [21, 22, 15]. However accuracy and run-time perfor-

mance depend heavily on the grid resolution.

Weiss et al. [27] use histograms for matching a pair of

scans. They first compute a so-called angle histogram for

determining the rotation of the two scans and then use x

and y histograms for computing the translation. As in grid

correlation, the discretization size of the histograms domi-

nate accuracy and run-time of this method.

Lu and Milios [18] match pairs of scans by assigning

points in one scan to points in the other scan. For find-

ing a corresponding scan point two heuristics called closest-

point-rule and matching-range-rule are applied and a com-

bination is used for computing the rotation and translation

of the two scans. This IDC algorithm (iterative dual cor-

respondence) is well suited for any type of environment in-

cluding non-polygonal ones. A similar approach using the

closest point rule and an extended Kalman filter has been

utilized for navigating a mobile robot in an underground

mine environment [19].

Gutmann and Schlegel [12] use a combination of the Cox

matching approach and the IDC method for combining the

efficiency and robustness of the line matching method with

the universal capabilities of the IDC algorithm. They call

their algorithm the combined scan matcher (CSM).

Unfortunately all those matching algorithms possess a

high computational complexity, e.g. O(n2) where n are the

number of scan points, or their robustness is limited due

to the small search space. Therefore we developed a new

algorithm LineMatch that makes use of the simple polygo-

nal structure of the RoboCup environment and trades off

generality for speed and the ability to globally localize the

robot on the soccer field.

3. LineMatch

The LineMatch algorithm extracts line segments from a

scan and matches them with an a priori map of line seg-

ments similar to the methods of [24, 6]. We expect that this

algorithm has better run-time performance and is more ro-

bust than the other scan matchers while retaining the same

accuracy as the other matchers. In how far these expecta-

tions are realistic will be shown in Section 4.

For extracting lines segments out of the laser range

data we use a similar approach to the one of Castellanos

and Tardós [5]. In order to guarantee that extracted lines

really correspond to field-border lines, only scan lines

significantly longer than the extent of soccer robots are

considered1. The following algorithm shows how a match-

ing between model lines and scan lines is computed by re-

cursively trying all pairings between scan lines and model

lines:

Algorithm 1 LineMatch(M, S, P)

Input: model lines M , scan lines S, pairs P

Output: set of positions hypotheses H

if jP j = jSj then

H := P

else

H := ;

s := SeletSanline(S; P)

for all m 2M do

if VerifyMath(M;S; P [f(m; s)g) then

H := H [fLineMath(M;S; P [f(m; s)g)g

return H

SelectScanline selects the next scan line that should be

matched and VerifyMatch verifies that the new (m; s) pair-

ing is compatible with the set of pairings P already ac-

cepted by computing a common rotation and translation.

The algorithm returns position hypotheses in the form of

sets of pairs, which can be easily transformed into possi-

ble locations where the scan could have been taken. For

the RoboCup field the algorithm is capable of determining

the global position of the robot modulo the symmetry of the

field. This means that we get two position hypotheses if

three field borders are visible (see Figure 1), four hypothe-

ses if two borders are visible, and four hypotheses with ex-

treme error covariance matrices according to the visible line

if only one border is visible.

This scan matching method is similar to the methods de-

scribed by Castellanos et al. [6] and Shaffer et al. [24].

In contrast to these approaches, however, we only verify

that the global constraints concerning translation and rota-

tion as well as the length restrictions of scan lines are satis-

fied. This is sufficient for determining the position hypoth-

esis and more efficient. Further, we do not need any initial

estimation of the pose, which means that even if the robot

has an extreme error in its position estimation, it may still

be able to recover from that.

After matching a range scan, the most plausible position

is used in the Kalman filter step for updating the robot po-

sition. We use the position information from odometry to

1Robot players are not supposed to jam others’ sensor data, e.g.

retroflective materials or mirrors are not allowed on the robots.

Position

hypotheses

RoboCup field model

Robot

Scan with extracted

line segments

Fig. 1. The LineMatch algorithm returns two hypotheses

for the robot position.

determine the most plausible position based on a combina-

tion of closest neighborhood and similarity in heading.

For initializing the self-localization system the robot is

placed at any position in the RoboCup field but roughly ori-

ented towards the opponent goal and the mean and error

covariance of the robot position are set to:

�

l

:= (0; 0; 0)

T

�

l

:=

0

�

1 0 0

0 1 0

0 0 1

1

A

This ensures global self-localization on the first scan match.

Since no outliers are accepted for matching the lines with

the field borders, the algorithm can fail if inconsistent scans,

e.g. scans containing a long diagonal wall, are observed. In

how far this situation effects the position estimate of the

robot is investigated in Section 4.

While it turns out that the implemented algorithm is ex-

tremely fast in the RoboCup environment (see Section 4.2),

one may wonder how well it scales with the size of the set

M . A first rough analysis suggests that the worst-case run-

time of the algorithm is O(jM j

jSj

), because the depth of the

recursion is jSj and in each recursive call of LineMatch jM j

different pairings are tried.

As it turns out, however, it is possible to come up with

a much better run-time estimation. After the second level

of recursion, when two pairings have been made, all de-

grees of freedom for rotation and translation have been re-

moved (SelectScanline is implemented in such a way that

it chooses non-parallel lines in the first two levels of re-

cursion). This means that on deeper levels of the recur-

sion only one pairing can be consistent, which leads to in-

voking another recursive call of LineMatch. This means

that we may get jM j

2 possible pairings on the first two

levels of recursion which are verified by further recursive

calls trying jM jjSj different pairings. Finally, since Ver-

ifyMatch needs O(jSj) time, we get an overall bound of

O(jM j

3

jSj

2

). In the general case, one has to live with the

cubic upper bound. Nevertheless, for realistic environments

where not all walls are visible simultaneously—such as is

the case in office environments—preprocessing can be used

to guarantee runtime almost linear in jM j. Such a prepro-

cessing phase would store for each line all other lines that

are simultaneously visible. Using such a data structure, the

amount of lines that must be tested can be dramatically re-

duced and assuming a constant upper bound of simultane-

ously visible walls, we would get a linear complexity of the

algorithm.

4. Comparison with other Scan Matchers

In order to show the advantages of the LineMatch al-

gorithm we compared the Cox, CSM and LineMatch tech-

niques with each other. We did not include the IDC and

histogram matching methods as the properties of these al-

gorithms are covered by the CSM algorithm [12].

Since the CSM algorithm needs a set of reference scans

as its a priori map, we collected a small set of scans, cor-

rected the accumulated odometry error by applying the con-

sistent pose estimation method from [17], and used them as

reference scans. This approach has proven to be a success-

ful and easy way for enabling mobile robot navigation in an

indoor environment without modifying the environment or

creating hand-crafted maps [10].

For comparing the different methods we recorded real

data with one of our mobile robotic soccer players (see Fig-

ure 2). Each of our soccer robots is a Pioneer I mobile robot

equipped with a SICK laser range finder, a Cognachrome vi-

sion system for ball tracking, a Libretto 70CT laptop with

wireless ethernet connection and a custom kicking device.

The laser range finder covers a 180Æ field of view with an

angular resolution of 1Æ and a range resolution of 5m.

In order to record data of a realistic game scenario we ran

the soccer robot in our RoboCup environment with several

stationary and moving obstacles. From these data we com-

puted the average run-time of the different algorithms and

added different kinds of noise to the data for determining

the accuracy and robustness of the methods.

Similar work has been reported by Shaffer et al. [23],

who compared two scan matching methods that are similar

to the Cox and LineMatch algorithm in this paper. How-

ever, they used only single scan matches for their experi-

ments whereas in our experiments all data recorded during a

whole robot run was taken into account. Also they only ran

their algorithms in an almost static environment whereas we

recorded our data in a realistic dynamic scenario with many

stationary and moving obstacles that can block the robot’s

sensors. Therefore the results presented in this paper should

give a better picture of how good the methods actually are

in a dynamic environment like RoboCup.

Fig. 2. CS Freiburg robotic soccer players.

4.1. Noise Models

There are several kinds of noise typically observed when

robots operate in real-world environments. On one hand

there is a typical Gaussian noise in the odometry and prox-

imity sensors coming from the inherent inaccuracy of the

sensors. On the other hand there are non-Gaussian errors

arising from robot colliding with obstacles, e.g. other robot

players, or from interference with the sensors.

In this paper, odometry errors coming from wheel-

slippage, uneven floors, or different payloads are charac-

terized according to the following three parameters (see left

part of Figure 3).

+�

�

(Æ)

�+ �

�

(�)

�

x

y

Æ +�

Æ

(Æ)

Fig. 3. Effect of adding noise h�
Æ

(Æ);�

�

(�);�

�

(Æ)i (left)

and bump noise hx; y; �i (right) to the odometry.

Range noise: the error �

Æ

(Æ) in range when the robot

moves a certain distance Æ.

Rotation noise: the error �
�

(�)+�

�

(Æ) in rotation when

the robot turns a certain angle � or moves a certain

distance Æ.

There is another source of less frequent but much larger

odometry error coming from situations in which the robot

collides with obstacles. These abrupt errors can be charac-

terized by the following parameters (see right part of Fig-

ure 3).

Error of the odometry: The error x, y, and � is added to

the odometry information.

Frequency: Probability that a bump occurs if the robot

travels one meter. Throughout the experiments de-

scribed below, this probability was set to 0:2 per meter

travelled.

4.2. RunTime Performance

For computing the run-time performance of the scan

matching techniques we measured the average time a

method needed for computing the position update before

it was fused with the odometry estimate. In order to re-

ceive measurements that show the performance under real

game conditions we setup a realistic game scenario in our

RoboCup environment with stationary and moving objects

(see Figure 4) and used our soccer robot as a right defender

where it moved over the entire field a couple of times. In

this run the robot moved a total distance of approximately

41 meters, turned about a total of 11000 degrees (about 30

revolutions) and collected over 3200 scans.

Fig. 4. Experimental setup: several boxes were placed into

the RoboCup field to give a realistic game scenario. Noisy

sensor readings are caused by moving obstacles.

Figure 5 shows run-time results performed on the robots

on-board computer, a Pentium 120 MHz laptop running the

Linux operating system. As expected the LineMatch al-

gorithm outperforms the other competing techniques. It is

8 times faster than the Cox algorithm and about 20 times

faster than the CSM method. The very low average run-

time of only 2ms per scan match allows the processing of

all incoming range finder data in real-time.

4.3. Performance in Typical Game Scenario

For showing the accuracy and robustness of the Line-

Match algorithm we used the data collected in the above

Cox CSM LineMatch

16ms 39ms 2ms

Fig. 5. Run-time results on a Pentium 120MHz laptop.

run and added different kinds of noise to the odometry in-

formation. In order to measure the accuracy of the position

estimates generated by the different matching methods a set

of reference positions are needed. To ease the determination

of the reference positions we ran one of the scan match-

ing algorithms, the Cox method, with the recorded data and

used this output as the set of reference positions.

For each set of noise values, 26 runs with different seed

values for initializing a random noise generator were per-

formed. Figure 6 shows the trajectory measured by the

robots wheel encoders and a typical trajectory when adding

the maximum Gaussian noise h400; 100; 40i. The val-

ues correspond to the standard deviation of the Gaussian

noise h�

Æ

(Æ);�

�

(�);�

�

(Æ)i with the units
p

mm

2

=m,
p

deg

2

=360

Æ, and
p

deg

2

=m.

-8000

-6000

-4000

-2000

0

2000

-4000 -3000 -2000 -1000 0 1000 2000 3000 4000

noisy data
odometry information

Fig. 6. Trajectory measured by the robot and typical trajec-

tory obtained by adding large Gaussian noise with standard

deviations h400; 100; 40i to these data.

For each scan matching method we computed the num-

ber of times the robot’s position was lost and the distance

and heading error to the reference pose in case the position

was not lost. We used a threshold of 0:5m for the distance

and 30

Æ for the heading error for determining whether or

not the position of the robot was lost.

Figure 7 shows the average distance and Figure 8 the av-

erage heading error to the reference positions for five differ-

ent levels of Gaussian noise. The value triples on the x-axis

correspond to the standard deviation of the Gaussian noise

h�

Æ

(Æ);�

�

(�);�

�

(Æ)i. In these and all following figures

the error bars indicate the 95% confidence interval of the

average mean.

From both figures it can be seen that all three methods

0

20

40

60

80

100

120

140

160

180

200

10:5:1 20:10:5 100:20:10 200:50:20 400:100:40

d
is

ta
n

ce
 e

rr
o

r
[m

m
]

noise

Cox
CSM

LineMatch

Fig. 7. Distance error to reference positions in typical game

scenario for different levels of Gaussian noise.

0

2

4

6

8

10

10:5:1 20:10:5 100:20:10 200:50:20 400:100:40

h
ea

d
in

g
 e

rr
o

r
[d

eg
]

noise

Cox
CSM

LineMatch

Fig. 8. Heading error to reference positions in typical game

scenario for different levels of Gaussian noise.

have a similar accuracy usually better than 5m and 2

Æ.

Only the Cox method has a significant higher accuracy than

the others when only few Gaussian noise is present but this

is due to the fact that the reference positions also have been

generated by the Cox method.

However, the LineMatch method is much more robust

than the other matching algorithms. Figure 9 shows the

number of times where the robot position was lost for the

same levels of Gaussian noise as in the previous figures.

Here the LineMatch algorithm shows a very good perfor-

mance and keeps the robot localized even under high odom-

etry noise. Only for the maximum level of noise, LineMatch

also starts losing the position. We believe that the higher

robustness of LineMatch is due to the larger search space it

uses for finding matches.

0

10

20

30

40

50

60

70

80

90

100

10:5:1 20:10:5 100:20:10 200:50:20 400:100:40

lo
st

 p
o

si
ti

o
n

s
(%

)

noise

Cox
CSM

LineMatch

Fig. 9. Number of times where position error was above

0:5m or above 30

Æ in typical game scenario for different

levels of Gaussian noise.

In the same manner, we investigated how the methods

compare given simulated bump noise. For accuracy the re-

sults were similar to the case of Gaussian noise. All three

methods had a similar accuracy for the distance and heading

error than in the Gaussian case. Figure 10 shows the average

number of positions where the robot was lost when bump

noise was added to the odometry information. The triples

on the x-axis correspond to the bump noise values hx; y; �i

used in this experiment. The scale of these values is mm for

x and y, and degrees for �. In addition to these bumps oc-

curring with probability 0.2 per meter, we applied a small

Gaussian odometry error using the parameters h100; 5; 2i.

As can be seen in Figure 10 all scan matching approaches

have problems when bump noise is present. This is due

to the fact that the Gaussian distribution assumption when

fusing the observations with odometry in the Kalman filter

does not model bump noise well. However the LineMatch

method shows less failures than the other methods and is

thus again more robust than the other ones.

4.4. Performance in Confusing Game Scenario

We also evaluated the performance of the different scan-

matching algorithms in a confusing game scenario where a

long wall was placed inside the RoboCup field. Figure 11

shows the data we collected for this experiment.

We expect that under these conditions the LineMatch al-

gorithm gets irritated since the long wall is not filtered out in

its preprocessing step and thus LineMatch produces wrong

matches or relies on dead-reckoning only for the position

estimation. Although this confusing scenario seems quite

unlikely to occur, it can still happen if an opponent team

tries placing two or more of their robots in a straight row

0

10

20

30

40

50

60

70

80

90

100

100:100:10 200:200:30 300:300:50 500:500:100

lo
st

 p
o

si
ti

o
n

s
(%

)

noise

Cox
CSM

LineMatch

Fig. 10. Number of times where position error was above

0:5m or above 30

Æ in typical game scenario for different

levels of bump noise.

Fig. 11. Confusing game scenario: a long wall has been

formed by two boxes inside the RoboCup field to irritate

the LineMatch algorithm.

producing an even surface for our laser range finders.

Luckily the LineMatch algorithm didn’t suffer too much

from these conditions. We suspect that this is due to the fact

that there are a lot of situations where the irritating wall is

not present in the range scans because of the limited range

and field of view of our laser ranger finder. Thus the robot is

not able to use the LineMatch algorithm to update its posi-

tion when the irritating wall is present in the range data but

it re-localizes itself once the wall vanishes from the data.

As for the accuracy similar results than in the previous

runs were recorded. However the robustness of LineMatch

dropped and is now similar to those of the Cox and CSM

matching methods. Figure 12 shows the number of lost po-

sitions when adding Gaussian noise to the odometry infor-

mation. Here all three methods show similar robustness.

Finally Figure 13 shows the number of times the robot

was lost when adding bump noise to the odometry informa-

0

10

20

30

40

50

60

70

80

90

100

10:5:1 20:10:5 100:20:10 200:50:20 400:100:40

lo
st

 p
o

si
ti

o
n

s
(%

)

noise

Cox
CSM

LineMatch

Fig. 12. Number of times where position error was above

0:5m or above 30Æ in confusing game scenario for different

levels of Gaussian noise.

tion. Here LineMatch was again more robust than the other

methods due to its larger search space.

0

10

20

30

40

50

60

70

80

90

100

100:100:10 200:200:30 300:300:50 500:500:100

lo
st

 p
o

si
ti

o
n

s
(%

)

noise

Cox
CSM

LineMatch

Fig. 13. Number of times where position error was above

0:5m or above 30Æ in confusing game scenario for different

levels of bump noise.

5. Conclusion and Future Work

In this paper we presented a new method for matching

range scans to an a priori model of line segments, which

is well suited for localizing a mobile robot in a polygonal-

shaped, dynamic environment like RoboCup. Experimen-

tal results confirm that the new method is much faster and

much more robust than existing other scan matchers while

retaining the accuracy of the competing methods.

The proposed method has been developed as one of the

key components of the CS Freiburg robotic soccer team and

has been proven to be fast, reliable, precise and robust. It

never failed in any official or unofficial game and led the

team to its success at RoboCup’98 where CS Freiburg won

the competition in the middle size league [1].

Although the method has been utilized for RoboCup so

far only, it is an obvious step to use it in other polygonal-

shaped environments, e.g. as a localization method in our

navigation system for office environments [10]. Therefore

we will extend the algorithm in various ways, e.g. to al-

low for partial matches where not all lines of a range scan

are matched to model lines and to explore several ways to

optimize the algorithm in order to deal with larger environ-

ments.

Finally we are going to explore the problem of cooper-

ative self-localization in the RoboCup environment for al-

lowing the reorientation of disoriented group members.

References

[1] M. Asada and H. Kitano, editors. RoboCup-98: Robot Soc-

cer World Cup II. Lecture Notes in Artificial Intelligence.

Springer-Verlag, Berlin, Heidelberg, New York, 1999.

[2] S. Borthwick and H. Durrant-Whyte. Simultaneous local-

isation and map building for autonomous guided vehicles.

In Proc. International Conference on Intelligent Robots and

Systems (IROS’94), pages 761–768, 1994.

[3] W. Burgard, A. Derr, D. Fox, and A. Cremers. Integrat-

ing global position estimation and position tracking for mo-

bile robots: The dynamic markov localization approach. In

Proc. of the International Conference on Intelligent Robots

and Systems (IROS’98), Victoria, Oct. 1998.

[4] W. Burgard, D. Fox, D. Hennig, and T. Schmidt. Estimating

the absolute position of a mobile robot using position proba-

bility grids. In Proc. of the Fourteenth National Conference

on Artificial Intelligence (AAAI-96), pages 896–901, 1996.

[5] J. A. Castellanos and J. D. Tardós. Laser-based segmenta-

tion and localization for a mobile robot. In Second World

Automation Congress (WAC’96), pages 101–108, Montpel-

lier, France, May 1996.

[6] J. A. Castellanos, J. D. Tardós, and J. Neira. Constraint-

based mobile robot localization. In International Workshop

on Advanced Robotics and Intelligent Machines. University

of Salford, Apr. 1996.

[7] I. J. Cox. Blanche—an experiment in guidance and naviga-

tion of an autonomous robot vehicle. IEEE Transactions on

Robotics and Automation, 7(2):193–204, 1991.

[8] J. Crowley. World modeling and position estimation for a

mobile robot using ultrasonic ranging. In Proc. International

Conference on Robotics and Automation (ICRA’89), pages

674–680, 1989.

[9] J.-S. Gutmann, W. Burgard, D. Fox, and K. Konolige. An

experimental comparison of localization methods. In Proc.

International Conference on Intelligent Robots and Syste ms

(IROS’98), Victoria, Oct. 1998.

[10] J.-S. Gutmann and B. Nebel. Navigation mobiler Roboter

mit Laserscans. In Autonome Mobile Systeme (AMS’97),

pages 36–47. Springer-Verlag, Oct. 1997. In German.
[11] J.-S. Gutmann, B. Nebel, W. Hatzack, I. Herrmann, F. Rit-

tinger, A. Topor, T. Weigel, and B. Welsch. The CS Freiburg

team: Reliable self-localization, multirobot sensor integra-

tion, and basic soccer skills. In Asada and Kitano [1].
[12] J.-S. Gutmann and C. Schlegel. Amos: Comparison of scan

matching approaches for self-localization in indoor environ-

ments. In Proceedings of the 1st Euromicro Workshop on

Advanced Mobile Robots, pages 61–67. IEEE, 1996.
[13] H. Kitano, editor. RoboCup-97: Robot Soccer World Cup

I, volume 1395 of Lecture Notes in Artificial Intelligence.

Springer-Verlag, Berlin, Heidelberg, New York, 1998.
[14] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, E. Osawa, and

H. Matsubara. RoboCup: A challenge problem for AI. The

AI Magazine, 18(1):73–85, 1997.
[15] K. Konolige. Markov localization using correlation. In Proc.

International Joint Conference on Artificial Intelligence (IJ-

CAI’99), Stockholm, 1999.
[16] J. Leonard and H. Durrant-Whyte. Mobile robot localization

by tracking geometric beacons. IEEE Trans. on Robotics

and Automation, 7(3):376–382, 1991.
[17] F. Lu and E. Milios. Globally consistent range scan align-

ment for environment mapping. Autonomous Robots, 4:333–

349, 1997.
[18] F. Lu and E. Milios. Robot pose estimation in unknown envi-

ronments by matching 2d range scans. Journal of Intelligent

and Robotic Systems, 18:249–275, 1997.
[19] R. Madhavan, M. Dissanayake, and H. Durrant-Whyte. Au-

tonomous underground navigation of an LHD using a com-

bined ICP-EKF approach. In Proc. International Conference

on Robotics and Automation (ICRA’98), 1998.
[20] P. S. Maybeck. The Kalman filter: An introduction to con-

cepts. In I. J. Cox and G. T. Wilfong, editors, Autonomous

Robot Vehicles. Springer-Verlag, 1990.
[21] H. Moravec and A. Elfes. High resolution maps from wide-

angle sonar. In Proc. International Conference on Robotics

and Automation (ICRA’85), Mar. 1985.
[22] B. Schiele and J. L. Crowley. A comparison of position esti-

mation techniques using occupancy grids. In Proc. Interna-

tional Conference on Robotics and Automation (ICRA’94),

pages 1628–1634, 1994.
[23] G. Shaffer, J. Gonzalez, and A. Stentz. Comparison of two

range-based estimators for a mobile robot. In SPIE Conf. on

Mobile Robots VII, volume 1831, pages 661–667, 1992.
[24] G. Shaffer et al. Position estimator for underground mine

equipment. In IEEE Transactions on Industry Applications,

volume 28, September 1992.
[25] M. Veloso, W. Uther, M. Jujita, M. Asada, and H. Kitano.

Playing soccer with legged robots. In Proc. International

Conference on Intelligent Robots and Systems (IROS’98),

Victoria, Oct. 1998.
[26] T. Weigel. Roboter-Fußball: Selbstlokalisierung, Weltmod-

ellierung, Pfadplanung und verhaltensbasierte Kontrolle.

Diplomarbeit, Albert-Ludwigs-Universität Freiburg, Institut

für Informatik, 1999. In German.
[27] G. Weiss and E. Puttkamer. A map based on laserscans with-

out geometric interpretation. In U. R. et al., editor, Intelli-

gent Autonomous Systems, pages 403–407. IOS Press, 1995.

