
Subset-Saturated Transition Cost Partitioning for Optimal Classical Planning

Dominik Drexler and David Speck and Robert Mattmüller
University of Freiburg, Germany

{drexlerd, speckd, mattmuel}@informatik.uni-freiburg.de

Abstract

Cost partitioning admissibly combines the information from
multiple heuristics for state-space search. We use a greedy
method called saturated cost partitioning that considers the
heuristics in sequence and assigns the minimal fraction of the
remaining costs that it needs to preserve the heuristic esti-
mates. In this work, we address the problem of using more
expressive transition cost functions with saturated cost par-
titioning to obtain stronger heuristics. Our contribution is
subset-saturated transition cost partitioning that combines the
concepts of using transition cost functions and prioritizing
states that look more important during the search. Our empir-
ical evaluation shows that this approach still causes too much
computational overhead but leads to more informed heuris-
tics.

Introduction
Heuristic search with a lower bounding heuristic is one of
the most promising techniques to solve challenging planning
problems optimally. We consider cost partitioned heuristics
that combine information from multiple sources. Cost parti-
tioned heuristics use the theory of cost partitioning (Katz and
Domshlak 2008). A cost partitioning distributes each transi-
tion’s cost over multiple heuristics such that the sum does
not exceed the original cost. If each heuristic is admissible
for the assigned transition costs, then the sum of heuristic es-
timates is admissible. The most effective approach to com-
pute cost partitioned heuristics is saturated cost partitioning
(Seipp, Keller, and Helmert 2017). Saturated cost partition-
ing considers the heuristics in sequence and assigns the min-
imum fraction of the remaining costs that it needs to preserve
the heuristic estimates. Recently, saturated cost partitioning
with restrictive operator cost functions yielded state-of-the-
art performance (Seipp and Helmert 2019).

In this work, we address the problem of using more ex-
pressive transition cost functions with saturated cost parti-
tioning to obtain stronger heuristics. Transition cost func-
tions require computationally more demanding representa-
tions compared to operator cost functions but allow comput-
ing more informed cost partitioned heuristics. The baseline
approach is saturated transition cost partitioning by Keller
et al. (2016). It uses the minimal fraction of the remaining

cost required to preserve the heuristic estimates, which often
results in an increased computational effort but also in more
informed heuristics.

We can decrease the computational effort by considering
a larger solution set. Moving from operator to transition cost
functions typically already increases the solution set because
every operator cost function is a transition cost function (but
not vice versa). Another way of increasing the size of the so-
lution set is by preserving the heuristic estimates of a subset
of states. The concepts of preserving the heuristic estimates
of a subset of states were introduced with subset-saturated
(operator) cost partitioning on restrictive operator cost func-
tions (Seipp and Helmert 2019). Preserving the heuristic es-
timates of a subset of states has shown to yield more accurate
cost partitioned heuristics.

Our contribution is subset-saturated transition cost parti-
tioning that combines saturated transition cost partitioning
with the concepts of preserving the heuristic estimates of a
subset of states. Even though subset-saturated transition cost
partitioning does not necessarily compute better cost parti-
tioned heuristics, we provide an empirical analysis to show
that this is often the case in practice. We derive a mechanism
for selecting transition cost functions from the solution set
that trades heuristic accuracy with performance and follows
the principle of prioritizing a subset of states.

Background
In this chapter we define, describe and discuss the concepts
and ideas that form the foundation for subset-saturated tran-
sition cost partitioning.

Planning Tasks

We consider the SAS+ planning formalism (Bäckström and
Nebel 1995). A SAS+ planning task is a 5-tuple that con-
sists of a set of finite domain variables that induce a set of
states, a finite set of operators (or actions) that induce a fi-
nite set of transitions, an initial state, a goal condition and
a function that describes the cost of applying each operator.
Each planning task compactly encodes a transition system
with weights assigned to transitions.

Transition Systems
A transition system describes the dynamics of a state-based
system. Transition systems (Seipp and Helmert 2019) are
also called state spaces.
Definition 1 (Transition System). A Transition System T
is a directed, labeled graph defined by a finite set of states
S(T), a finite set of labels L(T), a finite set T (T) of labeled

transitions s l−→ swith s, s′ ∈ S(T) and l ∈ L(T), an initial
state s0(T) ∈ S(T) and a set S?(T) ⊆ S(T) of goal states.

The objective in state space search is to find paths from
the initial state to a goal state.
Definition 2 (Paths and Goal Paths (Seipp and Helmert
2019)). Let T be a transition system. A path from s ∈ S(T)
to s′ ∈ S(T) is a sequence of transitions from T (T) of the

form π =
〈
s0 l1→ s1, . . . , sn−1 ln−→ sn

〉
, where s0 = s and

sn = s′. The length of π denoted by |π|, is n. The empty path
(of length 0) is permitted if s = s′. π is called a goal path, if
it is a path to any goal state s′ ∈ S?(T).

In the context of classical planning and cost partitioning,
it is convenient to allow assignment of costs to transitions
that are not necessarily unit costs. Transition cost functions
allow a different assignment for each transition and there-
fore, allows taking the application contexts of each action
into account.
Definition 3 (Transition Cost Function). Let T be a transi-
tion system with transitions T (T). A transition cost function
for T is a function tcf : T (T) → R ∪ {−∞,∞} that as-
signs costs to transitions. A transition cost function is finite
if −∞ < tcf (t) < ∞ for all transitions t ∈ T (T). It is
nonnegative if 0 ≤ tcf (t) for all transitions t ∈ T (T). We
write C(T (T)) for the set of all transition cost functions for
T and C≥0(T (T)) for the set of all nonnegative transition
cost functions for T .

A special case of a transition cost function is an op-
erator cost function. It is a transition cost function where
every transition with the same label is assigned the same
cost value. Therefore, an operator cost function is a map-
ping from labels (or operators) to our considered codomain.
The representation of an operator cost function requires
worst-case space of Θ(|L(T)|) or Θ(||Π||) where ||Π|| de-
notes the input size of a planning task. The representation
of a transition cost function requires worst-case space of
Θ(||Π|| · 2poly(||Π||)).

In the context of cost partitioning, it is convenient to work
with a collection of transition systems where each transition
system is associated with a transition cost function. The def-
inition of a weighted transition system captures the notion
of this pairing (Seipp and Helmert 2019).
Definition 4 (Weighted Transition System). A weighted
transition system is a tuple 〈T , tcf 〉 where T is a transition
system and tcf is a transition cost function for T .

Allowing infinities to be assigned to transitions through
either operator or transition cost functions means that we
must take care of arithmetic expressions that involve +∞
and−∞ to make the theory of cost partitioning work. Seipp

and Helmert (2019) defined two kinds of addition that make
it possible to handle mixed infinities in cost partitioning.

The symbols + (infix) and
∑

(prefix) denote the left-
addition operation. Left-addition over integers is the usual
addition. Expressions that contain infinities are defined as
∞+x =∞ and−∞+x = −∞ for all integers x, including
x being∞ or−∞. This operation is associative but not com-
mutative. Intuitively, a left addition sum that contains mixed
infinities evaluates to the leftmost infinity. In cost partition-
ing, we use left-addition for summing up multiple heuristic
values and partitioned costs (Seipp and Helmert 2019).

The symbols ⊕ (infix) and
⊕

(prefix) denote the path-
addition operation. Path addition over integers is the usual
addition. Expressions that contain infinities are defined as
x ⊕ y = ∞ iff x = ∞ or y = ∞ and x ⊕ (−∞) = −∞
for all x 6= ∞. This operation is associative and commuta-
tive. Intuitively, a path addition sum evaluates to +∞ if the
path addition sum involves at least one +∞. We use path-
addition to define the cost of a path in a transition system
(Seipp and Helmert 2019).

Definition 5 (Cost of a path). Let 〈T , tcf 〉 be a
weighted transition system. The cost of a path π =〈
s0 l1−→ s1, . . . , sn−1 ln−→ sn

〉
with ti = si−1 li−→ si is

defined as cost(tcf , π) =
⊕n

i=1 tcf (ti).

Intuitively, a path of cost −∞ is infinitely cheap, and a
path of cost∞ is non-existent.

In optimal classical planning, we are interested in finding
paths with the cheapest cost to a goal. The following defi-
nition captures goal distances as functions that depend on a
given state and a transition cost function. This notion follows
the pairing of weighted transition systems in cost partition-
ing.

Definition 6 (Goal Distances and Optimal Paths (Seipp and
Helmert 2019)). Let 〈T , tcf 〉 be a weighted transition sys-
tem. The goal distance of a state s ∈ S(T) in T under cost
function tcf is defined as infπ∈Π?(T ,s) cost(tcf , π) where
Π?(T , s) is the set of goal paths from s in T .

We write h∗T (tcf , s) for the goal distance of s in T under
transition cost function tcf .

A goal path π from s in T is optimal under the given tran-
sition cost function tcf if cost(tcf , π) = h∗T (tcf , s).

The empty infimum is defined as ∞ and follows the no-
tion of a non-existent goal path. The infimum ensures that
repeatedly taking a negative cost cycle in the transition sys-
tem will evaluate to −∞.

Abstractions
Abstractions are relaxations of the behavior of a state-based
system where multiple states collapse into a single abstract
state (Helmert, Haslum, and Hoffmann 2007).

Definition 7 (Abstraction). Let T , T ′ be two transition sys-
tems with the same label sets L(T) = L(T ′) and let α :
S(T) → S(T ′), β : T (T) → T (T ′) be surjective func-
tions. We say that T ′ is an abstraction of T with abstrac-
tion mappings α, β if (1) α(s0(T)) = s0(T ′), (2) α(s?) ∈

S?(T ′) for all s? ∈ S?(T), and (3) α(s)
l−→ α(s′) ∈ T (T ′)

and β(s
l−→ s′) = α(s)

l−→ α(s′) for all s l−→ s′ ∈ T (T).
We refer to T as the concrete transition system and T ′ as

the abstract transition system. We consider a special type of
abstraction where every abstract state is cartesian (Seipp and
Helmert 2013).

An abstraction heuristic is a function that maps each con-
crete state to the goal distance of its corresponding abstract
state under a given transition cost function. Goal distances in
the abstract transition system require an abstract transition
cost function that maps every abstract transition to a value
in the codomain. The abstract transition cost function maps
an abstract transition to the minimal cost of every concrete
transition that induces it (Keller et al. 2016).
Definition 8 (Abstraction heuristic). Let 〈T , tcf 〉 and〈
T ′, tcf ′

〉
be two weighted transition systems. Let T ′ be an

abstraction of T with abstraction mappings α, β.
We say that tcf ′ is the abstract transition cost function of

tcf that describes the cost of each abstract transition t′ ∈
T (T ′) in the abstraction with

tcf ′(t′) = min{tcf (t) | t ∈ T (T) ∧ β(t) = t′}

The abstraction heuristic of a concrete state s ∈ S(T) is
the goal distance of the corresponding abstract state α(s) in
the abstraction T ′ under the abstract transition cost func-
tion tcf ′, i.e. h(tcf , s) = h∗T ′(tcf

′, α(s)).
The definition of the abstract transition cost function re-

veals that the computation of an abstract transition cost in-
volves a minimization over all (exponentially many) transi-
tions of the concrete transition system that are responsible
for this abstract transition. In the case of cartesian abstrac-
tions this minimization of exponentially many concrete tran-
sitions can be carried out in time that is often polynomial in
the number of variables of the planning task, albeit worst-
case exponential (Geißer, Keller, and Mattmüller 2016).

A heuristic is admissible if it never overestimates the goal
distances in the weighted concrete transition system. Ab-
straction heuristics are admissible because every goal path
in the concrete transition system corresponds to a goal path
in the abstract transition system. The minimization in the
abstract transition cost function ensures that the abstraction
heuristic does not overestimate any goal distance (Keller
et al. 2016). We use the A∗ algorithm with an admissi-
ble heuristic to find optimal goal paths (Hart, Nilsson, and
Raphael 1968).

Transition Cost Partitioning
A transition cost partitioning splits a given transition cost
function into a sequence of transition cost functions such
that the sum (left addition) of all transition cost functions in
the sequence is upper bounded by the original transition cost
function (Keller et al. 2016; Pommerening 2017).
Definition 9 (Transition Cost Partitioning). A transition
cost partitioning for a weighted transition system 〈T , tcf 〉
with transition cost function tcf ∈ C(T (T)) is a tuple
〈tcf 1, . . . , tcf n〉 ∈ C(T (T))n whose sum is bounded by tcf ,
i.e.
∑n
i=1 tcf i(t) ≤ tcf (t) for all t ∈ T (T).

A transition cost partitioning induces a cost partitioned
heuristic by associating each transition cost function with a
heuristic and summing up the heuristic estimates of individ-
ual states. The following theorem states that the cost par-
titioned heuristic is admissible. Katz and Domshlak (2008)
introduced cost partitioning that works on nonnegative op-
erator cost functions. Pommerening et al. (2015) showed
that general operator cost functions can be used for cost
partitioning and Keller et al. (2016) defined general transi-
tion cost function for cost partitioning. Finally, Seipp and
Helmert (2019) introduced left addition rules to handle
mixed infinities, which led to Theorem 1 and shows that cost
partitioned heuristics are admissible.
Theorem 1. Admissibility Let T be a transition system with
admissible heuristics 〈h1, . . . , hn〉 and a transition cost par-
titioning P (T (T)) = 〈tcf 1, . . . , tcf n〉 ∈ C(T (T))n. Then
hP (T (T))(s) =

∑n
i=1 hi(tcf i, s) is an admissible heuristic.

An optimal transition cost partitionings for a set of heuris-
tics is a transition cost partitioning that provides the best
heuristic estimate for a given state. The best known algo-
rithm to compute optimal transition cost partitioning works
in exponential time and is not useful in practice. In the next
section, we focus on greedy algorithms based on cost satu-
ration that consider the heuristic in sequence and builds the
transition cost partitioning sequentially.

Subset-Saturated Transition Cost Partitioning
In this section, we combine saturated transition cost par-
titioning (Keller et al. 2016) with subset-saturation known
from subset-saturated operator cost partitioning (Seipp and
Helmert 2019). We first generalize dominating cost func-
tions (Seipp and Helmert 2019).
Definition 10 (Dominating Transition Cost Function). Con-
sider two transition cost functions tcf and tcf ′ defined on
the same set of transitions. We say that tcf dominates tcf ′,
in symbols tcf ≤ tcf ′, if tcf (t) ≤ tcf ′(t) for all transitions
t.

We say that tcf is the unique minimum of a set of tran-
sition cost functions Cost if it dominates all transition cost
functions in Cost. (Not all sets Cost have a unique mini-
mum.)

A saturated transition cost function for a subset of states
dominates a given transition cost function and preserves the
heuristic estimates of a given subset of states (Seipp and
Helmert 2019).
Definition 11 (Saturated Transition Cost Function). Con-
sider a weighted transition system 〈T , tcf 〉, a set of states
S′ ⊆ S(T) and a heuristic h for T . A transition cost func-
tion stcf ∈ C(T (T)) is saturated for S′, h and tcf if

1. stcf ≤ tcf and
2. h(stcf , s) = h(tcf , s), for all states s ∈ S′.

A saturated transition cost function always exists because
tcf itself is a saturated transition cost function. Our defini-
tion of the saturated transition cost function allows selecting
from a typically larger set of possible saturated transition

cost functions because of allowing transition cost functions
instead of operator cost functions and preserving the heuris-
tic estimates of a subset of states. We formalize this selec-
tion mechanism with a generalization of operator saturators
(Seipp and Helmert 2019) to transition saturators. A transi-
tion saturator is a function that takes as an input a heuristic,
the remaining transition cost function, and a subset of states
and outputs a saturated transition cost function. In contrast,
an operator saturator only allows operator cost functions in
the input and output.
Definition 12 (Transition Saturator). Consider a transition
system T , a set of states S′ ⊆ S(T) and a heuristic h for T .

A transition saturator for S′ and h is a partial func-
tion saturate : C(T (T)) → C(T (T)) such that whenever
saturate(tcf) is defined, it is a saturated transition cost
function for S′, h and tcf .

A transition saturator is general if its domain of definition
is C(T (T)). It is nonnegative to general (NNG) if its domain
of definition is C≥0(T (T)). It is nonnegative if its domain of
definition is C≥0(T (T)) and it only produces transition cost
functions in C≥0(T (T)).

The following definition generalizes subset-saturated op-
erator cost partitioning by exchanging operator saturators
with transition saturators. Alternatively speaking, we param-
eterize saturated transition cost partitioning with transition
saturators and allow saturation for a subset of states.
Definition 13 (Subset-Saturated Transition Cost Partition-
ing). Consider a weighted transition system 〈T , tcf 〉, a set
of states S′ ⊆ S(T), a nonempty sequence of heuristics
H = 〈h1, . . . , hn〉 for T and a sequence Saturate =
〈saturate1, . . . , saturaten〉 such that saturatei is a satura-
tor for S′ ⊆ S(T) and hi for all 1 ≤ i ≤ n.

The saturated transition cost partitioning
〈tcf 1, . . . , tcf n〉 of the transition cost function tcf in-
duced by Saturate is defined as:

remain0 = tcf

tcf i = saturatei(remaini−1) for all 1 ≤ i ≤ n
remaini = remaini−1 − tcf i for all 1 ≤ i ≤ n

The subtraction in the definition of remaini is defined in
terms of left addition, i.e., a−b := a+(−b) and corresponds
the definition from subset-saturated operator cost partition-
ing.

The saturated transition cost partitioning (Definition 13)
is a transition cost partitioning. The result follows from the
proof that subset-saturated operator cost partitioning pro-
duces operator cost partitionings and exchanges labels with
transitions (Seipp and Helmert 2019).

In general, subset-saturated cost partitioning has three
major choice points that influence the accuracy of the cost
partitioned heuristic. These are the set of heuristics, the or-
der of the heuristics, and the transition saturators. In the re-
maining part of this section, we define generalizations of the
four operator saturators and an additional transition satura-
tor that allows avoiding computations of abstract transition
weights (Definition 8).

When comparing transition saturators, we use the same
concept of domination between saturated cost functions.
A dominating saturated cost function is ”more econom-
ical” than the cost function that it dominates because it
achieves the same objective of preserving heuristic estimates
but leaves a larger fraction of the remaining costs for later
heuristics in sequence. This often gives better heuristic esti-
mates but is not guaranteed due to the greediness of saturated
cost partitioning (Seipp and Helmert 2019).

We generalize the comparison results of operator satura-
tors to allow for comparison of transition saturators. We pro-
vide an additional result for comparing operator saturators
with transition saturators.

Theorem 2 (Domination by Subsets). For a given transi-
tion system T , heuristic h for T and transition cost function
tcf ∈ C(T (T)), let STCF (X) be the set of saturated tran-
sition cost functions for the set of states X ⊆ S(T), h and
tcf .

Let S′′ ⊆ S′ ⊆ S(T). Then:

1. For all transition cost functions tcf ′ ∈ STCF (S′), there
exists a transition cost function tcf ′′ ∈ STCF (S′′) that
dominates tcf ′.

2. If a transition cost function tcf ′′ ∈ STCF (S′′) is the
unique minimum of STCF (S′′), then tcf ′′ dominates all
transition cost functions in STCF (S′).

Proof: Statement 1 follows from Definition 11 where we
allow assigning lower saturated costs to transitions that start
at or end at states outside the subset if it does not conflict
with preserving the heuristic estimates of states within the
subset. Such transitions may exist exclusively in S′′, because
S′′ ⊆ S′. Statement 2 follows from Definition 10 of a unique
minimum and the first statement.

The theorem is an analog extension of the theorem
about domination by subsets on operator saturators (Seipp
and Helmert 2019). It shows that transition saturators for
S′′ ⊆ S′ are more economical than transition saturators
for S′. Since sets of saturated transition cost functions do
not necessarily have a unique minimum, it is not guaran-
teed that a minimal saturated transition cost function for
STCF (S′′) dominates all saturated transition cost functions
in STCF (S′). This stronger notion of dominance requires
that STCF (S′′) has a unique minimum and is part 2 of the
theorem.

The second way to obtain more economical transition sat-
urators uses saturator composition where the output of a sat-
urator is applied to the input of another saturator (Seipp and
Helmert 2019).

Theorem 3 (Domination by Composition). Let saturate1

and saturate2 be transition saturators for the same tran-
sition system T , state set S′ ⊆ S(T) and heuris-
tic h. Let saturate12 : C(T (T)) → C(T (T)) be the
composition of these saturators, i.e. saturate12(tcf) =
saturate2(saturate1(tcf)) for all transition cost functions
tcf ∈ C(T (T)).

Then saturate12 is a transition saturator for T , S′ and
h, and for all transition cost functions tcf ∈ C(T (T)),
saturate12(tcf) dominates saturate1(tcf).

Proof: Follows directly from Definition 12, where we re-
quire the output of a transition saturator to dominate its in-
put.

The composition is the reason why we consider satura-
tors in the general case. The inner saturator can output nega-
tive costs that the outer saturator has to handle. The compo-
sition with saturate2(max(0, saturate1(tcf))) ensures that
saturate2 is considered in the NNG case. This does not vi-
olate Definition 11 statement 1 because tcf is the remaining
cost function and nonnegative. The following theorem states
that allowing saturators to output transition cost functions
makes them more economical.

Theorem 4 (Domination by Expressiveness). Let saturateo
be an operator saturator for transition system T , state
set S′ ⊆ S(T) and heuristic h. Then there exists a
transition saturator saturate t for T , S′, and h such that
saturate t(ocf) dominates saturateo(ocf) for all operator
cost functions ocf ∈ C(L(T)).

Proof: The output of any operator saturator is an operator
cost function and a special case of the output of a transi-
tion saturator. Hence, there exists a transition saturator that
returns the same saturated transition cost function as the op-
erator saturator.

In other words, for each operator saturator, we can con-
struct a transition saturator that produces a dominating sat-
urated transition cost function. In the rest of this chapter,
we define such a transition saturator for each known oper-
ator saturator. We introduce a new transition saturator that
is explicitly used for transition cost functions and improves
the performance of computing heuristic estimates. When-
ever we provide additional information about the experimen-
tal setup, we describe the setup that allows for a fair compar-
ison with operator saturators.

General transition saturators
In the definition of each transition saturator, we consider
a weighted concrete transition system 〈T , tcf 〉 where tcf
describes the current remaining transition cost function
and an abstraction heuristic h for 〈T , tcf 〉 with underlying
weighted abstract transition system

〈
T ′, tcf ′

〉
.

Saturate for all states (allt) The allt transition satura-
tor preserves the heuristic estimates of all states and is
the one that was considered previously by Keller et al.
(2016). It computes the unique minimum saturated transition
cost function mstcf by setting the consistency constraint
h(tcf , s) ≤ h(tcf , s′) + mstcf (t) tight for all transitions
t = s

l−→ s′ ∈ T (T). This can be enforced by setting

mstcf (t) = h(tcf , s)	 h(tcf , s′)

Seipp, Keller, and Helmert (2020) defined the operator 	
in the context of computing the minimum saturated operator
cost function msocf . The operator 	 behaves like the reg-
ular subtraction in the finite case and handles infinities as
x 	 y = −∞ iff x = −∞ or y = ∞ and x 	 y = ∞
iff x = ∞ 6= y or x 6= −∞ = y. The minimum saturated

operator cost function msocf sets the consistency constraint
tight for at least one transition of each operator, i.e.,

msocf (l) = sup

s
l−→s′∈T (T)

h(tcf , s)	 h(tcf , s′)

where the empty supremum is defined as −∞ and tcf is an
operator cost function in saturated operator cost partitioning.
Seipp, Keller, and Helmert (2020) show that the operator
	 computes the minimal saturated cost for each transition
and the supremum generalizes over all transitions with the
same label such that context information does not need to be
tracked. Hence, the mstcf computes the unique minimum
among all saturated transition cost functions that preserve
the heuristic estimates of all states.

Saturate for all states (spdt) The transition saturator spdt
is nonnegative and preserves the heuristic estimates of all
states. Its name is derived from the Shortest Path Discov-
ery (SPD) problem (Szepesvári 2004), where we are given a
transition system, a function query that returns the cost of a
transition, and a lower bound on the true transition weights.
The objective is to find the exact goal distance of each state1,
such that the number of evaluations of the function query is
as small as possible.

The SPD problem occurs in the saturated transition cost
partitioning algorithm as follows: For the next abstraction
heuristic in sequence, we do not know the abstract transi-
tion weights. But we can compute their weights using Def-
inition 8. Our experiments have shown that computing all
abstract transition weights is a performance bottleneck. Ac-
cording to Definition 13, we know that remaini is nonneg-
ative if remain0 is nonnegative (as in classical planning).
Therefore, a lower bound for each abstract transition weight
is zero2.

A nonnegative lower bound is important because it al-
lows using Dijkstra’s algorithm for goal distance analysis.
The lower bound can avoid the computation of the exact ab-
stract transition weight if it does not shorten goal distances
during goal distance analysis. Consider the case that Dijk-
stra’s expands an abstract transition. If the lower bound on
the abstract transition weight decreases the currently known
goal distance of the source state, then we have to compute
the exact transition weight. Otherwise, we keep the lower
bound and proceed with the next abstract transition. The
lower bound in the else case does not introduce shortcuts be-
cause: If the goal path that uses the transition with the lower
bound on the cost is not the current cheapest path for the
source state, then the same path that uses the exact transition
weight is also not the current cheapest path for the source
state.

Saturate for reachable states (reacht) The transition sat-
urator reacht is a generalization of the operator saturator

1s-t-path in the original problem definition
2It is possible to extract a more accurate lower bound, i.e., an

operator cost function of the remaining transition cost function in
O(|L(T)|) time when using decision diagrams.

reacho (Seipp and Helmert 2019). It preserves the heuristic
estimates of all states that are reachable in a forward search.
The concrete preimage S′ of all states that are reachable in
the abstract transition system overapproximates the set of
reachable states. The set of unreachable states is S(T) \ S′.
We set the heuristic estimate of each state s ∈ S(T) \ S′ to
h(tcf , s) = −∞ because they are never visited in a forward
search (Seipp and Helmert 2019). These modified heuris-
tic estimates will remain for all subsequent saturators in a
composition to exclude unreachable states from the subset
of states. Finally, apply allt on the modified heuristic es-
timates to obtain the unique minimum saturated transition
cost function for S′.

Saturate for a perimeter (perimt) The transition satura-
tor perimt is a generalization of the operator saturator perimo
(Seipp and Helmert 2019) and preserves the heuristic esti-
mates of all states that are within a perimeter of k to a goal.
The idea is that it is more important to preserve heuristic es-
timates of states that are closer to a goal (e.g., Holte et al.,
2004; Torralba, Linares López, and Borrajo, 2018). The set
of states within perimeter k > 0 is Sk = {s ∈ S(T) |
h(tcf , s) ≤ k}. In the abstract transition system T ′ the set
of states Sk corresponds to all abstract states s ∈ T ′ with
h∗T ′(tcf

′, s) ≤ k.
To efficiently compute a saturated transition cost function,

we only allow for nonnegative transition cost functions in
the input and cap the heuristic estimates at k = h(tcf , sI)
where sI is the initial state (Seipp and Helmert 2019). Fi-
nally, apply allt on the capped heuristic estimates to obtain a
saturated transition cost function for Sk.

Saturate for a single state (lpt) The transition saturator
lpt is a generalization of the operator saturator lpo (Seipp
and Helmert 2019) and preserves the heuristic estimate of
only a single state s ∈ S(T). The set of possible saturated
transition cost functions to pick from does not have a unique
minimum. We use an adapted version of the linear program-
ming formulation of the lpo operator saturator to choose
from the set of possible saturated transition cost functions.
The LP uses the same LP-trick to encode the heuristic esti-
mates from the saturated transition cost function.

Ha ≤ 0 for all a ∈ S?(T ′) (1)

Ha ≤ Ct +Hb for all a l−→ b = t ∈ T (T ′) (2)

Ct ≤ tcf ′(t) for all t ∈ T (T ′) (3)

Ct ≤ Cl for all a l−→ b = t ∈ T (T ′) (4)
Hα(s) = h(s) (5)

The variables Ct encode the saturated transition cost func-
tion, the variables Cl encode the saturated operator cost
function, and the variables Ha encode the heuristic estimate
h∗T ′ . We also choose the objective of minimizing the sum of
used operator costs min

∑
l∈L(T) Cl where we only include

labels with finite saturated operator costs. Our LP formula-
tion differs from the LP formulation of the operator saturator

lpo by allowing transition cost function in the input and the
output.

The objective function requires a preprocessing, where we
compute the saturated transition cost of all transitions that
result in either ∞ or −∞. We first set the heuristic esti-
mates of every state in the preimage of each abstract state
that is unreachable from the abstract state α(s) to−∞ (sim-
ilar idea as described in reacht). Then, we apply mstcf to
all transitions t that evaluate to mstcf (t) ∈ {−∞,∞}. Fi-
nally, we restrict the LP to contain only abstract states with
finite heuristic estimates together with their incident abstract
transitions. If there is an abstract transition with label l and
a constraint of type 2, then this label l is part of the objective
function. After solving the LP, we extract the saturated cost
of every transition from the variable Ct of the corresponding
abstract transition.

In our experiments, we preserve the heuristic estimate of
the initial state.

Nonnegative transition saturators
We obtain a nonnegative transition saturator by applying
stcf (t) = max(0, stcf (t)) for each transition t ∈ T (T) on
the output stcf of the NNG transition saturator. We denote
the nonnegative transition saturator with an additional super-
script, e.g., perim+

t for the nonnegative transition saturator of
the transition saturator perimt. It is possible to obtain simi-
lar theoretical comparison results on nonnegative transition
saturators.

Selecting runtime efficient saturator outputs
A problem with the current definitions of our transition sat-
urators is that their output does often not perform well in our
experiments. The runtime of the subtraction in Definition 13
and the size of the representation of remaini depends on
the saturated transition cost function. Therefore, selecting a
saturated transition cost function that performs better in the
tradeoff between leaving more remaining costs for subse-
quent heuristics and lowering the computational overhead is
necessary.

The first solution idea is to generalize saturated transition
costs over operators as described in the minimum saturated
operator cost function (section allt). If we do this for all op-
erators, then we obtain subset-saturated operator cost parti-
tioning. Operator costs can be subtracted efficiently from a
transition cost function when using decision diagrams.

The second solution idea is to decrease the number of
transitions for which the saturator output stcf(t) 6= 0 be-
cause subtraction of zero is trivial. We can achieve this by
considering the nonnegative case or considering other sub-
sets of states. Purely considering the nonnegative case is not
an option because negative costs have shown to make the
heuristics stronger (Pommerening et al. 2015).

In our experiments, we use the following mechanism to
select a saturated transition cost function: If an operator o
holds that the saturated transition cost function assigns the
same value to every transition with label o, then we use the
first solution idea because the same remaining cost is avail-
able for subsequent heuristics. Otherwise, we use a weaker
notion of the second solution idea where we replace each

stcf(t) = −∞ by 0. We found it prohibitively expensive in
our experiments to saturate with stcf(t) = −∞. The satu-
rated transition cost stcf (t) = −∞ typically occurs in dead
end states or unreachable states. Intuitively speaking, this
replacement corresponds to focus the computational effort
on the subset of states S′. It preserves the same heuristic
estimates but leaves fewer remaining costs for subsequent
heuristics. We denote transition saturators that use this se-
lection mechanism with additional superscript r, e.g. reachr

t .
The proposed solution ideas enable many options to de-

sign selection mechanisms, which we leave open for future
work.

Negative costs in saturator inputs
We conclude the section of transition saturators with a dis-
cussion of the concern about the heuristic reevaluation un-
der different types of transition cost functions. Transition
saturators also require the ability to reevaluate the heuris-
tic under the given input transition cost function. The first
reevaluation under remaini is generally not too costly be-
cause remaini is always nonnegative if the cost function
given with the planning task is nonnegative (as in classical
planning). However, if a transition saturator saturates for a
subset of states S′ and we later reevaluate the heuristic for
states s /∈ S′, then this requires algorithms like Bellman-
Ford if the saturated transition cost function contains nega-
tive costs (Seipp and Helmert 2019).

In contrast to the operator saturators, a transition satura-
tor has the ability to tighten the consistency constraint set
to each transition. In this case, a heuristic does not change
its estimates after reevaluation under the saturated transi-
tion cost function. Therefore, we can directly extract the
heuristic from the output of the saturator. However, when
selecting a saturated transition cost function that does not
tighten each consistency constraint, then the heuristic might
change after reevaluation. Seipp and Helmert (2019) found
it prohibitively expensive to reevaluate the heuristic with
Bellman-Ford and they suggest directly extracting a heuris-
tic lower bound from the output of the saturator, trading
heuristic accuracy with performance.

Experiments
We implemented all transition saturators into the Fast Down-
ward planning system (Helmert 2006). Similar to modern
symbolic search planners, we utilize decision diagrams for
compact representation and computation of sets of states
(Kissmann and Edelkamp 2014; Torralba et al. 2014; Speck,
Geißer, and Mattmüller 2018). More specifically, we use
the CUDD library (Somenzi 1994) for Binary Decision Di-
agrams with the default fast-downward variable order to
represent and compute transition cost functions. We con-
ducted experiments with the Downward Lab toolkit (Seipp
et al. 2017) on Intel Xeon E5-2650v2 2.60GHz processors
with 64GB DDR3 1866MHz ECC registered memory. The
benchmark set consists of all 1827 instances from the op-
timization track of the 1998-2018 International Planning
Competitions that do not have conditional effects. Each task
was limited to a single core with 4GB of memory and a

time limit of 30 minutes. We consider the same set of ab-
straction as the initial work on cost saturation with opera-
tor saturators (Seipp and Helmert 2019) that consists of all
CEGAR abstractions with the goal and landmark diversifi-
cation technique (Seipp and Helmert 2014), the systematic
pattern databases (Pommerening, Röger, and Helmert 2013)
and the pattern databases found by hill-climbing (Haslum et
al. 2007). We order the abstractions using the static greedy
order with the scoring function h

stolen , that measures how
well a heuristic balances the two objectives of having a high
heuristic estimate and stealing low costs from other heuris-
tics (Seipp, Keller, and Helmert 2020). We consider only the
single order that is optimized for a high heuristic estimate
of the initial state. We optimize the order independent of the
transition saturator for a fair comparison. All benchmarks,
code, and experimental data have been published online3.

We write saturate1,saturate2 for the composition
saturate12 of saturators where the output of saturate1 is
applied to the input of saturate2.

We write saturate1+saturate2 to denote that saturate2 is
an additional run of cost saturation on the remaining cost
after computing a saturated transitioncost partitioning with
saturate1. The saturated transition cost functions of both
runs form a cost partitioning. Hence, summing up the heuris-
tic estimates of both runs yields an admissible heuristic.
Postponing additional runs of cost saturation makes sense
if there are potentially unused costs available.

If not explicitly mentioned, a transition saturator compo-
sition always uses the transition saturator spdt first. For ex-
ample allt corresponds to spdt,allt.

Comparison of transition saturators Table 1a shows the
pairwise comparison of a set of transition saturators that we
obtain using Theorems 2, 3, 4, and the knowledge from pre-
vious work about operator saturators. We simulate the sat-
urated transition cost partitioning with the transition satu-
rator allt (without spdt) and subset-saturated transition cost
partitioning and obtain coverage of 974 tasks. Composition
with spdt clearly pays off because allt has a coverage of 984
tasks and guarantees computing the same heuristics. Select-
ing the saturated transition cost function that replaces neg-
ative infinities by zero allrt also pays off because the cover-
age increases to 1003 tasks, and the estimate of the initial
state is worse in only 4 tasks. Preserving the heuristic esti-
mates of reachable state states reachr

t shows small improve-
ments. Preserving the heuristic estimates of only the initial
state lpr

t +reachr
t wins the most pairwise comparison for the

heuristic estimate of the initial state but solves only 766
tasks. Our best transition saturator is reach+

t ,perimr
t +reachr

t
that solves 1016 tasks and wins the second most pairwise
comparisons for the heuristic estimate of the initial state.
The transition saturator perimt most effectively improves
heuristic accuracy.

Comparison with operator saturators Table 1b shows
the pairwise comparison of a set of operator saturators

3https://doi.org/10.5281/zenodo.4065414

al
l t

(w
ith

ou
ts

pd
t)

al
l t

al
lr t

re
ac

hr t

lp
r t+

re
ac

hr t

pe
ri

m
r t+

al
lr t

re
ac

h+ t
,p

er
im

r t+
re

ac
hr t

allt (without spdt) - 0 4 17 36 31 33
allt 0 - 4 17 36 32 33
allrt 0 0 - 13 34 33 34
reachr

t 49 49 69 - 30 42 35
lpr

t+reachr
t 370 370 400 397 - 137 131

perimr
t+allrt 444 447 475 468 68 - 8

reach+
t , perimr

t+reachr
t 445 448 477 474 67 20 -

Coverage 974 984 1003 1003 766 1014 1016

(a) Comparison of transition saturators

al
l o

pe
ri

m
o+

al
l o

al
l t

(w
ith

ou
ts

pd
t)

re
ac

h+ t
,p

er
im

r t+
re

ac
hr t

allo - 53 153 51
perimo+allo 485 - 370 49
allt (without spdt) 330 219 - 33
reach+

t , perimr
t+reachr

t 645 384 445 -

Coverage 1035 1042 974 1016

(b) Comparison with operator saturators

Table 1: Per-task comparison of the initial h-value for a sub-
set of all saturator compositions. In every pairwise compar-
ison we consider the tasks for which both transition satu-
rators finished computing the initial heuristic estimate. The
entry in row r and column c indicates the number of tasks
where r returns a transition cost partitioning with a better
initial heuristic value than c. Boldface is used to indicate the
winner in the pairwise comparison (r, c) and (c, r).

and transition saturators. We simulate saturated opera-
tor cost partitioning with the operator saturator allo. We
choose the best operator saturator perimo+allo for subset-
saturated operator cost partitioning. We simulate saturated
transition cost partitioning with the transition saturator allt
(without spdt). We choose the best transition saturator
reach+

t ,perimr
t +reachr

t for subset-saturated transition cost
partitioning.

Operator saturators solve more tasks compared to tran-
sition saturators with 1042 against 1016 solved tasks. This
shows that selecting more efficient saturated transition cost
functions is crucial for further improvements. The best tran-
sition saturator computes significantly fewer heuristics with
a lower estimate for the initial state than other saturators
(rightmost column). Furthermore, the best transition satu-
rator wins the most pairwise comparisons for the heuristic
estimate of the initial state and shows that subset-saturated
transition cost partitioning computes more informed heuris-
tics than previous saturators.

Coverage al
l o

pe
ri

m
o+

al
l o

al
l t

(w
ith

ou
ts

pd
t)

re
ac

h+ t
,p

er
im

r t+
re

ac
hr t

driverlog (20) 15 15 13 14
elevators-opt08-strips (30) 20 20 21 18
elevators-opt11-strips (20) 17 17 18 15
floortile-opt11-strips (20) 4 3 0 1
freecell (80) 65 65 47 47
ged-opt14-strips (20) 15 15 19 19
miconic (150) 110 110 109 113
mprime (35) 28 27 28 27
nomystery-opt11-strips (20) 20 20 13 13
parcprinter-08-strips (30) 17 18 16 19
parcprinter-opt11-strips (20) 13 14 12 15
pipesworld-notankage (50) 22 22 22 23
scanalyzer-08-strips (30) 13 13 10 10
scanalyzer-opt11-strips (20) 10 10 7 7
snake-opt18-strips (20) 13 12 13 13
tetris-opt14-strips (17) 11 10 11 11
transport-opt08-strips (30) 14 14 13 13
transport-opt11-strips (20) 10 10 9 8
transport-opt14-strips (20) 8 8 8 7
woodworking-opt08-strips (30) 20 20 19 26
woodworking-opt11-strips (20) 14 14 13 18
zenotravel (20) 13 13 7 7

Sum (1827) 1035 1042 974 1016

Table 2: Per domain coverage. Contains all domains where
the best operator saturator perimo+allo solves more tasks
than the best transition saturator reach+

t , perimr
t +reachr

t or
vice versa.

Per domain coverage Table 2 shows the per domain cov-
erage of a relevant subset of all domains. The best transition
saturator reach+

t ,perimr
t +reachr

t performs badly in the do-
mains freecell, zenotravel, and nomystery, and it performs
well in domains woodworking, ged and miconic. Further-
more, we see a favor for transition cost partitioning in do-
mains where optimal plans contain an action multiple times.
Intuitively, if an optimal plan contains an action multiple
times, it applies the action in different states. Otherwise, the
plan would not be optimal because it contains a cycle. How-
ever, duplicate actions in optimal plans are not necessary for
transition cost partitioning to give more informed heuristics.

Future work
Finding better variable orderings for decision diagrams can
further improve the performance and lower the risk of un-
manageable large decision diagrams (Keller et al. 2016).

Another important problem to solve is finding mecha-
nisms to select saturated transition cost functions that are
computationally easier to handle but still allow us to profit

from more expressive cost assignments. Other selection
mechanisms can provide us with polynomial-size guarantees
for the representations of transition cost functions during
saturated cost partitioning. The question is whether or not
such smaller representations are capable of carrying enough
context information that allows computing better cost parti-
tioned heuristics.

Conclusion
We introduced subset-saturated transition cost partitioning
that combines saturated transition cost partitioning with the
concepts of preserving the heuristic estimates of a subset of
states.

Our empirical evaluation shows that more expressive tran-
sition cost functions still require too much computational
overhead but leads to more informed heuristics. Further-
more, subset-saturated transition cost partitioning lowers the
risk of getting heuristics that are worse than heuristics of
subset-saturated operator cost partitioning. In other words,
the greediness of cost saturation becomes less problematic.

Subset-saturated transition cost partitioning allows select-
ing from a larger solution set of saturated transition cost
functions. Crucial for further improvements is selecting sat-
urated transition cost functions that are computationally eas-
ier to handle and still allowing us to obtain better cost par-
titioned heuristics by considering more expressive cost as-
signments.

Acknowledgements
David Speck was supported by the German Research Foun-
dation (DFG) as part of the project EPSDAC (MA 7790/1-
1). We sincerely thank the anonymous reviewers for their
insightful and detailed comments.

References
Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.
Geißer, F.; Keller, T.; and Mattmüller, R. 2016. Abstrac-
tions for planning with state-dependent action costs. In Proc.
ICAPS 2016, 140–148.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2):100–107.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In Proc. AAAI
2007, 1007–1012.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
Proc. ICAPS 2007, 176–183.
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Holte, R.; Newton, J.; Felner, A.; Meshulam, R.; and Furcy,
D. 2004. Multiple pattern databases. In Proc. ICAPS 2004,
122–131.

2014. IPC-8 planner abstracts.
Katz, M., and Domshlak, C. 2008. Optimal additive com-
position of abstraction-based admissible heuristics. In Proc.
ICAPS 2008, 174–181.
Keller, T.; Pommerening, F.; Seipp, J.; Geißer, F.; and
Mattmüller, R. 2016. State-dependent cost partitionings for
Cartesian abstractions in classical planning. In Proc. IJCAI
2016, 3161–3169.
Kissmann, P., and Edelkamp, S. 2014. Gamer and dynamic-
gamer – symbolic search at ipc 2014. In IPC-8 planner ab-
stracts (2014), 77–84.
Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J.
2015. From non-negative to general operator cost partition-
ing. In Proc. AAAI 2015, 3335–3341.
Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting
the most out of pattern databases for classical planning. In
Proc. IJCAI 2013, 2357–2364.
Pommerening, F. 2017. New Perspectives on Cost Parti-
tioning for Optimal Classical Planning. Ph.D. Dissertation,
University of Basel.
Seipp, J., and Helmert, M. 2013. Counterexample-guided
Cartesian abstraction refinement. In Proc. ICAPS 2013,
347–351.
Seipp, J., and Helmert, M. 2014. Diverse and additive Carte-
sian abstraction heuristics. In Proc. ICAPS 2014, 289–297.
Seipp, J., and Helmert, M. 2019. Subset-saturated cost parti-
tioning for optimal classical planning. In Proc. ICAPS 2019,
391–400.
Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M.
2017. Downward Lab. https://doi.org/10.5281/zenodo.
790461.
Seipp, J.; Keller, T.; and Helmert, M. 2017. A comparison of
cost partitioning algorithms for optimal classical planning.
In Proc. ICAPS 2017, 259–268.
Seipp, J.; Keller, T.; and Helmert, M. 2020. Saturated cost
partitioning for optimal classical planning. JAIR 67:129–
167.
Somenzi, F. 1994. Cudd: colorado university decision dia-
gram package - release 3.0.0.
Speck, D.; Geißer, F.; and Mattmüller, R. 2018. SYMPLE:
Symbolic Planning based on EVMDDs. In IPC-9 planner
abstracts, 91–94.
Szepesvári, C. 2004. Shortest path discovery problems: A
framework, algorithms and experimental results. In Proc.
AAAI 2004, 550–555.
Torralba, Á.; Alcázar, V.; Borrajo, D.; Kissmann, P.; and
Edelkamp, S. 2014. SymBA*: A symbolic bidirectional
A* planner. In IPC-8 planner abstracts (2014), 105–109.
Torralba, Á.; Linares López, C.; and Borrajo, D. 2018. Sym-
bolic perimeter abstraction heuristics for cost-optimal plan-
ning. AIJ 259:1–31.

