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Abstract

Robotic soccer is an ideal task to demonstrate new techniques and
to explore new problems. Moreover, problems and solutions can be
easily communicated because soccer is a well-known game. Our inten-
tion in building a robotic soccer team and participating in RoboCup’98
was, first of all, to demonstrate the usefulness of the self-localization
methods we have developed. Secondly, we wanted to show that play-
ing soccer based on an explicit world model is much more effective
than other methods. Thirdly, we intended to explore the problem of
building and maintaining a global team world model. As has been
demonstrated by the performance of our team, we were successful on
the first two points. Moreover, robotic soccer gave us the opportunity
to study problems in distributed, cooperative sensing.

1 Introduction

Robotic soccer is an interesting research domain because problems in robotics,
artificial intelligence, multi-agent systems, and real-time reasoning have to be



solved in order to create a successful team of robotic soccer players [Kitano
et al., 1997]. Furthermore, it is an ideal task to demonstrate the feasibility
of new ideas and techniques and to explore new problems.

We started to design a robotic soccer team with the intention to partic-
ipate in RoboCup’98 for three reasons. First of all, we intended to demon-
strate the advantage of our perception methods based on laser range finders
[Gutmann et al., 1998; Gutmann and Nebel, 1997; Gutmann and Schlegel,
1996], which make ezplicit world modelling and accurate and robust self-
localization possible.

Secondly, we believe that soccer is a game, where it is advantageous to
base deliberation and action selection on an ezplicit world model and we in-
tended to demonstrate that such an approach is superior to other approaches.
While it is possible to play robotic soccer by reacting on mostly uniterpreted
sensor inputs as in a pure behavior-based [Werger et al., 1998] or reinforcemnt
learning approaches [Suzuki et al., 1998], soccer seems to be a game that has
a structure that requires more than just reacting on uninterpreted sensor
inputs. Our claim is justified by the fact that the two winning teams in
the simulation and the small size league in RoboCup’97 used this approach
[Burkhard et al., 1998; Veloso et al., 1998]. Further evidence for our claim is
the performance of our team at RoboCup’98, which won the competition in
the middle size league.

Thirdly, we intended to address the problem of multirobot sensor integra-
tion in order to build a global world model and to exploit it for cooperative
sensing and acting. In the end, we identified more problems in this area than
we solved. However, we believe that it is interesting topic for future research.

While perception and sensor interpretation was definitely the focus of
our research, it was also necessary to develop basic soccer skills and forms
of multi-agent cooperation in order to show the advantage of our approach.
While this part needs certainly improvement, it was still effective enough to
be competitive. Furthermore, being based on an accurate world model, our
robots where much more reliable than other teams.

The rest of the paper is structured as follows. In the next section, we
give a brief sketch of the robot hardware. Section 3 describes the general
architecture of our soccer players and the soccer team. Section 4 focuses
on our self-localization approach and Section 5 describes our player and ball
recognition methods that are needed to create the local world model. The
integration of these world models into a global model and the problems we
encountered are described in Section 6. In Section 7 we sketch the behavior-



based control of the soccer agents and show how a basic form of multi-agent
cooperation is achieved. Finally, in Section 8 we describe our experience of
participating in RoboCup’98 and conclude.

2 Robot Hardware

Because our group is not specialized in developing robot platforms, we used
an off-the-shelf robot—the Pioneer 1 robot developed by Kurt Konolige and
manufactured by ActivMedia. In its basic version, however, the Pioneer 1
robot is hardly able to play soccer because of its limited sensory and effectory
skills. For this reason, we had to add a number of hardware components (see
Fig. 1).

Figure 1: Three of our five robots: Two field players and the goal keeper

On each robot we mounted a video camera connected to the Cognachrome
vision system manufactured by Newton Labs, which is used to identify and
track the ball. For local information processing, each robot is equipped with a
Toshiba notebook Libretto 70CT running Linux. The robot is controlled using



Saphira [Konolige et al., 1997], which comes with the Pioneer robots. Finally,
to enable communication between the robots and an off-field computer, we
use the WaveLan radio ethernet.

In addition to the above components, we added PLS200 laser range-
finders manufactured by SICK AG to all of our robots. These range finders
can give depth information for a 180° field of view with an angular resolution
of 0.5° and an accuracy of 5 ¢cm up to a distance of 30 m.

Handling the ball with the body of the Pioneer 1 robot is not a very
effective way of moving the ball around the field or pushing it into the oppo-
nent’s goal. For this reason we developed a kicking device using parts from
the Mdrklin Metallbaukasten. Furthermore, in order to steer the ball we used
flexible flippers that have a length of approximately 35 % of the diameter
of the ball. Although these flippers led to some discussions before the tour-
nament, it was finally decided that the use of such flippers does not violate
the RoboCup rules. In fact, we believe, that taking the idea of embodiment
seriously, such a ball steering mechanism is necessary to play soccer effec-
tively and aethetically. In fact, without the flippers it is almost impossible
to retrieve the ball from the wall, which means that the referee must relocate
the ball, which is very annoying for everybody — in particular for spectators.
Furthermore, without the ball steering mechanism the ball is very easily lost
when running with the ball.

3 General Architecture

Our robots are basically autonomous robotic soccer players. They have all
sensors, effectors and computers on-board. Each soccer agent has a perception
module that builds a local world model (see Fig. 2). Based on the observed
state of the world and intentions of other players communicated by the radio
link, the behavior-based control module decides what behavior is activated.
If the behavior involves moving to a particular target point on the field, the
path-planning module is invoked which computes a collision-free path to the
target point.

In order to initialize the soccer agents, to start and to stop the robots, and
in order to monitor the state of all agents, we use a radio ethernet connection
between the on-board computers and an off-field computer (see Fig. 3). If
the radio connection is unusable, we still can operate the team by starting
each agent manually. A large number of the other teams in the middle size
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Figure 3: Team Architecture

league used a similar approach [Asada and Kitano, 1999].

Unlike other teams, we use the off-field computer and the radio connection
for realizing global sensor integration, leading to a global world model. This
world model is sent back to all players and they can employ this information
to extend their own local view of the world. This means that the world
model our players have is very similar to the world model constructed by an
overhead camera as used in the small size league by teams such as CM United
[Veloso et al., 1998].



4 Self-Localization

We started the development of our soccer team with the hypothesis that
it is an obvious advantage if the robotic soccer agents know their position
and orientation on the field. Based on our experience with different self-
localization methods using laser range finders [Gutmann et al., 1998], we
decided to employ such a method as one of the key components in our soccer
agents.

There exist a number of different self-localization methods based on laser
scans [Cox, 1990; Gutmann and Schlegel, 1996; Lu and Milios, 1994; Weifl and
von Puttkamer, 1995]. However, these methods are only local, i.e., they can
only be used to correct an already existing position estimation. This means
that once a robot loses its position, it will be completely lost. Furthermore,
all the methods are computationally very demanding, needing 100 msecs up
to a few seconds on a modern computer. Global methods are even more
costly from a computational point of view. For these reasons we designed
a new self-localization method which trades off generality for speed and the
possibility of global self-localization.

Our method first extracts line segments from laser range scans and matches
them against an a priori model of the soccer field. In order to ensure that
extracted lines really correspond to field-border lines, only scan lines signif-
icantly longer than the extend of soccer robots are considered. Then, the
correspondence problem between scan lines and lines of the a priori model
is solved by backtracking over all possible pairings between scan lines and
model lines—similar to the method described by Castellanos et al. [1996].
Successful matchings lead to position hyptheses, of which there are only two
if three field borders are visible (see Fig. 4).

After the brief sketch of the matching algorithm, one might suspect that
the worst-case runtime of the algorithm is exponential in the number of model
lines. However, a closer inspection reveals it runs in cubic time because of
geometric constraints [Weigel, 1998]. Moreover, we expect this algorithm to
be almost linearly in the number of model lines in “natural” settings such as
office environments.

Our self-localization algorithm is implemented in a straight forward way
(see Fig. 5). ;From a set of position hypotheses generated by the scan-
matching algorithm, the most plausible one is selected and fused with the
odometry position estimate by using a Kalman filter. The Kalman filter
returns the optimal estimate (the one with the smallest variance) for a given
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Figure 5: Scan matches lead to position hypotheses

set of observations [Maybeck, 1990]. The robot position is then updated
taking into account that the robot has moved since the scan was taken.

Our hardware configuration allows five laser scans per second using only a
few milliseconds for computing position hypotheses and the position update.
Although a laser scan may include readings from objects blocking the sight to
the field borders, we did not experience any failures in the position estimation
process. In particular, we never observed the situation that one of our robots
got its orientation wrong and “changed sides.”

5 Building the Local World Model

After the self-localization module matched a range scan, the sonsor data is
interpreted in order to recognize other players and the ball (see Fig. 6). Scan
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Figure 6: Line segments are extracted from a range scan, matched against
the field lines and three players are extracted from the scan.

points that correspond to field lines are removed and the remaining points are
clustered. For each cluster the center of gravity is computed and interpreted
as the approximate position of a robot (see Fig. 7). Inherent to this approach
is a systematic error depending on the shape of the robots.

Figure 7: Line segments are extracted from a range scan, matched against
the field lines and three players are extracted from the scan.

For ball reconition, we use a commercially available vision system. If the
camera sees an object of a certain color (a so-called blob), the vision system
outputs the pixel coordinates of the center of the blob, its width, height and
area size. From these pixel coordinates we compute the relative position of
the ball with respect to the robot position by mapping pixel coordinates to
distance and angle. This mapping is learned by training the correspondence



between pixel coordinates and angles and distances for a set of well-chosen
real-world positions and using interpolation for other pixels. In order to
improve the quality of the position estimation, we use the sonar sensors as a
secondary source of information for determining the ball position.

From the estimated position of the player, the estimated position of
other objects and the estimated position of the ball — if it is visible — the
soccer agent constructs its own local world model. By keeping a history list of
positions for all objects, their headings and velocities can be determined. To
reduce noise, headings and velocities are low-pass filtered. Position, heading,
and velocity estimates are sent to the multirobot sensor integration module.

In addition to objects that are directly observable, the local world model
also contains information about objects that are not visible. First of all, if an
object disappears temporarily from the robot’s view, it is not immediately
removed from the world model. Using its last known position and estimated
heading and velocity, its most likely position is estimated for a few seconds.
Secondly, information from the global world model is used to extend the local
world model of a player.

6 Global World Model

The global world model is constructed from time-stamped position, heading,
and velocity estimates that each soccer agent sends to the global sensor-
integration module. Because soccer players and balls tend to move slowly
(< 1m/sec), a simple greedy algorithm can be used to track objects. Further-
more, friends and foes can be identified by comparing sensed object positions
with the positions of team members determined using the self-localization al-
gorithm. Knowing who and where the team members are is, of course, very
helpful in playing a cooperative game.

Other information that is very useful is the global ball position. Our vision
hardware recognizes the ball only up to a distance of 3-4 m. Knowing the
global ball position even if it is not directly visible enables the soccer robot
to turn its camera into the direction of where the ball is expected, avoiding
a search for the ball by turning around. This is important in particular for
the goal keeper, which might miss a ball from the left while it searches for
the ball on the right side.

It should be noted, however, that due to the inherent delay between sens-
ing an object and receiving back a message from the global sensor integration,



the information from the global world model is always 100-400 msecs old.
This means that it cannot be used to control the robot behavior directly.
However, apart from the two uses spelled out above, there are nevertheless a
number of important problems that could be solved using this global world
model — and we will work on these points in the future. Firstly, the global
world model could be used to reorient disoriented team members. Although
we never experienced such a disorientation, such a fall-back mechanism is
certainly worthwhile. Secondly, it provides a way to detect unreliable sensor
systems of some of the soccer agents. Thirdly, the global world model could
be used for making strategic decisions, such as changing roles dynamically
[Veloso et al., 1998].

7 Behavior-based Control and Multi-Agent
Cooperation

The soccer agent’s decisions are mainly based on the situation represented
in the explicit world model. However, in order to create cooperative team
behavior, actual decisions are also based on the role assigned to the particular
agent and on intentions communicated by other players.

Although the control of the execution can be described as behavior-based,
our approach differs significantly from approaches where behaviors are ac-
tivated by uninterpreted sensor inputs as is the case in the Ullanta team
[Werger et al., 1998]. In our case, high-level features that are derived from
sensor inputs and from the communication with other agents determine what
behavior is activated. Furthermore, behaviors may invoke significant delib-
eration such as planning the path to a particular target point.

The behavior-based control module consists of a rule-based system that
maps situations to actions. In the current version only a few rules (less than
10) are needed and all of them have been designed by hand and improved
over time after gathering new experiences from playing games. Even during
the competetion in Paris we refined some of them. The rules are evaluated
every 100 msecs so that the module can react immediately to changes in the
world. Depending on whether the agent fills the role of the goal keeper or of
a field player, there are different rule sets.

The goalie is very simple minded and just tries to keep the ball from
rolling into our goal. It always watches the ball — getting its information
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from the global world model if the camera cannot recognize the ball — and
moves to the point where the robot expects to intercept the ball based on its
heading. If the ball is on the left or right of the goal, the goal keeper turns
to face the ball. In order to allow for fast left and right movements, we use
a special hardware setup where the “head” of the goalie is mounted to the
right as shown in Fig. 1. If the ball hits the goalie, the kicking device kicks
it back into the field.

The field players have a much more elaborate set of skills. The first four
skills below concern situations when the ball cannot be played directly, while
the two last skills address ball handling:

Approach-position: Approach a target position carefully.

Go-to-position: Plan and constantly re-plan a collision-free path from the
robot’s current position to a target position and follow this path until
the target position is reached. Path planning is done using the extended
visibility graph method [Latombe, 1991], which is fast enough to be
executed in each execution cycle.

Observe-ball: Set the robots heading such that the ball is in the center of
focus. Track the ball without approaching it.

Search-ball: Turn the robot in order to find the ball. If the ball is not found
after one revolution go to home position and search again from there.

Move-ball: Determine a straight line to the goal which has the largest dis-
tance to any object on the field. Follow this line at increasing velocity
and redetermine the line whenever appropriate.

Shoot-ball: To accelerate the ball either turn the robot rapidly with the
ball between the flippers or use the kicker-mechanism. The decision
on which mechanism to use and in which direction to turn is made
according to the current game situation.

The mapping from situations to actions is implemented in a decision-tree
like manner. It should be noted that details of tactical decisions and behav-
iors were subject to permanent modifications even when the competition in
Paris had already started. As a reaction to teams which would just push the
ball and opponents over the field we modified our behavior to not yield in
such situations.
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If all of the soccer player would act according to the same set of rules, a
“swarm behavior” would result, where the soccer players would block each
other. One way to solve this problem is to assign different roles to the
players and to define areas of competence for these roles (see Fig. 8). If these
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Figure 8: Roles and areas of competence

areas would be non-overlapping, interference between team members should
not happen, even without any communication between players. Each player
would go to the ball and pass it on to the next area of competence or into the
goal. In fact, this was our initial design and it is still the fall-back strategy
when the radio communication is not working.

There are numerous problems with such a rigid assignment of compe-
tence areas, however. Firstly, players may interfere at the border lines be-
tween competence areas. Secondly, if a player is blocked by the other team,
broken, or removed from the field, no player will handle balls in the corre-
sponding area. Thirdly, if a defender has the chance of dribbling the ball to
the opponent’s goal, the corresponding forward will most probably block this
run. For these reasons, we modified our initial design significantly. Even dur-
ing the tournament in Paris we changed the areas of competence and added
other means to coordinate attacks as a reaction to our experiences from the
games.

If a player is in a good position to play the ball it sends a clear-out
message. As a reaction to receiving such a message other players try to keep
out of the playing robots way (see Fig. 9). This helps to avoid situations
in which two team mates block each other. In other words, we also rely on
cooperation by communication as the Uttori team [Yokota et al., 1999]. How-
ever, our communication scheme is much less elaborate than Uttori’s. Based
on communicating intentions, areas of competence can be made overlapping
as shown in Fig. 8. Now, the forwards handle three quarters of the field and
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attacks are coordinated by exchanging the intentions.
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Figure 9: Cooperation by communication

We do not have any special coordination for defensive moves. In fact,
defensive behavior emerges from the behavior-based control described above.
When the ball enters our half of the field, our defenders go to the ball and
by that block the attack. Surprisingly, this simple defensive strategy worked
quite successfully.

8 Conclusion and Discussion

Participating in the RoboCup’98 tournament was very beneficial for us in two
ways. Firstly, we got the opportunity to exchange ideas with other teams
and learned how they approached the problems. Secondly, we learned much
from playing. As pointed out at various places in the paper, we redesigned
tactics and strategy during the tournament incorporating the experience we
made during the games.

The performance of our team at RoboCup’98 was quite satisfying. Apart
from winning the tournament, we also had the best goal difference (12:1),
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never lost a game, and scored almost 25% of the goals during the tournament.
This performance was not accidental as demonstrated at the national German
competition VISION-RoboCup’98 on 30th of September and 1st of October
1998 in Stuttgart. Again, we won the tournament and did not lose any game.

The key components for this success are most probably the self-localization
and object-recognition techniques based on laser range finders, which enabled
us to create accurate and reliable local and global world models. Based on
these world models, we were able to implement reactive path planning, fine-
tuned behaviors, and basic multi-agent cooperation — which was instrumental
in winning. Finally, our kicker and the ball steering mechanism certainly also
played a role in playing successful robotic soccer.
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