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Abstract. There exist a number of qualitative constraint calculithat Such a combined spatio-temporal formalism permits us to describe
are used to represent and reason about temporal or spatial configusgeatial configurations that change over time. We cannot state general
tions. However, there are only very few approaches aiming to createlaws of how the spatial configurations change, though. For example,
spatio-temporal constraint calculus. Similar to Benae#tl, we start ~ we cannot state that regions cannot change their size, or that spatial
with the spatial calculurcc-8 and Allen’s interval calculus in order changes should occur continuously. On the positive side, however,
to construct a qualitative spatio-temporal calculus. As we will show,the restricted expressiveness results in only moderate computational
the basic calculus isIP-complete, even if we only permit base rela- requirements, as mentioned above. Nevertheless, we have a price
tions. When adding the restriction that the size of the spatial regiont pay for the combination. Contrary to most other constraint for-
persists over time, or that changes are continuous, the calculus beralisms, the spatio-temporal constraint formalism does not contain
comes more useful, but the satisfiability problem appears to be much computational tractable fragment that contains all basic relations
harder. Nevertheless, we are able to show that satisfiability is still imnd the universal relation.

NP. Furthermore, the basic formalism does not address the issue of
change in a reasonable way, but considers simply unrelated models
1 Introduction over time. When adding constraints to the effect that changes have

to be continuous, things become much more difficult. In particular,
There exist a number of qualitative constraint calculi that are used t js not obvious at all whether the satisfiability problem remains in
represent and reason about temporal or spatial configurations. Forexp_ Using a large computer-generated case analysis and an induc-
ample Allen’s[1] Interval Calculuss certainly the most well-known  tive argument, we are able to show that satisfiability stayslfn
qualitative temporal calculus in Artificial Intelligence. On the spatial This result has the practical consequence that satisfiability can be

side we have, for instance, ti@mpass CalculuflO], the gener-  solved by backtracking algorithms and other known techniques for
alization of Allen’s interval calculus to two dimensions [2], and the NP-complete problems.

topologicalRegion Connection Calculuscc-8 [15]. As pointed out The rest of the paper is structured as follows. In the next section
by Wolter and Zakharyaschev [19], the next natural step would be tQve give the necessary background Rac-8 and Allen’s Interval
combine these two kinds of representation and reasoning. Calculus. In Section 3 we “temporaliz&cc-8 using Allen’s inter-

Most of the existing proposals for spatio-temporal formalismsya calculus resulting in apatio-temporal constraint calculuslled
are more expressive than the above mentioned constraint calculitcc In addition, we analyze the computational complexity of rea-
Muller's [13] spatio-temporal theory is basically a first-order ax- soning in this calculus and fragments thereof. In Section 4, we an-
iomatization of spatio-temporal entities basedrarc [15] and for  zlyze the complexity of reasoning if it is required that the size of
this reason it is undecidable. Wolter and Zakharyaschev [19] comregions does not change. Finally, in Section 5, we analyze the case

bined the constraint formalismcc-8 with the propositional tempo-  where all changes of spatial configurations happen continuously.
ral logic pTL [11]. This combination is very elegant because it can

be expressed as a multi-modal logic based on Bennett’s [3] encod-
ing of Rcc-8 as a multi-modal logic. However, the expressiveness2 Background
of the resulting family of spatio-temporal formalisms is very high.
Consequently, reasoning RSPACE-hard for most of the proposed RCC-8 is a well-known relation algebra for reasoning about binary
formalisms. relations between spatial regions in the context of rloe-theory
As mentioned by Wolter and Zakharyaschev [19], Allen’s interval [15]. In this theory regions are non-empty regular, closed subsets of
calculus is much closer in spirit ®®cc-8 thanpTL is. For this rea-  a topological space, and can consist of more than one e 8
son, it seems much more natural to use this calculus to “temporalizehas eightbasic relationswhich are jointly exhaustive and pairwise
RCC-8. A first attempt into this direction was done by Benrmtal.  disjoint (see Figure 1)DC (DisConnected)EC (Externally Con-
[4]. They provided the syntax and semantics of a combined calculugected) PO (Partial Overlap)EQ (EQual), TPP (Tangential Proper
and embedded it into the combinationrdc-8 andPTL mentioned ~ Part), NTPP (Non-Tangential Proper Part), and their converse rela-
above. They also stated that the satisfiability problem of the comtions TPP~ andNTPP . Each non-basic relation is the union of
bined calculus isNP-complete. two or more basic relations, or the spedghptyrelation. The set
1 — - — — . of Rcc-8 relations corresponds to all possible subsets of the set of
DEA - Ur_u_versm_d_egI] Studi di Brescia, via Branze 38, 25123 Brescia, basic relations, where each subset is interpreted as the union of its
Italy, email: gerevini@ing.unibs.it ' p
2 Albert-Ludwigs-Universiat Freiburg, Germany, Georgessiler-Allee Geb  '€lations. Hence, all in all, we ha@& differentrcc-8 relations.
52, D-79110 Freiburg, Germany, email: nebel@uni-freiburg.de In Allen’s Interval Calculus we reason about binary relations be-
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Figure 1. Two-dimensional examples for the eight basic relations of

RCC-8 Figure 2. The thirteen basic relations of the Interval Algebra

tween intervals (over the time line, usually interpreted as the ratiof1 7, 18], and several maximal tractable fragments have been identi-
nale numbers). These relations form again a relation algebra, whicfeq poth forrcc-8 and 1A. Nebel and Brekert [14] identified the
is called Interval Algebra (IA) [8]. IA has thirteen basic relations be- njque maximal tractable sub-algebra of 1A containing all the basic
tween intervals (see Figure 2x (before),m (meets)o (overlaps)d  relations, which is called ORD-Horn clagSAT for the ORD-Horn

(during),s (starts) f (finishes), their converse relations(m ™, o™, class can be decided in cubic time by using a path-consistency al-
d”,s7,f7), and= (equal). Likercc-8, the relations forming 1A gorithm (a CSP over ORD-Horn is unsatisfiable if and only if the
correspond to all possible subsets of the set of basic relations. empty relation is generated when enforcing path-consistency). Other

RCC-8 and IA are closed under the following operations: union maximal tractable subclasses which do not contain all of the basic

(L), intersection (1), difference ), converse ('), and composition  ye|ations have been identified by Krokrenal.[7].
(o). The first four operations are defined in the standard way. Com- RegardingRcc-8, Renz and Nebel identified three maximal
position is just relational composition, i.e., for the relatiofsand  {ractable subclasses afcc-8 containing all the basic relations
r2, the compositiom; o 7 is defined as follows: [17, 16]. In addition, Gerevini and Renz [6] showed (using a tech-
1o = {{z,y) | 32 (z,2) € 11, {2,y) € T2} pique called BPATH-CONSI.STENC?Othat the rglatigns inthesg max-
imal classes can be combined with qualitative size constraints with-

A spatial constraint satisfaction problefor briefly spatial CSF out increasing the computational complexity.
in our context is a se® of atomic formulae (calledonstraint$ of Finally, RSAT andISAT for the full Rcc-8 and IA can be solved
the kind X RY (using infix notation) X andY areregion variables by finding a scenario through backtracking using path-consistency as
and R is anrcc-8 relation. Similarly, stemporal CSHs a set of  a forward propagation technique [9].
atomic formulad SJ, whereS is an IA relation and, J are interval
variables. If we do not want to distinguish between IArRTC-8
formulae, we use the notatian-y.

Given a spatial or temporal CS®, a fundamental reasoning prob- In order totemporalizercc-8, we annotate spatial formulae with
lem is deciding thesatisfiabilityof ©. © is satisfiable if and only if  interval symbols. The intended meaning is that the spatial constraint
there is amodelof ©, i.e., anassignmenbf spatial regions or tem- is true during the interval denoted by the symbol. In other words, we
poral intervals, respectively, to the variables@fsuch that all the can now write descriptions as follows:
constraints ir© are satisfied. This problem is call@$AT for Rcc-

8 andISAT for IA. I. (X {DCEC} Y), I. (Y {TPP} 2),

A related reasoning problem is finding a scenario that refines a Jo (X {PO} Y), J: (Y ADC}  2).
given CSPO. A scenariois a satisfiable CSP, where the constraints
between all pairs of variables are basic relations. Further, a6C &P
arefinemenof © if and only if " and® involve the same variables,
and for every pair of variables:(y) suchthatt R'y € ©’ andzRy €
©,R CR?

Any spatial or temporal CSP involving n variables can be pro-
cessed using aR(n?) time algorithm that refine® to an equivalent
path consisten€SP [12]. A CSP is path consistent if for every sub-
set of constraints involving three variablgs;j, andk, the relation
R betweeni andk is stronger or equal than (i.e., is a subset of) the

co?posmon OfR“tatr.]dei’“' int of i 8 and IA h J regionsY and Z are deformed and moved continuously, which
. _10m a cont1_pu %'2%@&9'“ dciSX'_?VRCEP an lot ave ;ome implies that there are time spans betwdéemdJ when we have first

simiiar properties. Bo an arelNF-compliete problems (Y{PO}Z) and thenY {EC}Z). However, before we deal with this

3 Without loss of generality we assume that if no information betweand  issue, we will first lay the formal base for the combined constraint
y is provided, therR is theuniversal relationi.e., the union of all the basic  ¢alculus.
relations. Furthermore we assume that for every pair of variableg 6uch
thatzRy € ©,yR~x € O. 4 Bennettet al. [4] called a similar languag&RCC-8.

3 Temporalizing Rcc-8 Using Allen’s Algebra

This means that during intervalregionsX andY are disconnected

or externally connected and thEtis a tangential proper part &.
During J the spatial configuration is then a bit different. Of course,
the next step is to use the IA relations to form IA constraints on
interval symbols, e.gIm.J. Sets of constraints on annotated spatial
formulae and on intervals as in this example are caledc CSPs!

Having a closer look at this example, one notes that it seems to

be unlikely that during one interval we hay® {TPP}Z) and in

the directly following interval we havéY {DC}Z). Assuming that
change happermontinuously one would expect that betwedrand




As mentioned above, usually, temporal CSP variables are interendpoints. This in turn can be used to define new temporal intervals,
preted over pairs of the rational numbe@s and region variables which can be ordered by, >, m, andm™.
are interpreted over non-empty, regular, closed subsets of some topo-As an example, assume that we have the temporal scenario
logical spaceZ, and we will follow this practice. A spatio-temporal IoJ. From this we get the ordering staf} < star(J) <
interpretation is then atupl®t = (Q, 7, ), whereaw maps interval end/) < end.J). Based on that we can define the intervals
symbols to pairs of numbers fro®, and region symbols and ratio- K = (star(I),star(J)), L = (star{J),end)), and M =
nal numbers to elements @f. Such an interpretation israodel of ~ (endl),endJ)), with the spatial constraints associated withnd
a sTcc CSPiff all temporal constraints are satisfied and each spa-J as constraints holding durin and M respectively, and with the
tial formula annotated with an interval symhbls satisfied at every intersection of the constraints associated witand .J as the con-
point between the endpoints of the intervaf.such a model exists, straints holding during.. Clearly this set of annotated spatial con-
we say that thestcc CSP issatisfiable The associated reasoning straints combined with the (induced) temporal constraftits.J and
problem is calledRISAT. JmM gives rise to asTcC CSPO that is satisfiable ifl©® admits

Of course, for a giversTcc CSP, we could try to construct a a STccCscenarioSTCCscenarios can obviously be used to generate
small, finite model, which could be extended to a full spatio-temporalstcc models. Hence, we can concentrate on generating such sce-
model, in order to demonstrate satisfiability. We need, in fact, onlynarios when we want to demonstrate satisfiability cftacc CSP.
polynomially many time points and associatedc-8 models. Fur-  In general, wher® is asTcc CSP, we will call the CS®’ induced
ther, thercc-8 models could be represented using Kripke modelssTccscenario, if9’ is generated fror in the way described above.
that have size polynomial in the size of the spatial CSP [17]. This From the above, it follows that we will get a polynomial satisfia-
implies the following proposition that has already been noted by Benbility problem, even if the CSP is notgrccscenario.

nettet al. [4]. i
Theorem 3 For stcc CSPs where the temporal relations form a

Proposition 1 RISAT is NP-complete. temporal scenario and the spatial relations are all elements of one
tractable class of relation®RISAT is polynomial.

This sounds like good news because it means that the complex-
ity has not been increased by combiniRgc-8 and IA. However, 4 The Size Persistence Constraint
although the complexity is the same, we have a price to pay. While . . . . .
rcc-8 and IA each contains large fragments for which satisfiability»S Mentioned above, when we consider spatial scenarios changing
can be decided in polynomial time (see above), this does not seeffe" ime, we may want to restrict the changes. For example, we may
to be the case fosTcc In fact, the simple fragment in which we want to consider only changes where the regidmsot change their

only have basic relations and the two universal relations is already!2€ Such restrictions cannot be stated inside sfrec formalism.
NP-hard. owever, we can, of course, restrictccmodels to those satisfying

these restrictions.
Theorem 2 RISAT is NP-hard, even if the CSP contains only basic ~ Let S(X) indicate the size of a spatial regiox. Eachrcc-8

relations and the two universal relations. constraintY’ RZ, whereR is a basic relation, entails a qualitative
) size relation betwee” and Z, which can be one of the follow-
Proof. Consider thestcc CSP {I: (X{DC}Y), J: (X{EC}Y)}.  ing relations <", “>", “=" or the indefinite relation *". For in-

This implies, however, I{<,m,m~, ~}J. The relation {< stance,y{TPP}Z) entailsS(Y) < S(Z), while (Y{PO}Z) en-
,m,m™, -} taken together with the basic temporal relations leadsiils 5(y)?5(Z). Table 1 gives the entailed size relatiofor each
to the full algebra when closing the relations under intersectionyssicrcc-8 relationR.

converse, and composition [14], which implies that the satisfiability

problem isNP-hard. n XRY S(X)sS(Y) | XRY S(X)sS(Y)
TPP E < EQ k =
. . . . NTPP < PO ?
Of course, if we refine every constraint between intervals and ev- pp— '; N EC E 2
ery constraint between regions inside an interval to a basic relation, NTPP— | > DC = ?

then satisfiability becomes polynomial. However, such descriptions
do not appear to be very useful. They imply that once two time in-
tervals have more than their ending points in common, the two cor-

responding s_,patlal scenarios mgst be |der_mcal over the full |nFerve_1Is. Thesize persistence constraistiates that the size of every region
Conversely, if the spatial scenarios associated with different time in- . . ) : . »

S . ) _ persists over time, while their shape or relative position could change.
tervals are pairwise different, only the relatiors>, m, andm . . . .
are possible between the intervals. For these reasons, such descr'i:Or example, the followingTcc CSP does not satisty size persis-
e p L . T “"8hce because the specified topological relations entail different size
tions are probably hardly ever used in practice for describing spatio-

) . S relations, regardless of the temporal relation betweandJ:
temporal configurations. Nevertheless, such descriptions can be use-

ful in the reasoning process. We will call descriptions which contain I (X {TPP} Y), J: (X {EQ} Y).
only spatial scenarios for each interval and the mentioned tempo-

ral relations between temporal intervatscc-scenarios Obviously, In general, we will require that there exist a scenario induced by the

these scenarios will not necessarily arise by a refinement of the ten$SP that satisfies the condition that the relation between two regions

poral and spatial constraints. However, if we have refined the temgoes_r\ot (_:onfh(_:t \.N'th respect to the derivable size r_elgtlons. !f this
ondition is satisfied, we say that tisgcc CSP is satisfiable with

poral relations to a scenario, we get a totally ordered set of interval . . .
respect to the size persistence constraint.

Table 1. Size relations entailed by the basicc-8 relations

5 In contrast to Bennett al. [4] we do not require satisfaction at the end- . . .
points because we want to allow that the spatial configurations change diheorem 4 RISAT for a stcc CSP with the size persistence con-

endpoints of intervals. straint isNP-complete.



TPP T ~ NTPP membership iNP questionable at best. As we will show, fortunately
DC~— EC <= PO / O EQ = this ?s not the case, a_lt least under the size persistence restrietion.
\ PR Given two scenariog; and oy of a spatial CSPZ, we define
TPP= NTPP™ the scenario transformation problems the problem of determining

whether there exists a sequente ..., o, oOf scenarios fo such

Figure 3. Neighborhood graph defining the continuous change of the basithat oy = o, 0, = oy, and the changes from; to 0,41 satisfy
Rcc-8 relations. Dashed lines visualize the changes permitted if the size he neighborhood grapli & 1...n — 1). We call such a sequence a
persistence constraint is not enforced. transition chainfrom o; to o in 3, and we indicate an instance of

scenario transformation with a tripl&, o;, o¢). Note that in a sin-

Proof. NP-hardness obviously follows from tHgP-completeness ~ 9le step fromy; to oi11 of a transition chain some changes regarding
of RSAT for Rcc-8 and of ISAT for IA. The following algorithm different pairs of regions must occur in parallel. For example, in or-
proves membership iNP. Guess a scenar®, for the temporal CSP ~ der to change the scenaq& {EQ}Y, Y{EQ}Z, Z{EQ} X}, itis

in the sTcc CSP O under consideration, and then guess a spatian€cessary to simultaneously change two relations.

scenario for each sub-intervalof ©,. Check that the resulting set ~ BY using a large computer-generated case analysis we can prove
of spatial scenarios associated w@h is an inducedsTccscenario  that, for any solvable instance of scenario transformation involving
@’ for ©. In order to check that the persistence size constraint ighree variables, under the size persistence restriction there exists a
satisfied, from the set of spatial scenarios%fderive a new spatial ~ transition chain fronw; to o s of fixed length. We conjecture that the
CSPO., extended with size constraints, such that: for each spatiap@me holds without the persistence size restriction, but in this paper
variable X of © and each interval of ©,, X; is a variable 0f©,: we don't address this case. This program, which we will refer to as
for each each pair of variablé§; andY7, the constraint betweeki; the transition generatorgenerates transition chains where, for ev-
andY; is the constraint betweel andY in the scenario associated €ry pairX, Y of variables and every baskcc-8 relationz, X RY

with 7 in @’; finally, for each pair of variableX; and X ; such that ~@ppears at most once in all scenarios of the chain. In other words,
I+#J,5(X1)=5(X;) € O,. Satisfiability of©, can be checked cyclic changes are not permitted. Furthermore, each scemarids

in polynomial time by using B°ATH-CONSISTENCY[6]. n derived fromo; by performing a one-step transition to only one pair
of regions, unless itis necessary to perform multiple parallel one-step

L . transitions. When during the transformatiorogfinto oy we reach a
5 The Continuity Constraint scenarior; such thatX {EQ}Y € o; and X{EQ}Y € o (j # f),

As mentioned, we may want to restrict spatial changes to those thif€ collapseX” andY’, and we proceed by considering changes only
are continuous. Similarly to theize persistent constrairthis cannot ~ Petween either’ and Z or Y and Z (further details are given in
be expressed in the language itself, but it can be enforced as a condipl)- We call such transition chains from to o one-step transition
tion on the models. Instead of requiring continuity of change on the“hains The longest transition chains that are generated by the pro-
models, we will be satisfied with a change of the relations betwee/gram have length 12. These chains are those solving the instances of
the models that is induced by a continuous change. For example, vi$enario transformation where either
may want to allow that a relation changes fr@q to EC and then e in X the relation between every pair of variables is the universal
to PO, but a direct change fromC to PO is not allowed. Figure 3 relation or{DC, EC, PO, TPP,NTPP} and
givee a visualization of these ehanges, whereby the dashed lines yi- o; = {X{DC}Y, Y{DC}Z, Z{DC} X}
sualize changes that are forbidden if the size persistence constraint
has to be obeyed. oy = {X{NTPP}Y, Y{NTPP}Z, Z{NTPP}X},
A path fromry to r2 represents a multi-step transition, i.e., a se- e orin X the relation between every pair of variables is the universal
guence of continuous changes from relatigno relationr,. The set relation or{DC, EC, PO, TPP,NTPP~} and
of all the paths in the graph represent all possible one-step or multi-
step transitions. It is worth noting that, according to the semantics oi = {X{DC}Y, Y{DC}z, Z{DC}X}
of sTcg, during an interval of timd in the CSP, the spatial regions oy ={X{NTPPT}Y, Y{NTPP ™ }Z, Z{NTPP~}X}.
can be deformed and moved an arbitrary number of times changingence, we can prove the following lemma that will be used to prove
the relative topological relation, and resulting into an arbitrary longthe main claim of this section.
sequence of spatial scenarios. What is important to preserve satisfi-
ability of the CSP is that each of these configurations satisfies theemma5 Let X be a satisfiable spatial CSP involving three vari-
formulae annotated with in the CSP. ables. If the scenario transformatioft, o;, of) is solvable under
Moreover, under the continuous change restriction, each configthe size persistence restriction, therdirthere exists a one-step tran-
uration should correspond to a scenario that can be modified onl§ition chain fromg; to o of at mostl2 scenarios.
by transitions satisfying the neighborhood graph of Figure 3. For in-
stance, if we havd: (X {DC, EC, TPP}Y), then during! the re-
lation betweenX andY can only change back and forth frobC
to EC, or stayTPP (because a continuous change from, &g to
TPP, requires that the relation is fir®tO, but this is forbidden by
the given topological constraint). Proposition 6 Let (X, 0;,05) be a scenario transformation that is
This could makeRISAT significantly harder, since the models of a solvable under the size persistence restriction. If there is no pair of
sTcc CSP might all involve an exponential numberragc-8 mod-  variables X and Y such thatX{EQ}Y € o¢; and X{EQ}Y ¢
els. In other words, it could be the case that in order to transfornw ¢, then in the transition chain computed by the transition generator
a scenario into another one by continuous changes, an exponentiery parallel change is of the form eitheX {EQ}Y — X{PO}Y)
number of one-step transitions should happen, which would maker (X{PO}Y — X{EQ}Y).

Another property that can be verified by the transition generator
is that, under certain conditions, there are only two types of parallel
changes in any one-step transition chain. This property is exploited
in the proof of the next lemma.



We now generalize Lemma 5 to CSPs involving an arbitrary num-6 Summary and Conclusion
ber of variables, showing that any scenario transformation instance, .
can be solved by transition chains of polynomial length, and thus tha‘rf“'r,ml‘""r to the approach by Bennettal. [4], we temporalizekkcc-8

RISAT with continuous change and persistence size igfrf

Lemma7 Let (X, 0;,05) be any scenario transformation that is
solvable under the size persistence restriction. Then there exists
a transition chain fromv; to o; of length less thari2 - n?, wheren

is the number of variables iB.

Proof Sketch. Consider every seV; consisting of three different
variablesX;,Y; and Z; appearing in:. Let 3; be the set of con-
straints inX involving the variables inVj;, o;; and o;5 the sub-
scenarios ob; andoy, respectively, involving the variables i,

using Allen’s interval algebra IA. As we showed, satisfiability in the
resulting calculus, calledtcg is NP-complete even if only basic
relations and the two universal relations are permitted. Furthermore,
we showed that the complexity does not increase if we additionally
require changes to respect the size persistence and the continuity con-
straints.

While these results are quite useful and pave the ground for devel-
oping qualitative spatio-temporal reasoning algorithms, there remain
a number of open questions that we intend to address in the near
future. Firstly, it is not evident whether enforcing the continuity con-
straint guarantees that the regions can indeed change continuously.

and(; the one-step transition chain that is identified by the transi-Secondly, it is not clear whafficientreasoning algorithms would

tion generator fokX;, 05, o¢;). We show that byynchronizingll

look like. Such algorithms would most probably rely on forward-

C; we can find a transition chain from; to o in 3 involving less
than12 - n? transitions (scenarios af).

checking. Thirdly, there is the question for other reasonable restric-
tion on spatial change, and how this could be incorporated in the

There are two cases to consider, depending on whether there egenstraint-reasoning framework.

ists ak such that;. involves a parallel transition. If there is no such

a chain, then we can synchronize all the chains by running a tOpoREFERENCES

logical sort algorithm on theynchronization grapitz constructed

as follows. The vertices of; are the constraints that are changed [
in one or more chains, and the edges correspond to the order of thFZ]
changes. For instance, if a transition chain changes X {DC}Y,
thenc, = X{DC}Z and finallycs = Y{DC}Z, G will contain the
verticescs, ¢z andcs, and edges frona; to co and fromes to cs.
Vertices corresponding to the same change performed by differen

(3]

transition chains are collapsed into the same vertex, and the edg 4l
are appropriately updatédFrom the the resulting topological sort
we can derive a transition chainihfrom o; to oy and, furthermore, [5]

by Lemma 5 this chain involves less tha®- n? transitions.

For the case where there are parallel changes, we can use a simil ]
argument, although the synchronization becomes more complicated,
because parallel changes in a transition chain can imply further par§7]
allel changes that occur serialized in another chain. However, by ex-
ploiting Proposition 6 and Lemma 5 we can show that synchroniza-[S]
tion can still be accomplished by topological sort on a graph similar
to G, where vertices represent sets of parallel changes and edges ofg

dering constraints between them. L

(10]
Theorem 8 RISAT for a sTccCSP with the continuous change and [11]
size persistence constraintsNg-complete.

12
Proof Sketch. NP-hardness obviously follows from th&lP- =
completeness d®SAT for Rcc-8. Membership ifNP can be proved  [13]

by an argument similar to the one in the proof of Theorem 4, with the
difference that instead of guessing one spatial scenario for each suy?!
interval I of ©;, we guess a sequencel®- n? scenarios. We check

that they actually are all scenarios for the set of constraints associatggk)
with I, except for the first and the last one which can also be scenar-
ios for the predecessor and the successor, respectively, sub-intervais]
We then check that each sequence satisfies the continuity constrai t7
Lemma 7 guarantees that the number of scenarios in each sequencglg
sufficient. Finally, we check size persistence using a technique simi-

lar to the one used in the proof of Theorem 4. = [18]

6 Complete proofs and further details are available in [5].

7 For instance, if there is another transition chain with the sequence oE
transitions changing; = X{EC}W, thenc, = X{DC}Z and then 19]

c5 = W{DC}Z, the vertices:z andc/, are collapsed and the destination
(source) of all incoming (outgoing) edges involving or ¢} is revised to
the new collapsed vertex.
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