
A Switching Planner for Combined Task and Observation Planning

Moritz Göbelbecker
Albert-Ludwigs-Universität Freiburg, Germany

goebelbe@informatik.uni-freiburg.de

Charles Gretton and Richard Dearden
University of Birmingham, United Kingdom
{c.gretton,R.W.Dearden}@cs.bham.ac.uk

Abstract
From an automated planning perspective the prob-
lem of practical mobile robot control in realis-
tic environments poses many important and con-
trary challenges. On the one hand, the planning
process must be lightweight, robust, and timely.
Over the lifetime of the robot it must always re-
spond quickly with new plans that accommodate
exogenous events, changing objectives, and the un-
derlying unpredictability of the environment. On
the other hand, in order to promote efficient be-
haviours the planning process must perform com-
putationally expensive reasoning about contingen-
cies and possible revisions of subjective beliefs ac-
cording to quantitatively modelled uncertainty in
acting and sensing. Towards addressing these chal-
lenges, we develop a continual planning approach
that switches between using a fast satisficing “clas-
sical” planner, to decide on the overall strategy,
and decision-theoretic planning to solve small ab-
stract subproblems where deeper consideration of
the sensing model is both practical, and can signifi-
cantly impact overall performance. We evaluate our
approach in large problems from a realistic robot
exploration domain.

Introduction
A number of recent integrated robotic systems incorporate
a high-level continual planning and execution monitoring
subsystem [Wyatt et al., 2010; Talamadupula et al., 2010;
Kraft et al., 2008]. For the purpose of planning, sensing is
modelled deterministically, and beliefs about the underlying
state are modelled qualitatively. Both Talamadupula et al.
and Wyatt et al. identify continual planning with probabilistic
models of noisy sensing and state as an important challenge
for future research. Motivating that sentiment, planning ac-
cording to accurate stochastic models should yield more effi-
cient and robust deliberations. In essence, the challenge is to
develop a planner that exhibits speed and scalability similar to
planners employed in existing robotic systems—e.g., Wyatt
et al. use a satisficing classical procedure—and which is also
able to synthesise relatively efficient deliberations according
to detailed probabilistic models of the environment.

This paper describes a switching domain independent plan-
ning approach we have developed to address this challenge.
Our Planner is continual in the usual sense that plans are
adapted and rebuilt online in reaction to changes to the model
of the underlying problem and/or domain—e.g., when goals
are modified, or when the topological map is altered by a
door being closed. It is integrated on a mobile robot platform
that continuously deliberates in a stochastic dynamic envi-
ronment in order to achieve goals set by the user, and acquire
knowledge about its surroundings. Our planner takes prob-
lem and domain descriptions expressed in a novel extension
of PPDDL [Younes et al., 2005], called Decision-Theoretic
(DT)PDDL, for modelling stochastic decision problems that
feature partial observability. In this paper we restrict our at-
tention to problem models that correspond to deterministic-
action goal-oriented POMDPs in which all actions have non-
zero cost, and where an optimal policy can be formatted as a
finite horizon contingent plan. Moreover, we target problems
of a size and complexity that is challenging to state-of-the-art
sequential satisficing planners, and which are too large to be
solved directly by decision-theoretic (DT) systems.

Our planner switches, in the sense that the base planning
procedure changes depending on our robot’s subjective de-
grees of belief, and on progress in plan execution. When the
underlying planner is a fast (satisficing) classical planner, we
say planning is in a sequential session, and otherwise it is
in a DT session. A sequential session plans, and then pur-
sues a high-level strategy—e.g., go to the kitchen bench, and
then observe the cornflakes on it. A DT session proceeds in
a practically sized abstract process, determined according to
the current sequential strategy and underlying belief-state.

We evaluate our approach in simulation on problems posed
by object search and room categorisation tasks that our indoor
robot undertakes. Those feature a deterministic task planning
aspect with an active sensing problem. The larger of these
problems features 6 rooms, 25 topological places, and 21 ac-
tive sensing actions. The corresponding decision process has
a number of states exceeding 1036, and high-quality plans re-
quire very long planning horizons. Although our approach is
not optimal, particularly as it relies on the results of satisficing
sequential planning directly, we find that it does nevertheless
perform better than a purely sequential replanning baseline.
Moreover, it is fast enough to be used for real-time decision
making on a mobile robot.

Planning Language and Notations
We give an overview of the declarative first-order language
DTPDDL, an extension of PPDDL that can express prob-
abilistic models of the sensing consequences of acting, to
quantitatively capture unreliability in perception. There are
straightforward compilations from problems expressed in
DTPDDL to flat (and factored) representations of the under-
lying decision process. Although similar to Bryce’s POND
input language, DTPDDL distinguishes itself by explicitly
treating state and perceptual symbols separately, and by pro-
viding distinct declarations for operators (i.e, state model)
and senses (i.e., observation model). In this last respect, DT-
PDDL admits more compact domain descriptions where sens-
ing effects are common across multiple operators. In detail,
DTPDDL has perceptual analogues of fluent and predicate
symbols. For example, a simple object search domain would
have:
(:functions
(is-in ?v - visual-object) - location)
(:perceptual-functions
(o-is-in ?v - visual-object) - location)

Where the first fluent symbol models the actual location of
objects, and the second the instantaneous sensing of objects
following application of an action with sensing consequences.
To model sensing capabilities, we have operator-like “sense”
declarations, with preconditions expressed using state and ac-
tion symbols, and uniformly positive effects over perceptual
symbols. For example, where look-for-object is the operator
that applies an object detection algorithm at a specific place,
an object search task will have:
(:sense vision :parameters
(?r -robot ?v -visual-object ?l -location)
:execution (look-for-object ?r ?v ?l)
:precondition (and (= (is-in ?r) ?l))
:effect (and
(when (= (is-in ?v) ?l)
(probabilistic .8 (= (o-is-in ?v) ?l)))
(when (not (= (is-in ?v) ?l))
(probabilistic .1 (= (o-is-in ?v) ?l)))))

I.e., there is a 10% false positive rate, and 20% probability
of a false negative. This representation allows us to represent
actions that have multiple independent observational effects.

We now review the DTPDDL syntax for describing an
initial state distribution, taken verbatim from PPDDL, in
order to aid us in discussing our planner. That distribu-
tion is expressed in a tree-like structure of terms. Each
term is either: (1) atomic, e.g., a state proposition such
as (= (is-in box) office), (2) probabilistic, e.g.,
(probabilistic ρ1(T1)..ρn(Tn)) where Ti are conjunc-
tive, or (3) a conjunct over probabilistic and atomic terms.
The root term is always conjunctive, and the leaves are
atomic. For example, a simplified object search could have:1
(:init (= (is-in R2D2) kitchen)
(probabilistic .8 (= (is-in box) kitchen)

.2 (= (is-in box) office))
(probabilistic .3 (= (is-in cup) office)

.7 (= (is-in cup) kitchen)))

1In PDDL, (:init T1..Tn) expresses the conjunctive root of
the tree – i.e., the root node (and T1..Tn). Also, we shall write
p, rather than (and p), for conjunctive terms that contain a single
atomic subterm.

The interpretation is given by a visitation of terms: An atom is
visited iff its conjunctive parent is visited, and a conjunctive
term is visited iff all its immediate subterms are visited. A
probabilistic term is visited iff its conjunctive parent is vis-
ited, and exactly one of its subterms, Ti, is visited. Each
visitation of the root term according to this recursive defi-
nition defines a starting state, along with the probability that
it occurs. The former corresponds to the union of all visited
atoms, and the latter corresponds to the product of ρi entries
on the visited subterms of probabilistic elements. Making this
concrete, the above example yields the following flat distribu-
tion:

Probability (is-in R2D2) (is-in box) (is-in cup)
.24 kitchen kitchen office
.06 kitchen office office
.56 kitchen kitchen kitchen
.14 kitchen office kitchen

Switching Continual Planner
We now describe our switching planning system that oper-
ates according to the continual planning paradigm. The sys-
tem switches in the sense that planning and plan execution
proceed in interleaved sessions in which the base planner is
either sequential or decision-theoretic. The first session is se-
quential, and begins when a DTPDDL description of the cur-
rent problem and domain are posted to the system. During a
sequential session a serial plan is computed that corresponds
to one execution-trace in the underlying decision-process.
That trace is a reward-giving sequence of process actions and
assumptive actions. Each assumptive action corresponds to
an assertion about some facts that are unknown at plan time
– e.g. that a box of cornflakes is located on the corner bench
in the kitchen. The trace specifies a plan and characterises a
deterministic approximation (see [Yoon et al., 2008]) of the
underlying process in which that plan is valuable. Traces are
computed by a cost-optimising classical planner which trades
off action costs, goal rewards, and determinacy. Execution of
a trace proceeds according to the process actions in the order
that they appear in the trace. If, according to the underlying
belief-state, the outcome of the next action scheduled for ex-
ecution is not predetermined above a threshold (here 95%),
then the system switches to a DT session.

Because online DT planning is impractical for the size of
problem we are interested in, DT sessions plan in a small ab-
stract problem defined in terms of the trace from the proceed-
ing sequential session. This abstract state-space is charac-
terised by a limited number of propositions, chosen because
they relate evidence about assumptions in the trace. To al-
low the DT planner to judge assumptions from the trace, we
add disconfirm and confirm actions to the problem for each
of them. Those yield a relatively small reward/penalty if the
corresponding judgement is true/false. If a judgement action
is scheduled for execution, then the DT session is terminated,
and a new sequential session begins.

Whatever the session type, our continual planner maintains
a factored representation of successive belief-states. As an
internal representation of the (:init) declaration, we keep
a tree-shaped Bayesian network which gets updated when-
ever an action is performed, or an observation received. That
belief-state representation is used: (1) as the source of can-

didate determinisations for sequential planning, (2) in deter-
mining when to switch to a DT session, and (3) as a mecha-
nism to guide construction of an abstract process for DT ses-
sions.

Sequential Sessions
As we only consider deterministic-action POMDPs, all state
uncertainty is expressed in the (:init) declaration. This
declaration is used by our approach to define the starting
state for sequential sessions, and the set of assumptive actions
available to sequential planning. Without a loss of generality
we also suppose that actions do not have negative precondi-
tions. For a sequential session the starting state corresponds
to the set of facts that are true with probability 1. Continuing
our example, that starting state is the singleton:

s0 ≡ {(= (is-in R2D2) kitchen)}.

To represent state assumptions we augment the problem
posed during a sequential session with an assumptive ac-
tionA◦(ρi;Ti) for each element, ρi(Ti), of each probabilistic
term from (:init). Here, A◦(ρi;Ti) can be executed if no
A◦(ρj ;Tj), j 6= i, has been executed from the same prob-
abilistic term, and, either (probabilistic ..ρi (Ti)..) is
in the root conjunct, or it occurs in Tk for some executed
A◦(ρk;Tk). We also add constraints that forbid scheduling
of assumptions about facts after actions with preconditions
or effects that mention those facts. For example, the robot
cannot assume it is plugged into a power source immediately
after it unplugs itself. Executing A◦(ρi;Ti) in a state s ef-
fects a transition to a successor state sTi , the union of s with
atomic terms from Ti, and of course annotated with auxiliary
variables that track the applicability of assumptive actions.
For example, consider the following sequential plan:

A◦(.8; (= (is-in box) kitchen));
A◦(.3; (= (is-in cup) office));
(look box kitchen); (look cup office);
(report box kitchen); (report cup office)

Applying the first action in s0 yields a state in which the fol-
lowing facts are true:
{(= (is-in R2D2) kitchen), (= (is-in box) kitchen)}

In the underlying belief-state, this is true with probability 0.8.
The assumed state before the scheduled execution of action
(look box kitchen) is:
{(= (is-in R2D2) kitchen), (= (is-in box) kitchen),
(= (is-in cup) office)}

Which is actually true with probability 0.24 according to the
underlying belief.

To describe the optimisation criteria used during sequen-
tial sessions we model A◦(ρi;Ti) probabilistically, suppos-
ing that its application in state s effects a transition to sTi

with probability ρi, and to s⊥ with probability 1 − ρi. State
s⊥ is an added sink. Taking ρi to be the probability that the
ith sequenced action, ai, from a trace of state-action pairs
〈s0, a0, s1, a1, .., sN 〉 does not transition to s⊥, then the opti-
mal sequential plan has value:

V ∗ = max
N

max
s0,a0,..,sN

∏
i=1..N−1

ρi
∑

i=1..N−1

R(si, ai),

DT Sessions
When an action is scheduled whose outcome is uncertain ac-
cording to the underlying belief-state, the planner switches
to a DT session. That plans for small abstract processes de-
fined according to the action that triggered the DT session, the
assumptive actions in the proceeding trace, and the current
belief-state. Targeted sensing is encouraged by augmenting
the reward model to reflect a heuristic value of knowing the
truth about assumptions. In detail, all rewards from the un-
derlying problem are retained. Additionally, for each relevant
assumptive action A◦(ρi;Ti) in the current trace, we have a
disconfirm action A•(ρi;Ti) so that for all states s:

R(s,A•(ρi;Ti)) =
{

$(Ti) if Ti 6⊆ s
$̂(Ti) otherwise

where $(Ti) (resp. $̂(Ti)) is a small positive (negative) nu-
meric quantity which captures the utility the agent receives
for correctly (incorrectly) rejecting an assumption. In terms
of action physics, a disconfirm action can only be executed
once, and otherwise is modelled as a self-transformation.
We only consider relevant assumptions when constructing
the abstract model. If ã is the action that switched the sys-
tem to a DT session, then an assumption A◦(ρi;Ti) is rel-
evant if it is necessary for the outcome of ã to be deter-
mined. For example, taking the switching action ã to be
(look box kitchen) from our earlier sequential plan ex-
ample, we have that A◦(.3; (= (is-in cup)office)) is
not relevant, and therefore we exclude the corresponding dis-
confirm action from the abstract decision process. Given
ã, we also include another once-only self-transition action
A.pre(ã), a confirmation action with the reward property:

R(s,A.pre(ã)) =
{

$(pre(ã)) if pre(ã) ⊆ s
$̂(pre(ã)) otherwise

Here, pre(ã) is the set of propositions that are the precon-
dition of action ã. Execution of either a disconfirmation or
the confirmation action returns control to a sequential session,
which starts anew from the underlying belief-state.

Turning to the detail of (dis-)confirmation rewards, in our
integrated system these are sourced from a motivational sub-
system. In this paper, forA•(ρi;Ti) actions we set $(x) to be
a small positive constant, and have $̂(x) = −$(x)(1 − ρ)/ρ
where ρ is the probability that x is true. For A.pre(ã) ac-
tions we have $̂(x) = −$(x)ρ/(1− ρ).

In order to guarantee fast DT sessions, those plan in an ab-
stract process determined by the current trace and underlying
belief-state. The abstract process posed to the DT planner is
constructed by first constraining as statically false all proposi-
tions except those which are true with probability 1, or which
are the subject of relevant assumptions. For example, taking
the above trace with assumptive action probabilities changed
to reflect the belief-state in Fig. 1B, given switching action
“(look box kitchen)” the underlying belief in Fig. 1B would
determine a fully constrained belief given by Fig. 1A. Next,
static constraints are removed, one proposition at a time, until
the number of states that can be true with non-zero probabil-
ity in the initial belief of the abstract process reaches a given
threshold. In detail, for each statically-false proposition we

(A) Fully constrained belief (C) Partially constrained belief
(:init (=(is-in R2D2)kitchen)
(.6(=(is-in box)kitchen)))

(:init (=(is-in R2D2)kitchen)
(.6(and(=(is-in box)kitchen)

(.9(=(is-in milk) kitchen))
.1(=(is-in milk)office))

.4(and(=(is-in box)office)
(.1(=(is-in milk)kitchen))
.9(=(is-in milk)office)))

(B) Underlying DTPDDL belief

(:init (=(is-in R2D2)kitchen)
(.6(and(=(is-in box)kitchen)

(.9(=(is-in milk)kitchen))
.1(=(is-in milk)office))

.4(and(=(is-in box)office)
(.1(=(is-in milk)kitchen))
.9(=(is-in milk)office)))

(.6(=(is-in cup)office)
.4(=(is-in cup)kitchen)))

Figure 1: Simplified examples of belief-states from DT ses-
sions.

compute the entropy of the relevant assumptions of the cur-
rent trace conditional on that proposition. Let X be a set of
propositions and 2X the powerset of X , then taking

χ = {
∧

x∈X′∩X

x ∧
∧

x∈X\X′

¬x | X ′ ∈ 2X},

we have that χ is a set of conjunctions each of which corre-
sponds to one truth assignment to elements inX . Where p(φ)
gives the probability that a conjunction φ holds in the belief-
state of the DTPDDL process, the entropy of X conditional
on a proposition y, written H(X|y), is given by Eq. 1.

H(X|y) =
∑

x∈χ,y′∈{y,¬y}

p(x ∧ y′) log2
p(y′)

p(x ∧ y′) (1)

A low H(X|y) value suggests that knowing the truth value
of y is useful for determining whether or not some assump-
tions X hold. When removing a static constraint on propo-
sitions during the abstract process construction, yi is consid-
ered before yj if H(X|yi) < H(X|yj). For example, if
the serial plan assumes the box is in the kitchen, then propo-
sitions about the contents of kitchens containing a box, e.g.
(= (is-in milk)kitchen), are added to characterise the
abstract process’ states. Taking a relevant assumptionX to be
(= (is-in box)kitchen), in relaxing static constraints
the following entropies are calculated:

.47 = H(X|(=(is-in milk)office))
= H(X|(=(is-in milk)kitchen))

.97 = H(X|(=(is-in cup)office))
= H(X|(=(is-in cup)kitchen))

Therefore, the first static constraint to be relaxed is
for (=(is-in milk)office), or equivalently
(=(is-in milk)kitchen), giving a refined ab-
stract belief state depicted in Fig. 1C. Summarising, if for
Fig.1B the DT session is restricted to belief-states with fewer
than 8 elements, then the starting belief-state of the DT
session does not mention a “cup”.

Evaluation
We have implemented our switching approach in the MAP-
SIM environment [Brenner and Nebel, 2009], using DLIB-
ML [King, 2009] for belief revision. Sequential sessions use
a modified version of Fast Downward [Helmert, 2006], and

DT sessions use our own contingent procedure. Since most
of the problems we consider are much larger than any avail-
able DT planner can solve directly, for comparison purposes
we also implemented a simple dual-mode replanning baseline
approach. Here, when a switching action is scheduled for ex-
ecution the DT session plans to a single entropy reduction
action, whose execution can provide evidence regarding the
truth value of a relevant assumption. Control is then immedi-
ately returned to a new sequential session.

We evaluate our approaches in robot exploration tasks from
home and office environments. Spatially, these consist of
rooms (office/kitchen/etc), and an underlying topological map
over smaller areas of space, called places, and connectivity
between those. The mobile robot and visual objects inhabit
the topological places. Objects indicate the category of space
they inhabit—e.g., spoons are likely to be in kitchens. By ex-
amining view cones at places for particular objects, the robot
is able to: (1) categorise space at high (room) and low (place)
levels, and (2) find objects for the user, exploiting informa-
tion about object co-occurrence and room categories for effi-
ciency. Also, in the presence of a person, the robot can ask
about the category of the current room.

We compare switching to the baseline in several realis-
tic tasks, with the number of rooms ranging from 3 (12-
places, 16-objects, |states| > 1021) to 6 (26-places, 21-
objects, |states| > 1036). We also compare those systems
with near optimal policies computed using Smith’s ZMDP for
small 2 room problems (4-places, 3-objects, |states| ' 5000).
Our evaluation considers 3 levels of reliability in sensing: re-
liable sensors have a .1 probability of a false negative, semi-
reliable have a chance of 0.3 of false negative and 0.1 of
false positive, and noisy sensors with probabilities of 0.5 and
0.2 respectively. Each object class is assigned one sensor
model—e.g. cornflakes may be harder to detect than refriger-
ators. We performed several experiments with different levels
of reliability for sensing the target object(s), while keeping
sensing models for non-target objects constant.

Our evaluation examines DT sessions with initial belief-
states admitting between 20 and 100 abstract states with non-
zero probability. We run 50 simulations in each configuration,
and have a timeout on each simulation of 30 minutes (1800
seconds)2. The continual planning times are reported in Fig-
ure 2, and the quality data in Figure 3. For each task, the
goal is to find one or more objects and report their position
to a user. Usually there is a non-zero probability that no plan
exists, as the desired object might not be present in the en-
vironment. In these experiments we only allocate reward on
the achievement of all goals, therefore we find it intuitive to
report average plan costs and the success rates in problems
that admit a complete solution (i.e., positive reward scaled by
a constant factor). The exception occurs for items f and g of
Figure 3, where we report expected discounted rewards (not
plan costs).

We find that if sensing is reliable, then little is gained using
DT sessions, as the greedy approach of the baseline is suffi-
cient. As sensing degrades DT sessions prove more useful.

2All experiments were conducted on a 2.66GHz Intel Xeon
X5355 using one CPU core.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

cp dt
 2

0
dt

 5
0

dt
 1

00

cp dt
 2

0
dt

 5
0

dt
 1

00

cp dt
 2

0
dt

 5
0

dt
 1

00

ti
m

e
[s

ec
]

a) Object search task (3 rooms/1 goal)

sequential planner
contingent planner

noisyreliable

 0

 100

 200

 300

 400

 500

cp dt
 2

0
dt

 5
0

dt
 1

00

cp dt
 2

0
dt

 5
0

dt
 1

00

cp dt
 2

0
dt

 5
0

dt
 1

00

ti
m

e
[s

ec
]

b) 3 rooms/2 goals

noisyreliable

 0

 100

 200

 300

 400

 500

cp dt
 2

0
dt

 5
0

dt
 1

00

cp dt
 2

0
dt

 5
0

dt
 1

00

cp dt
 2

0
dt

 5
0

dt
 1

00

ti
m

e
[s

ec
]

c) 6 rooms/1 goal

Figure 2: Average runtime

Here, time spent on DT planning increases steeply as the ab-
straction becomes more refined, which is compensated for by
fewer planning sessions overall. More detailed abstractions
lead to a better overall success rate, particularly for tasks d
and e. Speaking to the effectiveness of our entropy heuris-
tic for abstraction refinement, we see relatively high success
rates irrespective of the level of refinement. Comparing fi-
nally to the best ZMDP policy, although producing relatively
costly plans, the continual planners performed quite well, es-
pecially in terms success rate. A key source of inefficiency
here, is due to sequential sessions always being optimistic,
and refusing to abandon the search.

Related Work
Addressing task and observation planning specifically, there
have been a number of recent developments where the un-
derlying problem is modelled as a POMDP. For vision al-
gorithm selection, Sridharan et al. (2010) exploit an explic-
itly modelled hierarchical decomposition of the underlying
POMDP. Doshi and Roy (2008) represent a preference elici-
tation problem as a POMDP and take advantage of symmetry
in the belief-space to exponentially shrink the state-space. Al-
though we have been actively exploring the Doshi and Roy
approach, those exploitable symmetries are not present in
problems we consider due to the task planning requirement.
Also, our approach is in a similar vein to dual-mode con-
trol [Cassandra et al., 1996], where planning switches be-
tween entropy and utility focuses.

There has also been much recent work on scaling of-
fline approximate POMDP solution procedures to medium-
sized instances. Recent contributions propose more effi-
cient belief-point sampling schemes [Kurniawati et al., 2010;
Shani et al., 2008b], and factored representations with pro-
cedures that can efficiently exploit structures in those repre-
sentations [Brunskill and Russell, 2010; Shani et al., 2008a].
Offline domain independent systems scale to logistics prob-

 0
 50

 100
 150
 200
 250
 300

cp dt
 2

0
dt

 5
0

dt
 1

00

cp dt
 2

0
dt

 5
0

dt
 1

00

cp dt
 2

0
dt

 5
0

dt
 1

00
 0

 0.2

 0.4

 0.6

 0.8

 1

p
la

n
 c

o
st

s

su
cc

es
s

ra
ti

o

a) Object search task (3 rooms/1 goal)

plan costs
success ratio

noisyreliable

 0

 100

 200

 300

 400

 500

cp dt
 2

0
dt

 5
0

dt
 1

00

cp dt
 2

0
dt

 5
0

dt
 1

00

cp dt
 2

0
dt

 5
0

dt
 1

00
 0

 0.2

 0.4

 0.6

 0.8

 1

p
la

n
 c

o
st

s

su
cc

es
s

ra
ti

o

b) 3 rooms/2 goals

noisyreliable

 0

 100

 200

 300

 400

cp dt
 2

0
dt

 5
0

dt
 1

00

cp dt
 2

0
dt

 5
0

dt
 1

00

cp dt
 2

0
dt

 5
0

dt
 1

00
 0

 0.2

 0.4

 0.6

 0.8

 1

p
la

n
 c

o
st

s

su
cc

es
s

ra
ti

o

c) 6 rooms/1 goal

 0

 100

 200

 300

 400

 500

cp dt
 2

0
dt

 5
0

dt
 1

00

p
la

n
 c

o
st

s

d) 6 rooms/2 goals

 0

 100

 200

 300

 400

 500

cp dt
 2

0
dt

 5
0

dt
 1

00
 0

 0.2

 0.4

 0.6

 0.8

 1

su
cc

es
s

ra
ti

o

e) 3 rooms/3 goals

 0
 10
 20
 30
 40
 50
 60

zm
dp

cp dt
 2

0
dt

 5
0

dt
 1

00

re
w

ar
d

f) Small problem / semi-reliable

-50
-40
-30
-20
-10

 0
 10
 20
 30
 40

zm
dp

cp dt
 2

0
dt

 5
0

dt
 1

00
 0

 0.2

 0.4

 0.6

 0.8

 1

su
cc

es
s

ra
ti

o

g) Small problem / noisy

Figure 3: Average plan costs and number of successful runs.

lems with 222 states [Shani et al., 2008a], taking over an
hour to converge, and around 10 seconds on average to per-
form each Bellman backup. Brunskill and Russell are able
to solve problems with approximately 1030 states, by further
exploiting certain problem features – E.g., problems where
no actions have negative effects. Moving someway towards
supporting real-time decision making, recent online POMDP
solution procedures have been developed which leverage
highly approximate value functions—computed using an of-
fline procedure—and heuristics in forward search [Ross et al.,
2008]. These approaches are applicable in relatively small
problems, and can require expensive problem-specific offline
processing in order to yield good behaviours.

In the direction of leveraging classical systems/approaches
for planning under uncertainty, the most highlighted system
to date has been FFRa [Yoon et al., 2007]; The winning entry
from the probabilistic track of the 2004 International Plan-
ning Competition. In the continual paradigm, FFRa uses FF
to compute sequential plans and execution traces. More com-
putationally expensive approaches in this vein combine sam-
pling strategies on valuations over runtime variables with de-
terministic planning procedures [Yoon et al., 2008].

Also leveraging deterministic planners in problems that
feature uncertainty, CONFORMANT-FF [Hoffmann and Braf-
man, 2006] and T0 [Palacios and Geffner, 2009] demon-
strate how conformant planning —i.e., sequential planning
in unobservable worlds— can be modelled as a determinis-
tic problem, and therefore solved using sequential systems.
In this conformant setting, advances have been towards com-
pact representations of beliefs amenable to existing best-first
search planning procedures, and lazy evaluations of beliefs.
We consider it an appealing future direction to pursue confor-
mant reasoning during the sequential sessions we proposed.
Most recently this research thread has been extended to con-
tingent planning in fully observable non-deterministic envi-
ronments [Albore et al., 2009].

Concluding Remarks
We have addressed a key challenge, specifically that of high-
level continual planning for efficient deliberations accord-
ing to rich probabilistic models afforded by recent integrated
robotic systems. We developed a system that can plan quickly
given large realistic probabilistic models, by switching be-
tween: (a) fast sequential planning, and (b) expensive DT
planning in small abstractions of the problem at hand. Se-
quential and DT planning is interleaved, the former identify-
ing a rewarding sequential plan for the underlying process,
and the latter solving small sensing problems posed during
sequential plan execution. We have evaluated our system
in large real-world task and observation planning problems,
finding that it performs quickly and relatively efficiently.

References
[Albore et al., 2009] Alexandre Albore, Héctor Palacios, and

Héctor Geffner. A translation-based approach to contin-
gent planning. In IJCAI, pages 1623–1628, 2009.

[Brenner and Nebel, 2009] Michael Brenner and Bernhard
Nebel. Continual planning and acting in dynamic multi-
agent environments. Journal of Autonomous Agents and
Multiagent Systems, 19(3):297–331, 2009.

[Brunskill and Russell, 2010] E. Brunskill and S. Russell.
RAPID: A reachable anytime planner for imprecisely-
sensed domains. In UAI, 2010.

[Cassandra et al., 1996] Anthony R. Cassandra, Leslie Pack
Kaelbling, and James A. Kurien. Acting under uncertainty:
Discrete bayesian models for mobile-robot navigation. In
IROS, pages 963–972, 1996.

[Doshi and Roy, 2008] Finale Doshi and Nicholas Roy. The
permutable POMDP: Fast solutions to POMDPs for pref-
erence elicitation. In AAMAS, 2008.

[Helmert, 2006] Malte Helmert. The Fast Downward plan-
ning system. Journal of Artificial Intelligence Research,
26:191–246, 2006.

[Hoffmann and Brafman, 2006] Jörg Hoffmann and Ronen I.
Brafman. Conformant planning via heuristic forward
search: a new approach. Artif. Intell., 170:507–541, May
2006.

[King, 2009] Davis E. King. Dlib-ml: A machine learning
toolkit. J. Mach. Learn. Res. (JMLR), 10:1755–1758, De-
cember 2009.

[Kraft et al., 2008] D. Kraft, E. Başeski, M. Popović, A. M.
Batog, A. Kjær-Nielsen, N. Krüger, R. Petrick, C. Geib,
N. Pugeault, M. Steedman, T. Asfour, R. Dillmann,
S. Kalkan, F. Wörgötter, B. Hommel, R. Detry, and J. Pi-
ater. Exploration and planning in a three-level cognitive
architecture. In CogSys, 2008.

[Kurniawati et al., 2010] Hanna Kurniawati, Yanzhu Du,
David Hsu, and Wee Sun Lee. Motion planning under un-
certainty for robotic tasks with long time horizons. The
International Journal of Robotics Research, 2010.

[Palacios and Geffner, 2009] Hector Palacios and Hector
Geffner. Compiling uncertainty away in conformant plan-
ning problems with bounded width. J. Artif. Intell. Res.
(JAIR), 35:623–675, August 2009.

[Ross et al., 2008] S. Ross, J. Pineau, S. Paquet, and
B. Chaib-draa. Online planning algorithms for POMDPs.
J. Artif. Int. Res. (JAIR), 32:663–704, July 2008.

[Shani et al., 2008a] G. Shani, P. Poupart, R. Brafman, and
S. E. Shimony. Efficient add operations for point-based
algorithms. In ICAPS, pages 330–337, 2008.

[Shani et al., 2008b] Guy Shani, Ronen I. Brafman, and
Solomon Eyal Shimony. Prioritizing point-based pomdp
solvers. IEEE Transactions on Systems, Man, and Cyber-
netics, Part B, 38(6):1592–1605, 2008.

[Sridharan et al., 2010] Mohan Sridharan, Jeremy Wyatt,
and Richard Dearden. Planning to see: Hierarchical
POMDPs for planning visual actions on a robot. Artif.
Intell., 174(11):704–725, 2010.

[Talamadupula et al., 2010] K. Talamadupula, J. Benton,
S. Kambhampati, P. Schermerhorn, and M. Scheutz. Plan-
ning for human-robot teaming in open worlds. ACM Trans.
Intell. Syst. Technol., 1:14:1–14:24, December 2010.

[Wyatt et al., 2010] Jeremy L. Wyatt, Alper Aydemir,
Michael Brenner, Marc Hanheide, Nick Hawes, Patric
Jensfelt, Matej Kristan, Geert-Jan M. Kruijff, Pierre
Lison, Andrzej Pronobis, Kristoffer Sjöö, Danijel
Skočaj, Alen Vrečko, Hendrik Zender, and Michael
Zillich. Self-understanding and self-extension: A sys-
tems and representational approach. IEEE Transactions
on Autonomous Mental Development, 2(4):282 – 303,
December 2010.

[Yoon et al., 2007] Sung Wook Yoon, Alan Fern, and Robert
Givan. FF-replan: A baseline for probabilistic planning.
In ICAPS, pages 352–, 2007.

[Yoon et al., 2008] Sungwook Yoon, Alan Fern, Robert Gi-
van, and Subbarao Kambhampati. Probabilistic planning
via determinization in hindsight. In AAAI, pages 1010–
1016, 2008.

[Younes et al., 2005] Håkan L. S. Younes, Michael L.
Littman, David Weissman, and John Asmuth. The first
probabilistic track of the international planning competi-
tion. J. Artif. Intell. Res. (JAIR), 24:851–887, 2005.

