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Abstract

GQR (Generic Qualitative Reasoner) is a solver for binary
qualitative constraint networks. GQR takes a calculus de-
scription and one or more constraint networks as input, and
tries to solve the networks using the path consistency method
and (heuristic) backtracking. In contrast to specialized rea-
soners, it offers reasoning services for different qualitative
calculi, which means that these calculi are not hard-coded
into the reasoner. Currently, GQR supports arbitrary binary
constraint calculi developed for spatial and temporal reason-
ing, such as calculi from the RCC family, the intersection cal-
culi, Allen’s interval algebra, cardinal direction calculi, and
calculi from the OPRA family. New calculi can be added to
the system by specifications in a simple text format or in an
XML file format. The tool is designed and implemented with
genericity and extensibility in mind, while preserving effi-
ciency and scalability. The user can choose between differ-
ent data structures and heuristics, and new ones can be easily
added to the object-oriented framework. GQR is free soft-
ware distributed under the terms of the GNU General Public
License.

Introduction
Qualitative constraint calculi are representation formalisms
for efficient reasoning about continuous aspects of the
world. Contrary to numerical or quantitative formalisms,
which often rely on undecidable formal systems, qualita-
tive calculi provide an abstraction layer over metrical data,
which can be applied for developing efficient reasoning
methods. In the past 25 years a huge list of such cal-
culi has been discussed in the literature (see, e.g., Cohn
and Hazarika 2001). Examples include the point alge-
bra (Vilain and Kautz 1986) and Allen’s interval algebra
(Allen 1983), the various region connection calculi (Ran-
dell, Cui, and Cohn 1992; Düntsch, Wang, and McCloskey
1999), the intersection calculi (Egenhofer 1991; Egenhofer
and Franzosa 1991), cardinal direction calculi (Frank 1991;
Skiadopoulos and Koubarakis 2004), the double cross cal-
culus (Freksa 1992), the OPRA calculi (Moratz, Dylla, and
Frommberger 2005), and many more. Qualitative calculi
have been applied in the modeling of natural languages, for
representing spatial or temporal aspects in human-machine
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interaction (e.g., Moratz et al. 2003), in high-level vi-
sion systems (e.g., Bennett et al. 2004), and in high-level
agent control applications (e.g., Dylla and Moratz 2004;
Dylla et al. 2007). Qualitative calculi can also be used in
query rewriting and data integrity checks in Geographic In-
formation Systems (GIS) or as an add-on to planning sys-
tems to restrict possible state transitions by temporal or spa-
tial constraints.

GQR (Generic Qualitative Reasoner), developed at the
University of Freiburg, is a solver for binary qualitative con-
straint networks. GQR takes a calculus description and one
or more constraint networks as input, and tries to solve the
networks using the path consistency method and (heuristic)
backtracking. In contrast to specialized reasoners, it offers
reasoning services for different qualitative calculi, which
means that these calculi are not hard-coded into the reasoner.
Currently, GQR supports arbitrary binary constraint calculi;
new calculi can be added to the system by specifications in
a simple text format or in an XML file format.

The remainder of this article is structured as follows.
In the next section, we will discuss related approaches to
generic qualitative reasoning. Then, we will elaborate on
how qualitative reasoning with GQR works on a concep-
tual level. After that, we give some details on the way the
reasoner has been actually implemented. Next, we com-
pare GQR’s runtime behaviour to that of calculus-specific
solvers. We conclude the article with an outlook on future
enhancements to the system.

Related Work
When the development of GQR started, there were only rea-
soners for particular calculi (van Beek and Manchak 1996;
Nebel 1996; Renz and Nebel 1998). In order to reason in
a new calculus, one had to develop a new program, modify
an existing one for a similar calculus, or encode it in a more
generic logic — usually first-order logic, but also proposi-
tional modal logic (Bennett 1994) — for which solvers exist.

In the meanwhile there exist similar research efforts. The
qualitative algebra toolkit (QAT) (Condotta, Saade, and
Ligozat 2006) is a Java implementation of tools and libraries
for qualitative calculi and constraint networks developed at
the Université d’Artois. It features XML-based descriptions
of n-ary calculi, a tool to define a calculus as a Cartesian
product of existing algebras, as well as methods for gen-



erating random constraint networks. An included solver
provides various reasoning algorithms for the consistency
and minimal network problem, such as backtracking search
using different heuristics and local constraint propagation
methods.

SparQ (Dylla et al. 2006; Wallgrün et al. 2006) is de-
veloped at the University of Bremen. It provides support for
binary and ternary calculi, transformations from quantitative
descriptions into qualitative representations, and constraint
based reasoning methods, such as the path consistency al-
gorithm and backtracking search. SparQ is written in LISP
with libraries implemented in C.

In contrast to those tools, the main focus in the design of
GQR has been to implement a fast and extensible generic
solver, which preserves the efficiency of calculus-specific
solvers as much as possible.

Qualitative Reasoning with GQR
Reasoning in GQR is based on a purely syntactical defini-
tion of qualitative calculi (Ligozat and Renz 2004; Wölfl,
Mossakowski, and Schröder 2007). A (binary) qualitative
calculus is defined by a non-empty finite set B of symbols
(elements of B are referred to as base relations), a unary
function ` : B−→ B (assigning to each base relation its con-
verse), a binary function ◦ : B×B−→ 2B (assigning to each
pair of base relations their composition), and a distinguished
element id∈B (the identity relation) such that some minimal
requirements are met (e. g., (a`)` = a, id ◦ a = a ◦ id = a;
etc.). Given a qualitative calculus in this sense, the set 2B is
a Boolean algebra (its elements are referred to as relations1).
Moreover, a non-associative relation algebra is defined if the
functions ` and ◦ are extended to functions ` : 2B −→ 2B

and ◦ : 2B×2B −→ 2B via the settings: r` := {b` : b ∈ r}
and r ◦ r′ :=

⋃
b∈r,b′∈r′ b◦b′.

Reasoning problems in qualitative calculi are usually for-
mulated as so-called constraint satisfaction problems. The
instances of these problems can be described as constraint
networks, which are directed finite graphs, where each edge
is labeled by a relation of the calculus (representing the con-
straint relation between the connected nodes). In GQR these
graphs are represented as adjacency matrices, where each
entry is a bit vector used to encode the calculus relation
between two nodes in the graph. The constraint satisfac-
tion problem, then, is to determine for a constraint network,
whether there exists an assignment to its variables/nodes in
a given domain D such that all constraints of the network
become true (based on a fixed interpretation of the relational
symbols on this domain). Further typical reasoning tasks are
to check that some constraint is entailed by a constraint net-
work and to compute an equivalent minimal constraint net-
work. All these reasoning tasks can be shown to be equiva-
lent under polynomial Turing reductions.

A crucial aspect in qualitative reasoning is the fact that
the underlying models usually are infinite. Hence, in order
to test satisfiability of constraint networks, it is not feasi-
ble to enumerate all possible assignments to variables in a

1Sets of base relations are read disjunctively and express impre-
cise knowledge about the actual configuration.

Calculus Identifier |B|
point algebra point 3
Allen’s interval algebra allen 13
RCC-5 rcc5 5
RCC-8 rcc8 8
OPRA-4 opra4 272
Cardinal directions cd 9

Table 1: Some of the calculi defined for GQR

model until one finds a satisfying assignment. For this rea-
son other techniques based on algebraic and semantic prop-
erties of the calculus must be applied for testing satisfiabil-
ity. In particular, the path consistency algorithm manipulates
a given constraint network by successively refining the la-
bels rx,y (on the edge from node x to node y) via the operation
rx,y← rx,y∩ (rx,z ◦ rz,y), where z is any third variable occur-
ring in the network. In GQR Mackworth’s variant of the path
consistency algorithm is implemented (Mackworth 1977;
Dechter 2003), which runs in cubic time in the size of the
constraint network.

Since, in general, the path consistency method is not suf-
ficient to decide consistency of constraint networks, GQR
uses chronological backtracking, such trying out different
instantiations of the constraints containing disjunctions of
base relations (cf. Allen 1983; Ladkin and Reinefeld 1997;
Nebel 1996; Renz and Nebel 1998; van Beek and Manchak
1996). Moreover, by using known tractable subclasses of a
calculus (i.e., sets of relations closed under intersection and
composition, for which the path consistency method decides
consistency), one can speed up the reasoning time: instead
of splitting a constraint during backtracking into base rela-
tions, one can split it into relations belonging to a tractable
subclass, which reduces the branching factor of the search
tree considerably (Nebel 1996).

Both the path consistency method and the chronological
backtracking search may benefit from heuristics about which
part of the constraint network is to be processed next. Cur-
rently, the weight and the cardinality heuristics (van Beek
and Manchak 1996) are implemented for the path consis-
tency method. For the backtracking search, the cardinal-
ity heuristic for variable selection (van Beek and Manchak
1996) is implemented.

GQR is written in C++. Because of its object-oriented
design, users may add their own heuristics quite easily as
well. New qualitative calculi are defined by writing simple
text or XML files, which are then read and processed by
the reasoner. Table 1 gives an overview of calculi that are
already included with GQR.

Also, GQR allows for checking algebraic properties of
specified calculi (as mentioned before) and it is possible to
precompute (parts of) the complete composition tables of the
calculus (which is reasonable for small calculi only).2

2For an overview of methods to speed up the composition oper-
ation see (Ladkin and Reinefeld 1997).



Finally, it should no go unmentionend that GQR has al-
ready been used successfully (a) in a high-level agent con-
trol system implementing rule-compliant behavior of agents
in sea navigation (Dylla et al. 2007) (where reasoning in
a large constraint calculus such as OPRA-4 turned out to
be crucial) and (b) for the evaluation of different algorithms
for application-specific customizations of qualitative calculi
(Renz and Schmid 2007).

Implementation Details
In this section, we give an overview of the implementation
of algorithms and data structures used in GQR.

Principal algorithms used in GQR
As pointed out in the previous section, the path consistency
algorithm is one of the central methods to solve constraint
networks in qualitative calculi. A naı̈ve implementation of
this procedure needs O(n5) intersections and compositions.
Mackworth (1977) suggested a method that puts the paths
that may be affected by changes into a queue, and processes
the queue until it is empty. It runs in O(n3) time and uses
O(n2) of memory. Algorithm 1 shows the method.

Algorithm 1 Path-Consistency(V,C)
Input: A constraint network (V,C)
Output: A constraint network (V,C′) that is a (sometimes

even path-consistent) refinement of (V,C)
1: Q←{(i, j)|1≤ i < j ≤ n} // Initialize the queue
2: while Q is not empty do
3: select and delete an (i, j) from Q
4: for k← 1 to n,k 6= i and k 6= j do
5: t←Cik ∩ (Ci j ◦C jk)
6: if t 6= Cik then
7: Cik← t
8: Cki← t^
9: Q← Q∪{(i,k)}

10: end if
11: t←Ck j ∩ (Cki ◦Ci j)
12: if t 6= Ck j then
13: Ck j← t
14: C jk← t^
15: Q← Q∪{(k, j)}
16: end if
17: end for
18: end while
19: return (V,c)

Depending on semantic properties of the calculus at hand,
the output of the algorithm has to be interpreted in differ-
ent ways. For many calculi discussed in the literature, the
path consistency method returns a network that is (semanti-
cally) equivalent to the original one, sometimes the network
is even (semantically) path-consistent (for a more detailed
discussion see Ligozat and Renz 2004). For calculi with a
weakly correct composition table, a network cannot be con-
sistent if one of the edges in the network resulting from the
path consistency algorithm contains the empty relation.

A main aspect in the development of new binary calculi
is to identify so-called tractable subclasses (of the set 2B of
all relations): the consistency of networks containing only
relations from such a class is decidable in polynomial time
via the path consistency algorithm. For some subclasses the
network resulting from the path consistency method is even
minimally equivalent.

If the result of the path consistency method is a non-
atomic network, which is normally the case, we must resort
to trying out different instantiations of the constraints con-
taining disjunctions of base relations (cf. Allen 1983; Lad-
kin and Reinefeld 1997; Nebel 1996; Renz and Nebel 1998;
van Beek and Manchak 1996). Algorithm 2 works as fol-
lows: If our search ran into a dead end, we proceed by look-
ing at the next possible instantiation of the most recently
changed constraint. Such an approach is called chronologi-
cal backtracking. Before each instantiation, the path consis-
tency method is applied in order to prune the search tree,
i. e., we avoid instantiations that will lead to inconsisten-
cies anyway. Except for the first step, the path consistency
method only has to be run for the paths that are possibly
affected by the prior instantiation, which takes O(n2) inter-
sections and compositions (this detail is not included in the
listing of Algorithm 2).

Algorithm 2 Consistent(V,C)
Input: A constraint network (V,C)
Output: A Boolean value that is true if and only if (V,C) is

satisfiable
1: Path-Consistency(V,C)
2: if C contains the empty relation then
3: return false
4: end if
5: if there are non-basic edges then
6: Pick such an edge e = (i, j)
7: for all base relations b in the label of e do
8: Ci j← b
9: if Consistent(V,C) then

10: return true
11: end if
12: end for
13: end if
14: return false

Using tractable subclasses of a calculus can speed up the
backtracking search. First, a constraint network containing
only relations from the subclass can be solved in polynomial
time by enforcing path consistency. Second, if the network
contains relations that do not belong to such a subclass, sub-
classes can still be used to reduce the branching factor dur-
ing backtracking. Instead of splitting a constraint into its
base relations, it may be split into relations belonging to the
subclass. In (Nebel 1996) and (Renz and Nebel 1998), this
strategy was applied to the interval algebra and to the RCC-
8 calculus, respectively. Note that those subclasses are not
hard-coded into the program; they can be defined as simple
text files, without any programming.



Data structures for the path consistency method
Van Beek and Manchak (1996) implemented a very efficient
queue data structure, which is also used in the software used
by Nebel et al. (Nebel 1996; Renz and Nebel 1998) and in
the work presented here. Compared to a data structure put
together from generic components (parts of the C++ Stan-
dard Template Library STL), there is a huge performance
gain, as can be seen in Fig 1. In GQR, the queue is imple-
mented as a virtual class, allowing for easy and convenient
extensions.

Computations on Relations
Relations in GQR are stored as bit vectors. There is a special
bit vector class based on templates, that allows for compact
representations in memory and efficient operations on the
vectors. Further, the class provides an order on bit vectors,
as well as a hash function. The extensive use of templates
allows the reasoner to be recompiled from the same source
to support any given calculus size, without compromising
the speed when working with smaller calculi.

As previously mentioned, GQR allows for precomputa-
tions of composition and converse tables. It supports both
full and partial precomputations, where partial precomputa-
tions are available in two different ways: Firstly, it imple-
ments Hogge’s method (Ladkin and Reinefeld 1997), which
splits each relations into two (nearly equally sized) parts, the
higher bits and the lower bits. For compositions four tables
are precomputed, containing the results for compositions of
relations with only higher bits, results for those with only
lower bits, and two for lower bit relations with higher bit
relations and vice versa. The result of a composition with
arbitrary relations can then be assembled from the tables us-
ing AND, shift, and OR operations. A similar strategy is
applied to converse computations. This reduces the memory
requirements significantly, since for a calculus with n base
relations only six tables with at most 2n+1 entries have to be
stored.

Secondly, GQR provides caching for both composition
and converse results, using a hash table. This is also dis-
cussed in (Ladkin and Reinefeld 1997), and performs really
well in nearly all situations. Since the number of entries
in the hash table is not directly dependent on the number
of base relations, caching is especially interesting for large
calculi, where full precomputations are impossible and even
Hogge’s method is not directly applicable. Also, as the path-
consistency algorithm is a fixed point algorithm, and there-
fore the actual compositions that have to be calculated are
usually clustered, even small hash tables are already useful,

GQR automatically decides which method to use, accord-
ing to given memory limits for composition and converses.
It is also possible to add new precomputation methods for
specific calculi.

Comparing GQR with a Non-Generic
Reasoner

As a benchmark for the implementation of GQR, we com-
pared the performance of GQR with that of two solvers for
constraint networks in Allen’s interval algebra (Nebel 1996)
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Figure 1: Performance comparison between two queue types
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Figure 2: Performance of the path consistency method for
RCC-8

and RCC-8 (Renz and Nebel 1998). Those two solvers are
implemented very efficiently. In fact, they are faster than
GQR, because they are written in C and thus do not use cer-
tain features of C++, like virtual methods, which are con-
venient but affect the execution speed. Moreover, these
calculus-specific reasoners can exploit certain properties of
the underlying calculus (e.g., the interval algebra) to im-
prove the reasoning performance. However, we think that,
from an architectural point of view, it is worth trading some
speed for flexibility and genericity.

The benchmark tests were carried out on a computer with
an Intel Core2 processor with a CPU frequency of 2.4 GHz
and 4 GB RAM. It was running Linux 2.6.18, the code was
compiled with gcc/g++ 4.1.2. Only one of the CPU cores
was used for the experiments. The compiler flags were
-DNDEBUG -O3 in both cases. The size of the relation data
type was set to 32 bit.

Path consistency. The performance of the path consis-
tency algorithm is crucial for the overall performance of a
qualitative reasoner. Therefore, we compared GQR’s path
consistency implementation to that of Renz and Nebel’s
RCC-8 solver. The results of the path consistency bench-
mark are shown in Figure 2. The parameters for the con-
straint networks used here and in the data structure compar-
ison (Figure 1, see the previous section on data structures)
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Figure 4: Performance for hard IA networks

were the same: As can be seen from the graphs, the net-
work sizes considered were between 20 and 1000 nodes.
For each size, networks with an average degree (the num-
ber of non-universal constraints of a node) of 8, 9, 9.5, 10.0,
10.5, 11, 12, and 13 were generated. The problem set for ev-
ery size-degree combination consisted of between 2000 (size
20) and 50 (size 320) networks. For the sizes 500 and 1000,
10 networks were generated for every average degree. Renz
and Nebel’s reasoner ran three (large networks) up to four
times faster than GQR. While GQR is clearly slower than
the other solver, it appears to have the same scaling behav-
ior. It is worth mentioning that the longer runtimes for small
networks can be caused by the overhead of reading the con-
straint networks from disk, and not by the implementation
of the algorithm itself.

Global Consistency. To assess the speed of the backtrack-
ing search, two different scenarios involving Allen’s interval
algebra were considered. First, we looked at a class of con-
straint networks that are relatively easy to solve. Such net-
works contain random relations which are representable as
first-order Horn formulae, that is, the relations of the ORD-
Horn subclass. The network sizes were between 10 and 80
(step size 10), and the average degrees between 3 and 12
(step size 1); for every size-degree combination, 500 net-
works were generated.

Second, we ran a benchmark on particularly hard in-
stances, where the constraints were picked from a set of rela-

tions which can be represented in 3-CNF when transformed
into first-order formulae. Additionally, the average degree
of nodes was chosen in a way that the resulting networks
belong/are close to the so-called phase transition region, in
which it is about equally probable that a network is satisfi-
able or not. Problems in that region are known to be hard to
solve (Nebel 1996). For the sizes 15 to 20, the degree was
between 10.8 and 11.3, for sizes from 22 to 30, it was be-
tween 11.4 and 11.8. 500 problem instances were generated
for each network size.

The results can be seen in Figure 3 and 4. While for the
easy instances, the results are consistent to our path consis-
tency results, GQR’s performance on larger instances of the
hard class of problems is still not satisfying. This is an issue
we are currently addressing.

License and Availability
GQR is freely usable and distributable under the terms of
the GNU General Public License. The software can be
downloaded from https://sfbtr8.informatik.
uni-freiburg.de/R4LogoSpace/Resources/
GQR.

Conclusion and Future Work
In this article, we presented GQR, a generic reasoner for
qualitative calculi. We described its underlying reasoning
methods and their implementation, and presented prelimi-
nary benchmark results.

We are currently working on the next generation of GQR,
which will allow for processing ternary constraint calculi as
well as for handling constraint networks containing relations
from different calculi. We will also implement ways to build
new calculi as combinations of existing calculi and a module
that automatically computes the weights used in the heuris-
tics. Furthermore, we plan to compare the performance of
GQR to that of other reasoners in more detail, especially
with respect to larger calculi.
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