
A Planning Approach to Active Visual Search in Large Environments

Moritz Göbelbecker
Albert-Ludwigs-Universität Freiburg, Germany

Alper Aydemir and Andrzej Pronobis
and Kristoffer Sjöö and Patric Jensfelt

Centre for Autonomous Systems
Royal Institute of Technology, Stockholm, Sweden

Abstract

In this paper we present a principled planner based approach
to the active visual object search problem in unknown envi-
ronments. We make use of a hierarchical planner that com-
bines the strength of decision theory and heuristics. Further-
more, our object search approach leverages on the conceptual
spatial knowledge in the form of object co-occurrences and
semantic place categorisation. A hierarchical model for rep-
resenting object locations is presented with which the plan-
ner is able to perform indirect search. Finally we present real
world experiments to show the feasibility of the approach.

1 Introduction
When operating in partially unknown environments, key
tasks for service robots, such as fetch-and-carry, require a
robot to successfully find objects. It is evident that such a
system cannot rely on the assumption that all object relevant
to the current task are already present in its sensory range.
It has to actively change its sensor parameters to bring the
target object in its field of view. We call this problem active
visual search (AVS).

Although researchers began working on the problem of
visually finding a relatively small sized object in a large en-
vironment as early as 1976 at SRI (Garvey 1976), the issue
is often overlooked in the field. A common stated reason for
this is that the underlying problems such as reliable object
recognition and mapping are posing hard enough challenges.
However as the field furthers in its aim to build robots act-
ing in realistic environments, this assumption needs to be
relaxed.

In this work we consider the case where the environment
may be completely unknown to the robot and has to be dis-
covered first. However, the robot is given probabilistic de-
fault knowledge about the relation between objects and the
occurrences of objects in difference room category follow-
ing Aydemir et al. (2011). Decision making is done by a
domain independent planner, making it possible to integrate
search with other tasks.

Acknowledging the need to limit the search space and in-
tegrate various cues to guide the search, (Garvey 1976) pro-
posed indirect search. Indirect search as a search strategy is
a simple and powerful idea: it is to find another object first
and then use it to facilitate finding the target object, e.g. find-
ing a table first while looking for a phone. Tsotsos (Tsotsos

1992) approached the problem by analysing the complexity
of the AVS problem and showed that it is NP-hard. There-
fore we must adhere to a heuristics based solution.

There are several recent robotic systems that include high-
level planning and execution monitoring subsystems. Kraft
et al. (2008) and Talamadupula et al. (2010) both use de-
terministic planning models, the latter being able to reason
about open worlds. The work by Hanheide et al. (2011) can
exploit probabilistic background knowledge, but is limited
environments whose structure is fully known.

Contributions
The contributions of this work are four fold. First we provide
the domain adaptation of a hierarchical planner to address
the AVS problem. Second we show how to combine seman-
tic cues to guide the object search process in a more complex
and larger environment then found in previous work. Third,
we start with an unknown map of the environment and pro-
vide an exploration strategy which takes into account the ob-
ject search task. Four, we present real world experiments
searching for multiple objects in a large office environment,
and show how the planner adapts the search behaviour de-
pending of the current conditions.

Outline
The outline of this paper is as follows. First we present how
the AVS problem can be formulated in a principled way us-
ing a planning approach (Section 2). Section 3 provides the
motivation for and structure of various aspects of our spatial
representation. Finally we showcase the feasibility of our
approach in real world experiments (Section 4).

2 Planning
For a problem like AVS which entails probabilistic action
outcomes and world state, the robot needs to employ a plan-
ner to generate flexible and intelligent search behaviour that
trade off exploitation versus exploration. In order to guaran-
tee optimality a POMDP planner can be used, i.e. a decision
theoretic planner that can accurately trade different costs
against each other and generate the optimal policy. How-
ever, this is only tractable for a complex problem like AVS
when applied to very small environments. Another type of
planner are the classical AI planners which requires perfect

knowledge about the environment and are thus generally not
suitable for problems involving exploration.

A variation of the classical planners are the so called con-
tinual planners that interleave planning and plan monitor-
ing in order to deal with uncertain or dynamic environments
(Brenner and Nebel 2009). The basic idea behind the ap-
proach is to create an plan that might reach the goal and to
start executing that plan. A monitoring component keeps
track of the execution outcome and notifies the planner in
the event of the current plan becoming invalid (either be-
cause the preconditions of an action are no longer satisfied
or the plan does not reach the goal anymore). In this case,
a new plan is created with the updated current state as the
initial state and execution starts again. This will continue
until either the monitoring component detects that the goal
has been reached or no plan can be found anymore.

In this paper we will make use of a so called switching
planner (Göbelbecker, Gretton, and Dearden 2011). It com-
bines two different domain independent planners for differ-
ent parts of the task: A classical continual planner to de-
cide the overall strategy of the search (for which objects to
search in which location) and a decision theoretic planner
to schedule the low level observation actions using a proba-
bilistic sensing model. Both planners use the same planning
model and are tightly integrated.

We first give a brief description of the switching planner,
focusing on the use of the planner and changes we made to
the original implementation. We will also present the do-
main modeling for the planner, and give further details on
various aspects of knowledge that the planner makes use of.

Switching Planner
Continual Planner (CP) The continual planner is based
on an extended SAS+formalism (Bäckström and Nebel
1995). Because our knowledge of the world and the effects
of our actions are uncertain we associate a success proba-
bility p(a) with every action a. In contrast to more expres-
sive models like MDPs or even POMDPs, actions do not
have multiple possible outcomes, they just can succeed with
probability p(a) or fail with probability of 1− p(a).

The goal of the planner is then to find a plan π that reaches
the goal with a low cost. In classical planning the cost func-
tion is usually either the number of actions in a plan or the
sum of all action’s costs. In some cases one could use use
a self-loop determinisation (Keyder and Geffner 2008) of
the problem and compile probabilities into (expected) ac-
tion costs. As we will use the probabilistic actions to model
starting state distributions, this is however not a suitable ap-
proach for our problem.

We therefore chose a function that resembles the expected
reward adjusted to our restricted planning model. With
p(π) =

∏
a∈π p(a) as the plans total success probability

and c(π) =
∑
a∈π c(a) as the total costs, we get for the

optimal plan π∗:

π∗ = argmin
π

c(π) +R(1− p(π))

This corresponds to maximising the expected reward if we
assume that for each action a the robot will incur a reward

of− c(a), transition to a sink state with probability p(a)−1
and is given the reward R on reaching the goal.

In order to find good plans with respect to this criterion,
we modified the classical planner Fast Downward (Helmert
2006) to support the simple probabilities used in our model.
For each planning state s we explicitly store its costs c(s)
and probability p(s) and define the state’s g-value as g(s) =
c(s)+R(1−p(s)). Application of an action a transitions to a
state s′ with c(s′) = c(s) + c(a) and p(s′) = p(s) p(a). We
then use weighted A∗-search with a hmaxheuristic (Bonet
and Geffner 2001) which was similarly modified to take the
probabilities into account.
Assumptions: The defining feature of an exploration prob-
lem is that the world’s state is uncertain. As we cannot
model probabilistic planning states in our model, we use
assumptive actions to model the probabilistic dependencies
between facts, that allow the planner to construct parts of the
initial state on the fly, and which allows us to map the spatial
concepts to the planning problem in an easy way.

Definition 1 Given a conditional probability P (X = x|Y)
with Y = Y0 = y0 ∧ . . . ∧ Yn = yn, the assumptive action
on X AX=x|Y is defined as follows:

pre(AX=x|Y) ={Y0 = yy, . . . , Yn = yn, def(X) = ⊥}
eff(AX=x|Y) ={X = x, def(X) = >}
p(AX=x|Y) =P (X = x|Y)

Using assumptions, the structure of the initial state can
be modelled in PDDL. For example, given the default prob-
ability of an object existing in a room of category C,
P (ObjectAtLC) we can create the following operator:

(:action object-in-room
:parameters (?cl - class ?r - room

?c - category)
:probability (P (ObjectAtL?c))
:precondition (= (category ?r) ?c)
:effect (obj-exists ?cl in ?r))

Decision Theoretic (DT) Planner When the continual
planner reaches a sensing action (e.g. search location1 for
a object2), we create a POMDP that only contains the parts
of the state that are relevant for that subproblem with. This
planner can only use MOVE and PROCESSVIEWCONE ac-
tions explained below. The DT planner operates in a closed-
loop manner, sending actions to be executed and receiving
observations from the system. Once the DT planner either
confirms or rejects a hypothesis, it returns control back to
the continual planner, which treats the outcome of the DT
session like the outcome of any other action.

Domain Modeling
We need to discretize the involved spaces (object location,
spatial model and actions) to make a planner approach ap-
plicable to the AVS problem.

Representing space For the purposes of obstacle avoid-
ance, navigation and sensing action calculation, the search
space Ψ is represented as a 3D metric map. Ψ is discretized

into i volumetric cells so that Ψ = c0...ci. Each cell rep-
resents the occupancy with the attributes OCCUPIED, FREE
or UNKNOWN as well as the probability of target object’s
centre being in that cell.

However, further abstraction is needed to achieve reli-
able and fast plan calculation as the number of cells can
be high. For this purpose we employ a topological repre-
sentation of Ψ called place map, see Fig 1(a). In the place
map, the world is represented by a finite number of basic
spatial entities called places created at equal intervals as
the robot moves. Places are connected using paths which
are discovered by traversing the space between places. To-
gether, places and paths represent the topology of the envi-
ronment. This abstraction is also useful for a planner since
metric space would result in a largely intractable planning
state space.

The places in the place map are further segmented into
rooms. In the case of indoor environments, rooms are usu-
ally separated by doors or other narrow openings. Thus, we
propose to use a door detector and perform reasoning about
the segmentation of space into rooms based on the doorway
hypotheses. We use a template-based door detection algo-
rithm which matches a door template to each acquired laser
scan. This creates door hypotheses which are further verified
by the robot passing through a narrow opening.

In addition, unexplored space is represented in the place
map using hypothetical places called placeholders defined in
the boundary between free and unknown space in the metric
map.

We represent object locations not in metric coordinates
but in relation to other known objects or rooms to achieve
further abstraction. The search space is considered to be di-
vided into locations L. A location is either a room R or a
related space. Related spaces are regions connected with a
landmark object o, either in or on the landmark (see (Ay-
demir et al. 2011) for more details). The related space “in”
o is termed Io and the space “on” o Oo.

In order to reason about locations that are not yet known,
we allow to refer to locations based on their category (for
rooms) or class (for spaces related to objects). We refer to
those locations as LC , with C specifying the category or
class.

Modeling actions The planner has access to three phys-
ical actions: MOVE can be used to move to a place or
placeholder, CREATEVIEWCONES creates sensing actions
for an object label in relation to a specified location, PRO-
CESSVIEWCONE executes a sensing action. Finally, the vir-
tual SEARCHFOROBJECT action triggers the decision theo-
retic planner.

Virtual objects There are two aspects of exploration in
the planning task: we are searching for an (at that moment)
unknown object, which may include the search for support
objects as an intermediate step. But the planner may also
need to consider the utility of exploring its environment in
order to find new rooms in which finding the goal object is
more likely.

Because the planners we use employ the closed world as-
sumption, adding new objects as part of the plan is impos-

(a)

(b)

Figure 1: (a) A place map with several places and 3 detected
doors shown as red. (b) Shows two placeholders with dif-
ferent probabilities for turning into new rooms: one of them
is behind a door hypothesis therefore having a higher proba-
bility of leading into a new room. Colours on circular discs
indicates the probability of room categories as in a pie chart:
i.e. the bigger the colour is the higher the probability. Here
green is corridor, red is kitchen and blue is office.

sible. We therefore add a set of virtual objects to the plan-
ning problem that can be instantiated by the planner as re-
quired by the plan. This approach will fail for plans that
require finding more objects than pre-allocated, but this is
not a problem in practice. The monitoring component tries
to match new (real) objects to virtual objects that occur in
the plan. This allows us to deliver the correct observations
to the DT planner and avoid unnecessary replanning.

Probabilistic spatial knowledge The planner makes use
of the following probabilistic spatial knowledge in order to
generate sensible plans:
• Pcategory(roomi) defines the distribution over room cat-

egories that the robot has a model for, for a given room.
• Pcategory(placeholderi) represents the probability distri-

bution of a placeholder turning into a new room of a cer-
tain category upon exploration.

• P (ObjectAtL) gives the probability of an object o being
at location L.

• P (ObjectAtLC) gives the probability of an object o be-
ing at an abstract location LC . Those values represent
default knowledge and are not updated during the task.

3 Spatial Representation
Conceptual Map All higher level inference is performed
in the so called conceptual map which is represented by a
graphical model. It integrates the conceptual knowledge

Figure 2: Schematic image of chain graph

(food items are typically found in kitchens) with instance
knowledge (the rice package is in room4). We model this
in a chain graph (Lauritzen and Richardson 2002), whose
structure is adapted online according to the state of under-
lying topological map. Chain graphs provide a natural gen-
eralisation of directed (Bayesian Networks) and undirected
(Markov Random Fields) graphical models, allowing us to
model both “directed” causal as well as “undirected” sym-
metric or associative relations.

The structure of the chain graph model is presented in
Fig. 2. Each discrete place is represented by a set of ran-
dom variables connected to variables representing semantic
category of a room. Moreover, the room category variables
are connected by undirected links to one another according
to the topology of the environment. The potential functions
φrc(·, ·) represent the type knowledge about the connectivity
of rooms of certain semantic categories.

To compute Pcategory(roomi) each place is described by
a set of properties such as size, shape and appearance of
space. These are are based on sensory information as pro-
posed in (Pronobis et al. 2010). We extend this work by
also including presence of a certain number of instances of
objects as observed from each place as a property (due to
space -limitations we refer to (Pronobis and Jensfelt 2011)
for more details). This way object presence or absence in
a room also affects affects room category. The property
variables can be connected to observations of features ex-
tracted directly from the sensory input. Finally, the functions
ps(·|·), pa(·|·), poi(·|·) utilise the common sense knowl-
edge about object, spatial property and room category co-
occurrence to allow for reasoning about other properties and
room categories.

For planning, the chain graph is the sole source of belief-
state information. In the chain graph, belief updates are
event-driven. For example, if an appearance property, or
object detection, alters the probability of a relation, infer-
ence proceeds to propagate the consequences throughout the
graph. In our work, the underlying inference is approximate,
and uses the fast Loopy Belief Propagation (Mooij 2010)
procedure.

Object existence probabilities
To compute the P (ObjectAtL) value used in active visual
search in this paper, objects are considered to be occurring:

1. independently in different locations L
2. independently of other objects in the same location
3. as Poisson processes over cells c0...ci per location L
In other words, each location has the possibility of contain-
ing, independently of all other locations, a number nc of
objects of a class c with probability

P (nc = k) =
λk
L,ce

−λL,c

k!
(1)

where λL,c is the expected number of objects of class c in
the location L. The probability of at least one object in a
location is

P (nc > 0) = 1− P (nc = 0) = 1− e−λi,c (2)

Because of the independence assumptions, the λ values
for a location and all its subordinate locations can simply be
added together to obtain the distribution of the number of
objects of that class occurring in that whole hierarchy.

Exploration In addition to making inferences about ex-
plored space, the conceptual map can provide predictions
about unexplored space. To this end, we extend the graph
by including the existence of placeholders. For each place-
holder a set of probabilities is generated that the placeholder
will lead to a room of a certain category.

This process is repeated for each placeholder and consists
of three steps. In the first step, a set of hypotheses about
the structure of the unexplored space is generated. In case
of our implementation, we evaluate 6 hypotheses: (1) place-
holder does not lead to new places, (2) placeholder leads to
new places which do not lead to a new room, (3) placeholder
leads to places that lead to a single new room (4) placeholder
leads to places that lead a room which is further connected
to another room, (5) placeholder leads to a single new room
directly, and (6) placeholder leads to a new room directly
which leads to another room. In the second step, the hy-
pothesised rooms are added to the chain graph just like reg-
ular rooms and inference about their categories is performed.
Then, the probability of any of the hypothesised rooms be-
ing of a certain category is obtained. Finally, this probability
is multiplied by the likelihood of occurrence of each of the
hypothesised worlds estimated based on the amount of open
space behind the placeholder and the proximity of gateways.
A simple example is shown in Fig. 1(b)

4 Experiments
Experiments were carried out on a Pioneer III wheeled
robot, equipped with a Hokuyo URG laser scanner, and a
camera mounted at 1.4 m above the floor. Experiments
took place in 12x8 m environment with 3 different rooms,
kitchen, office1, office2 connected by a corridor. The robot
had models of all objects it searches for before each search
run. 3 different objects (cerealbox, stapler and white-
boardmarkers) were used during experiments. The BLORT
framework was used to detect objects (Mörwald et al. 2010).

To highlight the flexibility of the planning framework
evaluated the system with 6 different starting positions and
tasked with finding different objects in an unknown envi-
ronment. Each sub-figure in Fig. 3 shows the trajectory of
the robot. The colour coded trajectory indicates the room
category as perceived by the robot: red is kitchen, green is
corridor and blue is office. The two green arrows denote the
current position and the start position of the robot.

In the following we give a brief explanation for what hap-
pened in the different runs.

• Fig. 3(a) Starts: corridor, Target: cerealbox in kitchen
The robot starts by exploring the corridor. The robot finds
a doorway on its left and the placeholder behind it has a
higher probability of yielding into a kitchen and the robot
enters office1. As the robot acquires new observations the
CP’s kitchen assumption is violated. The robot returns
to exploring the corridor until it finds the kitchen door.
Here the CP’s assumptions are validated and the robot
searches this room. The DT planner plans a strategy of
first finding a table and then the target object on it. Af-
ter finding a table, the robot generates view cones for the
Otable,cornflakes location. The cerealbox object is found.

• Fig. 3(b) Starts: office2, Target: cerealbox in kitchen
Unsatisfied with the current room’s category, the CP com-
mits to the assumption that exploring placeholders in the
corridor will result in a room with category kitchen. The
rest proceeds as in Fig. 3(a).

• Fig. 3(c) Starts: corridor Target: cerealbox in kitchen
The robot explores until it finds office2. Upon entry the
robot categorises office2 as kitchen but after further explo-
ration, office2 is categorised correctly. The robot switches
back to exploration and since the kitchen door is closed,
it passes kitchen and finds office1. Not satisfied with of-
fice1, the robot gives up since all possible plans success
probability are smaller than a given threshold value.

• Fig. 3(d) Starts: office1 Target:stapler in office2
After failing to find the object in office1 the robot notices
the open door, but finding that it is kitchen-like decides
not to search the kitchen room. This time the stapler ob-
ject is found in office2

• Fig. 3(e) Starts: kitchen Target: cerealbox in kitchen
As before it tries locating a table, but in this case all table
objects have been eliminated beforehand; failing to detect
a table the robot switches to looking for a counter. Finding
no counter either, it finally goes out in the corridor to look
for another kitchen and upon failing that, gives up.

• Fig. 3(f) Starts: corridor Target: whiteboardmarker in of-
fice1. The robot is started in the corridor and driven to the
kitchen by a joystick; thus in this case the environment is
largely explored already when the planner is activated and
asked to find a whiteboardmarker object. The part of the
corridor leading to office2 has been blocked. The robot
immediately finds its way to office1 and launches a search
which results in a successful detection of the target object.

In the following, we describe the planning decisions in
more detail for a run similar to the one described in Fig. 3(a),

with the main difference being that the cereals could not be
found in the end due to a false negative detection.

The first plan, with the robot starting out in the middle of
the corridor, looks as follows:
ASSUME-LEADS-TO-ROOM place1 kitchen
ASSUME-OBJ-EXISTS table IN new-room1 kitchen
ASSUME-OBJ-EXISTS cerealbox ON new-object1 table kitchen
MOVE place1
CREATEVIEWCONES table IN new-room1
SEARCHFOROBJECT table IN new-room1 new-object1
CREATEVIEWCONES cerealbox ON new-object1
SEARCHFOROBJECT cerealbox ON new-object1 new-object2
REPORTPOSITION new-object2

Here we see several virtual objects being introduced: The
first action assumes that place1 leads to a new room new-
room1 with category kitchen. The next two assumptions hy-
pothesise that a table exists in the room and that cornflakes
exist on that table. The rest of the plan is rather straightfor-
ward: create view cones and search for the table, then create
view cones and search for the cereal box.

After following the corridor, the robot does find the office,
and returns to the corridor to explore into the other direc-
tion. It finally finds a room with a high likelihood of being a
kitchen.
ASSUME-CATEGORY room3 kitchen
ASSUME-OBJ-EXISTS table IN room3 kitchen
ASSUME-OBJ-EXISTS cerealbox ON new-object1 table kitchen
MOVE place18
MOVE place16
CREATEVIEWCONES table IN room3
SEARCHFOROBJECT table IN room3 new-object1
CREATEVIEWCONES cerealbox ON new-object1
SEARCHFOROBJECT cerealbox ON new-object1 new-object2

The new plan looks similar to the first one, except that we
do not assume the existence of a new room but the category
of an existing one. Also, the robot cannot start creating view
cones immediately because a precondition of the CREATE-
VIEWCONES action is that the room must be fully explored,
which involves visiting all placeholders in the room.

After view cones are created, the decision theoretic plan-
ner is invoked. We used a relatively simple sensing model,
with a false negative probability of 0.2 and a false positive
probability of 0.05 – these are educated guesses, though.
The DT planner starts moving around and processing view
cones until it eventually detects a table and returns to the
continual planner. At this point the probability of the room
being a kitchen is so high, that it considered to be certain by
the system. With lots of the initial uncertainty removed, the
final plan is straightforward:
ASSUME-OBJ-EXISTS cerealbox ON object1 table kitchen
CREATEVIEWCONES cerealbox ON object1
SEARCHFOROBJECT cerealbox ON object1 new-object2
REPORTPOSITION new-object2

During the run, the continual planner created 14 plans in
total, taking 0.2 – 0.5 seconds per plan on average. The DT
planner was called twice, and took about 0.5 – 2 seconds per

(a) (b) (c)

(d) (e) (f)

Figure 3: Trajectories taken by the robot in multiple experiments

action it executed.

5 Conclusions and Future Work
In this paper we have presented a planning approach to the
active object search. We made use of a switching planner,
combing a classical continual planner with a decision theo-
retic planner. We provide a model for the planning domain
appropriate for the planner and show by experimental results
that the system is able to search for objects in a real world
office environment making use of both low level sensor per-
cepts and high level conceptual and semantic information.

Our main goal for future work is to extend the planning
and monitoring system to handle open world situations in a
more principled way. Moreover, investigating how probabil-
ities can be incorporated into other classical heuristics may
be of interest.

References
Aydemir, A.; Sjöö, K.; Folkesson, J.; and Jensfelt, P. 2011. Search
in the real world: Active visual object search based on spatial rela-
tions. In IEEE International Conference on Robotics and Automa-
tion (ICRA).
Bäckström, C., and Nebel, B. 1995. Complexity results for SAS+

planning. Comp. Intell. 11(4):625–655.
Bonet, B., and Geffner, H. 2001. Planning as heuristic search.
Artificial Intelligence 129(1-2):5 – 33.
Brenner, M., and Nebel, B. 2009. Continual planning and acting in
dynamic multiagent environments. Journal of Autonomous Agents
and Multiagent Systems 19(3):297–331.
Garvey, T. D. 1976. Perceptual strategies for purposive vi-
sion. Technical Report 117, AI Center, SRI International, 333
Ravenswood Ave., Menlo Park, CA 94025.
Göbelbecker, M.; Gretton, C.; and Dearden, R. 2011. A switching
planner for combined task and observation planning. In Twenty-
Fifth Conference on Artificial Intelligence (AAAI-11).

Hanheide, M.; Gretton, C.; Dearden, R. W.; Hawes, N. A.; Wyatt,
J. L.; Pronobis, A.; Aydemir, A.; Göbelbecker, M.; and Zender, H.
2011. Exploiting Probabilistic Knowledge under Uncertain Sens-
ing for Efficient Robot Behaviour. In IJCAI.
Helmert, M. 2006. The fast downward planning system. Journal
of Artificial Intelligence Research 26:191–246.
Keyder, E., and Geffner, H. 2008. The hmdpp planner for planning
with probabilities. In Sixth International Planning Competition at
ICAPS’08.
Kraft, D.; Başeski, E.; Popović, M.; Batog, A. M.; Kjær-Nielsen,
A.; Krüger, N.; Petrick, R.; Geib, C.; Pugeault, N.; Steedman, M.;
Asfour, T.; Dillmann, R.; Kalkan, S.; Wörgötter, F.; Hommel, B.;
Detry, R.; and Piater, J. 2008. Exploration and planning in a three-
level cognitive architecture. In CogSys.
Lauritzen, S. L., and Richardson, T. S. 2002. Chain graph models
and their causal interpretations. J. Roy. Statistical Society, Series B
64(3):321–348.
Mooij, J. M. 2010. libDAI: A free and open source C++ library
for discrete approximate inference in graphical models. J. Mach.
Learn. Res. 11:2169–2173.
Mörwald, T.; Prankl, J.; Richtsfeld, A.; Zillich, M.; and Vincze, M.
2010. BLORT - The blocks world robotic vision toolbox. In Work-
shop on Best Practice in 3D Perception and Modeling for Mobile
Manipulation at ICRA 2010.
Pronobis, A., and Jensfelt, P. 2011. Hierarchical multi-modal place
categorization. In submitted to ECMR’11.
Pronobis, A.; Mozos, O. M.; Caputo, B.; and Jensfelt, P. 2010.
Multi-modal semantic place classification. The International Jour-
nal of Robotics Research (IJRR), Special Issue on Robotic Vision
29(2-3):298–320.
Talamadupula, K.; Benton, J.; Kambhampati, S.; Schermerhorn, P.;
and Scheutz, M. 2010. Planning for human-robot teaming in open
worlds. ACM Trans. Intell. Syst. Technol. 1:14:1–14:24.
Tsotsos, J. K. 1992. On the relative complexity of active vs. passive
visual search. International Journal of Computer Vision 7(2):127–
141.

