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Abstract

Robotic soccer is a challenging research domain

because problems in robotics, arti�cial intelligence,

multi-agent systems and real-time reasoning have to be

solved in order to create a successful team of robotic

soccer players. In this paper, we describe the key com-

ponents of the CS Freiburg team. We focus on the

self-localization and object recognition method based

on using laser range �nders and the integration of all

this information into a global world model. Using the

explicit model of the environment built by these com-

ponents, we have implemented path planning, simple

ball handling skills and basic multi-agent cooperation.

The resulting system is a very successful robotic soccer

team, which has not lost any o�cial game yet.

1 Introduction

Robotic soccer is a challenging research domain

because problems in robotics, arti�cial intelligence,

multi-agent systems and real-time reasoning have to

be solved in order to create a successful team of robotic

soccer players [12]. We took up the challenge of de-

signing a robotic soccer team for two reasons. First

of all, we intended to demonstrate the advantage of

our perception methods based on laser range �nders

[8, 9, 10], which make explicit world modelling and ac-

curate and robust self-localization possible. Secondly,

we intended to address the problem of multirobot sen-

sor integration in order to build a global world model.

Of course, in order to demonstrate the usefulness of

both concepts, we also had to implement basic ball
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handling skills, deliberation, and multi-agent cooper-

ation that exploit the world model.

In a paper describing challenge tasks for robotic

soccer, Asada et al. [2] conjectured that range �nding

devices are not su�cient for discriminating the ball,

obstacles, and the goal [2, p.48]. Further, it was con-

jectured in this paper that a \conventional" approach

of building an explicit world model, planning in this

model, and executing the plan is not suitable for the

dynamically changing environment in robotic soccer

[2, p.49].

While we certainly agree that sonar sensors are not

accurate and reliable enough, laser range-�nders are

de�nitely adequate for recognizing everything on the

soccer �eld except the ball. Further, this can be eas-

ily used to construct an explicit world model which

can support sophisticated behaviors and some form of

explicit deliberation { provided deliberation is tightly

coupled to observations.

As a matter of fact, we believe that building an ex-

plicit world model and using it for deliberation is a

necessary prerequisite for playing an aesthetic and ef-

fective game of soccer. This conjecture is justi�ed by

the fact that the two winning teams in the simulation

and the small size league in RoboCup'97 used this ap-

proach [5, 17]. The performance of these two teams

were in sharp contrast to the teams in the middle size

league at RoboCup'97. Although much of the unsat-

isfying performance in the middle size league could

be probably attributed to problems concerning radio

communication and problems due to the lightening

conditions [16], some of it was probably also caused

by the lack of an explicit world model. Further evi-

dence for our claim is the performance of our team at

RoboCup'98, which won the competition in the mid-

dle size league.

The rest of the paper is structured as follows. In

the next section, we give an overview of the robot

hardware and general architecture of our soccer team.



Section 3 focuses on our self-localization approach

and Section 4 describes our player and ball recogni-

tion methods that are needed to create the local and

the global world model. In Section 5 we describe

the behavior-based control of the soccer agents and

show how a basic form of multi-agent cooperation is

achieved. Section 6 focuses on planning motion se-

quences that are needed to execute some of the behav-

iors. Finally, in Section 7 we describe our experience

of participating in RoboCup'98 and in Section 8 we

conclude.

2 Robot Hardware and General Archi-

tecture

Because our group is not specialized in developing

robot platforms, we used an o�-the-shelf robot|the

Pioneer 1 robot developed by Kurt Konolige and man-

ufactured by ActivMedia.
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In its basic version, how-

ever, the Pioneer 1 robot is hardly able to play soccer

because of its limited sensory and e�ectory skills. For

this reason, we had to add a number of hardware com-

ponents (see Fig. 1).

Figure 1: Three of our �ve our robots: Two �eld play-

ers and the goal keeper

On each robot we mounted a PLS200 laser range-

�nders manufactured by SICK AG and a video camera

connected to the Cognachrome vision system manu-

factured by Newton Lab.,
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which is used to identify
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Newton Lab. was also quite helpful in solving problems we

had with their vision boards a few weeks before the tournament.

and track the ball. For local information processing,

each robot is equipped with a Toshiba notebook Li-

bretto 70CT running Linux. The robot is controlled

using Saphira [13] that comes with the Pioneer robots.

In order to enable communication between the robots

and an o�-�eld computer, we use the WaveLan radio

ethernet. Finally, we added custom designed kickers

and ball steering mechanisms to our robots.

The general architecture of each soccer agent (see

Fig. 2) and the entire team (see Fig. 3) is very similar

to those of other teams in the middle size league [1, 11].

However, there are also some noticeable di�erences.
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Figure 2: Player architecture

Our robots are basically autonomous robotic soc-

cer players. They have all sensors, e�ectors and com-

puters on-board. Each soccer agent has a perception

module that builds a local world model (see Fig. 2).

Based on the observed state of the world and inten-

tions of other players communicated by the radio link,

the behavior-based control module decides what behav-

ior is activated. If the behavior involves moving to a

particular target point on the �eld, the path-planning

module is invoked which computes a collision-free path

to the target point.

In order to initialize the soccer agents, to start and

to stop the robots, and in order to monitor the state of

all agents, we use a radio ethernet connection between

the on-board computers and an o�-�eld computer (see

Fig. 3). If the radio connection is unusable, we still

can operate the team by starting each agent manually.

Most of the other teams in the middle size league use

a very similar approach [1, 11].

Unlike other teams, we use the o�-�eld computer

and the radio connection for realizing global sensor in-

tegration, leading to a global world model. This world

model is sent back to all players and they can employ

this information to extend their own local view of the

world. This means that the world model our players

have is very similar to the world model constructed by

an overhead camera as used in the small size league by

teams such as CMUnited [17]. It should be noted, how-
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ever, that the information in our global world model is

less accurate than the information obtained by direct

observation (see Section 4).

3 Self-Localization

We started the development of our soccer team with

the hypothesis that it is an obvious advantage if the

robotic soccer agents know their position and orienta-

tion on the �eld. Based on our experience with di�er-

ent self-localization methods using laser range �nders

[8], we decided to employ such a method as one of the

key components in our soccer agents.

There exist a number of di�erent self-localization

methods based on laser scans [4, 7, 10, 15, 19]. How-

ever, most of these methods are only local, i.e., they

can only be used to correct an already existing position

estimation. This means that once a robot looses its po-

sition, it will be completely lost. Further, all the meth-

ods are computationally very demanding, needing 100

msecs up to a few seconds. For these reasons we de-

signed a new self-localization method which trades o�

generality for speed and the possibility of global self-

localization.

Our method �rst extracts line segments from laser

range scans and matches them against an apriori

model of the soccer �eld. In order to ensure that ex-

tracted lines really correspond to �eld-border lines,

only scan lines signi�cantly longer than the extend of

soccer robots are considered. The following algorithm

shows how a set of position hypothesis is computed by

recursively trying all pairings between scan lines and

model lines:

Algorithm 1 PositionHypothesis(M, S, Match)

Input: model lines M , scan lines S,

correspondence set Match

Output: set of positions hypothesis H

if jMatch j = jSj then

H := fFitMatch(M;S;Match)g

else

H := fg

s := SelectScanline(S;Match)

for all m 2M do

if VerifyMatch(M;S;Match ;m; s) then

H := H[

PositionHypothesis (M;S;

Match [ fm; sg)

return H

The FitMatch function computes a position hypothe-

sis from the Match set, SelectScanline selects the next

scan line that should be matched, and VerifyMatch

veri�es that the pairings in Match are possible. This

method is similar to the scan matching method de-

scribed by Castellanos et al. [6]. In contrast to this

approach, however, we only verify that the global con-

straints concerning translation and rotation as well as

the length restrictions of scan lines are satis�ed. This

is su�cient for determining the position hypothesis

and more e�cient than Castellanos et al. approach.

Although it looks as if the worst-case runtime of

the algorithm is O(jM j

jSj

), it turns out that be-

cause of the geometric constraints the algorithm runs

in O(jM j

3

jSj

2

) time|provided the �rst two selected

scan lines are not collinear or parallel [18]. For the

RoboCup �eld the algorithm is capable of determin-

ing the global position of the robot modulo 180

�

|

provided three �eld borders are visible.

For robust and accurate self-localization, the posi-

tion information from odometry and scan matching is

fused by using a Kalman �lter. Therefore the proba-

bility that the robot is at a certain position l is mod-

elled as a single Gaussian distribution:

l � N(�

l

;�

l

)

Here �

l

= (x; y; �)

T

is the mean value (the position

with the highest probability) and �

l

its 3 � 3 covari-

ance matrix.

On robot motion a � ((d; �)

T

;�

a

) where the robot

moves forward a certain distance d and then rotates

by �, the position is updated according to:

�

l

:= E(F (l; a)) :=

0

@

x+ d cos(�)

y + d sin(�)

�+ �

1

A

�

l

:= rF

l

�

l

rF

T

l

+rF

a

�

a

rF

T

a

Here E denotes the expected value of the function F

and rF

l

and rF

a

are its Jacobians.



From scan matching a position estimate s �

N(�

s

;�

s

) is obtained and the robot position is up-

dated using the formulas:

�

l

:= (�

�1

l

+�

�1

s

)

�1

� (�

�1

l

�

l

+�

�1

s

�

s

)

�

l

:= (�

�1

l

+�

�1

s

)

�1

To initialize the self-localization system, a pre-

de�ned value for �

l

is chosen and the diagonal el-

ements of �

l

are set to in�nity. For the spe-

ci�c RoboCup environment, this ensures global self-

localization on the �rst scan match.

The self-localization algorithm can then be imple-

mented in a straightforward way. From a set of posi-

tion hypotheses generated by the PositionHypothesis

algorithm, the most plausible one is selected and

Kalman-fused with the odometry position estimate.

The robot position is then updated taking into ac-

count that the robot has moved since the scan was

taken and matched.

Our hardware con�guration allows 5{8 laser scans

per second using only a few milliseconds for comput-

ing position hypotheses and the position update. Al-

though a laser scan may include readings from objects

blocking the sight to the �eld borders, we didn't expe-

rience any failures in the position estimation process.

In particular, we never observed the situation that one

of our robots got its orientation wrong and \changed

sides."

4 Building Local and Global World

Models

Each soccer agent interprets its sensor inputs using

the perception module shown in Fig. 4 in order to esti-

mate its own position, the position of observed players

and the ball position.

Vision
Sonar

Odometrie

finder
Laser range

RoboCup field model

Matched
scan

Robot
position

Player
positions

Player
recognition

Ball
recognition

Ball
position

To global sensor integration

World

modelling

World
model

From global sensor integration

Self-
localization

Figure 4: Perception module

After the self-localization module matched a range

scan, scan points that correspond to �eld lines are re-

moved and the remaining points are clustered. For

each cluster the center of gravity is computed and in-

terpreted as the approximate position of a robot. In-

herent to this approach is a systematic error depending

on the shape of the robots.

Since our laser range �nders are mounted well above

the height of the ball, we cannot use it for ball recog-

nition. In fact, even if it were mounted lower, it is

questionable whether it would be possible to distin-

guish the ball from the players by shape. For this

reason, we use a commercially available vision system

for ball recognition.

If the camera sees an object of a trained color (a

so-called blob), the vision system outputs the pixel co-

ordinates of the center of the blob, its width, height

and area size. From these pixel coordinates we com-

pute the relative position of the ball with respect to

the robot position by mapping pixel coordinates to

distance and angle. This mapping is learned by train-

ing the correspondence between pixel coordinates and

angles and distances for a set of well-chosen real-world

positions and using interpolation for other pixels. In

order to improve the quality of the position estima-

tion, we use the sonar sensors as a secondary source

of information for determining the ball position.

From the estimated position of the player, the es-

timated position of other objects and the estimated

position of the ball { if it is visible { the soccer agent

constructs its own local world model. By keeping a

history list of positions for all objects, their headings

and velocities can be determined. To reduce noise,

headings and velocities are low-pass �ltered. Position,

heading, and velocity estimates are sent to the multi-

robot sensor integration module.

In addition to objects that are directly observable,

the local world model also contains information about

objects that are not visible. First of all, if an object

disappears temporarily from the robot's view, it is not

immediately removed from the world model. Using

its last known position and estimated heading and ve-

locity, its most likely position is estimated for a few

seconds. Secondly, information from the global world

model is used to extend the local world model of a

player. Objects of the global world model which don't

correspond to any object of the local world model

are added to the local world model, but marked as

not really visible for the player. If an object of the

global world model corresponds to an object of the

local model the local information regarding exact po-

sition, heading end velocity is given priority because

it is probably more recent and accurate. In this case

the global information is only used to determine the



objects identity.

The global world model is constructed from time-

stamped position, heading, and velocity estimates

that each soccer agent sends to the global sensor-

integration module. Using these estimates, it is easy

to tell whether an observed object is friend or foe.

Knowing who and where the team members are is, of

course, very helpful in playing a cooperative game.

A further information that is very useful is the

global ball position. Our vision hardware recognizes

the ball only up to a distance of 3{4 m. Knowing

the global ball position even if it is not directly visible

enables the soccer robot to turn its camera into the di-

rection of where the ball is expected avoiding a search

for the ball by turning around. This is important in

particular for the goal keeper, which might miss a ball

from the left while it searches for the ball on the right

side.

It should be noted, however, that due to the in-

herent delay between sensing an object and receiv-

ing back a message from the global sensor integra-

tion, the information from the global world model is

always 100{400 msecs old. This means that it cannot

be used to control the robot behavior directly. How-

ever, apart from the two uses spelled out above, there

are nevertheless a number of important problems that

could be solved using this global world model { and

we will work on these points in the future. Firstly, the

global world model could be used to reorient disori-

ented team members. Although we never experienced

such a disorientation, such a fall-back mechanism is

certainly worthwhile. Secondly, it provides a way to

detect unreliable sensor systems of some of the soccer

agents. Thirdly, the global world model could be used

for making strategic decisions, such as changing roles

dynamically [17].

5 Behavior-based Control and Multi-

Agent Cooperation

The soccer agent's decisions are mainly based on

the situation represented in the explicit world model.

However, in order to create cooperative team behav-

ior, actual decision are also based on the role assigned

to the particular agent and on intentions communi-

cated by other players.

Although the control of the execution can be de-

scribed as behavior-based, our approach di�ers signif-

icantly from approaches where behaviors are activated

by uninterpreted sensor inputs [3]. In our case, high-

level features that are derived from sensor inputs and

from the communication with other agents determine

what behavior is activated. Furthermore, behaviors

may invoke signi�cant deliberation such as planning

the path to a particular target point (see Section 6).

5.1 Basic Skills and Behavior-Based Con-

trol

The behavior-based control module consists of a

rule-based system that maps situations to actions.

The rules are evaluated every 100 msecs so that the

module can react immediately to changes in the world.

Depending on whether the agent �lls the role of the

goal keeper or of a �eld player, there are di�erent rule

sets.

The goalie is very simple minded and just tries to

keep the ball from rolling into our goal. It always

watches the ball { getting its information from the

global world model if the camera cannot recognize the

ball { and moves to the point where the robot expects

to intercept the ball based on its heading. If the ball

is on the left or right of the goal, the goal keeper turns

to face the ball. In order to allow for fast movements,

we use a special hardware setup where the \head" of

the goalie is mounted to the right as shown in Fig. 1.

If the ball hits the goalie, the kicking device kicks it

back into the �eld.

The �eld players have a much more elaborate set

of skills. The �rst four skills below concern situations

when the ball cannot be played directly, while the two

last skills address ball handling:

Approach-position: Approach a target position

carefully.

Go-to-position: Plan and constantly re-plan a

collision-free path from the robot's current posi-

tion to a target position and follow this path until

the target position is reached.

Observe-ball: Set the robots heading such that the

ball is in the center of focus. Track the ball with-

out approaching it.

Search-ball: Turn the robot in order to �nd the ball.

If the ball is not found after one revolution go to

home position and search again from there.

Move-ball: Determine a straight line to the goal

which has the largest distance to any object on

the �eld. Follow this line at increasing velocity

and redetermine line whenever appropriate.

Shoot-ball: To accelerate the ball either turn the

robot rapidly with the ball between the ippers or



use the kicker-mechanism. The decision on which

mechanism to use and in which direction to turn

is made according to the current game situation.

The mapping from situations to actions is imple-

mented in a decision-tree like manner as shown in

Fig. 5. Taking into account the currently executed

SearchBall

GoToHomePos

ObserveBall

GoToBall

ball-out-of-competence-area?

ball-in-competence-area?

GoToHomePos

PlayBall

FreeFromStall

clearout-message-received?

LineUp

(stalled or

robot-out-of-competence-area?

GoToBall not active and ball-close?

FreeFromStall active) and not ball-close?

LineUp active or ball-in-goal?

Figure 5: Decision tree for action selection. Left ar-

row: yes, down arrow: no, circle: new state

action and the current world model the rules are per-

manently evaluated leading to a decision which action

to take next. Possible actions include:

FreeFromStall: Select and follow a path to a clear

position on the �eld.

GoToHomePos: Go to the home position using the

go-to-position skill.

LineUp: \Be happy"(play music and turn on the

spot), then go to the home position.

SearchBall: Invoke the search-ball behavior.

PlayBall: Attack using the approach-position, move-

ball and shoot-ball skills.

ObserveBall: Track the ball using the observe-ball

behavior.

GoToBall: Go to the ball using the go-to-position

and approach-position behaviors.

It should be noted that details of tactical decisions

and behaviors were subject to permanent modi�ca-

tions even during RoboCuop'98. As a reaction to

teams which would just push the ball and opponents

over the �eld we modi�ed our stall behavior to not

yield in such situations. Unfortunately the capability

to recognize when a goal was shot and to line up to

wait for game start was of no use since the �eld got

too crowded with people repositioning their robots af-

ter our team scored a goal.

5.2 Multi-Agent Coordination

If all of the soccer player would act according to

the same set of rules, a \swarm behavior" would re-

sult, where the soccer players would block each other.

One way to solve this problem is to assign di�erent

roles to the players and to de�ne areas of competence

for these roles (see Fig. 6). If these areas would be

right defender

left defender

left forward

right forward

goal   keeper

Figure 6: Roles and areas of competence

non-overlapping, interference between team members

should not happen, even without any communication

between players. Each player would go to ball and

pass it on to the next area of competence or into the

goal. In fact, this was our initial design and it is still

the fall-back strategy when the radio communication

is not working.

There are numerous problems with such a rigid as-

signment of competence areas, however. Firstly, play-

ers may interfere at the border lines between com-

petence areas. Secondly, if a player is blocked by

the other team, broken, or removed from the �eld,

no player will handle balls in the corresponding area.

Thirdly, if a defender has the chance of dribbling the

ball to the opponent's goal, the corresponding forward

will most probably block this run. For these reasons,

we modi�ed our initial design signi�cantly.

If a player is in a good position to play the ball it

sends a clear-out message. As a reaction to receiving

such a message other players try to keep out of the

playing robots way (see Fig. 5). This helps to avoid

situations in which two team mates block each other.

Based on communicating intentions, areas of compe-

tence can be made overlapping as shown in Fig. 6.

Now, the forwards handle three quarters of the �eld

and attacks are coordinated by exchanging the inten-

tions.

We do not have any special coordination for defen-

sive moves. In fact, defensive behavior emerges from



the behavior-based control described above. When the

ball enters our half of the �eld, our defenders go to the

ball and by that block the attack. Surprisingly, this

simple defensive strategy worked quite successfully.

6 Path Planning

Some of the skills described in the last section con-

cern the movement of the soccer robots to some target

point on the �eld. While such movements could be re-

alized in a behavior-based way, we decided to plan the

motion sequence in order to avoid problems such as

local minima.

Motion planning in the presence of moving obsta-

cles is known to be a computationally very demanding

problem [14]. Furthermore, because the movements of

the opponents are hardly predictable, a motion plan

would be probably obsolete long before it has been

generated. For these reasons, we decided to approx-

imate the solution to the motion planning problem

with moving obstacles by solving the path planning

problem with stationary obstacles. Although such an

approach might seem to be inadequate in an environ-

ment that is as dynamic as robotic soccer, experience

shows that often enough the opponent players can in-

deed be approximated as stationary obstacles. More

importantly, however, our path planning method is so

e�cient { needing only a few milliseconds for 4{5 ob-

stacles { that constant re-planning is possible.

To plan arbitrary paths around objects, we use the

extended visibility graph method [14]. Objects in the

world model are grown and the soccer �eld is shrunken

allowing path planning for robot shrunken to point.

The actual planning is done by an A

�

algorithm that

�nds shortest collision-free paths consisting of straight

line and arc segments from the current robot position

to the desired target position.

To increase speed in planning, an iterative plan-

ing approach is used. Beginning with only the start

and goal node, objects are only added to the graph if

they interfere with a found path. To avoid oscillation

between paths with similar costs, a distance penalty

is added to paths which require large changes of the

robots heading in the beginning.

7 Experience at RoboCup'98

Participating in the RoboCup'98 tournament was

very fruitful for us in two ways. Firstly, we got the

opportunity to exchange ideas with other teams and

learned how they approached the problems. Secondly,

we learned much from playing. As pointed out at var-

ious places in the paper, we redesigned tactics and

strategy during the tournament incorporating the ex-

perience we made during the games.

Our experience with hard- and software reliabil-

ity was mixed. The laser range �nders and our self-

localization worked without any problem, while the

radio communication was sometimes jammed, perhaps

by other teams playing at the same time on another

�eld. The most fragile part was our vision system {

not because of hardware failures, but because slightly

changed ligthening conditions led to serious problems

in ball recognition. However, this seemed to be a prob-

lem for all teams.

The performance of our team at RoboCup'98 was

quite satisfying. Apart from winning the tournament,

we also had the best goal di�erence (12:1), never lost

a game, and scored almost 25% of the goals during the

tournament. That this performance was not acciden-

tal was demonstrated at the German Open VISION-

RoboCup'98, October 1998, in Stuttgart. Again, we

won the tournament and did not loose any game.

The key components for this success are most prob-

ably the self-localization and object-recognition tech-

niques based on laser range �nders, which enable us

to create accurate and reliable local and global world

models. Based on these world models, we were able

to implement accurate, reactive path-planning, �ne-

tuned behaviors, and basic multi-agent cooperation {

which was instrumental in winning. Finally, the mech-

nical design of our kicker and the ball steering mecha-

nism certainly also played a role in playing successful

robotic soccer.

8 Conclusions and Future Directions

Robotic soccer is a challenging research domain. In

this context, we addressed the problem of building

an accurate and reliable world model for each soc-

cer agent using laser range �nders and to integrate

these into a global world model. Based on these ex-

plicit world models, simple soccer skills, accurate path

planning, and multi-agent cooperation was realized.

The resulting system is a very successful robotic soc-

cer team, which has not been beaten yet in an o�-

cial game. There are nevertheless a number of points

where signi�cant improvements are possible. For in-

stance, we plan to improve

� the low-level sensor interpretation by exploiting

more features of our hardware and by using real-



time extensions of the Linux system for getting

precise time-stamps of sensor measurements;

� the accuracy and robustness of multirobot sensor

integration;

� the low-level control of the movements in order to

get smoother behaviors;

� the soccer skills based on the above improve-

ments, e.g., to realize ball passing;

� the strategic decision making by allowing for ex-

ible role assignments and by using explicit delib-

eration based on the current global state.

Summarizing, we hope that we will be able to demon-

strate that our robots are able to play even more ef-

fective and aesthetic robotic soccer at RoboCup'99.
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