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Abstract. In General Game Playing, a player receives the rules of
an unknown game and attempts to maximize his expected reward.
Since 2011, the GDL-II rule language extension allows the formula-
tion of nondeterministic and partially observable games. In this pa-
per, we present an algorithm for such games, with a focus on the
single-player case. Conceptually, at each stage, the proposed NORNS

algorithm distinguishes between the past, present and future steps
of the game. More specifically, a belief state tree is used to simu-
late a potential past that leads to a present that is consistent with
received observations. Unlike other related methods, our method is
asymptotically optimal. Moreover, augmenting the belief state tree
with iteratively improved probabilities speeds up the process over
time significantly.

As this allows a true picture of the present, we additionally present
an optimal version of the well-known UCT algorithm for partially
observable single-player games. Instead of performing hindsight op-
timization on a simplified, fully observable tree, the true future is
simulated on an action-observation tree that takes partial observabil-
ity into account. The expected reward estimates of applicable ac-
tions converge towards the true expected rewards even for moves that
are only used to gather information. We prove that our algorithm is
asymptotically optimal for single-player games and POMDPs and
support our claim with an empirical evaluation.

1 INTRODUCTION
Games have played an important role in AI research since the
early days of the field. Nowadays, state-of-the-art players for games
like chess and checkers are able to defeat humans on grandmaster
level [2, 11]. Even for more complex games like Go [5] and for
partially observable nondeterministic games like Poker [10], com-
puter players capable of playing on a professional level have been
developed. One point of criticism is that all these players strongly
depend on game specific knowledge and game specific expertise of
their developers. General game playing (GGP) is the field concerned
with designing players that are able to play games previously un-
known to them given only a formal description of the rules of the
game. The field has gained more and more attention in the past years,
thanks to the annual international GGP competition [6]. In classic
GGP, a player receives the rules of a finite, discrete, deterministic,
fully observable game encoded in the Game Description Language
(GDL) [8] and has a given amount of time per round in order to
decide which action to play. Nowadays, most state-of-the-art GGP
players use the UCT algorithm [7] to tackle this problem [4, 9]. In
2011, Thielscher [15] introduced the extension GDL-II, GDL with
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imperfect information, to describe partially observable nondetermin-
istic games. The first approach to the problem of efficiently playing
such games was based on treating the game as one with perfect in-
formation and applying classic UCT search [12]. Whereas in that
work complete belief states were computed, Edelkamp et al. [3] pro-
posed an algorithm that only computes partial belief states. Schofield
et al. [13] pointed out the problem of treating the game as a classic
GGP game. When using hindsight optimization, information gather-
ing moves are considered worthless because the game is treated as
fully observable. They extend their original hyperplay approach by
using nested players to perform imperfect information simulations.

In the related field of research in Partially Observable Markov De-
cision Processes (POMDPs), Silver and Veness [14] present an online
planning algorithm that uses a partial-observation variant of the UCT
algorithm. Their approach to simulating the past yields an approxi-
mation of the current belief state with a particle filter. Even though
their method is asymptotically optimal as well, it uses domain spe-
cific knowledge and thus cannot be used in the scenario considered
here. Our approach has nevertheless been inspired by Silver and Ve-
ness. We also simulate future plays with UCT on action-observation
trees in order to tackle the problem of hindsight information. We ex-
tend their work by a domain independent method that simulates the
past to compute the full belief state iteratively, which is based on
Monte Carlo belief state tree simulation [3]. We augment the trees
with probabilities to generate reasonable presents at any time and to
update beliefs efficiently using Bayes’ rule.

This paper is structured as follows: We start by giving formal def-
initions of games, game trees and belief states. Subsequently, we
present the procedures that constitute the NORNS algorithm, i.e., the
part that simulates what happened in the past and the part that rea-
sons over what will happen in the future. We start by introducing the
UCT algorithm on action-observation trees, followed by an intro-
duction of belief state trees, Monte Carlo belief state tree search and
Bayesian weight updates. We conclude that section with an overview
of the interaction between the different mechanisms. The sections
that follow consist of a proof that the NORNS algorithm is asymptot-
ically optimal and an empirical evaluation of the NORNS algorithm
on several single-player games. We discuss what is necessary to ap-
ply the NORNS algorithm to multi-player games, as well as several
challenges which we have yet to overcome.

2 BACKGROUND

A partially observable nondeterministic game, or simply a game, is
a tuple G = 〈P, S,A, L, α, s0, S?, R, ω〉 where P = {1, . . . , n}
is the set of players, S is a finite set of states, and A is a finite
set of actions. For an action profile a = (a1, . . . , an) ∈ An, by



ap we denote the action of player p, and by a−p the action profile
(a1, . . . , ap−1, ap+1, . . . , an) of the remaining players. Moreover,
L : P × S → 2A defines the set of legal actions L(p, s) ⊆ A of
player p ∈ P in state s ∈ S, and α : S ×An ↪→ S is a partial func-
tion from states and action profiles to successor states, the successor
function, such that α(s, a) is defined iff ap ∈ L(p, s) for all p ∈ P .
The state s0 ∈ S is the initial state of G, and S? ⊆ S is the set of
terminal states. We assume that L(p, s?) = ∅ for all s? ∈ S?. The
reward function R : P × S? → [0, 1] associates a reward R(p, s)
with every player p ∈ P and every terminal state s ∈ S?. Since
we examine games with partial observability, we call sets of states a
player considers possible belief states B ⊆ S. We denote the set of
all belief states with B = 2S . The initial belief state is B0 = {s0},
and later belief states are the result of applying the observation func-
tion ω : P × S × An ↪→ B, where ω(p, s, a) is defined iff α(s, a)
is defined. The set of legal actions for player p in belief state B is
L(p,B) =

⋂
s∈B L(p, s).

Every game G = 〈P, S,A, L, α, s0, S?, R, ω〉 induces a game
tree of histories starting in the initial state and ending in a termi-
nal state. Formally, the game tree induced by G is the tuple G(G) =
〈P,H, β,H?, R〉, where the set of players P is the same as inG, and
the set of histories H and states associated with histories β(h) are
defined as follows using mutual recursion: the empty history 〈〉 is in
H , and the state associated with the empty history is the initial state,
i.e., β(〈〉) = s0. For each history h ∈ H , also h′ = 〈h, a〉 ∈ H , if
a ∈ An and s′ = α(β(h), a) is defined. Then, β(h′) = s′. Noth-
ing else is a history. The set of terminal histories H? ⊆ H is the
set of histories h? with β(h?) ∈ S?. Notice that we do not consider
infinite histories here, since we are only interested in finite-horizon
games. Finally, the reward function R : P × H? → [0, 1] assigns
to a terminal history the reward associated with the corresponding
terminal state, i.e., by abuse of notation, R(p, h?) = R(p, β(h?)).
For sequences h = 〈x1, . . . , xk〉 and j ≤ k, we write h≤j for
〈x1, . . . , xj〉. In the following, we assume that there exists a hori-
zon k ∈ N such that all histories in H have length at most k. Thus
every play will lead to a terminal state after at most k steps.

3 The NORNS algorithm
We present the NORNS algorithm for the special case of single-player
games, however, we will still have to take a second player, the ran-
dom player, into account. This player is used to model nondetermin-
ism and chooses uniformly between his legal actions, e.g., distribu-
tions of cards or results of coin flips. Given an observation, our goal
is to choose the best possible action available.

In any given step, the NORNS algorithm distinguishes between
three different stages of a game: the past, the present and the future.2

The past consists of previously performed actions and observations
resulting from them, as well as the (unknown) actions of the random
player. The algorithm uses belief state tree search [3] to sample a
possible present state according to the current belief. Starting from
this state, a possible future play is simulated, by performing UCT
search on a so-called action-observation tree.

3.1 Action-Observation Trees and UCT Search
Previous approaches to general game playing with imperfect in-
formation rely on hindsight optimization for their move selec-

2 In Norse mythology the Norns are female beings who rule the destiny of
gods and men, and the three most important of them are associated with the
past, the present and the future.

tion [12, 3], which leads to the aforementioned problems. Instead of
using a vanilla state-action tree representation, we introduce action-
observation trees, which allow us to couple actions to belief states.

The action-observation tree (AOT) induced by game G for player
p ∈ P is the tuple AO(G, p) = 〈H, γ〉 where H is the set
of action-observation histories of the form 〈a1, obs1, . . . , ai〉 or
〈a1, obs1, . . . , ai, obsi〉, i.e., an action-observation history is an al-
ternating sequence of actions and observations. We call the set of
action-observation histories A = {h ∈ H | |h| odd} ending in
an action the set of action nodes, and those ending in an observa-
tion, O = {h ∈ H | |h| even}, the set of observation nodes in
the tree. We can formally define H and belief states associated with
action-observation histories γ(h) by mutual recursion: the empty
sequence 〈〉 is in H and the belief state associated with the empty
sequence is the initial belief state γ(〈〉) = B0. For each observa-
tion node h, also h′ = 〈h, ap〉 ∈ H, if ap ∈ L(p, γ(h)). Then
γ(h′) = {α(s, (ap, a−p)) | s ∈ γ(h) and a−p ∈ L−p}, where
L−p =

∏
p′∈P\{p} L(p′, γ(h)). Intuitively, for each legal action

profile a−p of the players other than p and for each state s con-
sidered possible in h, γ(〈h, ap〉) contains the successor state ob-
tained by applying action profile (ap, a−p) in s. In the subsequent
observation node layer, the action-observation tree will branch over
possible observations, i.e., for each observation node h and follow-
ing action node h′ = 〈h, ap〉, also h′′ = 〈h′, obs〉 ∈ H, for all
obs = ω(p, s, (ap, a−p)) for any s ∈ γ(h) and a−p ∈ L−p as
above. Then, γ(h′′) = γ(h′) ∩ obs . Intuitively, this means that for
each possible observation obs (for each state and each opponent ac-
tion profile), there is a new observation node where observation obs
is incorporated into the current belief. Nothing else is inH.

To determine the action with the highest expected reward, given
an observation, the algorithm uses UCT search on action-observation
trees, which simulates future plays, based on the present state of the
game. A visit counter V (h) on the nodes of the UCT tree is intro-
duced, as well as a value counter Q(A) on the action nodes which
stores the average reward of an action node A.

Initially, the UCT tree contains only the empty history 〈〉. It then
gradually builds up an unbalanced tree which asymptotically ap-
proaches the action-observation tree. The algorithm is divided into
different stages. Starting from some initial observation obs and some
state s ∈ obs (which is determined by the belief state tree search
that is presented in the next subsection), it selects an action ap that
maximizes the UCB1 formula [1] and selects a random action a−p
for the random player to compute obs ′ = ω(p, s, (ap, a−p)) and
s′ = α(s, (ap, a−p)). It sets s := s′ and obs := obs ′ and continues
this process until s′ ∈ S?. If there is no node in the tree representing
(ap, obs

′), the tree is expanded by adding corresponding action and
observation nodes and a simulation with random legal moves for ev-
ery player is performed until a terminal state s? with rewardR(p, s?)
is reached. For every node h visited during the selection, V (h) is in-
cremented, and for every action nodeA,Q(A) is updated by extend-
ing the current estimate with the latest result. Given enough rollouts,
the action node values asymptotically approach the expected reward
one gets when performing the corresponding action after receiving
the observation of the corresponding observation node. In the follow-
ing subsection, we introduce the algorithm that computes a possible
state of the present game, based on past actions and observations.

3.2 Belief State Trees

Belief state trees (BSTs) were introduced by Edelkamp et al. [3] and
are a compact representation of the states a player regards possible



given his previously performed actions and received observations. In
order to give a formal definition of such a tree, we need to distinguish
between global histories and local histories. For every global history
h = 〈a1, . . . , ak〉 ∈ H , the local history of player p is the sequence
of action-observation pairs hp = 〈(m1, obs1), . . . , (mk, obsk)〉,
such that mi = aip and obsi = ω(p, β(h≤i−1), ai), i = 1, . . . , k.
Basically, the local history contains all a player knows about the
global history, i.e., his own performed actions and obtained obser-
vations. Given such a local history, we can now define a belief
state tree as a horizon-limited game tree, together with a marking
function that marks possible states of the game, based on the lo-
cal history of player p. More formally, given a local history h′ =
〈(m1, obs1), . . . , (mk, obsk)〉, a belief state tree is a tupleBSTh′ =
〈Gk(G),M〉, where Gk(G) is the game tree G(G) with all histories
cut off after k steps and M : H → {0, 1} is defined as M(〈〉) = 1
and for all h 6= 〈〉, M(h) = 1 iff h′≤|hp| = hp and additionally,
for all a ∈ An, 〈h, a〉 /∈ Gk(G) or there exists an a ∈ An with
M(〈h, a〉) = 1. We call a history marked with 1 a possible history.
Intuitively, a history is possible iff its corresponding local history for
player p is consistent with h′ and if all of its successors lie in the
future (and therefore not in Gk(G)) or if at least one of its successors
is possible. Finally, we call a state s possible, if there exists a history
h withM(h) = 1 and β(h) = s. If hτ is the true global history, i.e.,
consists of the true actions of all players, then we also get a unique
true local history hτp and we can then define the unique belief state
tree based on this history. The states we consider possible in the cur-
rent game play are then exactly the possible states on the k-th layer
of BSThτp . If p is clear from the context, we omit p and just write
hτ instead of hτp.

3.2.1 Belief State Trees Augmented with Probabilities

In reality there often exist actions that are clearly less valuable for a
player and therefore states that are possible, but not as likely as some
other states. To deal with this matter, given a belief state tree BST ,
for every history h ∈ H , the algorithm keeps track of a probability
distribution Ph over the children of h, where initially Ph(〈h, a〉) =∏
p∈P P

p
h (ap), with P ph (ap) being the probability that player p plays

action ap in history h. In our setting, p ∈ {us, rnd}. Notice that
since a belief state tree is used to simulate the past, the algorithm
knows exactly which action âus it played. Therefore, P us

h (aus) = 1
if aus = âus , and P us

h (aus) = 0 otherwise. For the random player
uniform action probabilities are assumed.

3.2.2 Monte-Carlo Belief State Tree Search

Monte-Carlo Belief State Tree Search [3] computes a possible state
for the current step of the game by computing the marking ofBSThτ
on the fly. The basic algorithm, given in Algorithm 1, begins its
search at the root of the belief state tree, chooses one random child c
and compares the local history for c with the true local history, i.e.,
tests if the actions for player p in c are consistent with the actions
that p really performed and if the observations that p could see are
consistent with his real observations. If there is an inconsistency, c
is marked as impossible and impossibility markings are propagated
upwards in the tree, marking predecessors as impossible if all of their
children are marked as impossible. In this case, the belief state tree
search for a representative state of the current belief state is restarted.
Otherwise, if c is consistent, the search continues with one of its chil-
dren until the |hτ |-th (the last) layer of BSThτ is reached. The state
represented by the reached history is then returned.

Algorithm 1 Belief State Tree Search
1: function BSTSEARCH(hτ ):
2: h←− 〈〉
3: while h has children do
4: h←− CHOOSECHILD(h)
5: if hp is consistent with hτ , i.e., hτ≤|hp| = hp then
6: M(h)←− 1
7: else
8: M(h)←− 0
9: while h≤|h|−1 has no possible child do

10: h←− h≤|h|−1

11: M(h)←− 0

12: BSTSEARCH(hτ )

13: return β(h)

Notice that for each hp, consistency with hτ≤|hp| has to be tested
only once. We also do not have to compute the whole, potentially
large, belief state. With one call of Algorithm 1, exactly one state
from the belief state is computed, which fits well into the UCT search
for future plays. Furthermore, we can easily include our probabilistic
augmentation. Instead of marking a node as impossible, the algo-
rithm removes it and updates the probabilities of the tree according
to Bayes’ rule.

3.2.3 Bayes Update

For ease of notation we write e = h≤|h|−1 for the parent of history
h if h is clear from the context. Let c ∈ H be the node we want
to remove after detecting it to be inconsistent with the true history.
Let Pred(c) = {c≤0, . . . , c≤|c|−1} be the predecessors of c. Let P
be the global probability distribution over the leaf nodes of the BST
induced by the local probability distributions Pe(h). For a history h,
we write h for the event of reaching a leaf node below h. The proba-
bility of that event is the sum of the probabilities of all leaf nodes that
are reachable from h, i.e. P (h) =

∑
〈h,...,ak〉∈H

P (〈h, . . . , ak〉),
with k being the last layer of the tree. Since we represent P com-
pactly using local probability distributions Pe over immediate child
nodes at all interior nodes e, we can also write Pe(h) = P (h)/P (e).
Then, for each history h, P (h) is the product of the local prob-
abilities on the path from the empty history to h, i.e., P (h) =∏|h|−1
i=0 Ph≤i(h≤i+1). Let us assume node c was removed from the

tree and we want to update the weight of node h. That means we have
to compute P ′e(h) = P (h|¬c)/P (e|¬c). In words, we want to know
the probability of reaching a leaf node below h, given that we are in
e and do not pass through c on the way to a leaf node. This can be
derived as follows:

P ′e(h) =
P (h|¬c)
P (e|¬c) =

P (¬c|h) · P (h) · P (¬c)
P (¬c|e) · P (e) · P (¬c)

=
P (¬c|h)

P (¬c|e) · Pe(h) =
1− P (c|h)

1− P (c|e) · Pe(h)

using Bayes’ rule, the definition of Pe(h), and the converse proba-
bility, respectively. If e /∈ Pred(c), then P (c|e) = 0. Otherwise,
P (c|e) =

∏|c|−1

i=|e| Pc≤i(c≤i+1), i.e., the product of the local edge
weights along the path from e to c. Similarly, if h /∈ Pred(c),
then P (c|h) = 0, and otherwise, P (c|h) =

∏|c|−1

i=|h| Pc≤i(c≤i+1).
Clearly, we only have to update the predecessors of c and their chil-
dren (excluding c), whereas for all other edges, the old edge weight
Pe(h) is preserved, i.e., P ′e(h) = Pe(h).



Another interesting feature is that the factors in the product in the
numerator inP ′e(h) are a subset of the factors in the product in the de-
nominator. This means the algorithm only has to compute the product
of the probabilities from the root to c once and can use them after-
wards for every node weight update.
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Figure 1: Belief state tree with probabilities; action profiles omitted.
(a) Before removal of node C. (b) After removal of node C.

Example 1. Consider the tree in Figure 1(a). We want to remove
node C, therefore we need to update the weights of nodes A, B and
E. The result is shown in Figure 1(b). The updated local weights are
calculated as follows:

P ′A(B) =
1− 0

1− 1/2
· 1/2 = 1

P ′I(A) =
1− 1/2

1− (1/2 · 1/2)
· 1/2 =

1/2

3/4
· 1/2 =

1

3

P ′I(E) =
1− 0

1− (1/2 · 1/2)
· 1/2 =

1

3/4
· 1/2 =

2

3

Now that we have defined the algorithms for the different stages
of the game, we can put them all together. Let us assume a game is
already in progress, i.e., the random player has chosen an action, un-
known to the player, in each step of the game and he received corre-
sponding observations. Consider for example Figure 2. The left-hand
side shows the BST search, which simulates the past up to the cur-
rent step, such that it is consistent with own actions and observations.
The last performed move was action x with the observation that the
random player played action b, resulting in state s. If required the
algorithm would have pruned the BST tree and updated its probabil-
ities, which are omitted from the figure.

Starting from s, the UCT algorithm simulates a future play (right-
hand side of Figure 2). The observation node ob is chosen, which cor-
responds to the observation that the random player played b, and the
UCT search is started beginning from ob, with state s. Own actions
are selected according to the UCT selection, actions for the random
player are selected uniformly. The tree is traversed until a leaf node is
reached. The leaf node is expanded, the game is simulated to the end
and the resulting values get propagated back. This algorithm scheme
is run until the player has to select the next move he wants to play.
Then the move whose corresponding action node has the highest Q
value is chosen. Notice that we can prune the UCT tree by removing
nodes whose actions lie in the past, i.e., we only need to keep the
subtree beginning from ob.

4 THEORETICAL EVALUATION
In the following, we give a proof sketch that our algorithm asymp-
totically converges to the optimal action to play in each step of the
game. The proof consists of two parts. First, we show convergence
of the belief state tree search algorithm to correctly reflecting state
probabilities, given enough iterations. Second, we show the correct-
ness of our UCT algorithm.

Belief state tree search UCT search

oa ob ob

x

xa xb

Search selects a possi-
ble state s

UCT starts selection
beginning from s in ob

PAST

x

PRESENT s

FUTURE

Figure 2: The two steps of the NORNS algorithm

Belief State Tree Search. To prove that our belief update com-
putes the correct belief state including correct probabilities, we show
two things. First, we claim that it does not matter if we update the
whole tree at once, i.e. we delete all impossible nodes at the same
time and update the probabilities afterwards, or we update the tree
step by step, i.e. we remove one node from the tree and update the
probabilities afterwards. This is simple arithmetic (substitute formu-
lae of later probability updates with formulae of the earlier probabil-
ity updates, equate with formula which is used if all nodes are up-
dated at once). Second, with enough time, the whole tree will be up-
dated and we show that the NORNS belief update computes the same
belief state as the belief update on the underlying POMDP problem
would. In POMDPs, an agent observes observation owith probability
Ω(o|s′, a). Given a probability distribution b over the state space S,
b(s) denotes the probability that the environment is in state s. Given
b(s), after taking action a and observing o, the new probability is
b′(s′) = µΩ(o|s′, a)

∑
s∈S T (s′|s, a)b(s), where µ is a normaliz-

ing constant and T (s′|s, a) is the probability of transitioning from
state s to state s′ with action a. We prove that the BST augmented
with probabilities produces states s at depth k with frequencies pro-
portional to bk(s), i.e., the k-th POMDP belief state.

Let h be a history with β(h) = s′, let c = {c1, . . . , cn} be the set
of impossible nodes after observing o and ¬c = ¬c1 ∩ · · · ∩¬cn . In
the following we write hi for h≤i. The search will select h with the
probability P ′(h) = P ′e(h) · P ′e(hk−1) · · ·P ′e(h0) =

P (h|¬c)
P (hk−1|¬c)

· P (hk−1|¬c)
P (hk−2|¬c)

· · · P (h1|¬c)
P (h0|¬c)

=
P (h|¬c)
P (h0|¬c)

,

where the denominator equals 1, because the probability of reaching
a node below the root is always 1, given a possible leaf is reached.
By applying Bayes’ rule we get P ′(h) = P (h|¬c) = P (¬c|h)·P (h)

P (¬c) ,

where P (¬c|h) = 1, if h is a possible history, since it is a leaf node.
So we have P ′(h) = P (h)/P (¬c). In words, the probability that
history h is chosen is the sum of the old probabilities of its possible
children, divided by the sum of the old probabilities of all possible
histories. Now let us compare that to the POMDP update formula

b′(s′) =
Ω(o|s′, a)

∑
s∈S T (s′|s, a)b(s)∑

s′∈S Ω(o|s′, a)
∑
s∈S T (s′|s, a)b(s)

.

Let us assume the simple case where each history represents exactly



one state. In the numerator, T (s′|s, a)b(s) represents the probabil-
ity of reaching state s′, which is the same as P (h). Ω represents the
marking of the node. If Ω(o|s′, a) = 1, we will receive observation
o in s′ with action a and the node is possible. Notice that since ev-
ery history represents exactly one state, Ω(o|s′, a) is either 1 (which
means that we observed o) or 0 (we did not observe o). The same
reasoning applies to the denominator, which is just the sum over all
possible nodes, since Ω will be 0 for states where observation o is
not possible. It follows that b′(s′) = P (h)/P (¬c) = P ′(h), which
is what we wanted to show. In the case that there exist multiple h
with β(h) = s′ the same reasoning holds, but Ω(o|s′, a) now lies
between 0 and 1, i.e. the proportion of the possible histories repre-
senting s′. Additionally, the probability of choosing s′ is the sum of
the probabilities of choosing histories h with β(h) = s′.

UCT Search. We still have to show the asymptotic optimality of
the UCT algorithm. In the following, we use π : B ↪→ A to refer to
a policy of a player, i.e., a mapping from belief states to applicable
actions. We reason about the UCT algorithm in several steps:

1. The proportion of visits to state s′ when coming from state s and
applying action a = π(s) is T (s′|s, a), and the proportion of
visits of an observation node representing o is Ω(o|s′, a).

2. In the limit, every node will be visited infinitely often.
3. TheQ values of action nodesA in the last action-observation layer

converge to the expected values of the actions a represented byA.
4. The optimal policy will be followed exponentially more often than

all suboptimal policies.
5. The Q values of interior action nodes A converge to the expected

values of the actions a represented by A.
6. The UCT algorithm in the AOT tree is asymptotically optimal.

We show the individual claims separately:

1. This follows immediately from the definition of BST search and
the traversal of the UCT tree, i.e., BST search provides us with
state s with probability according to b(s) and our policy pro-
vides us with action a. The UCT algorithm then chooses one
random action ar for the random player and computes the next
state s′ = α(s, (a, ar)), as well as the next observation o =
ω(p, s, (a, ar)). The proportion of visits of o with s′ is then by
definition Ω(o|s′, a) · T (s′|s, a).

2. In the limit, every node will be visited infinitely often, which is a
general property of UCT search [7].

3. Suppose we are at an action node A in the last action-observation
layer. Let SA? be the set of all states contained in any child node
of A. Then all s? ∈ SA? must be terminal states. Then it follows
from (1) and (2) that each s? ∈ SA? is reached with probability
according to b(s?) and therefore, Q(A) =

∑
s?∈SA?

b(s?)R(s?).
4. This follows from the UCT formula.
5. From (3) we know that in the limit the Q values of action nodes

in the last action-observation layer are the expected values of the
actions they represent. This allows us to inductively compute the
Q values of interior action nodes as well. Since (4) holds, it
follows that for each interior action node A and each observa-
tion node o below A, the successor action a∗i (o) with maximal
Q(〈A, o, a∗i (o)〉) dominates in the computation of the aggregated
value Q(A). Thus, the value of suboptimal actions ai will not af-
fect Q(A). Therefore,

Q(A) =
∑

〈A,o〉∈O

Q(〈A, o, a∗i (o)〉)
∑
s′∈S′

Ω(o|s′, a) · b(s′)

which is the expected value of A.
6. This follows from the above using backward induction from leaf

nodes to the root of the UCT tree.

5 EXPERIMENTAL EVALUATION
We evaluated the NORNS algorithm on several GDL-II single-player
games, most of them taken from the Australian GGP competition.
For each game, we varied the number of simulations per step. One
simulation consists of the sampling of one world state s from the cur-
rent belief state using belief state tree search, followed by one UCT
cycle (selection, expansion, simulation, backpropagation) starting in
s. After the simulations, the action with the highest action node value
is submitted to the game master and a new observation is received.
This is repeated until the game reaches a terminal state. We ran each
configuration (fixed number of simulations) 100 times and averaged
the scores over the 100 runs. Notice that, unlike our formal defini-
tion of the reward function R, which returns values in [0, 1], in our
benchmarks the rewards are natural numbers between 0 and 100.

Mastermind. In Mastermind, the random player chooses a pat-
tern of four code pegs, where each peg can take one of four different
colors. The other player has to guess a pattern and will observe for
which pegs he guessed the correct color. If he finds the correct pattern
with at most four guesses, he gets a score of 100. If he needs more
than four guesses, the score is reduced by 5 for each additional guess.
The left curve in Figure 3 shows the performance of the NORNS al-
gorithm in Mastermind. We can see that the average score steadily
increases with more simulations, reaching a nearly optimal play af-
ter 1000 simulations.

Numberguessing. In Numberguessing, the random player chooses
a natural number n from a given range, and the other player can ei-
ther ask whether n ≤ m for a numberm of his choice from the given
range and get the correct answer, or he can decide that he is ready to
guess and can report his guessm in the next move. The score depends
on the number of questions the player needed to ask. Obviously, bi-
nary search is the optimal strategy. If the player needs at most as
many steps as binary search would need, he obtains 100 points. Ad-
ditional steps reduce the score by 30 for the first and by 20 for each
further additional step. Guessing the wrong number leads to a score
of 0. Asking the same question more than once is inefficient, but le-
gal. This leads to a huge game tree even for small ranges of numbers.
We evaluated two versions of the Numberguessing game, both with
a maximum of 14 possible steps, i.e., the player is forced to guess a
number after at most 13 steps. The right curve in Figure 3 shows the
evaluation of the NORNS algorithm in the Numberguessing big set-
ting, where numbers are chosen from the range from 1 to 16. Like in
Mastermind, the player performs better with more simulations. But
after reaching around 80 points on average, it seems as though more
simulations do not affect the score any more. One explanation for this
is the huge game tree consisting of around 1614 nodes in contrast to
the small number of optimal ways to play, corresponding to traces of
binary search. Since the first additional step already induces a huge
penalty, the average value is heavily affected if the player chooses a
suboptimal first move. The third, middle, curve shows the results for
a smaller version of Numberguessing, with numbers ranging from 1
to 8. The average score quickly reaches roughly 90 points on average,
but again, reaching the optimal score would need more simulations
than we performed. Notice that even for average rewards around 80
(Numberguessing big) and 90 (Numberguessing small), the rewards



per run vary widely. For example, among the 100 runs with 106 sim-
ulations in Numberguessing big, 50 gave a score of 100, 27 a score
of 70, 19 a score of 50, one a score of 30, and three a score of 0, for
an average score of 78.7.

It is worth mentioning that we also compared the results to Fluxii,
but since the classic version of Fluxii does not value information
gathering moves, the Numberguessing results consist of the player
always guessing a random number. Unfortunately there does not yet
exist a standalone version of the successor to Fluxii, which uses the
lifted hyperplay technique [13]. In Mastermind, Fluxii scored better
with less than 100 simulations and similarly to NORNS for the other
configurations. We believe the reason for that is the Hyperplay tech-
nique which generates the full belief state and therefore should pull
ahead with fewer simulations in small games.
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Figure 3: Expected scores as a function of number of simulations.
Legend: mm = mastermind, ng = numberguessing.

Smaller Games. We also benchmarked games that are much
smaller and only need very few simulations to perform optimally.
The first game is the well known Monty Hall game, where the show
host hides a car behind one of three doors and the player has to
choose a door, but is allowed to switch the chosen door after one
of the two other doors is opened. The optimal strategy is to always
switch the chosen door, and indeed our player always switches the
door. The second game is called Exploding Bomb. The random player
connects one of two possible colored wires with a bomb. Afterwards,
the other player can either ask which wire was connected to the
bomb, or wait. Asking carries a penalty of 10 points. In the last step,
the player has to cut one of the wires, receiving either 100 or 90
points if he defuses the bomb, and 0 if the bomb explodes. Clearly,
the best initial action is to ask, with an expected value of 90 points,
which is the action our player always performs.

6 CONCLUSION AND FUTURE WORK

We presented an algorithm based on belief state trees and action-
observation trees to compute an optimal move in each step of a
single-player GDL-II game. By approximation of the belief state, we
are able to simulate the past efficiently and can use this information
within UCT search for future plays. We avoid the problem of hind-
sight optimization algorithms by running UCT on action-observation

trees. We showed that, given enough time, our algorithm computes
optimal actions.

Our main contributions are the definition of the Bayes update
within the belief state tree and the use of the action-observation tree
for UCT search. Additionally, we gave a proof of asymptotic opti-
mality of the NORNS algorithm and an empirical evaluation.

For future work, we consider it worthwhile investigating how to
adapt this single-player algorithm for multi-player games. There are
some challenges that come with such games. First, we need some
way to model and simulate the plays and strategies of other players.
One idea would be to use multiple action-observation trees for UCT,
one for each player, which is a similar approach to one also used in
classical GGP [4]. We could then use the UCT values to compute
initial probabilities in the belief state tree. However, since the beliefs
of different players do not have to be the same, we need belief states
for other players, which represent our belief about their belief. We
still have to find a computationally feasible approach to this problem.
However, first experiments, where we use the same belief state for all
players, indicate that this approach could pay off.
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