
Delete Relaxations for Planning with State-Dependent Action Costs

Florian Geißer and Thomas Keller and Robert Mattmüller
University of Freiburg, Germany

{geisserf,tkeller,mattmuel}@informatik.uni-freiburg.de

Abstract

Supporting state-dependent action costs in planning admits
a more compact representation of many tasks. We general-
ize the additive heuristic hadd and compute it by embedding
decision-diagram representations of action cost functions into
the RPG. We give a theoretical evaluation and present an im-
plementation of the generalized hadd heuristic. This allows
us to handle even the hardest instances of the combinatorial
ACADEMIC ADVISING domain from the IPPC 2014.1

Introduction and Preliminaries
State-dependent action costs (SDAC) often admit more com-
pact domain representations than state-independent action
costs. We show how action cost functions can be rep-
resented as edge-valued multi-valued decision diagrams
(EVMDDs) (Ciardo and Siminiceanu 2002), which allows
us to detect and exploit structure in the cost functions.
EVMDDs can be used to derive a compact compilation to
constant-cost actions or can directly be embedded into the
relaxed planning graph (RPG). We define a natural general-
ization of the additive heuristic hadd to SDAC and show that
the EVMDD embedding can be used to compute this gener-
alized hadd heuristic. We apply this procedure to the ACA-
DEMIC ADVISING domain (Guerin et al. 2012) and com-
pare the results with the standard heuristic of the PROST
planner (Keller and Eyerich 2012). We consider SAS+

tasks (Bäckström and Nebel 1995) with the usual syntax and
semantics. Additionally, each action a has an associated cost
function ca : D1 × · · · × Dn → N, where D1, . . . ,Dn are
the finite domains of the variables on which ca depends. Let
Sa be the set of valuations of those variables and let Fa be
the set of facts (v, d) for v ∈ Sa and d in the domain of v.
Without loss of generality, we assume that for each action a,
the sets of variables mentioned in the precondition and those
on which ca depends are disjoint. We may also view ca as a
function over states. We use the usual definition of relaxed
planning tasks and define the cost of an action a in a relaxed
state s+, ca(s+) as the minimal cost ca(s) for any unrelaxed
state s that is subsumed by s+. Next, we give a generaliza-
tion of the additive heuristic hadd (Bonet and Geffner 2001)

1A long version of this paper was accepted to IJCAI-15 (Geißer,
Keller, and Mattmüller 2015). To cite this work, please cite the
IJCAI-15 paper.

to tasks with SDAC that correctly reflects action costs. Let
s? be the goal description, let sp stand for a partial state and
f = (v, d) for a fact, and let A(f) be the set of achievers
of f . As in the classical setting, hadd(s) = hadd

s (s?), and
hadd
s (sp) =

∑
f∈sp

hadd
s (f). Unlike in the classical setting,

hadd
s (f) =

{
0 if f ∈ s
min

a∈A(f)

[
hadd
s (pre(a)) + Ca

s

]
else,

where Ca
s = min

ŝ∈Sa

[ca(ŝ) + hadd
s (ŝ)],

where pre(a) is the precondition of a. We minimize over all
achievers a of f and over all possible situations where a is
applicable by replacing the constant action cost of the classi-
cal setting withCa

s . The central new challenge is the efficient
computation of Ca

s . The number of states in Sa is exponen-
tial in the number of variables on which ca depends, and Ca

s
cannot always be additively decomposed by these variables.
However, we can represent ca and Ca

s using EVMDDs such
that ca and Ca

s are efficiently computable in the size of the
EVMDD representation and that the size of the representa-
tion itself is, although worst-case exponential, compact in
many “typical”, well-behaved cases.

Edge-Valued Decision Diagrams

Each cost function ca : D1 × · · · × Dn → N over vari-
ables v1, . . . , vn with domains Dv = {0, . . . , |Dv| − 1} can
be encoded as an EVMDD (Ciardo and Siminiceanu 2002).
EVMDDs are directed acyclic graphs with unique source
edges and sink nodes and with interior nodes branching over
the domain values of the variables. Edges have associated
weights, and for a concrete valuation s of the variables, the
value E(s) of an EVMDD E is determined by traversing the
unique path in E corresponding to s and summing up the
edge weights along the way.

To compute Ca
s , we need to incorporate hadd

s values into
Ea. To that end, on each path through Ea, each variable on
which ca depends must be tested. Hence, in the following
we assume that Ea includes branches over all variables on
all paths, and call such an Ea quasi-reduced.

Example 1. Consider the action cost function ca = AB2 +
C + 2 with DA = DC = {0, 1}, and DB = {0, 1, 2}.

A

B

C

0

2

0

0

0

1

4

2

1

1

0

0

1

1

0

0

The figure to the left shows an EVMDD
(not quasi-reduced) for ca and the vari-
able ordering A,B,C. To see how the
EVMDD encodes the cost function ca,
consider the valuation s with s(A) = 1,
s(B) = 2 and s(C) = 0. Traversing
the corresponding edges in the EVMDD
from top to bottom and summing up the
edge weights, we arrive at the resulting
value 6, which is exactly the cost ca(s).

EVMDD-Based RPG Compilation
To embed such an EVMDD Ea into the RPG, we need to
add “input nodes” for all relevant hadd

s values to Ea. We call
the resulting weighted directed acyclic AND/OR graph Ia
the input-node augmented decision diagram (INADD) for
Ea. We extend a given valuation ι assigning natural num-
bers or infinity to input nodes to a valuation ι̂ recursively by
minimization at OR nodes and summation plus addition of
node weights at AND nodes. The value of Ia for ι, Ia(ι), is
then the ι̂ value of the terminal/output INADD node.

Example 2. Consider the EVMDD Ea from Example 1 in
its quasi-reduced form E ′a. The INADD Ia for E ′a is depicted
below. Node weights are given as node annotations.

Input

A

B

C

0, Output

(A, 0)

10

(A, 1)

0

(B, 0)

6

(B, 1)

∞
(B, 2)

1

(C, 0)

2

(C, 1)

2

∨
2

∨2∨12

∨

7

∨
9

∧ +22

∧ +012 ∧ +0
2

∧+0

8

∧+1

∞
∧ +4

7

∧+0

18

∧+0

∞
∧+0

13

∧+0

9

∧+1

10

The red input node labels denote ι(n) for some valuation
ι, and the red interior node labels denote the valuation ι̂.
The highlighted red path is the minimizing path determining
Ia, with used inputs also highlighted. The value Ia = 9
equals Ca

s = minŝ∈Sa
[ca(ŝ) + hadd

s (ŝ)] if the ι values are
interpreted as hadd

s values: The highlighted path corresponds
to the minimizing ŝ, ca(ŝ) is the sum of the node weights
2 + 0 + 4 + 0 = 6 along the path, and hadd

s (ŝ) is the sum of
used input node costs, 0 + 1 + 2 = 3.

Theorem 1. Let Ia be the INADD for a quasi-reduced
EVMDD Ea encoding the action cost function ca of action
a. Let the ι values of input fact nodes be hadd

s (f) for all facts
f ∈ Fa. Then Ia(ι) = Ca

s .

In each RPG layer, we can embed an action sub-graph
for a that is the “conjunction” of Ia with the precondition
facts of a. The input nodes of Ia are the corresponding fact

Instance 2 4 6 8 10
Variables 20 30 40 50 60
Actions 11 16 21 26 31
Variables in ca 8 8 11 10 12
Size of Ia 26 + 33 26 + 33 35 + 45 32 + 41 38 + 49

IDS 46.24 202.19 202.90 201.67 201.51
hadd 45.80 63.41 76.15 109.02 125.52

Table 1: Statistics of the ACADEMIC ADVISING domain.

nodes from the previous layer, and the “output” node of Ia
is linked to the effect literals of a on the current layer.

Experimental Evaluation
We implemented the generalized hadd heuristic in the 2014
version of the PROST planner (Keller and Eyerich 2012)
and compared it against the standard heuristic of PROST on
the ACADEMIC ADVISING domain. Table 1 shows statis-
tics for different instances. The first four rows show num-
bers of variables, of actions, of variables occurring in the
cost function of each action, and of nodes plus edges of
the resulting INADD. The last two rows show the average
results of PROST across 100 runs per instance and with a
1-second timeout per planning step, for the standard IDS
heuristic used by PROST and for the additive heuristic us-
ing the EVMDD-based RPG compilation. Both are applied
to the most-likely determinization.

Conclusion
We introduced a natural extension of the definition of the
hadd heuristic to tasks with SDAC and showed how it can
be efficiently computed based on a compact encoding of ac-
tion cost functions using EVMDDs. We presented an imple-
mentation of the generalized hadd heuristic in the context of
probabilistic planning and showed its efficiency.

Acknowledgements. This work was partly supported by
the DFG as part of the SFB/TR 14 AVACS and by BMBF
grant 02PJ2667 as part of the KARIS PRO project. We thank
the reviewers for their insightful comments.

References
Bäckström, C., and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence 11:625–656.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence (AIJ) 129:5–33.
Ciardo, G., and Siminiceanu, R. 2002. Using edge-valued
decision diagrams for symbolic generation of shortest paths.
In Proc. FMCAD 2002, 256–273.
Geißer, F.; Keller, T.; and Mattmüller, R. 2015. Delete re-
laxations for planning with state-dependent action costs. In
Proc. IJCAI 2015. To appear.
Guerin, J. T.; Hanna, J. P.; Ferland, L.; Mattei, N.; and Gold-
smith, J. 2012. The academic advising planning domain. In
Proc. IPC Workshop at ICAPS 2012.
Keller, T., and Eyerich, P. 2012. PROST: Probabilistic Plan-
ning Based on UCT. In Proc. ICAPS 2012.

