
On the Complexity of Planning Operator Subsumption

Patrick Eyerich and Michael Brenner and Bernhard Nebel
Department of Computer Science

Albert-Ludwigs-Universität Freiburg
D-79110 Freiburg, Germany ∗

Abstract

Formal action models play a central role in several subfields
of AI because they are used to model application domains,
e.g., in automated planning. However, there are hitherto no
automated methods for relating such domain models to each
other, in particular for checking whether one is a specializa-
tion or generalization of the other. In this paper, we intro-
duce two kinds of subsumption relations between operators,
both of which are suitable for modeling and verifying hierar-
chies between actions and operators: applicability subsump-
tion considers an action to be more general than another if the
latter can be replaced by the first at each point in each sound
sequence of actions; abstraction subsumption exploits rela-
tions between actions from an ontological point of view. For
both kinds of subsumption, we prove complexity results for
verifying operator subsumption in three important subclasses:
The problems are NP-complete when the expressiveness of
the operators is restricted to the well-known basic STRIPS
formalism, Σp

2-complete when we admit boolean logical op-
erators and undecidable when the full power of the planning
language ADL is permitted.

Introduction

Formal action models play a central role in several subfields
of AI, e.g., in automated planning. Generally speaking, an
action model describes how and under which circumstances
an action transforms a state of the world into another one.
An operator is a schematic action description using param-
eters as placeholders for objects. The instantiation of these
placeholders with domain objects generates actions.

In this paper, we propose two notions of operator sub-
sumption. The first is based on action abstraction, which
supports reuse and inheritance of operators. The basic inten-
tion is to treat operators similar to concepts in ontology rea-
soning. In that sense, precondition and effects are properties
of actions and an action can be specialized by refining such
a property. For example, a move action would be considered
as more general than a move-by-truck action. This notion of
an action abstraction subsumption is quite different from the

∗This work has been supported by the German Federal Ministry
of Education and Research (BMBF) under grant no. 01IME01-
ALU (DESIRE) and by the EU under grant no. FP6-004250
(CoSy).
Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

other notion, the applicability subsumption, which considers
one action as more general as another one if the former can
be used in more situations than the latter. In this case the
more general action must have the same or a weaker pre-
condition and the same postcondition. Interestingly, it turns
out that both kinds of subsumption are very similar in design
when their abstract ideas are mapped to formal definitions.

Since its introduction in 1998 by McDermott and col-
leagues, the Planning Domain Definition Language PDDL
(Fox and Long 2003) has become the de facto standard for
representing planning domains. Numerous PDDL domains
have been specified which often model the same or similar
application areas. It would certainly be useful to automat-
ically detect coherences and similarities between those do-
mains. Beside the comparison of types and their hierarchical
structure, the possibility to relate operators in a suitable way
is necessary to compare two domains. Such a comparison,
however, has hitherto been limited to testing the verbatim
equality of action models due to the lack of a formal con-
cept of subsumption between action models. At this point,
both the applicability and the abstraction subsumption could
be utilized.

Knowledge about subsumption hierarchies can be useful
in various ways: When designing new planning domains,
abstraction subsumption hierarchies help finding related do-
mains and enable the reuse of existing components, e.g.,
by means of inheritance from more abstract operator mod-
els. Also, applicability subsumption hierarchies can be used
to find unnecessary actions. In large domains, a hierarchi-
cal ordering between operators similar to a type hierarchy
would be very helpful during the design process as well as
for maintainers of the domain.

If a planning model already supports hierarchically struc-
tured operator descriptions, as is the case in HTN plan-
ning (Erol, Hendler, and Nau 1994; Nau et al. 2001),
subsumption can be used to automatically verify a plan-
ning domain: An HTN method decomposition can be re-
garded as a macro operator which must be a specializa-
tion of the original method. Even if the planning pro-
cess is not hierarchical, algorithms can exploit the sub-
sumption hierarchy to generate heuristics. (Helmert 2006;
Knoblock 1994).

For both kinds of subsumption, we investigate the com-
putational complexity of the subsumption problem for three

important special cases in which the expressiveness of the
involved operators is restricted: Basic STRIPS (Fikes and
Nilsson 1971), basic STRIPS permitting boolean logical
operators in the precondition and general ADL (Pednault
1989). While our approach is based on a formalism which
encodes precondition and effects of an action explicitly, like
it is the case in AI Planning, it should be noted that it is
not limited to this field, but can be transferred to other for-
malisms which use a similar solution to the frame problem,
e.g., the situation calculus (Reiter 2001) using a suitable
mapping (Eyerich et al. 2006).

The remainder of the paper is structured as follows. Af-
ter discussing related work, we introduce two kinds of sub-
sumption relation between operators that are suitable for
modeling and verifying abstraction hierarchies between ac-
tions and operators. Next, we state syntactic criteria which
can be used to decide the subsumption problems for two op-
erators. Afterwards, we use these criteria to investigate the
computational complexity of the subsumption problem for
the three special cases STRIPS, boolean logical operators
and ADL. We conclude with a summary and an outlook on
future work.

Related Work
Reasoning about hierarchies in planning domains is by no
means new. As described in the survey paper by Gil (2005),
most of the work in this area is connected with description
logics (Baader et al. 2003).

For example, RAT (Heinsohn et al. 1992), CLASP (De-
vanbu and Litman 1991) and T-REX (Weida and Litman
1992) are systems for representing actions using description
logics. In all these systems, one can describe actions and
reason about plans using a subsumption relation over actions
borrowed from description logics. Similarly, Liebig and
Rösner (Liebig and Rösner 1997) have designed a frame-
work for actions, in which it is possible to reason about
subsumption relations between operators. However, the ex-
pressivity within this framework is restricted to disjunctions
and conjunctions of feature chain agreements (equality of
role fillers of functional roles). Also Kemke (2003) has
formulated a formal theory for describing STRIPS-like ac-
tions using description logics and has addressed the issue
of subsumption between actions. Together with Walker she
has developed a planning algorithm integrating action ab-
stractions and plan decomposition hierarchies (Kemke and
Walker 2006).

In contrast to these approaches, we do not employ de-
scription logics to define the subsumption relation between
operators. In fact, we abstract from parameter names in op-
erators and base the subsumption relation between operators
on the subsumption relation between the corresponding ac-
tions, which does not seem to be possible when mapping
operators into a description logic framework. Furthermore,
we specify a sound and complete operator subsumption al-
gorithm and analyze the computational complexity of the
operator subsumption problem.

Independently from description logic approaches, in plan-
ning mainly two kinds of abstraction techniques are consid-
ered. On the one hand, actions are combined in order to gen-

erate new actions, i.e. macros (Botea et al. 2005) or HTN
tasks (Erol, Hendler, and Nau 1994). On the other hand, ab-
stractions can be formed by omitting details from the repre-
sentation of the world state. This can lead to reduced models
(Knoblock 1994) or relaxed models (Sacerdoti 1974). Both
variants are limited to STRIPS-like formalisms and focus on
the generation of abstractions. Our approach, however, can
detect subsumption relations between operators, which are
in addition more expressive than STRIPS.

Prerequisites

Before we can propose subsumption relations between op-
erators, we have to introduce some basic notions.

A type T is a set variable. An object-domain ∆ = 〈Λ, θ〉
consists of a finite set of objects (individuals, constants) Λ
and mapping θ, assigning a subset of Λ to some types (to
all types not in the domain of θ the empty set is assigned).
There is a special type T in each object-domain containing
all objects of Λ (so it always holds that θ(T) = Λ). An
object-domain together with a set of typed relation schemes
ρ forms a domain. A typed relation scheme consists of a re-
lation symbol and a fixed number of typed variables, which
means that these variables can only be instantiated by ob-
jects of the appropriate types.

Definition 1. An atom of a domain 〈∆, ρ〉 is formed by in-
stantiating the variables of a predicate scheme from ρ with
objects of ∆ of the appropriate types. A state is a complete
truth assignment to the set of atoms.

Alternatively, we can identify a state with the set of atoms
that are true in this state (assuming the closed world assump-
tion and presuming that the domain closure assumption as
well as the unique name assumption are satisfied).

Definition 2. An action a is a tuple a = 〈pre(a), eff(a)〉.
pre(a) (the precondition of a) is a FOL formula without free
variables and without functional terms1. eff(a) (the effect of
a) is a conjunction of the form

∧

1≤i≤n(ci ⊲ ei) with finite

n, whereby ci is a FOL formula without free variables and
functional terms and ei is a ground literal.

For an action a, we refer to the positive ei by pos(a) and
to the negative ei by neg(a).

An action a is applicable in a given state s iff s |= pre(a).
The result from applying a in a state s, denoted by R(a, s),
is R(a, s) = s\{ei|s |= ci∧ei ∈ neg(a)}∪{ei|s |= ci∧ei ∈
pos(a)} if a is applicable in s, undefined otherwise.

Definition 3. A hierarchy of types T is a finite set of rules
of the form T ⇒ T ′, whereby T and T ′ are types. An
object-domain ∆ = 〈Λ, θ〉 respects a hierarchy of types T
iff θ(T1) ⊆ θ(T2) holds for each rule T1 ⇒ T2 in T.

Definition 4. An operator A is a triple A = 〈pre(A),
eff(A), typesA〉. pre(A) (the precondition of A) is a FOL
formula without functional terms (variables are allowed
now). eff(A) (the effect of A) is a conjunction of the form
∧

i(Vi.(Ci ⊲ Ei)), whereby Ci is a FOL formula without

1With functional terms we mean only those terms with arity
≥ 1, the use of constants is allowed, of course.

functional terms and Ei is a literal. Vi is a set of typed vari-
ables (written as v : T where T is the type of variable v).
typesA is a mapping from all free variables of pre(A) and
eff(A), which are not occurring in a Vj , to types. We refer to
the type of a variable in a set Vi as Ti(vi).

The variables in the domain of typesA are called the
schema variables or parameters S(A) of A.

An operator A represents a set of actions for each object-
domain ∆.

Definition 5. By first choosing an admissible variable as-
signment α for S(A) (at this point admissible means that
∀x ∈ S(A) : α(x) ∈ θ(typesA(x))) and afterwards intro-
ducing new effects (cij , eij) for each admissible variable as-
signment βj for Vi having each y ∈ Vi in (Ci ⊲Ei) replaced
by βj(y) (this time admissible means ∀y ∈ Vi : βj(y) ∈
θ(Ti(y))), we obtain an action a = 〈pre(a), eff(a)〉 repre-
sented by A in ∆. We call α the generating assignment of a
and write αA,∆

a for it.

The set of actions which is represented by A in ∆ is called
Actions∆(A).
As an example, we assume to have the following move op-
erator M :

〈At(x, y) ∧ Connected(y, z),
(⊤ ⊲ ¬At(x, y)) ∧ (⊤ ⊲ At(x, z))∧

({b : Ball}.Carry(x, b) ⊲ ¬At(b, y))∧
({b : Ball}.Carry(x, b) ⊲ At(b, z)),

{x 7→ Agent, y 7→ Location, z 7→ Location}〉

and an object-domain

∆ = 〈{a1, a2, l1, l2, l3, b1, b2}, {Agent 7→ {a1, a2},
Location 7→ {l1, l2, l3}, Ball 7→ {b1, b2}}〉

By choosing the admissible variable assignment αM,∆
m1

=
{x 7→ a1, y 7→ l1, z 7→ l2} and replacing the universally
quantified effects as described in definition 5, we obtain the
action m1:

〈At(a1, l1) ∧ Connected(l1, l2),
(⊤ ⊲ ¬At(a1, l1)) ∧ (⊤ ⊲ At(a1, l2))∧

(Carry(a1, b1) ⊲ ¬At(b1, l1))∧
(Carry(a1, b2) ⊲ ¬At(b2, l1))∧
(Carry(a1, b1) ⊲ At(b1, l2)∧
(Carry(a1, b2) ⊲ At(b2, l2)〉

Analogous all other possible actions of Actions∆(M) =
{m1, . . . ,m18} are generated.

We call an operator A defined for an object-domain ∆ =
〈Λ, θ〉, if |θ(typesA(x))| ≥ 1 for all x ∈ S(A) (an operator
which is defined in an object-domain represents at least one
action therein).

To facilitate the investigation of complexity issues, oper-
ators are separated into different classes in accordance with
the expressiveness of their precondition and effects:

Definition 6. If we allow only for the use of conjunctions of
atoms in pre(A) and conjunctions of literals in eff(A) and
additionally enforce any ci to be equivalent to ⊤ and any
Vi to be the empty set, we obtain the class ASTRIPS . The
class ABOOLE is defined by allowing conjunctions also in

the ci and negations and disjunctions in pre(A) and the ci.
If we relax these restrictions further by allowing existential
and universal quantification in pre(A) and the ci as well as
conditional effects (which means that the Vi can contain any
finite number of typed variables), we obtain the class AADL.

As the names suggest, these definitions are chosen in a
way that ASTRIPS captures the expressiveness of the plan-
ning formalism STRIPS (Fikes and Nilsson 1971) in its ba-
sic variant (only operators and background theories) and
AADL the one of the planning language ADL (Pednault
1989).

Subsumption of actions and operators

Next, we define what exactly it means for an action to be
subsumed by another. We propose two different notions of
subsumption, namely abstraction subsumption and applica-
bility subsumption. In spite of the fact that the basic motiva-
tion for them seems to be quite orthogonal, it turns out that
the only difference between the two lies in how effects are
dealt with.

Abstraction subsumption

The basic intention is to treat operators similar as concepts in
ontology reasoning. In that sense, precondition and effects
are properties of actions. Intuitively, a specialization a of an
action b should inherit all properties of b. More precisely,
if s |= pre(a) holds for a state s, then s |= pre(b) should
hold, too. Furthermore, all changes from s to R(b, s) after
the application of b should arise after the application of a as
well. To specialize an action, one can add a new parameter,
strengthen the precondition, add a new effect (or relaxing the
effect condition of a given effect), and restrict a parameter to
a subtype.

If we put aside conditional effects for a moment, these
ideas can be mapped straight-forwardly to the following de-
finition.

Definition 7. An action a is abstractly subsumed by an ac-
tion b (a ⊆as b) iff

1. pre(a) ⇒ pre(b)

2. ∀i(ei ∈ eff(b) ⇒ ei ∈ eff(a))

If we now take conditional effects into account again, we
have to extend the second condition in definition 7. It no
longer suffices that each effect ei of b has to occur in eff(b)
as well, rather we additionally have to make sure that the
effect condition of ei in eff(b) is at least as strong as in
eff(a). This extension is captured in definition 8.

To keep the definition as simple as possible, we assume
the effects eff(a) of an action a to be some kind of “nor-
malized” in the sense that each ei occurs at most once in
eff(a).

Definition 8. An action a is abstractly subsumed by an ac-
tion b (a ⊆as b) iff

1. pre(a) ⇒ pre(b)

2. ∀i(ei ∈ eff(b) ⇒ ∃j(ej ∈ eff(a) ∧ (ej = ei) ∧
(ci ⇒ cj)))

Frequently, there are situations in which predicates in
two domains are named differently but have the same in-
tended meaning (e.g. Connected(x, y) and Conn(x, y)). It
would be very useful when one would be allowed to state
the equivalence of these predicates. A similar situation oc-
curs when one wants a predicate to follow logically from
another one. For instance, take our last example: If one
wants to distinguish between different forms of connectiv-
ity, he might use the predicate Connected by Rail(r, s) in
place of Connected(x, y). For this reason, we extend our
definition incorporating axioms of the following form:

∀~x(P (~x) ⇒ Q(~y))

whereby the variables in ~y are a subset of the variables in ~x.
We call such an axiom a predicate inclusion axiom (PIA)

and a conjunction of such axioms a predicate inclusion hi-
erarchy P. To integrate predicate inclusion axioms into our
definition we have to extend the notion of “normalization”:
An action a′ is a normalization for an action a and a predi-
cate inclusion hierarchy P, iff

• for each two effects (ci ⊲ ei) and (cj ⊲ ej), ci ∧ P ⇒ cj

holds whenever ei ∧ P ⇒ ej holds and

• R(a, s) = R(a′s) for each state s

Hence follows the extended definition:

Definition 9. An action a is abstractly subsumed by an ac-
tion b regarding a predicate inclusion hierarchy P (a ⊆P

as b)
iff

1. pre(a) ∧ P ⇒ pre(b)

2. ∀i(ei ∈ eff(b) ⇒ ∃j(ej ∈ eff(a) ∧ (ej ∧ P ⇒ ei)) ∧
(ci ∧ P ⇒ cj))

For an example take the two actions

g = 〈P (c), (C1(c) ∨ C2(c)) ⊲ E(c)〉

and

s = 〈P (c) ∧ Q(c),
(

C1(c) ⊲ E(c)
)

∧
(

C3(c) ⊲ F (c)
)

〉.

s ⊆as g does not hold. But if we consider the predicate
inclusion hierarchy

P = (∀x(C2(x) ⇒ C3(x)) ∧ ∀x(F (x) ⇒ E(x))).

and the normalization s′ of s

s′ = 〈P (c) ∧ Q(c),
(

(C1(c) ∨ C3(c)) ⊲ E(c)
)

∧
(

C3(c) ⊲ F (c)
)

〉,

s′ ⊆P
as g holds.

Since operators represent sets of actions, it seems to be
quite natural to define the subsumption of operators on top
of the subsumption of their represented actions. However,
operator subsumption should not only depend on a single
object-domain but on any in which the involved operators
are defined.

When one starts with the represented actions of an oper-
ator A and wants to specialize them, there should be a spe-
cialized action in the set of represented actions of the spe-
cialization of A for each single action in A. Analogous, if

one wants to generalize the operator, there should be a gen-
eralized action in the set of represented actions of the gen-
eralization of A for each single action in A. Therefore, the
following definition seems to be natural and intuition cap-
turing:

Definition 10. An operator A is abstractly subsumed by an
operator B (A ⊆as B) iff there are mappings

f1 : Actions∆(A) 7→ Actions∆(B)

and
f2 : Actions∆(B) 7→ Actions∆(A)

such that

1. ∀a ∈ Actions∆(A) : a ⊆P
as f1(a)

2. ∀b ∈ Actions∆(B) : f2(b) ⊆P
as b.

for each object-domain ∆ in which A and B are defined.

For an example assume we have additionally to M an op-
erator for moving with a truck MWT :

〈At(q, r) ∧ Connected(r, s) ∧ At(t, r),
(⊤ ⊲ ¬At(q, r)) ∧ (⊤ ⊲ At(q, s))∧
(⊤ ⊲ ¬At(t, r)) ∧ (⊤ ⊲ At(t, s))∧

({b : Ball}.Carry(q, b) ⊲ ¬At(b, r))∧
({b : Ball}.Carry(q, b) ⊲ At(b, s)),

{q 7→ Agent, r 7→ Location,
s 7→ Location, t 7→ Truck}〉

Due to the similar structure of M and MWT it is easy
to verify that M ⊆as MWT holds: If a is an action in
Actions∆(M) for an arbitrary object-domain ∆ and αM,∆

a

its generating assignment, any assignment α
MWT,∆
b with

α
MWT,∆
b (q) = αM,∆

a (x), α
MWT,∆
b (r) = αM,∆

a (y) and

α
MWT,∆
b (s) = αM,∆

a (z) generates an action b such that
a ⊆as b holds. Analogous, one finds an appropriate action a
for each action b from Actions∆(M).

Our definition so far requires all shared parameters of two
operators A and B to be of the same type in order to make
A ⊆as B true. However, according to our intuition, it should
be possible to restrict the type of a parameter in an opera-
tor to obtain a specialization. An example is the subsump-
tion relation between A = 〈P (x), (), {x 7→ T1}〉 and B =
〈P (x), (), {x 7→ T2}〉. A ⊆as B does not hold due to the
different types of the two x. To see this, consider for exam-
ple the object-domain ∆ = 〈{c1, c2}, {T1 7→ {c1}, T2 7→
{c1, c2}}〉. There is no action a in Actions∆(A) such that
a ⊆as 〈P (c2), ()〉 holds and therefore A ⊆as B does not
hold.

However, if we declare T1 to be a subtype of T2, A ⊆as B
should hold according to our intuition. This can be formal-
ized by restricting definition 10 to object-domains respecting
the given type hierarchy and weaken the second condition in
definition 10 by only considering actions with objects of the
appropriate subtypes. These ideas are formalized in defini-
tion 11.

Definition 11. An operator A is abstractly subsumed by an
operator B regarding a predicate inclusion hierarchy P and
a type hierarchy T (A ⊆P,T

as B) iff there are mappings

f1 : Actions∆(A) 7→ Actions∆(B)

and
f2 : Actions∆T

(B) 7→ Actions∆(A)

such that

1. ∀a ∈ Actions∆(A) : a ⊆P
as f1(a)

2. ∀b ∈ Actions∆(B) : f2(b) ⊆
P
as b.

for each object-domain ∆ respecting T and in which A and
B are defined.

Thereby ∆T is constructed by reducing ∆ according to
the type hierarchy T: We start with ∆ and reduce it as fol-
lows: For each c ∈ ∆, if there is a rule T1 ⇒ T2 in T,
c ∈ θ(T2) and c 6∈ θ(T1), remove c from θ(T2).

Applicability subsumption

Sometimes another form of action subsumption is used
known as plug-in subsumption or applicability subsumption.
Here, an action a is defined to be subsumed by an action b if
a can be replaced by b in each situation. This means, that the
first condition of definition 8 stays the same, but the second
condition is that the effects in both actions have to be exactly
the same.

Definition 12. An action a is applicably subsumed by an
action b regarding a predicate inclusion hierarchy P (a ⊆P

ps

b) iff

1. pre(a) ∧ P ⇒ pre(b)

2. ∀i(ei ∈ eff(b) ⇒ ∃j(ej ∈ eff(a)∧(ej∧P ⇔ ei∧P))∧
(ci ∧ P ⇔ cj ∧ P))

As for abstract subsumption, we define the subsumption
of operators on top of the subsumption of actions:

Definition 13. An operator A is applicably subsumed by an
operator B regarding a predicate inclusion hierarchy P and
a type hierarchy T (A ⊆P,T

ps B) iff there are mappings

f1 : Actions∆(A) 7→ Actions∆(B)

and
f2 : Actions∆T

(B) 7→ Actions∆(A)

such that

1. ∀a ∈ Actions∆(A) : a ⊆P
ps f1(a)

2. ∀b ∈ Actions∆(B) : f2(b) ⊆
P
ps b.

for each object-domain ∆ respecting T and in which A and
B are defined.

Syntactic criteria for operator subsumption

After stating these definitions concerning the subsumption
of operators following our intuition, the question arises how
to decide in general whether an operator A is subsumed by
another one B. According to definition 11, each object-
domain has to be considered to answer this question. Natu-
rally, these are infinitely many. Hence, we are interested in
syntactic criteria as the basis on which to decide this prob-
lem.

The operator resulting from the replacement of one or
more pairwise different variable names y1, y2, y3, . . . ∈
S(A) by pairwise different variable names x1, x2, x3, . . . 6∈
S(A) is called the substitution As concerning the parameter
replacement s = [x1

y1

x2

y2

x3

y3
. . .].

Theorem 1. A ⊆P,T
as B holds for two operators A and B

without universally quantified effects regarding a predicate
inclusion hierarchy P and a type hierarchy T iff there is a
substitution As of A, such that

(S1) pre(As) ∧ P⇒ pre(B)

(S2) ∀i(Ei ∈ eff(B) ⇒ ∃j(Ej ∈ eff(As) ∧ (Ej ∧ P ⇒
Ei)) ∧ (Ci ∧ P⇒ Cj))

(S3) typesAs(x) is a subtype of typesB(x) according to T for

all x ∈
(

S(As) ∩ S(B)
)

Proof. “⇒”
Without loss of generality we assume that there is no shared
variable name in A and B and that actions are noted in the
syntactical form of the operators (e.g. the action a resulting
from the operator A = 〈P (x) ∧ P (y), (), {x 7→ T, y 7→
T}〉 and the assignment αA,∆

a = {x 7→ c1, y 7→ c1} is
noted as 〈P (c1)∧P (c1), ()〉 and not in its simplified version
〈P (c1), ()〉).

We consider an arbitrary object-domain ∆ = 〈Λ, θ〉
which satisfies the following conditions:

(T1) |θ(T)| ≥ n for all types T in the range of typesA and
typesB , whereby n=max(# parameter of A, # parameter
of B).

(T2) ∆ respects T.

(T3) If T1 ⇒ T2 does not hold in T for any two types T1 and
T2, then there are no common objects in T1 and T2.

Due to T1 there is at least one action b ∈ Actions∆(B) such

that α
B,∆
b assigns pairwise different objects to the parame-

ters of B. We choose one of these actions and refer to f2(b)
as a.

In the following, we construct a substitution As of A from

αA,∆
a , α

B,∆
b , A and B such that S1-S3 holds for As and B:

We compare the parameters ~x ∈ S(A) and ~y ∈ S(B)
pairwise until we find a pair x, y such that αA,∆

a (x) =

α
B,∆
b (y) = c. If there is no other parameter x′ ∈ S(A) such

that αA,∆
a (x) = c, we replace c in a and b by y resulting

in two “actions” (they are not really actions since they now
contain variables, but for this purpose we can treat them as
such) a′ and b′ such that a′ ⊆as b′ still holds.

If there are other parameters x′, x′′, . . . ∈ S(A) such that
αA,∆

a (x) = αA,∆
a (x′) = αA,∆

a (x′′) = . . ., then there must
be at least one x, such that we can replace all occurrences
of c in b and the occurrences of c in a at the places were x
stands in A resulting in two “actions” a′ and b′ and a′ ⊆as b′

holds.
Then we replace a with a′ and b with b′ and start again

searching for two parameters which were replaced by the
same object. This procedure is pursued until no such param-
eters can be found. If a parameter x ∈ S(A) is assigned
c′ by αA,∆

a and there is no variable y ∈ S(B), which is

assigned c′ by α
B,∆
b , we replace c′ in a by x.

If a variable y ∈ S(B) is assigned c′′ by α
B,∆
b and there

is no variable x ∈ S(A), which is assigned c′′ by αA,∆
a , we

replace c′′ in b by y.
In this way we receive operators As and B′ satisfying:

1. B′ = B.

2. As is a substitution of A.

3. S1 and S2 follow from a ⊆as b and the kind of our re-
placements.

4. When x is a shared parameter of As and B′, the same
object must have stood in A and B at this place, so S3
holds due to T2 and T3.

“⇐”
First notice that if Φ ⇒ Ψ holds for two FOL formulas Φ
and Ψ and we substitute a free variable in Φ and Ψ by a con-
stant resulting in Φ′ and Ψ′, then Φ′ ⇒ Ψ′ holds as well.(*)

Let ∆ = 〈Λ, θ〉 be an arbitrary object-domain and a
an arbitrary action in Actions∆(As) such that αA,∆

a as-
signs different objects to each parameter x ∈ S(A). We

choose the generating assignment α
B,∆
b depending on αA,∆

a :

α
B,∆
b (x) := αA,∆

a (x), if x ∈ S(As) ∩ S(B) and α
B,∆
b (x)

arbitrary (but different to the other objects chosen so far), if
x 6∈ S(As) ∩ S(B). Due to (*), a ⊆as f1(a) holds. Sim-
ilarly, we can construct an action b such that f2(b) ⊆as b
holds. Since ∆, a and b were chosen randomly, As ⊆as B
follows and therefore A ⊆as B holds.

Theorem 2. A ⊆P,T
ps B holds for two operators A and B

without universally quantified effects regarding a predicate
inclusion hierarchy P and a type hierarchy T iff there is a
substitution As of A, such that

(S1) pre(As) ∧ P⇒ pre(B)

(S2) ∀i(Ei ∈ eff(B) ⇒ ∃j(Ej ∈ eff(As) ∧ (Ej ∧ P ⇔
Ei ∧ P)) ∧ (Ci ∧ P⇔ Cj ∧ P))

(S3) typesAs(x) is a subtype of typesB(x) according to T for

all x ∈
(

S(As) ∩ S(B)
)

The proof of theorem 2 is analogous to the one of theorem
1.

The problem to decide whether there is an abstraction sub-
sumption relation between two given operators regarding a
given predicate inclusion hierarchy P and a given type hier-
archy T is named AS. The three special cases in which A and
B are of class ASTRIPS , ABOOLE and AADL are called
ASSTRIPS , ASBOOLE and ASADL, respectively. A simi-
lar naming convention is used for applicability subsumption:
In that case, the base problem is named PS and the same in-
dices are used to refer to the respective subproblems.

Complexity of ASSTRIPS and PSSTRIPS

Theorem 3. ASSTRIPS is NP-complete.

Proof. ASSTRIPS ∈ NP:
We guess an admissible substitution As of A and verify that
As ⊆as B holds. Due to theorem 1 it suffices to show S1-
S3 for A and B. Since A and B (and thus As) are in
class ASTRIPS , for showing S1 it suffices to show that for
each predicate P (~x) in pre(B) there is a predicate P ′(~x)
in pre(As), whereby P = P ′ or P ′ ⇒ P holds in P and
typesB(xi) = typesA(xi) or typesB(xi) ⇒ typesA(xi)
holds in T.

Let k be the number of predicate inclusion axioms in P,
l the number of rules in T, m the number of predicates in

pre(As), n the number of predicates in pre(B) and o the
number of arguments of the predicate with the most argu-
ments. We compare the name of a predicate P (~x) ∈ pre(B)
with the names of all predicates P ′(~x) ∈ pre(As) and those
predicate names following from P ′ in P (these are O(k3∗m)
comparisons). If P = P ′ or P follows from P ′ in P, we
proceed with testing whether typesB(xi) = typesA(xi) or
typesB(xi) ⇒ typesA(xi) holds in T for all i (these are
O(o ∗ l3) comparisons). If this is satisfied for all i, we mark
P (~x).

This is done for each predicate P (~x) in pre(B) (and thus
n times). pre(As) ⇒ pre(B) holds iff each predicate in
pre(B) is marked after this procedure. Thus, there are O(n∗
(k3 ∗ m + o ∗ l3)) many comparisons all in all which is
polynomial in the size of A,B, T and P.

As no conditional effects are allowed in ASTRIPS , S2 is
simplified to ∀i(Ei ∈ eff(B) ⇒ ∃j(Ej ∈ eff(As)∧(Ej∧
P ⇒ Ei). Thus, the procedure used for the verification of S1
also works for the verification of S2 (and is therefore doable
in polynomial time as well).

Obviously, S3 is verifiable for each parameter polynomial
in the size of the type hierarchy.

Hence, ASSTRIPS ∈ NP holds.

Hardness is proved by reducing the subgraph isomorphism
decision problem SI to ASSTRIPS .

SI is the problem to decide for two given undirected
graphs G1 = (V1, E1) and G2 = (V2, E2) whether the
former can be embedded isomorphic into the latter. At
this point isomorphic embedding means that there exists a
graph G′

2 = (V ′
2 , E′

2) whereby V ′
2 ⊆ V2 and E′

2 = E2 ∩
{(u, v)|u, v ∈ V2} and a bijective mapping f : V1 7→ V ′

2 ,
such that (u, v) ∈ E1 ⇔ (f(u), f(v)) ∈ E′

2.

Without loss of generality, we assume the nodes of G1 to
be named as x1

i for 1 ≤ i ≤ |V1| and they of G2 as x2
j for

1 ≤ j ≤ |V2|.
Gk is mapped to an operator Ak ∈ ASTRIPS as follows:

1. We introduce a parameter of type T for each node xk
i ∈

Vk.

2. We add the predicates E+(xk
i , xk

j) and E+(xk
j , xk

i) for

each edge (xk
i , xk

j) ∈ Ek to pre(Ak).

3. We add the predicates E−(xk
i , xk

j) and E−(xk
j , xk

i) for

each pair of nodes xk
i , xk

j , for which (xk
i , xk

j) 6∈ Ek to

pre(Ak).

4. There are no effects in Ak.

Next, we show that G1 can be embedded isomorphic into
G2 iff A2 ⊆as A1 holds.

Let us first consider the case that G1 can be indeed em-
bedded isomorphic into G2: Then there exists a graph G′

2 =
(V ′

2 , E′
2) such that V ′

2 ⊆ V2 and E′
2 = E2 ∩ {(u, v)|u, v ∈

V2} and there exists a bijective mapping f : V1 7→ V ′
2 ,

such that: (u, v) ∈ E1 ⇔ (f(u), f(v)) ∈ E′
2. Further-

more, due to our mapping, there are exactly two predicates
for each edge (x1

i , x
1
j) ∈ E1 in pre(A1): E+(x1

i , x
1
j) and

E+(x1
j , x

1
i). For each pair of nodes x1

i , x
1
j for which there

is no edge in E1, exactly the two predicates E−(x1
i , x

1
j) and

E−(x1
j , x

1
i) exist in pre(A1). For E2 and pre(A2) things

are analogous.
Thus, when we substitute f(x1

i) by x1
i for all i, each

E+(x1
i , x

1
j) ∈ pre(A1) and each E−(x1

i , x
1
j) ∈ pre(A1)

also occurs in pre(A2). Since A1, A2 ∈ ASTRIPS and
there are neither effects nor special types in A1 and A2 (and
therefore S2 and S3 are satisfied trivially), A2 ⊆as A1 fol-
lows directly.

Let us now turn to the case in which G1 cannot be em-
bedded isomorphic into G2. In this case, there cannot be
a graph G′

2 = (V ′
2 , E′

2) such that V ′
2 ⊆ V2 and E′

2 =
E2∩{(u, v)|u, v ∈ V2} such that there is a bijective mapping
f : V1 7→ V ′

2 such that (u, v) ∈ E1 ⇔ (f(u), f(v)) ∈ E′
2.

Hence, either there is an edge (x1
i , x

1
j) ∈ E1 for each sub-

graph G′
2 from G2 and each mapping f : V1 7→ V ′

2 such that
(f(x1

i), f(x1
j)) 6∈ E2 or an edge (x1

i , x
1
j) ∈ E1 is lacking,

such that (f(x1
i), f(x1

j)) ∈ E2.
Thus, the mapping generates either a predicate

E+(x1
i , x

1
j) ∈ pre(A1), such that E+(f(x1

i), f(x1
j)) 6∈

pre(A2) or it generates a predicate E−(x1
i , x

1
j) ∈ pre(A1),

such that E−(f(x1
i), f(x1

j)) 6∈ pre(A2). For this reason,

f(x1
i) cannot be substituted by x1

i for at least one i (oth-
erwise there would be a predicate in pre(A1) which does
not occur in pre(A2)). Therefore, there is no substitution
such that each predicate of pre(A1) also occurs in pre(A2).
Since A1, A2 ∈ ASTRIPS and there are neither effects nor
special types in A1 and A2 (and therefore S2 and S3 are
satisfied trivially), A2 6⊆as A1 follows directly.

Obviously, the mapping is polynomial in the size of the
encoding of the graphs and is therefore indeed a polynomial
many-one reduction.

Example 1. For an example of the mapping used in the
proof of theorem 3 consider G1 and G2 from figure 1. Ob-
viously, G1 can be embedded isomorphic into G2 (too see
this, take a look at figure 2 and confirm that f = {x1 7→
y5, x2 7→ y4, x3 7→ y1, x4 7→ y2} is a bijective mapping be-
tween V ′

2 = {y1, y2, y4, y5} and V1 satisfying the conditions
stated above.

The mapping maps G1 and G2 to two operators A1 and
A2, respectively:

A1 = 〈E+(x1, x2) ∧ E
+(x2, x1) ∧ E

+(x2, x3) ∧ E
+(x3, x2)∧

E
+(x2, x4) ∧ E

+(x4, x2) ∧ E
+(x3, x4) ∧ E

+(x4, x3)∧

E
−(x1, x3) ∧ E

−(x3, x1) ∧ E
−(x1, x4) ∧ E

−(x4, x1),

(),

{x1 7→ T, x2 7→ T, x3 7→ T, x4 7→ T}〉

A2 = 〈E+(y1, y2) ∧ E
+(y2, y1) ∧ E

+(y2, y3) ∧ E
+(y3, y2)∧

E
+(y2, y4) ∧ E

+(y4, y2) ∧ E
+(y4, y5) ∧ E

+(y5, y4)∧

E
+(y1, y4) ∧ E

+(y4, y1) ∧ E
+(y3, y5) ∧ E

+(y5, y3)∧

E
−(y1, y3) ∧ E

−(y3, y1) ∧ E
−(y1, y5) ∧ E

−(y5, y1)∧

E
−(y2, y5) ∧ E

−(y5, y2) ∧ E
−(y3, y4) ∧ E

−(y4, y3),

(),

{y1 7→ T, y2 7→ T, y3 7→ T, y4 7→ T, y5 7→ T}〉

Figure 1: G1, G2

Figure 2: G1 can be embedded isomorphic into G2

It is easy to see that A2[
x3

y1

x4

y2

x2

y4

x1

y5
] ⊆as A1 holds and there-

fore A2 ⊆as A1 holds as well due to theorem 1.

Theorem 4. PSSTRIPS is NP-complete.

The proof is analogous to the one of theorem 3.

Complexity of ASBOOLE and PSBOOLE

Theorem 5. ASBOOLE is Σp
2-complete.

Proof. Let t be the number of rules in T, p the number of
axioms in P, a the highest number of parameters and u the
number of different predicates in A and B (whereby a pred-

icate P (~x) is different from another one P ′(~x′), if P 6= P ′

or xi 6= x′
i for any i).

Membership follows from the following algorithm:
Guess a substitution As of A and examine As ⊆as B:

S1: Transform pre(A) and pre(B) into two propositional
formulas φA and φB by introducing a new proposition
for each combination of predicate name and parame-
ters (e.g. replace P (x1) with P x1). Next, instanti-
ate P for each different predicate (e.g. for an formula
∀~x(P (~x) ⇒ Q(~x)) and the two predicates P (x1, c3)
and P (c2, x4) introduce the two propositional formulas
(

¬P x1 c3∨Q x1 c3

)

and
(

¬P c2 x4∨Q c2 x4

)

). This

produces O(u∗p) axioms which is polynomial in the size
of P and the number of different predicates. Next, form a
conjunction φP of all these axioms.
Then, transform φA, φB and φP into three propositional
formulas φ′

A, φ′
B and φ′

P in conjunctive normal form
(which is known to be possible in polynomial time) and
let a SAT oracle verify that φ′

A∧¬φB∧φ′
P is unsatisfiable.

S2: Normalize eff(A) and eff(B) (consuming polynomial
time): Check for each (ci, ei) ∈ eff(A) and (cj , ej) ∈

eff(A) whether ej ⇒ ei holds in P. If this is the case,
set ci := ci ∨ cj (analogously for eff(B)).
Then proceed similar to S1.

S3: Obviously possible in polynomial time.

Hence, ASBOOLE ∈ Σp
2 holds.

Hardness is proved by reducing 2-QBF to ASBOOLE . For
that purpose we map a 2-QBF-formula

Ψ = ∃x1, . . . , xn∀y1, . . . , ymΦ(~x, ~y)

to two operators A,B ∈ ASBOOLE , such that A ⊆as B
holds iff Ψ is valid:

1. Create a parameter xi in B and two parameters v+
i and v−

i

in A with typesB(xi) = typesA(v+
i) = typesA(v−

i) =
Ti for each existentially quantified variable.

2. Create a parameter yi in B with typesB(yi) = T−1 for
each universally quantified variable.

3. Generate a formula (P (v+
i) ⇔ ⊤) ∧ (P (v−

i) ⇔ ⊥) for
each existentially quantified variable xi and add it as a
disjunct to pre(A).

4. Each existentially quantified variable xi (yi) and each
constant ci in Φ(~x, ~y) is replaced by a predicate P (xi)
(P (yi)) and P (ci), respectively. When all possible re-
placements are done, add Φ(~x, ~y) as a disjunction to
pre(B).

5. There are no effects in A and B.

To simplify matters, we will not draw any distinction be-
tween a variable x in Ψ and a predicate P (x) in the gener-
ated operators in the following.

The mapping generates two operators A and B of the fol-
lowing forms:

A = 〈(P (v+
1) ⇔ ⊤) ∧ (P (v−

1) ⇔ ⊥)
∧ . . .∧

(P (v+
n) ⇔ ⊤) ∧ (P (v−

n) ⇔ ⊥),
(),

{v+
1 7→ T1, v

−
1 7→ T1, . . . , v

+
n 7→ Tn, v−

n 7→ Tn}〉

and

B = 〈Φ(~x, ~y),
(),

{x1 7→ T1, . . . , xn 7→ Tn, y1 7→ T−1, . . . , ym 7→ T−1}〉

Next, we show that Ψ is valid iff A ⊆as B holds:
“⇒“
Let Ψ be valid. We show, that A ⊆as B holds for the gener-
ated operators A and B.

Since there is no type hierarchy and due to the choice of
the types in our mapping, the only way to create a substitu-
tion is to replace either v+

i or v−
i by xi.

Because Ψ = ∃x1, . . . , xn∀y1, . . . , ymΦ(~x, ~y) is valid,
there is at least one assignment α for {x1 . . . xn}, such that
∀y1, . . . , ymΦ(α(~x), ~y) is valid. We consider the substitu-

tion As of A, in which v+
i was replaced by xi if α(xi) = 1,

and v−
i by xi if α(xi) = 0.(*)

Without loss of generality let α(xi) = 1 for all 1 ≤ i ≤ n
in the following.

According to theorem 1 we have to show S1-S3 in order
to show that A ⊆as B holds. Due to the absence of effects
in A and B S2 is satisfied trivially. As a result of the choice
of the considered substitution S3 is satisfied as well. Thus,
in order to show that A ⊆as B holds, we just have to show
that S1 holds. This is done by showing that the following
formula is valid:

(P (x1) ⇔ ⊤) ∧ (P (v−
1) ⇔ ⊥)

∧ . . .∧
(P (xn) ⇔ ⊤) ∧ (P (v−

n) ⇔ ⊥)
⇒

Φ(~x, ~y)

If the left side of this implication is not satisfied, the whole
implication is satisfied. So we assume the left side to be
satisfied in the following. Then, Φ(~x, ~y) has to be true as
well, since all interpretations making the left side true have
to set the existentially quantified variables {x1, . . . , xn} to
the values α(xi) for which ∀y1, . . . , ymΦ(α(~x), ~y) is true
(see (*)). Thus, A ⊆as B holds.

”⇐“
Let A ⊆as B hold for the generated operators A and B.

Then, according to theorem 1, pre(As) ⇒ pre(B) is valid
for a substitution As of A. There is no possible substitution
for which the left side of the implication cannot be satis-
fied (since we can only substitute either v+

i or v+
i by xi but

not both at the same time). Therefore, Ψ has to be valid (if
there are existentially quantified variables, we can restrict
the interpretations satisfying the left side to those with the
appropriate logical value).

Obviously, the mapping is polynomial in the size of Ψ and
is therefore indeed a polynomial many-one reduction.

Example 2. For an example of the mapping used in the
proof of theorem 5 consider the 2-QBF-formula

Ψ = ∃x1∀y1(¬y1 ∨ x1).

The translation to propositional logic yields Ψ′ = ((¬1∨1)∨
(¬1∨0))∧((¬0∨1)∨(¬0∨0)) ≡ (1∨0)∧(1∨1) ≡ 1∧1 ≡ 1,
which means that Ψ is valid.

The mapping generates two operators out of Ψ:

A = 〈(P (v+
1) ⇔ ⊤)∧

(P (v−
1) ⇔ ⊥),
(),

{v+
1 7→ T1, v

−
1 7→ T1}〉

and
B = 〈¬P (y1) ∨ P (x1),

(),
{x1 7→ T1, y1 7→ T−1}〉

To decide whether A ⊆as B holds, we have to test
whether there is a substitution As of A such that pre(As) ⇒
pre(B) holds - which means that pre(As)∧¬pre(B) has to
be unsatisfiable.

There are two possible substitutions of A: A[x1

v
−

1

] and

A[x1

v
+

1

].

Let us consider A[x1

v
−

1

] first:

The test for unsatisfiability of (P (v+
1) ⇔ ⊤) ∧ (P (x1) ⇔

⊥) ∧ ¬(¬P (y1) ∨ P (x1)) fails since we find a assignment:

{P (v+
1) 7→ 1, P (x1) 7→ 0, P (y1) 7→ 1}.

So we consider A[x1

v
+

1

] now:

For each assignment for (P (x1) ⇔ ⊤) ∧ (P (v−
1) ⇔

⊥) ∧ ¬(¬P (y1) ∨ P (x1)), P (x1) 7→ 1 and P (v−
1) 7→ 0

must hold. Therefore, ¬(¬P (y1) ∨ P (x1)) is always 0 and

(P (x1) ⇔ ⊤) ∧ (P (v−
1) ⇔ ⊥) ∧ ¬(¬P (y1) ∨ P (x1)) is

indeed unsatisfiable.
Hence, pre(A[x1

v
+

1

]) ⇒ pre(B) holds. Obviously, also S2

and S3 hold, and so A[
v
+

1

x1
] ⊆as A and due to theorem 1

A ⊆as B hold as well.

Theorem 6. PSBOOLE is Σp
2-complete.

The proof is analogous to the one of theorem 5.

Complexity of ASADL and PSADL

In AADL we allow existentially and universally quantifi-
cation in the precondition of the operator as well as in the
precondition of the effects (see Definition 6) in addition to
ABOOLE . Hence, in AADL we are endued with the full
power of arbitrary FOL formulas. Although the number of
objects in an object domain is always finite, ASADL and
PSADL are undecidable.

Theorem 7. ASADL and PSADL are undecidable.

Proof. This follows directly from the theorem of Trakhten-
brot (1950), which states that the satisfiability problem of
arbitrary FOL formulas is undecidability even if all domains
are finite (therefore, the validity problem of FOL formulas
and in particular the validity of pre(A) ⇒ pre(B) and thus
ASADL and PSADL are undecidable).

Implementation

We implemented a prototype subsumption checker module
for ASSTRIPS and ASBOOLE . Since ASSTRIPS is NP-
and ASBOOLE even Σp

2-complete, one would expect it to
be very difficult to come up with reasoning procedures de-
ciding these problems in reasonable time. Fortunately, many
interesting problems are good-natured in several aspects.

A closer look at the proof of theorem 3 shows that the
NP-hardness of ASSTRIPS is due to the subproblem of
finding an admissible substitution. In general, the number
of admissible substitutions is exponential: If n is the num-
ber of parameters in A and m the number of parameters in
B, there are m!

(m−n)! many admissible substitutions. How-

ever, in many problems this number is more restricted due
to other properties of the involved operators: At first, we can
find an admissible substitution only if A has at least as many
parameters as B (since each atom occurring in pre(As) has
to occur in pre(B) as well). Another restriction is given
by typed parameters: A parameter x ∈ S(A) can only be
substituted by a parameter y ∈ S(B), if the type of x is a
subtype of the type of y according to T. Furthermore, a pa-
rameter y occurring in a predicate P in pre(B) at position i
has to occur at the same position of a predicate P ′ in pre(A)

such that P∧P⇒ P ′ holds. Similar restrictions can be found
for ASBOOLE .

In future work, we intend to further investigate these re-
strictions in order to identify possibly tractable subsets of
the problems.

Conclusion

We proposed two subsumption relations between operators,
both of which are suitable for modeling and verifying ab-
straction hierarchies between actions and operators. Further-
more, we investigated the complexity of the operator sub-
sumption problems for three special cases and proved that
the problem is NP-complete when the expressiveness of
the operators is restricted to the basic STRIPS formalism,
Σp

2-complete when we admit boolean logical operators and
undecidable when the full power of the planning language
ADL is permitted. For operators without quantifiers, sub-
sumption relations were checked in reasonable time, how-
ever, using a prototype subsumption module, which we im-
plemented.

Our results can be extended in several directions. In future
work we will study the influence of universally quantified
effects on the computational complexity of ADL formulae
and investigate empirically whether there are efficient ap-
proximation algorithms for the subsumption problem of two
ADL operators. We will also examine whether the concept
of predicate inclusion axioms can be extended without mak-
ing the decision problems undecidable. Another aim is to
detect tractable subclasses for ASBOOLE or even ASADL.

References

Baader, F.; Calvanese, D.; McGuinness, D. L.; Nardi, D.;
and Patel-Schneider, P. F., eds. 2003. The Description
Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press.

Botea, A.; Enzenberger, M.; Müller, M.; and Schaeffer, J.
2005. Macro-FF: Improving AI planning with automati-
cally learned macro-operators. Journal of Artificial Intelli-
gence Research 24:581–621.

Devanbu, P. T., and Litman, D. J. 1991. Plan-based termi-
nological reasoning. In Proceedings of the Second Interna-
tional Conference on Principles of Knowledge Representa-
tion and Reasoning, 128–138.

Erol, K.; Hendler, J.; and Nau, D. S. 1994. HTN planning:
Complexity and expressivity. In Proceedings of the Twelfth
National Conference on Artificial Intelligence, 1123–1128.

Eyerich, P.; Nebel, B.; Lakemeyer, G.; and Claßen, J. 2006.
Golog and PDDL: What is the relative expressiveness? In
Proceedings of the International Symposium on Practical
Cognitive Agents and Robots, 73–80.

Fikes, R., and Nilsson, N. J. 1971. STRIPS: A new ap-
proach to the application of theorem proving to problem
solving. Artificial Intelligence 2:189–208.

Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. Journal
of Artificial Intelligence Research 20:61–124.

Gil, Y. 2005. Description logics and planning. AI Magazine
26(2):73–84.

Heinsohn, J.; Kudenko, D.; Nebel, B.; and Profitlich, H.-J.
1992. RAT — representation of actions using terminologi-
cal logics. In DFKI Workshop on Taxonomic Reasoning —
Proceedings, number D-92-08.

Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.

Kemke, C., and Walker, E. 2006. Planning with action
abstraction and plan decomposition hierarchies. In Pro-
ceedings of the 2006 International Conference on Intelli-
gent Agent Technology, 447–451.

Kemke, C. 2003. A formal theory for describing action
concepts in terminological knowledge bases. In Proceed-
ings of the Sixteenth Canadian Conference on Artificial In-
telligence, volume 2671, 458–465.

Knoblock, C. A. 1994. Automatically generating abstrac-
tions for planning. Artificial Intelligence 68(2):243–302.

Liebig, T., and Rösner, D. 1997. Action hierarchies in
description logics. In Proceedings of the 1997 Interna-
tional Workshop on Description Logics, volume 410 of
URA-CNRS.

Nau, D. S.; Muoz-Avila, H.; Cao, Y.; Lotem, A.; and
Mitchell, S. 2001. Total-order planning with partially or-
dered subtasks. In Proceedings of the Seventeenth Interna-
tional Joint Conference on Artificial Intelligence, 425–430.

Pednault, E. 1989. ADL: Exploring the middle ground
between STRIPS and the situation calculus. In Proceed-
ings of the First International Conference on Principles of
Knowledge Representation and Reasoning, 324–332.

Reiter, R. 2001. Knowledge in Action. MIT Press.

Sacerdoti, E. D. 1974. Planning in a hierarchy of abstrac-
tion spaces. Artificial Intelligence 5(2):115–135.

Trakhtenbrot, B. A. 1950. Impossibility of an algorithm for
the decision problem in finite classes. Doklady Akademii
Nauk SSSR 70:569–572.

Weida, R. A., and Litman, D. J. 1992. Terminological rea-
soning with constraint networks and an application to plan
recognition. In Proceedings of the Third International Con-
ference on Principles of Knowledge Representation and
Reasoning, 282–293.

