
Preferring Properly:
Increasing Coverage while Maintaining Quality in Anytime Temporal Planning

Patrick Eyerich
Albert-Ludwigs-Universität Freiburg

Institut für Informatik
Georges-Köhler-Allee 52
79110 Freiburg, Germany

eyerich@informatik.uni-freiburg.de

Abstract

Temporal Fast Downward (TFD) is a successful temporal
planning system that is capable of dealing with numerical val-
ues. Rather than decoupling action selection from schedul-
ing, it searches directly in the space of time-stamped states,
an approach that has shown to produce plans of high quality
at the price of coverage. To increase coverage, TFD incorpo-
rates deferred evaluation and preferred operators, two search
techniques that usually decrease the number of heuristic cal-
culations by a large amount. However, the current definition
of preferred operators offers only limited guidance in prob-
lems where heuristic estimates are weak or where subgoals
require the execution of mutex operators. In this paper, we
present novel methods of how to refine this definition and
show how to combine the diverse strengths of different sets
of preferred operators using a restarting procedure incorpo-
rated into a multi-queue best-first search. These techniques
improve TFD’s coverage drastically and preserve the average
solution quality, leading to a system that solves more prob-
lems than each of the competitors of the temporal satisficing
track of IPC 2011 and clearly outperforms all of them in terms
of IPC score.

Introduction
Temporal Planning is an important generalization of classi-
cal planning that allows to model many applications more
realistically by taking into account not only causal depen-
dencies between actions but also their temporal interactions.
It is a growing research area and there are many interesting
approaches that tackle its challenges. LPG (Gerevini, Saetti,
and Serina 2003) is based on stochastic local search in the
space of action graphs. Crikey3 (Coles et al. 2008) employs
heuristic forward search interleaving planning and schedul-
ing via Simple Temporal Networks. CPT4 (Vidal 2011a) is
a planning system based on partial order causal links that is
optimal for the conservative semantics of Smith and Weld
(Smith and Weld 1999). A common approach to temporal
planning, as for example taken by SGPlan (Hsu and Wah
2008), YAHSP2 (Vidal 2011b) and DAEYAHSP (Dréo et al.
2011), is to consider only logical dependencies between ac-
tions first while temporal dependencies are taken into ac-
count just afterwards to find an appropriate scheduling for
the chosen actions. While having the potential of being very
fast due to the possibility of utilizing successful techniques
from the much more investigated field of classical planning,

such approaches are doomed to fail in temporally expres-
sive domains (Cushing et al. 2007), and suffer from severe
drawbacks in temporally simple problems, as choosing the
wrong actions might render the final solutions to be purely
sequential and therefore of very low quality.

Another approach as for example taken by Sapa (Do and
Kambhampati 2003b), LMTD (Hu, Cai, and Yin 2011), or
Temporal Fast Downward (TFD) (Eyerich, Mattmüller, and
Röger 2009), is to perform forward search in the space of
time-stamped states, where at each search state either a new
action can be started or time can be advanced to the end
point of an already running action, thereby combining action
selection and scheduling. Also, POPF2 (Coles et al. 2011;
2010) performs a forward search, using a partial order rather
than a total order like Sapa and TFD do. While these ap-
proaches are usually very good in terms of quality, their cov-
erage on current benchmarks is typically relatively low.

As a first step to increase its coverage, TFD incorpo-
rates preferred operators and deferred evaluation (Richter
and Helmert 2009). The general idea of preferred operators
is to favor operators that are part of a solution for the heuris-
tic abstraction of the problem. Deferred evaluation post-
pones heuristic computations from the point where a search
node is generated to the point where it is expanded, rating
nodes with the estimate of their predecessor during search.
Thereby, the number of heuristic calculations is decreased
by a large amount at the price of informativeness. Even more
than in classical planning, in temporal planning the heuristic
computation is the bottleneck of search, and indeed it turns
out that the use of deferred evaluation and preferred opera-
tors increases the performance of TFD enormously. Unfor-
tunately, this improvement does not occur uniformly over all
planning domains. Instead, there are problems where using
preferred operators and deferred evaluation worsens results.

The first contribution of this paper consists in novel meth-
ods that strengthen the selection criteria for preferred opera-
tors. Different methods have strengths on different domains
and some of them clearly increase TFD’s coverage on their
own. On their downside, all new methods have in common
that they produce solutions of lower quality than the original
definition. This leads to the second contribution, a restarting
procedure embedded in a multi-queue best first search that,
besides further increasing coverage, regains the lost quality.
Our resulting system is able to overcome the disadvantage of

searching in the space of time stamped states, i.e., low cov-
erage, while maintaining its major advantage, high solution
quality.

The remainder of this paper is structured as follows: In
the next section we describe TFD with an emphasis on its
heuristic. The subsequent section presents our novel selec-
tion criteria for preferred operators and a multi-queue search
algorithm featuring restarts. Afterwards, we present detailed
experiments before we conclude. Related work is referred to
throughout the paper whenever it fits.

Temporal Fast Downward
Temporal Fast Downward (TFD) (Eyerich, Mattmüller, and
Röger 2009) is a domain-independent progression search
planner built on top of the classical planner Fast Down-
ward (Helmert 2006). It extends the original system by
supporting durative actions as well as numeric and object
fluents. TFD solves a planning task in three phases: As
a first step, the Boolean PDDL encoding is translated into
a finite-domain representation similar to SAS+ (Bäckström
and Nebel 1996; Helmert 2009). Afterwards, in a knowl-
edge compilation step, several internal data structures are
generated. The scope of this paper is the third part, a best-
first progression search. For the sake of simplicity, we only
deal with non-numerical fluents. Note, however, that all our
results can be generalized to the numeric case straightfor-
wardly.

In the following, we use the definition of Eyerich et. al.
of a temporal SAS+ planning task (Eyerich, Mattmüller, and
Röger 2009), a tuple Π = 〈V, s0, s?,A,O〉, where V is a set
of state variables. The initial state s0 is given by a vari-
able assignment (a state) over all fluents in V and the set of
goal states s? is defined by a partial state (a state restricted
to a subset of fluents) over V . Analogously to the Boolean
setting, we identify such variable mappings with the set of
atoms v=w that they make true. For an atom x we write
var(x) to denote the variable associated with x. A is a finite
set of axioms and O is a finite set of durative actions.

A durative action a = 〈C ,E , δ〉 consists of a triple C =
〈C`,C↔,Ca〉 of partial states (called its start, persistent,
and end condition, respectively), a tuple E = 〈E`,Ea〉 of
start and end effects, and a duration variable δ ∈ V . E` and
Ea are finite sets of conditional effects 〈c, e〉. Their effect
condition c = 〈c`, c↔, ca〉 is defined analogously to C. A
simple effect e is of form v=w.

A time-stamped state S = 〈t, s,E ,C↔,Ca〉 consists of
a time stamp t ≥ 0, a state s, a set E of scheduled effects,
and two sets C↔ and Ca of persistent and end conditions.
A scheduled effect 〈∆t, c↔, ca, e〉 consists of the remain-
ing time ∆t ≥ 0 (until the instant when the effect triggers),
persistent and end effect conditions c↔ and ca over V , and a
simple effect e . The conditions in C↔ and Ca are annotated
with time increments ∆t ≥ 0 and have to hold until instant
t + ∆t (exclusively) for persistent conditions and at instant
t+ ∆t for end conditions.

A durative action is applicable in a time-stamped state S
if it can be integrated into S in a consistent way (Eyerich,
Mattmüller, and Röger 2009). The successors of a time-
stamped state are generated by either inserting an applicable

durative action at the current time point or by increasing the
time-stamp to the earliest time point where a scheduled ac-
tion ends.

For guiding the search, TFD uses a variant of the
(inadmissible) context-enhanced additive heuristic (hcea)
(Helmert and Geffner 2008) extended to cope with numeric
variables and durative actions. To make hcea useful for tem-
poral planning, Eyerich et. al. show how to transform du-
rative actions to several types of so-called instant actions
(Helmert and Geffner 2008), which we assume to be given
in this paper. Instant actions are sets of effects of the form
v=w′, z → v=w, where v is a variable, z is a partial state
not mentioning v, and w and w′ are values for v. Such an
effect means that if the current state s satisfies z and maps
v to w′, then the successor state s′, resulting from the appli-
cation of the operator, maps v to w (while all mappings that
are not changed by any effect of the operator stay the same).
We also write a : v=w′, z → v=w to make clear that the
rule is an effect of the instant action a.

Given a state s and an atom v=w, we denote with s[v=w]
the state that is like s except for variable v, which it maps
to w. Similarly, we write s[s′] where s′ is a partial state to
denote the state that is like s′ for variables defined in s′ and
like s for all other variables.

For a time-stamped state s and a goal specification s?, the
cost-sensitive variant of hcea is defined as

hcea(s)
def
=
∑
x∈s?

hcea(x|xs),

where xs is the atom that refers to var(x) in state s and
hcea(x|xs) estimates the costs of changing the value of
var(x) from the value it has in s to the one required in s?.

The context-enhanced additive heuristic makes the under-
lying assumption that for any atom x conditions referring
to var(x) are achieved first, while all other conditions are
evaluated in the resulting state s′′, leading to the following
definition:

hcea(x|x′) def
=

0 if x = x′

min
o:x′′,z→x

(
c(o, s′′) +

hcea(x′′|x′) +∑
xi∈z

hcea(xi|x′′i)
)

else

where c(o, s) is the cost of applying operator o in state s.
The state s′′ is the state after reaching x′′ from x′. Note that
with the minimum of the empty set being infinity, hcea(x|x′)
might also be infinity and if it is, there is no plan that satisfies
the goal in the original task.

In this definition, the first case is trivial. In the second
case, the first summand, c(o, s′′), captures the cost of ap-
plying the minimizing operator o in state s′′, the second one
estimates the cost of achieving x′′ from x′, and the third one
the cost of making all other conditions z of the rule true. In
this third term, atom x′′i is the atom associated with var(xi)
in the state that results from achieving x′′ from x′.

To reschedule solutions in order to reduce their makespan,
the TFD version used for this paper features a partial-order

lifting procedure that is inspired by the work of Do and
Kambhampati and Coles et. al. (Do and Kambhampati
2003a; Coles et al. 2009) and extended to be able to deal
with conditional effects.

Preferred Operators
Conceptually, the idea of preferred operators is to trans-
fer information about which operator’s application seems
to be promising from the heuristic abstraction to the actual
search. This concept was first realized by McDermott by de-
termining favored actions in the context of greedy regression
graphs as those applicable actions that are part of the min-
imal cost subgraph achieving the goals (McDermott 1996;
1999). Hoffmann and Nebel have defined helpful actions in
their FF planner as those actions that achieve a fact required
by an action in the relaxed plan that appears in the first layer
of the planning graph (Hoffmann and Nebel 2001). FF con-
siders only helpful actions in its first attempt of finding a so-
lution and switches to a complete greedy best-first search if
it fails. Another approach is used in Fast Downward, where
besides the usual open list containing all applicable opera-
tors there is a separate open list containing only preferred
operators. Different strategies of how to best combine these
two open list have been investigated (Richter and Helmert
2009; Röger and Helmert 2010).

Using the definition of the context-enhanced additive
heuristic, the set P(s) of preferred operators is defined as

P(s)
def
=
⋃
x∈s?

P(x|xs),

where

P(x|x′) def
=

{} if x = x′ or hcea(x|x′)=∞

{o} if ∃ o : x′, w → x :

hcea(x|x′) = c(o, s′)⋃
xi∈w

P(xi|x′i) if ∃ o : x′, w → x :

hcea(x|x′) =
(
c(o, s′)+∑

xi∈w
hcea(xi|x′i)

)
P(x′′|x′) if ∃x′′ : hcea(x′′|x′)

+hcea(x|x′′) = hcea(x|x′)

Each condition additionally requires the previous condi-
tions to be unsatisfied. We furthermore assume that no ac-
tion with zero cost exists and that, if the existentially quan-
tified conditions are satisfied for more than one operator or
atom, an arbitrary one is chosen.

The first case is trivial. The second case defines an oper-
ator o that transforms x′ to x with cost equal to hcea(x|x′)
(which means that all its preconditions have to be satisfied)
as preferred. The third case is similar to the second one ex-
cept that some of the operator’s preconditions are not sat-
isfied. In that case, preferred operators are recursively de-
fined over these preconditions. In the last case, x′ cannot be

changed to x by a single operator but only via an intermedi-
ate state, so preferred operators are recursively defined over
this state.

In its default configuration, TFD uses a straight-forward
adaptation of the boosted dual queue approach for preferred
operators of Fast Downward (Helmert 2006). As can be seen
in the experiments section, preferred operators work best in
the context of deferred evaluation. However, there are cer-
tain domain characteristics for which that is not the case.
Especially in problems where goals are conflicting, requir-
ing mutex operators, the preferred operator handling of TFD
does not yield good results in the context of deferred evalu-
ation.

The main reason for this poor behavior is that hcea com-
putes costs of subgoals independently from each other. In
that way, a set of preferred operators might contain mutex
operators each leading to a successor state with the same
heuristic estimate (due to deferred evaluation) while the suc-
cessors of each successor have a higher heuristic estimate.
To see this, think of a problem in an elevators domain where
we have two goals g1 and g2 to transport two passengers p1
and p2 from their common starting location f5 to their de-
sired floors f1 and f10, respectively. When investigating the
subproblems independently from each other, as hcea does,
it might be meaningful to use the same elevator e1, located
at f5, to transport both p1 and p2. In such a situation, both
the operators move-down(e1, f5, f1), leading to state s1, and
move-up(e1, f5, f10), leading to state s2, are preferred, and
since we use deferred evaluation, s1 and s2 share the same
heuristic estimation. When s1 is expanded, however, e1 has
started to move to f1 in order to satisfy g1, and the heuris-
tic realizes that g2 becomes more expensive (potentially to
a higher degree than the amount that g1 becomes cheaper),
leading to a worse overall state evaluation for all successors
of s1. Things are analogously for expanding s2. In such a
situation a potentially very large set of states has to be visited
before the search actually progresses in the right direction.

Our new selection strategies are basically methods to in-
telligently narrow the set of preferred operators, motivated
by examples like the one above: If by using only preferred
operators a planning task is rendered incomplete anyway,
and if generating preferred operators for all subgoals at once
can lead to situations where the search gets stuck, why not
limit ourselves to generating preferred operators for only up
to n subgoals? Of course, the obvious questions are which
and how many operators out of a set of preferred ones we
should choose. We have found three narrowing strategies
to be useful in practice: To utilize only the preferred opera-
tors that correspond to the first n yet unsatisfied goals, called
O, or to choose the preferred operators corresponding to the
n goals that are cheapest or most expensive to satisfy ac-
cording to the heuristic, called C and E , respectively. More
concretely, a narrowing strategy Xn(s) is defined as

Xn(s)
def
=

⋃
x∈X⊆s?

P(x|xs)

with an appropriate X of cardinality n chosen according to
the selection strategy of X . For O, this strategy is defined
such that x ≤O y for all x ∈ X, y ∈ (s? \ X) holds for

some appropriate ordering relation ≤O. For C it has to hold
that hcea(x|xs) ≤ hcea(y|ys) for all x ∈ X, y ∈ (s? \ X),
and for E it has hold that hcea(x|xs) ≥ hcea(y|ys) for all
x ∈ X, y ∈ (s? \X).

Basically, all narrowing strategies examine the current
state s and choose up to n goals xi from s? to compute
preferred operators for: O determines the first n unsatisfied
goals (according to an appropriate ordering relation ≤O),
while C and E determine the heuristic cost of each subgoal
as if it would be the only goal to satisfy (as said, this is done
by hcea anyway) and choose the n that are cheapest and most
expensive, respectively. Note that with small n the search is
driven to satisfy the goals more sequentially, however, each
goal might be satisfied by parallel action applications.

Finding a good ordering relation for O is very much re-
lated to the more general task of detecting goal orderings
(Köhler and Hoffmann 2000). In this paper, we restrict our-
selves to the natural ordering that is defined by the order in
which variables occur in the problem description and defer
the interesting question of how to combine our technique
with goal ordering detection techniques to future work.

As we will show in the experiments section, utilizing our
new techniques in TFD pays off in terms of coverage. Un-
fortunately, the produced solutions are typically of a lower
quality than those of the original definition as the search is
driven to satisfy goals more sequentially. Additionally, it
can be observed that the different narrowing strategies have
strengths in different domains. Motivated from these two
facts, we have developed an algorithm that incorporates sev-
eral narrowing strategies into a best-first search framework
that uses an own open list for each strategy, as outlined in
Algorithm 1.

The algorithm is based on the boosted dual-queue best-
first search approach of Fast Downward (Helmert 2006). It
maintains a set of open lists, each associated with a corre-
sponding selection method. It has been shown that alternat-
ing between different open lists is a good idea if the open
lists contain operators ordered by different heuristics (Röger
and Helmert 2010). In our context, however, alternating did
not work well, so we have chosen a priority based approach
where each open list is associated with a priority and at each
search step the algorithm selects the non-empty list with the
highest priority (lines 1 and 28). The search keeps track of
the number of steps that were performed since the last time
progress has been made (progress is made if a state is ex-
tracted from a list that has a lower heuristic estimate than
each other state that has previously been taken from that
list). If more than K steps have been made without mak-
ing progress, the search restarts (lines 10–12), boosting a
different open list each time by giving it a high initial prior-
ity while all other lists start with priority zero. If the search
has restarted with each open list being initially boosted once,
it switches to a round robin selection mode (line 12, details
have been omitted from the pseudocode to ensure readabil-
ity). During successor generation, nodes are inserted into the
appropriate open lists according to their associated selection
strategies (lines 24–27). Note that using a regular open list
containing all applicable successors (which is done in our
implementation) ensures completeness of the algorithm on

Algorithm 1: Best-first search with restarts, deferred
evaluation, and several open lists in a priority based
multi-queue approach.

activeList = chooseOpenListToStartWith()1
forall open in openLists do2

open.priority = 03
activeList.priority += V4
activeList.add(s0)5
closedList← ∅6
lastProgressAtStep = 0, currentStep = 07
while activeList is not empty do8

currentStep += 19
if (currentStep - lastProgressAtStep) >K then10

activeList = nextOpenListToBoost()11
restartAtLine2() or switchToRoundRobinMode()12

s← activeList.pop()13
activeList.priority -= 114
if s 6∈ closedList then15

closedList.add(s)16
if s |= G then17

return s as solution18
h = s.compute heuristic()19
f = s.timestamp + h20
if makes progress(s) then21

activeList.priority += V22
lastProgressAtStep = currentStep23

forall child states s′ of s do24
forall open in openLists do25

if open.matches(s′) then26
open.add(s′, f)27

activeList = selectList()28
return no solution found29

temporally simple problems.
For the two parameters of the algorithm we have found

K = 3000 and V = 1000 to work well in practice (these
parameters, however, are quite robust and we got reasonable
results for a wide range of values for both K and V). Note
that the algorithm can be called from outside in an anytime
fashion where the makespan of previously found solutions
can be used to prune the search space.

Experiments
In our first experiment1 we show the influence that deferred
evaluation and preferred operators have on the search per-
formance of TFD.

Results showing IPC score2 and coverage (in parentheses)
on IPC 2011 benchmarks are presented in Table 1. With-
out preferred operators, switching from eager (’e’) to de-
ferred evaluation (’d’) speeds up the search by saving a lot
of heuristic computations but reduces guidance, altogether

1All our experiments were run on AMD Opteron 2.3 GHZ Dual
Core processors with a memory limit of 2 GB and a timeout of 30
minutes.

2If Q∗ is the makespan of a reference solution, a planner pro-
ducing a solution of makespan Q receives Q∗/Q points of IPC
score. For all our experiments the best known plans (including
ours) are used as reference.

IPC 2011 e d Pe Pd
CREWPLANNING 0.0 (0) 0.0 (0) 19.9 (20) 19.9 (20)
ELEVATORS 0.0 (0) 0.0 (0) 0.0 (0) 1.0 (1)
FLOORTILE 4.0 (5) 4.1 (5) 4.9 (5) 4.9 (5)
MATCHCELLAR 1.0 (1) 1.0 (1) 15.6 (20) 15.6 (20)
OPENSTACKS 17.8 (20) 16.7 (20) 17.8 (20) 17.7 (20)
PARCPRINTER 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0)
PARKING 13.7 (17) 10.2 (14) 7.1 (9) 12.2 (16)
PEGSOL 17.9 (18) 18.0 (18) 17.9 (18) 17.9 (18)
SOKOBAN 2.9 (3) 2.9 (3) 2.9 (3) 2.9 (3)
STORAGE 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0)
TMS 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0)
TURNANDOPEN 12.0 (14) 10.7 (13) 12.5 (17) 13.3 (20)
Overall 69.2 (78) 63.7 (74) 98.6 (112) 105.3 (123)

Table 1: Results on IPC 2011 benchmarks measuring the
influence of deferred evaluation and preferred operators in
regular TFD, showing IPC score and coverage (in parenthe-
ses). Used abbreviations are ’P’ for preferred operators, ’d’
for deferred evaluation, and ’e’ for eager evaluation.

leading to a slightly worse performance. This drawback,
however, can be overcome by incorporating preferred op-
erators (’Pd’). With preferred operators bringing back some
of the lost guidance, the advantages of the reduced compu-
tational effort of deferred evaluation can be fully exploited,
leading to both a much higher coverage and IPC score. Note
that using preferred operators increases performance also in
the context of eager evaluation (’Pe’), but to a lesser degree,
so that combining preferred operators and deferred evalua-
tion clearly is the best option.

For our second experiment we have implemented the
methods presented in Section to narrow the set of preferred
operators. Results for Cn, En, and On with 1 ≤ n ≤ 3 are
shown in Table 2.

It can be seen that C and O yield very promising results
with a higher coverage compared to the original method, es-
pecially in ELEVATORS and PARCPRINTER. The reason for
the good performance in ELEVATORS seems to be that by
narrowing the set of preferred operators the weakness of the
heuristic to switch between subgoals during search can be
overcome by focusing on a specific goal. In doing so, it is
better to focus on the cheapest goal (C) than on an arbitrary
one (O). It is useless, however, to focus on the most expen-
sive goal (E), as this changes to often during search. In PAR-
CPRINTER both the cheapest and the most expensive goal
vary a lot during search, so it is best to focus on a fixed goal
like O does. Unfortunately, O does yield very bad results
in CREWPLANNING, where a specific goal ordering needs
to be respected that O is not aware of. Here, techniques to
detect goal orderings (Köhler and Hoffmann 2000) might be
very helpful. While coverage can be increased using our new
techniques, their produced solutions are typically of lower
quality than those of the original method as they drive the
search to satisfy goals more sequentially. This fact becomes
apparent especially in OPENSTACKS, a domain for which
it is very easy to find a solution but the range of quality is
very high and it is important to start the right actions first in

IPC 2011 C1 C2 C3 E1 E2 E3 O1 O2 O3

CREWPLANNING 14.2 15.5 15.6 0.0 2.4 1.6 0.0 2.4 4.2
19 20 20 0 3 2 0 3 5

ELEVATORS 15.1 10.5 7.5 0.0 0.0 0.0 13.4 7.0 4.5
18 12 8 0 0 0 18 10 6

FLOORTILE 4.3 4.9 4.7 4.4 5.2 4.5 4.8 4.8 4.0
5 5 5 5 6 5 5 5 4

MATCHCELLAR 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6
20 20 20 20 20 20 20 20 20

OPENSTACKS 3.6 5.0 6.4 14.2 14.4 15.3 4.0 6.1 7.8
20 20 20 20 20 20 20 20 20

PARCPRINTER 1.0 0.0 0.0 0.0 0.0 0.0 9.4 2.7 1.7
1 0 0 0 0 0 10 3 2

PARKING 14.0 14.9 11.4 8.9 8.6 9.0 6.7 8.5 7.5
17 19 14 12 12 12 9 11 10

PEGSOL 17.7 17.4 18.5 18.6 18.8 18.8 18.4 19.0 19.3
18 18 19 19 19 19 19 20 20

SOKOBAN 3.8 3.9 2.9 2.9 2.9 2.9 3.8 3.9 2.9
4 4 3 3 3 3 4 4 3

STORAGE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 0 0 0 0 0 0 0 0

TMS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 0 0 0 0 0 0 0 0

TURNANDOPEN 10.1 10.0 10.8 8.8 8.6 8.6 11.0 8.4 8.6
20 20 20 12 12 12 19 14 14

Overall 99.5 97.7 93.3 73.4 76.5 76.2 87.2 78.5 76.1
142 138 129 91 95 93 124 110 104

Table 2: Performance of new selection strategies on IPC
2011 benchmarks. Gray rows show IPC scores, white rows
coverage.

order to create concurrent solutions. Interestingly, E works
quite well in this domain, as the actions that are needed to
be started first in order to create a compact solution are also
the most expensive ones.

Another interesting observation is that in the good per-
forming methods C and O it is advantageous to concentrate
on a smaller set of subgoals, while the converse holds for the
poor performing method E . This is due to the fact that with
increasing size of the preferred operators set, the original set
is resembled more and more.

The most important observation that can be made from
this experiment has motivated the design of the search pro-
cedure presented in the previous section: Different selection
strategies have strengths in different domains and it appears
to be very desirable to combine these strengths in a gen-
eral way. Table 3 shows results of an implementation of
Algorithm 1 combining narrowing strategies with a queue
containing the original preferred operators (P). The method
that profits the most from this combination is O1, with the
most important factor being the gain in CREWPLANNING.
Besides, the other versions profit also, especially in terms of
quality. Both PC and PO achieve higher IPC scores than P
alone. Table 4 shows that the power of combining selections
strategies can be exploited even further, with PO1C1E1
achieving both the highest coverage and IPC score.

IPC 2011 PC1 PC2 PC3 PE1 PE2 PE3PO1PO2PO3

CREWPLANNING 19.9 19.9 19.9 19.9 19.9 19.9 19.9 19.9 19.9
20 20 20 20 20 20 20 20 20

ELEVATORS 15.1 7.7 6.5 0.0 0.0 0.0 13.4 4.3 0.9
18 9 7 0 0 0 18 6 1

FLOORTILE 4.6 4.7 4.5 4.4 4.5 4.3 4.5 4.5 4.4
5 5 5 5 5 5 5 5 5

MATCHCELLAR 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6
20 20 20 20 20 20 20 20 20

OPENSTACKS 17.9 18.0 18.3 18.5 18.7 18.6 18.0 17.7 18.1
20 20 20 20 20 20 20 20 20

PARCPRINTER 1.0 1.0 1.8 0.0 0.0 0.0 9.3 0.9 0.0
1 1 2 0 0 0 10 1 0

PARKING 13.9 15.7 13.4 10.9 11.5 11.1 11.9 12.9 12.3
18 20 17 15 15 15 16 17 16

PEGSOL 17.9 17.9 18.5 17.9 18.4 18.5 18.7 18.5 18.6
18 18 19 18 19 19 19 19 19

SOKOBAN 2.9 2.9 2.9 3.0 2.9 2.9 3.0 2.9 2.9
3 3 3 3 3 3 3 3 3

STORAGE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 0 0 0 0 0 0 0 0

TMS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 0 0 0 0 0 0 0 0

TURNANDOPEN 13.9 13.2 13.2 13.0 13.4 12.9 14.2 13.7 12.6
20 19 19 18 19 18 20 19 18

Overall 122.6116.6114.5103.1104.8103.8128.4110.8105.3
143 135 132 119 121 120 151 130 122

Table 3: Combining narrowing strategies with the original
selection strategy (P) via restarting as described in Algo-
rithm 1. Gray rows show IPC scores, white rows coverage.

To see how these improvements affect the performance
of TFD relatively to other temporal planning systems, we
compared both the original TFD and TFD enriched with our
new techniques to the participants of the temporal satisfic-
ing track of IPC 2011 that achieved at least one point in the
competition. For this experiment, we did not re-run the other
planning systems, but use the raw results of the competition
directly.3 Table 5 presents IPC scores (gray rows) and cover-
age (white rows). It can be seen that PO1C1E1 clearly out-
performs all competitors both in terms of coverage and IPC
score. Note that for some planners the scores presented in
this paper vary from the scores they received in the competi-
tion as we did find better plans for many problems and used
them as reference plans to compute all scores. For exam-
ple, CPT4, which is optimal for the conservative semantics
of Smith and Weld (Smith and Weld 1999), produced some
non-optimal plans in Floortile and Parcprinter. This was not
recognized as its plans were the best of those generated dur-
ing the competition.

3IPC 2011 has been run on INTEL Xeon 2.93 GHz Quad Core
processors with a memory limit of 6 GB and a timeout of 30 min-
utes. Note that TFD (like most processes) generally runs faster on
such a system than on the system we used to generate our results, so
the comparison is in favor of the planning systems that participated
in the competition.

IPC 2011 PC1O1 PC1E1 PO1E1 PO1C1E1
CREWPLANNING 19.9(20) 19.9(20) 19.9(20) 19.9(20)
ELEVATORS 13.4(18) 15.4(18) 13.4(18) 13.4(18)
FLOORTILE 4.8(5) 4.6(5) 4.7(5) 4.8(5)
MATCHCELLAR 15.6(20) 15.6(20) 15.6(20) 15.6(20)
OPENSTACKS 17.9(20) 18.2(20) 18.3(20) 17.9(20)
PARCPRINTER 9.5(10) 0.9(1) 9.5(10) 9.5(10)
PARKING 14.1(18) 13.8(17) 12.0(16) 14.6(19)
PEGSOL 18.6(19) 18.5(19) 18.3(19) 18.6(19)
SOKOBAN 2.9(3) 3.0(3) 2.9(3) 2.9(3)
STORAGE 0.0(0) 0.0(0) 0.0(0) 0.0(0)
TMS 0.0(0) 0.0(0) 0.0(0) 0.0(0)
TURNANDOPEN 14.0(20) 13.2(19) 14.1(20) 14.0(20)
Overall 130.7(153) 123.1(142) 128.7(151) 131.2(154)

Table 4: IPC scores and coverage (in parentheses) of com-
bining more than one narrowing strategy via restarting as
described in Algorithm 1.

In another experiment, presented in Table 6, we focus on
quality by comparing TFD featuring our techniques, called
TFD+, pairwise to all other planners of IPC 2011, only con-
sidering problems where both planners have found a solu-
tion by computing the ratio between the makespan of those
solutions. Scores greater than 1.0 therefore indicate that we
found plans of higher quality. It can be seen that our plans
offer the highest quality throughout all domains.

Finally, in our last experiment we show that the good per-
formance of our techniques is not only a phenomenon on
a specific benchmark set, but occurs on a wider range of
domains. Therefore, we use the benchmark suites of IPCs
2006 and 2008 (excluding Pathways and TPP, where not
only makespan but a more complex metric needs to be op-
timized, a feature TFD cannot deal with yet). Results are
presented in Table 7. Note that only for the benchmark set
of 2008 reference plans are used. In this experiment the ti-
tle of this paper is reflected very well: Coverage is increased
drastically while the average plan quality is even slightly im-
proved.

Conclusion
In this paper we have presented novel methods to narrow
sets of preferred operators. Embedding these methods in
the search framework of TFD increases its coverage at the
price of quality. This drawback, however, can be overcome
by utilizing a restarting strategy that is incorporated into a
priority-based multi-queue best-first search framework. We
have implemented these techniques and have shown empir-
ically that combining them increases the coverage of TFD
by a huge amount and preserves the average quality of the
produced plans, leading to a system that solves more prob-
lems than each of the competitors of the temporal satisficing
track of IPC 2011 and clearly outperforms all of them in
terms of IPC score. Furthermore, we have shown that these
excellent behavior also occurs on the benchmark suites of
2006 and 2008. Future work includes incorporating goal or-
dering techniques to find more sophisticated orderings for
O as well as determining additional selection strategies for

preferred operators that might increase the coverage of TFD
even further. While this work is motivated from the large gap
between coverage and quality when searching in the space
of time-stamped states, it can also be applied to classical
planning and doing so is a major part of our future work.

IPC 2011 C
PT

4

L
M

T
D

YA
H

SP
2

YA
H

SP
2-

m
t

PO
PF

2

D
A

E
-Y

A
H

SP

T
FD P
O

1
C1
E1

CREWPLANNING 7.0 0.0 16.0 15.9 20.0 20.0 19.9 19.9
7 0 20 20 20 20 20 20

ELEVATORS 0.0 6.7 8.6 8.9 2.2 12.3 1.0 13.4
0 9 20 20 3 15 1 18

FLOORTILE 12.1 4.8 6.9 8.3 0.0 7.3 4.9 4.8
15 5 13 15 0 12 5 5

MATCHCELLAR 0.0 12.5 0.0 0.0 15.3 0.0 15.6 15.6
0 15 0 0 20 0 20 20

OPENSTACKS 0.0 0.0 12.6 12.1 15.0 19.9 17.7 17.9
0 0 20 19 20 20 20 20

PARCPRINTER 2.0 0.0 3.7 4.7 0.0 2.0 0.0 9.5
5 0 7 8 0 4 0 10

PARKING 0.0 0.0 11.0 12.7 14.7 15.9 12.2 14.6
0 0 20 20 20 20 16 19

PEGSOL 19.0 19.9 17.2 18.0 18.6 20.0 17.9 18.6
19 20 20 20 19 20 18 19

SOKOBAN 0.0 0.0 10.9 11.6 2.5 4.5 2.9 2.9
0 0 12 12 3 6 3 3

STORAGE 0.0 0.0 2.7 7.2 0.0 15.5 0.0 0.0
0 0 5 11 0 19 0 0

TMS 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0
0 0 0 0 5 0 0 0

TURNANDOPEN 0.0 7.0 0.0 0.0 7.8 0.0 13.3 14.0
0 13 0 0 9 0 20 20

Overall 40.1 50.9 89.6 99.3 101.1 117.2 105.3 131.2
46 62 137 145 119 136 123 154

Table 5: Gray rows show IPC scores, white rows coverage
of participants of IPC 2011 that solved at least one instance.
The two rightmost columns show results of TFD using the
original selection strategy for preferred operators and using
our new techniques (PO1C1E1).

IPC 2011 C
PT

4

L
M

T
D

Y
2

Y
2-

m
t

PO
PF

2

D
A

E
-Y

T
FD

CREWPLANNING 71.00 – 201.29 201.29 200.99 200.99 201.00
ELEVATORS – 90.94 182.08 181.98 31.01 150.93 10.59
FLOORTILE 51.67 20.99 42.38 52.22 – 42.36 50.96
MATCHCELLAR –151.06 – – 201.25 – 201.24
OPENSTACKS – – 201.47 191.46 201.23 200.92 201.04
PARCPRINTER 21.76 – 71.88 71.88 – 41.95 –
PARKING – – 191.50 191.35 191.12 191.11 161.03
PEGSOL 180.99190.98 191.16 191.11 181.00 190.98 181.00
SOKOBAN – – 31.02 31.03 21.17 31.10 31.00
STORAGE – – – – – – –
TMS – – – – – – –
TURN AND OPEN –131.38 – – 90.61 – 201.03
Overall 321.15581.081101.541101.481111.081041.081231.05

Table 6: Pairwise plan quality comparisons to TFD+ fea-
turing our new techniques, namely separate queues O1, C1,
and E1, respectively, and restarting like described in Al-
gorithm 1. Only instances that are solved by both ap-
proaches (the small number states their number) are consid-
ered. Scores greater than 1.0 indicate that TFD+ generates
plans of higher quality.

TFD TFD+ Quality
IPC 2006
OPENSTACKS 17.5 (18) 20.0 (20) 18 1.03
PIPESWORLD 17.7 (18) 15.1 (16) 15 0.96
ROVERS 11.9 (12) 16.8 (17) 12 0.99
STORAGE 16.7 (17) 16.7 (17) 17 1.01
TRUCKS 13.5 (14) 29.4 (30) 14 1.00
IPC 2008
CREWPLANNING-strips 29.9 (30) 29.9 (30) 30 1.00
ELEVATORS-numeric 16.7 (20) 25.2 (30) 20 1.02
ELEVATORS-strips 13.0 (16) 20.8 (30) 16 0.96
MODELTRAIN-numeric 1.0 (1) 5.3 (7) 1 1.00
OPENSTACKS-adl 27.1 (30) 27.6 (30) 30 1.02
OPENSTACKS-strips 27.1 (30) 28.1 (30) 30 1.04
PARCPRINTER-strips 9.0 (13) 22.4 (23) 13 1.77
PEGSOL-strips 28.3 (29) 29.3 (30) 29 1.01
SOKOBAN-strips 11.9 (12) 11.9 (12) 12 1.00
TRANSPORT-numeric 4.9 (6) 11.0 (18) 6 1.05
WOODWORKING-numeric 16.6 (28) 21.6 (30) 28 1.36
Overall 262.9 (294) 331.1 (370) 291 1.08

Table 7: The two columns in the middle show IPC scores
and coverage (in parentheses) of regular TFD and TFD+ on
the benchmarks suites of IPC 2006 and 2008. TFD+ fea-
tures separate queues for C1, O1, and E1, as well as restart-
ing according to Algorithm 1. The last column shows pair-
wise plan quality comparisons between TFD and TFD+ on
all instances that were solved by both approaches (the small
number states their number). Scores greater than 1.0 indi-
cate that TFD+ generates plans of higher quality.

References
Bäckström, C., and Nebel, B. 1996. Complexity Results for
SAS+ Planning. Computational Intelligence 11:625–655.
Coles, A.; Fox, M.; Long, D.; and Smith, A. 2008. Planning
with Problems Requiring Temporal Coordination. In Pro-
ceedings of the Twenty-Third AAAI Conference on Artificial
Intelligence, 892–897.
Coles, A.; Fox, M.; Halsey, K.; Long, D.; and Smith, A.
2009. Managing Concurrency in Temporal Planning Us-
ing Planner-Scheduler Interaction. Artificial Intelligence
173(1):1–44.
Coles, A.; Coles, A.; Fox, M.; and Long, D. 2010. Forward-
Chaining Partial-Order Planning. In Brafman, R. I.; Geffner,
H.; Hoffmann, J.; and Kautz, H. A., eds., Proceedings of
the Twenty International Conference on Automated Plan-
ning and Scheduling, 42–49.
Coles, A.; Coles, A.; Clark, A.; and Gilmore, S. 2011. Cost-
Sensitive Concurrent Planning under Duration Uncertainty
for Service Level Agreements. In Bacchus, F.; Domshlak,
C.; Edelkamp, S.; and Helmert, M., eds., Proceedings of the
Twenty First International Conference on Automated Plan-
ning and Scheduling, 34–41.
Cushing, W.; Kambhampati, S.; Mausam; and Weld, D. S.
2007. When is Temporal Planning Really Temporal? In
Veloso, M. M., ed., Proceedings of the 20th International
Joint Conference on Artificial Intelligence, 1852–1859.
Do, M. B., and Kambhampati, S. 2003a. Improving Tem-
poral Flexibility of Position Constrained Metric Temporal
Plans. In Giunchiglia, E.; Muscettola, N.; and Nau, D., eds.,
Proceedings of the Thirteenth International Conference on
Automated Planning and Scheduling, 42–51.
Do, M. B., and Kambhampati, S. 2003b. Sapa: A Multi-
objective Metric Temporal Planner. Journal of Artificial In-
telligence Research 20:155–194.
Dréo, J.; Savéant, P.; Schoenauer, M.; and Vidal, V. 2011.
Divide-and-Evolve: The Marriage of Descartes and Darwin.
In Angel Garcı́a-Olaya, S. J., and López, C. L., eds., Seventh
International Planning Competition, 29–30.
Eyerich, P.; Mattmüller, R.; and Röger, G. 2009. Using the
Context-Enhanced Additive Heuristic for Temporal and Nu-
meric Planning. In Gerevini, A.; Howe, A.; Cesta, A.; and
Refanidis, I., eds., Proceedings of the Nineteenth Interna-
tional Conference on Automated Planning and Scheduling,
130–137.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Plan-
ning Through Stochastic Local Search and Temporal Action
Graphs in LPG. Journal of Artificial Intelligence Research
20:239–290.
Helmert, M., and Geffner, H. 2008. Unifying the Causal
Graph and Additive Heuristics. In Rintanen, J.; Nebel, B.;
Beck, J. C.; and Hansen, E., eds., Proceedings of the Eigh-
teenth International Conference on Automated Planning and
Scheduling, 140–147.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research 26:191–246.

Helmert, M. 2009. Concise Finite-Domain Representations
for PDDL Planning Tasks. Artificial Intelligence 173:503–
535.
Hoffmann, J., and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research 14:253–302.
Hsu, C., and Wah, B. W. 2008. The SGPlan Planning System
in IPC-6.
Hu, Y.; Cai, D.; and Yin, M. 2011. The LMTD Plan-
ner: On the Discovery and Utility of Precedence Constraints
in Temporal Planning. In Angel Garcı́a-Olaya, S. J., and
López, C. L., eds., Seventh International Planning Compe-
tition, 128–131.
Köhler, J., and Hoffmann, J. 2000. On Reasonable and
Forced Goal Orderings and their Use in an Agenda-Driven
Planning Algorithm. Journal of Artificial Intelligence Re-
search 12:338–386.
McDermott, D. 1996. A Heuristic Estimator for Means-
Ends Analysis in Planning. In Drabble, B., ed., Proceedings
of the Third International Conference on Artificial Intelli-
gence Planning Systems, 142–149.
McDermott, D. 1999. Using Regression-Match Graphs to
Control Search in Planning. Artificial Intelligence 109(1–
2):111–159.
Richter, S., and Helmert, M. 2009. Preferred Operators and
Deferred Evaluation in Satisficing Planning. In Gerevini, A.;
Howe, A.; Cesta, A.; and Refanidis, I., eds., Proceedings
of the Nineteenth International Conference on Automated
Planning and Scheduling, 273–280.
Röger, G., and Helmert, M. 2010. The More, the Merrier:
Combining Heuristic Estimators for Satisficing Planning. In
Brafman, R. I.; Geffner, H.; Hoffmann, J.; and Kautz, H. A.,
eds., Proceedings of the Twenty International Conference on
Automated Planning and Scheduling, 246–249.
Smith, D. E., and Weld, D. S. 1999. Temporal Planning with
Mutual Exclusion Reasoning. In Dean, T., ed., Proceedings
of the Sixteenth International Joint Conference on Artificial
Intelligence, 326–337. Morgan Kaufmann.
Vidal, V. 2011a. CPT4: An Optimal Temporal Planner Lost
in a Planning Competition without Optimal Temporal Track.
In Angel Garcı́a-Olaya, S. J., and López, C. L., eds., Seventh
International Planning Competition, 25–28.
Vidal, V. 2011b. YAHSP2: Keep it Simple, Stupid. In
Angel Garcı́a-Olaya, S. J., and López, C. L., eds., Seventh
International Planning Competition, 83–90.

