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Abstract— Localization and mapping on autonomous robots
typically requires a good pose estimate, which is hard to
acquire if the vehicle is tracked. In this paper we describe
a solution to the pose estimation problem by utilizing a
consumer-quality camera and an Inertial Measurement Unit
(IMU). The basic idea is to continuously track salient features
with the KLT feature tracker [12] over multiple images taken
by the camera and to extract from the tracked features
image vectors resulting from the robot’s motion. Each image
vector is taken for a voting that best explains the robot’s
motion. Image vectors vote according to a previously trained
tile coding classificator that assigns to each possible image
vector a translation probability. Our results show that the
proposed single camera solution leads to sufficiently accurate
pose estimates of the tracked vehicle.

I. INTRODUCTION

Methods in the field of Simultaneous Localization and
Mapping (SLAM) are usually limited to be applied to
wheeled robots operating within a 2D or close to 2D
environment. This is due to the fact that these methods
require a good estimate of the robot’s pose, which is typi-
cally estimated from shaft encoders mounted on the robot’s
wheels or from a scanmatching algorithm applied to range
measurements of a Laser Range Finder (LRF). However,
the latter can only be applied within a 3D environment if
the robot is surrounded by continuous walls, which is, for
example, the case within buildings [11] and mines [9]. After
a disaster, as for example an earth quake, the structure of
the environment can be in any shape, and hence the robot is
exposed to the full 3D problem, e.g. with strong structural
variation in the vertical direction.

Figure 1 depicts typical 3D structures, such as stairs
(Figure 1(a)) and random stepfields (Figure 1(b)) as found
within the test arenas of the National Institute for Standards
and Technology (NIST). On such obstacles, tracks are even
more likely to slip during locomotion, and the measurement
of their revolutions might not be reliable, and hence pose
tracking via shaft encoders nearly impossible. Also pose
tracking from LRF data is much harder since 2D LRFs
are insufficiently reflecting the environmental structure,e.g.
minor variations in the vehicle’s roll might lead to major
variations in the range measurements obtained from the
LRF.

In this paper we describe a solution to the pose estimation
problem of a tracked robot by utilizing a consumer-quality

(a) (b)
Fig. 1. TheLurker robot during the RoboCup Rescue competition
in Osaka. (a) climbing stairs and (b) searching for victims in a
large random stepfield.

camera and an Inertial Measurement Unit (IMU). Our final
goal is to utilize this pose estimate for making autonomous
and semi-autonomous behavior on complex obstacles, as
shown in Figure 1, possible, and to perform SLAM on
tracked robots driving on the ground.

We assume that the robot most likely moves according
to its heading and the underlying surface, i.e. it does not
translate sidewards, downwards, and upwards. We also as-
sume that the IMU provides sufficiently accurate estimates
of the three Euler anglesyaw, roll , andpitch. Furthermore,
revolutions of the tracks are limited to constant velocities,
either forward, backward, or none.

The basic idea is to track salient features continuously
with the KLT feature tracker [12] over multiple images
taken by the camera and to calculate from the tracked
features difference vectors that indicate the robot’s motion.
Since we estimate rotations by the IMU and thus are
only interested in determining translations from the images,
vectors that are affected by rotations are filtered out in
advance. From the filtered set of vectors the true translation
of the robot is determined based on the voting of all single
translation vectors. Each vector votes for one of the possible
translations according to a previously trainedtile coding
classificator.

The remainder of this paper is structured as follows.
In Section II we discuss related work. In Section III we
introduce the sensors and experimental platform utilized for
the evaluation of the introduced method. In Section IV we
describe the tracking and filter algorithm, and in Section V
the classification and voting approach. Finally, we provide
results from real world experiments in Section VI and
conclude in Section VII.



II. RELATED WORK

Corke and his colleagues introduced a solution for visual
odometry in the context of a planar rover equipped with
an omni-directional vision system [2]. In contrast to our
work, which also aims at indoor application, they assume
that the robot operates in a large plane, as usually the case
on planetary analog environments. Nister and colleagues
present a system for visual odometry that works with single
and stereo vision, respectively [8]. Their results generally
show that the data processing of a stereo system leads to
a highly accurate estimate of the robot’s pose, which has
also been confirmed by other researchers’ work [4], [7]. The
usage of a stereo system has generally the advantage that
the correspondence between features moving within images
and the real movement of the robot is directly provided by
the vision system. This is particularly important if the robot
moves with different velocities. However, results proposed
in this paper show that with the simplified kinematics of
tracked robots, a single but lightweight camera solution can
also lead to sufficiently accurate pose estimates.

III. E XPERIMENTAL PLATFORM

(a) (b)
Fig. 2. The hardware utilized for the visual odometry system:
(a) an Inertial Measurement Unit (IMU) fromIntersense, (b) the
widely usedLogitech QuickCam Pro 4000.

In order to determine the robot’s orientation, we utilize
a 3-DOF IMU of the typeIntertiaCube2 [5] (see Fig-
ure 2(a)). One advantage of this sensor is that, due to its
internal compass, measurements are drift free, i.e. errors
do not accumulate over time. For feature tracking we use
a common web cam, known asLogitech QuickCam Pro
4000 [6] (see Figure 2(b)). This device has a particularly
low power consumption, is lightweight (< 300g), and can
be connected via USB to a wide range of computers.

Experiments were carried out on a tracked robot (shown
in Figure 1) and on a wheeled robot (not shown) that
was additionally equipped with four shaft encoders and a
Hokuyo URG-X003LRF. The latter system has been used
for generating the ground truth of the robot’s pose while
operating in 2D environments.

IV. FEATURE TRACKING

In general, an image sequence can be described by a
discrete valued functionI(x, y, t), wherex, y describe the
pixel position andt describes the time. We assume that

features detected in an image also appear in the subsequent
image, however translated byd = (ξ, η)T :

I(x, y, t + τ) = I(x − ξ, y − η, t) (1)

Usually, a feature tracker tries to determine this translation
by minimizing the squared errorε over a tracking window.
For brevity we defineI(x, y, t+τ) asJ(x) andI(x−ξ, y−
η, t) as I(x − d), leading to the following error measure
with a weighting functionw. [12]

ε =

∫

W

[I(x − d) − J(x)]2wdx (2)

To facilitate the process of feature tracking, the selection of
appropriate features, i.e. features that are easily to distin-
guish from noise, is necessary. Hence, features that show
light-dark changes, e.g. edges, corners, and crossings, are
selected with high probability by the KLT feature tracker.
In Figure 3, examples of KLT’s adaptive feature selection
and the tracking over a series of images are shown. For our
purpose we use an implementation of the KLT tracker by
Stan Birchfeld. [1]

(a) (b)

(c) (d)
Fig. 3. KLT feature tracking: (a), (b) Features shown by red dots
are adaptively selected within images. (c), (d) Feature tracking
over two subsequent images. The vectors between two correspond-
ing features, shown by red lines, indicate the movement of the
camera. (d) The tracking over a series of five images.

A. Tracking over a series of images

Our main goal is to determine the robot’s forward or
backward movement. However, when traversing obstacles,
the robot’s motion is not a exclusively forward or backward
motion. It is overlaid with noise that originates from
slippage of the tracks and shaking of the robot’s body due
to rough terrain, leading to additional up- or downward
movements.

Since the above described effects usually do not accu-
mulate over time, and hence can be reduced, our method
generates trackings over multiple frames, rather than to
perform single frame trackings only. This is achieved by



saving single trackings between two subsequent images,
up to a maximal amount, in a buffer. If trackings of the
same feature coexist over more than two images, their cor-
responding translation vectorsdi,di+1, ...,dk are replaced
by a single translation vectordik, consisting of the vector
sum of all trackings betweendi anddk.

The summed translation vector is more robust compared
to single trackings, since it averages out irregular jitter
effects. We assign to each tracking a weightwik = |k − i|
in order to reward trackings over multiple frames1.

B. Filtering of Rotations

Since we focus on the translation estimation from image
sequences, rotations have to be filtered out in advance.
However, due to the high latency time of the employed
camera system (a web cam connected via USB 1.1), this
can only be accurately achieved on the image data directly,
which will be described in this section.

Given a feature tracking between two images of the
form (xi, yi) → (xj , yj), which includes a rotation around
the point rx, ry with angleα, one can derive with given
rotation matrixR (.), a corresponding rotation free tracking
(xi, yi) → (x′

j , y
′
j) after the following equation:

(x′
j , y

′
j) = (rx, ry) + R(−α) · (xj − rx, yj − ry) (3)

Therefore, in order to perform the filtering of rotations, one
has to determine the rotation center(rx, ry) and rotation
angleα.

Rotating points of different radii describe concentric
circles around the rotation center. If considering
two feature trackings whose features are lying
on a circle, one can see that the perpendicular
bisectors of the two lines, respectively connecting
start- and endpoint of each feature tracking, subtend
in the rotation center, as shown by Figure 4(a).

(a) (b)
Fig. 4. (a) The perpendicular bisectors of the side (green) of the
tracking vectors (red) subtend at the center of the circle (magenta).
(b) Example of the Monte Carlo algorithm: The perpendicular
bisectors of the side (green) point to the center of rotation
(magenta). Red dots depict the sampled intersection points.

1Note that these weights are used during the voting process, which will
be described in Section V.

Algorithm 1: Sample up to n possible centers of
rotation
Input: A set of feature trackings: T
Output: A set of calculated intersection points:C

C = ∅;
for i = 0; i < n; i++ do

t1 ← selectRandomFeatureTracking( T ) ;
t2 ← selectRandomFeatureTracking( T ) ;
s1 ← calculatePerpendicularBisector( t1) ;
s2 ← calculatePerpendicularBisector( t2) ;
(cut, det) ← calculateIntersectionPoint( s1,
s2) ;
if det < minDeterminantthen

continue ;
end
C ← C ∪ cut;

end

We exploit this property with a Monte Carlo algorithm
for estimating the true center of rotation (see Figure 4(b)).
First, up ton possible centers of rotation are sampled from
the set of feature trackingsT by algorithm 1. Second,
all sampled centers of rotation are put into a histogram,
whereas the final center is determined by the histogram’s
maximum.

Furthermore, one has to determine the rotation angle,
which can be done by calculating the vector cross product.
Given a feature tracking(xi, yi) → (xj , yj) rotated around
(rx, ry) by α, one can calculate the cross product consid-
ering the start- and endpoint of the feature trackings as
endpoints of vectors starting at the rotation center. Suppose
vi = (xi − rx, yi − ry)T andvj = (xj − rx, yj − ry)T are
vectors derived from tracking images I and J, respectively.
Then, the angle between these vectorsα = ∠(vi, vj) can
be calculated from the cross product as follows.

vi × vj = ||vi|| · ||vj || · sin(α) (4)

Given the rotation center(rx, ry) from the previous es-
timation, one can determine the true rotation angleα

by averaging over rotation angles from all single feature
trackings.

Finally, it is necessary to prevent the algorithm to be
executed on rotation free sequences. This is achieved by
only adding a center of rotation to the histogram, if it is
located within the bounding box of the image. Center of
rotations that are far from the bounding box are most likely
due to quasi-parallel feature translations, which in turn
indicate a rotation free movement. If the number of centers
of rotation is bellow a thresholdλ, the transformation of
Equation 3 is not applied. We determined experimentally
λ = 10.

V. CLASSIFICATION

From the set of filtered translation vectors, one can
determine the robot’s translation. However, the projec-
tion from translation vectors of the vision system to the
robot’s translation depends on the intrinsic parameters of



(a) (b)
Fig. 5. Example of the rotation correction while the robot changes
the angles of its front flippers. The feature vectors before (a) and
after (b) the correction.

the camera, e.g. focal length and lens distortion, and on
the extrinsic parameters of the camera, e.g. the translation
and rotation relative to the robot’s center. This projection
can either be determined analytically or by a mapping
function. Due to the assumption of a simplified kinematic
model, we decided to learn this mapping with a function
appproximator described in this section.

Figure 6 depicts the effects from vehicle translation if
the camera is mounted towards the driving direction and
perpendicular to it. As can clearly be seen, forward and
backward translations are easier to detect if the camera is
mounted perpendicular, hence we decided, without loss of
generality, to mount the camera in this way.

(a) (b)
Fig. 6. The effect of the robot’s forward translation regarding two
different ways of mounting the camera on the vehicle: (a) towards
the driving direction and (b) perpendicular to it. As can be seen by
the vector length, the latter arrangements allow an easier detection
of translation.

A. Learning of classification probabilities

The learning is based on data collected and automatically
labeled during teleoperation runs under mild conditions,
i.e. without heavy slippage. During a second phase, the
data labeling has been verified on a frame to frame basis.
This procedure allows the efficient labeling of thousands
of trackings since single images contain several features.
Each labeled tracking is described by the class assign-
ment c ∈ C and the vectorv = (x, y, l, α)T , where
x, y denotes the origin in the image,l the vector length
and α the vector heading. As already mentioned, class
assignments are regarding the robot’s translation, e.g.C =
{forward, backward, ...}.

Given the labeled data, tile coding [10] function approx-
imation is used for learning the probability distribution

P (c | x, y, l, α). (5)

Tile coding is based on tilings which discretize the input
space in each dimension. Shape and granularity of these
discretizations can be adjusted according to the task, for ex-
ample, the discretizations regarding the originx, y has been
chosen coarse due to minor local differences regarding the
correlation with the class assignment. Furthermore, tilings
are overlaid with a randomized offset in order to facilitate
generalization. During learning each tile is updated after

wi+1 = wi + α · (pi+1 − wi), (6)

wherewi is the weight stored in the tile,pi ∈ {0, 1} the
class probability, andα the learning rate, which is set to
α = 1

m
, wherem is the number of total update steps, in

order to ensure normalized probabilities.

B. Classification by voting

Based on the probability distribution in equation 5, each
vectorvi votes individually for a class assignmentci with
respect to its location, length and heading:

ci = argmax
c∈C

P (c | xi, yi, li, αi) (7)

Let ck
i = I (ci = k) be the class indicator function, which

returns 1 if ci = k and otherwise0. Then, the final
classificationa can be decided based on the maximal sum
of weighted individual votes from each vector:

a = argmax
k∈C

N
∑

i=1

ck
i · wi (8)

Note thatwi increases according to the number of times
the underlying feature has successfully been tracked by the
feature tracker described in Section IV.

C. Generating odometry using a IMU

In order to determine the distanced traveled between
two imagesI and J , we assume a constant translational
velocity vT of the robot2. Given time stamptj and ti of
imageI andJ , respectively,d can be calculated by:

d =











vT · (tj − ti) if class = forward

−vT · (tj − ti) if class = backward

0 otherwise

(9)

Finally, we calculate from the yaw angleθ of the IMU and
the robot’s last pose(xold, yold, θold)

T the new pose of the
robot:

(xnew, ynew, θnew)T = (xold+d·cos(θ), yold+d·sin(θ), θ)T

(10)

2Note that this value could also be automatically be adjusted according
to the vehicles current set-velocity.



Run Trav. dist. [m] Vis. odo. [cm/m] Wh. odo. [cm/m]

lab 1 (2D) 91.53 7.82 ± 1.84 6.17 ± 1.54

lab 2 (2D) 73.72 8.25 ± 2.46 7.59 ± 1.94

cellar (2D) 98.40 10.72 ± 4.68 11.77 ± 4.42

ramp (3D) 6.36 13.28 ± 9.2 -
palette (3D) 2.37 22.08 ± 8.87 -

TABLE I

RELATIVE ERROR OF THE VISUAL ODOMETRY AND WHEELED

ODOMETRY COMPARED TO GROUND TRUTH DATA(EITHER MANUALLY

MEASURED FOR3D RUNS OR ESTIMATED BY SCANMATCHING FOR2D

RUNS).

VI. EXPERIMENTAL RESULTS

Extensive experiments have been carried out on both
the tracked robotLurker, operating on 3D obstacles, and
the wheeled robotZerg, operating on flat surfaces (see
Section III for a description of these robot platforms).
The 2D setting has the advantage that results from the
visual odometry system can directly be compared with
accurate ground truth data. We determine position ground
truth from shaft encoder and IMU measurements, which
are processed by dead reckoning, and ranges measured by
a Hokuyo URG-X003 Laser Range Finder (LRF), which
are processed by a scanmatching method [3]. Ground truth
on 3D obstacles was measured manually.

Table I gives an overview on the measured mean and
standard deviation of the relative distance error from visual
odometry and wheeled odometry on both robot platforms.
Since we are mainly interested in tracked vehicles, theZerg
kinematics has been modified in order to be similar to that
of tracked vehicles, i.e. to allow only a subset of possible
velocities, which are in case of theLurker robot: stop,
forward, andbackward.

The results clearly show that on theZerg platform the
visual odometry reaches an accuracy comparable to the
conventional odometry and thus could possibly replace or
support it. In the cellar environment, the visual odometry
turned out to be even superior, which can be explained by
the higher degree of wheel slippage that we noticed within
this harsh environment.

Figures 7 (a) and (b) depict the accumulation of the
distance error of both the visual odometry and wheeled
odometry, within the lab and cellar environment, respec-
tively. The robot’s visual odometry-based trajectories from
the robotic lab and cellar are shown in Figure 8.

The real advantage of the visual odometry, however,
reveals if the robot operates on 3D obstacles. The results
in Table I indicate that the introduced method, if applied
while operating on 3D obstacles, provides reasonable mea-
surements of the robot’s motion. We are confident that
these results are sufficient for controlling the execution
of behaviors, and probably also allow first steps towards
SLAM on 3D obstacles. Figures 9 (a) and (b) depict the
accumulation of the distance error during locomotion over
3D obstacles.
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Fig. 7. The accumulating distance error of the visual odometry
method compared to conventional shaft encoder odometry: (a)
measured in the robotic lab, a5m×5m squared area. (b) measured
in a cellar of 15m × 50m on the campus of the University of
Freiburg.

The results indicate that, in case of tracked robots, the
tile coding classification and voting applied to a simple
kinematic model lead to sufficiently accurate results. From
log files it has been determined that during thecellar run
87% (96%), the ramp run 81% (93%), and thepalette
run 94% (99%) of the classifications detected the correct
motion of the robot, whereas numbers in brackets denote
the voting-based improvement.

While processing an image resolution of320 × 240
on a IntelPentiumM, 1.20GHz, we measured for the
complete processing without KLT feature tracking an av-
erage processing time of24.08 ± 0.64ms. This leads,
together with the feature tracker, to a maximal frame rate
of 5.34 ± 1.17Hz. If processing an image resolution of
160 × 120, the complete processing without KLT feature
tracking needs8.68 ± 0.3ms and allows a total frame
rate of 17.27 ± 1.81Hz. Experiments proposed in this
paper were carried out with the higher resolution. However,
experiments with the lower resolution showed, that the
results lead to a comparable accuracy.



(a)

(b)
Fig. 8. Trajectories, generated by the visual odometry, projected
onto the maps of (a) the robotic lab and (b) the cellar of building
52 on the campus of the University of Freiburg, respectively.

VII. C ONCLUSION

We proposed an efficient method for visual odometry
that can be applied in the context of tracked vehicles. The
method has been evaluated with a cheap camera system
(below 50 US$) that can be connected to nearly every com-
puter. As our results show, the accuracy of the method, if
applied while driving on flat surfaces, is comparable to that
one found on wheeled robots, and, if applied while climbing
3D obstacles, leads to reasonable pose estimates, which for
example can be taken as a basis for the autonomous control
of the vehicle.

In future work we will evaluate the method further for
the execution of autonomous behaviors on obstacles and
for SLAM and Monte Carlo Localization (MCL) while
driving in the plane. Furthermore, we would like to decrease
the latency of the system in order to allow even higher
frame rates, and also to allow the pose estimation by more
than one camera, i.e. to capture also translations into the
other two dimensions. We are confident that the perfor-
mance of the system can easily be increased by reducing
the resolution of the camera, and also by decreasing the
number of features by selecting them more specific to the
environment.
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