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Abstract— Localization and mapping on autonomous robots
typically requires a good pose estimate, which is hard to
acquire if the vehicle is tracked. In this paper we describe
a solution to the pose estimation problem by utilizing a
consumer-quality camera and an Inertial Measurement Unit
(IMU). The basic idea is to continuously track salient features
with the KLT feature tracker [12] over multiple images taken
by the camera and to extract from the tracked features
image vectors resulting from the robot's motion. Each image %
vector is taken for a voting that best explains the robot’s (a) (b)
motion. Image vectors vote according to a previously trained Fig. 1. TheLurker robot during the RoboCup Rescue competition
tile coding classificator that assigns to each possible imagein Osaka. (a) climbing stairs and (b) searching for victims in a
vector a translation probability. Our results show that the large random stepfield.
proposed single camera solution leads to sufficiently accurate
pose estimates of the tracked vehicle.

camera and an Inertial Measurement Unit (IMU). Our final
goal is to utilize this pose estimate for making autonomous
Methods in the field of Simultaneous Localization angnd semi-autonomous behavior on complex obstacles, as
Mapping (SLAM) are usually limited to be applied toshown in Figure 1, possible, and to perform SLAM on
wheeled robots operating within a 2D or close to 2@racked robots driving on the ground.
environment. This is due to the fact that these methodswe assume that the robot most likely moves according
require a good estimate of the robot's pose, which is typo its heading and the underlying surface, i.e. it does not
cally estimated from shaft encoders mounted on the roboffanslate sidewards, downwards, and upwards. We also as-
wheels or from a scanmatching algorithm applied to rang@me that the IMU provides sufficiently accurate estimates
measurements of a Laser Range Finder (LRF). HowevgF,the three Euler anglegaw, roll, andpitch. Furthermore,
the latter can only be applied within a 3D environment ifevolutions of the tracks are limited to constant velositie
the robot is surrounded by continuous walls, which is, fafither forward, backward or none
example, the case within buildings [11] and mines [9]. After The basic idea is to track salient features continuously
a disaster, as for example an earth quake, the StrUCtUrQA% the KLT feature tracker [12] over mu|t|p|e images
the environment can be in any shape, and hence the robagiken by the camera and to calculate from the tracked
exposed to the full 3D problem, e.g. with strong structurgatures difference vectors that indicate the robot’s amti
variation in the vertical direction. Since we estimate rotations by the IMU and thus are
Figure 1 depicts typical 3D structures, such as staighly interested in determining translations from the insage
(Figure 1(a)) and random stepfields (Figure 1(b)) as fouR@ctors that are affected by rotations are filtered out in
within the test arenas of the National Institute for Staddar gdvance. From the filtered set of vectors the true translatio
and Technology (NIST). On such obstacles, tracks are evgithe robot is determined based on the voting of all single
more likely to slip during locomotion, and the measuremeftanslation vectors. Each vector votes for one of the paessib
of their revolutions might not be reliable, and hence POsEanslations according to a previously trainglé coding
tracking via shaft encoders nearly impossible. Also posgassificator.
tracking from LRF data is much harder since 2D LRFs The remainder of this paper is structured as follows.
are insufficiently reflecting the environmental struct@®. |n Section Il we discuss related work. In Section Il we
minor variations in the vehicle’s roll might lead to majolintroduce the sensors and experimental platform utilized f
variations in the range measurements obtained from th evaluation of the introduced method. In Section IV we
LRF. describe the tracking and filter algorithm, and in Section V
the classification and voting approach. Finally, we provide
In this paper we describe a solution to the pose estimatioesults from real world experiments in Section VI and
problem of a tracked robot by utilizing a consumer-qualitgonclude in Section VII.

I. INTRODUCTION



Il. RELATED WORK features detected in an image also appear in the subsequent

. “ T
Corke and his colleagues introduced a solution for visul"@ge, however translated lly= (¢,7)":

odometr_y in th.e contfe)ft of a planar rover equipped with Iz, y,t+7)=Iz—&y—n,t) 1)
an omni-directional vision system [2]. In contrast to our ) ) . )
work, which also aims at indoor application, they assuniésually, a feature tracker tries to determine this traitstat
that the robot operates in a large plane, as usually the cR¥eMinimizing the squared errerover a tracking window.
on planetary analog environments. Nister and colleagu@r brevity we defind (z,y,t+7) as.J(x) andI(z—¢,y—
present a system for visual odometry that works with single t) @s I(x — d), leading to the following error measure
and stereo vision, respectively [8]. Their results gemgralWith a weighting functionw. [12]
show that the data processing of a stereo system leads to 5

; : , ; e= | [I(x—d)—J(x)] wdx 2
a highly accurate estimate of the robot’s pose, which has W

also been confirmed by other researchers’ work [4], [7]. ThF‘o {acilitate the process of feature tracking, the selectib
usage of a stereo system has generally the advantage tha

. .2~ gppropriate features, i.e. features that are easily taneist
the correspondence between features moving within imal o
o : Uish from noise, is necessary. Hence, features that show
and the real movement of the robot is directly provided q

the vision system. This is particularly important if the odb ght-dark c_hanges, €.9. eq_ges, corners, and crossings, ar
moves with different velocities. However, results propbs selected with high probability by the KLT feature tracker.

. : o e 1S proj Figure 3, examples of KLT’s adaptive feature selection
in this paper show that with the simplified kinematics o

. . . . and the tracking over a series of images are shown. For our
tracked robots, a single but lightweight camera solutiam ca g 9

also lead to sufficiently accurate pose estimates purpose we use an implementation of the KLT tracker by
' Stan Birchfeld. [1]

IIl. EXPERIMENTAL PLATFORM

(a) (b)
Fig. 2. The hardware utilized for the visual odometry system:
(a) an Inertial Measurement Unit (IMU) froimtersense(b) the
widely usedLogitech QuickCam Pro 4000

In order to determine the robot’s orientation, we utilize B
a 3-DOF IMU of the typelntertiaCube2[5] (see Fig- (c) (d?]
ure 2(a)). One advantage of this sensor is that, due to ft§- 3. KLT feature tracking: (a), (b) Features shown by red dots

internal compass, measurements are drift free, i.e. errgf§ adaptively selected within images. (c), (d) Feature tracking
do not accumulate over time. For feature tracking we uover two subsequent images. The vectors between two correspond-

: : ) 9 features, shown by red lines, indicate the movement of the
a common web cam, known dsogitech QuickCam Pro camera. (d) The tracking over a series of five images.

4000 [6] (see Figure 2(b)). This device has a particularly
low power consumption, is lightweight(300¢), and can ) . ]
be connected via USB to a wide range of computers. A Tracking over a series of images

Experiments were carried out on a tracked robot (shownOur main goal is to determine the robot’s forward or
in Figure 1) and on a wheeled robot (not shown) thdtackward movement. However, when traversing obstacles,
was additionally equipped with four shaft encoders andthe robot’s motion is not a exclusively forward or backward
Hokuyo URG-X003.RF. The latter system has been usethotion. It is overlaid with noise that originates from
for generating the ground truth of the robot’s pose whilglippage of the tracks and shaking of the robot’s body due
operating in 2D environments. to rough terrain, leading to additional up- or downward
movements.

Since the above described effects usually do not accu-

In general, an image sequence can be described bynalate over time, and hence can be reduced, our method
discrete valued functiod(z, y, t), wherex,y describe the generates trackings over multiple frames, rather than to
pixel position andt describes the time. We assume thgterform single frame trackings only. This is achieved by

IV. FEATURE TRACKING



saving single trackings between two subsequent imageglgorithm 1: Sample up to n possible centers of
up to a maximal amount, in a buffer. If trackings of the rotation

same feature coexist over more than two images, their cordnput: A set of feature trackings: T'

responding translation vectods, di 1, ..., di are replaced  Output: A set of calculated intersection points: C

by a single translation vectat;,, consisting of the vector C = (;

sum of all trackings betweed; anddy. for i =0;i < n;i++ do .
. . t; < selectRandomFeatureTracking( T);
Tr_\e summed_ translgnon vector is more rol_)ust comp_ared t» — selectRandomFeatureTracking( T):
to single trackings, since it averages out irregular jitter s1 « calculatePerpendicularBisector( t1);
effects. We assign to each tracking a weight = |k — 1| sz « calculatePerpendicularBisector( t2);
in order to reward trackings over multiple frames (C?)md@t) < calculatelntersectionPoint( s1,
S2)
if det < minDeterminantthen
o ) continue ;
B. Filtering of Rotations end
C «— C U cut;

Since we focus on the translation estimation from image end
sequences, rotations have to be filtered out in advance
However, due to the high latency time of the employe{%
camera system (a web cam connected via USB 1.1), tIE

can only be accurately achieved on the image data direc& & set of feature tracking® by algorithm 1. Second

Wh'c_h will be described 'h this section. _ all sampled centers of rotation are put into a histogram,
Given a feature tracking between two images of thghereas the final center is determined by the histogram’s
form (z;,v:) — (x;,%;), which includes a rotation around mpaximum.
the pointr,,r, with anglea, one can derive with given  grthermore, one has to determine the rotation angle,
rotation matrix1? (.), a corresponding rotation free trackingyhich can be done by calculating the vector cross product.
(zi,y:) — (x5, y;) after the following equation: Given a feature trackingr;, y;) — (;,y;) rotated around
(rz,7y) Dy o, one can calculate the cross product consid-
(x5, 95) = (ra,my) + R(—a) - (xj — 74,95 —7y)  (3) ering the start- and endpoint of the feature trackings as
endpoints of vectors starting at the rotation center. Ss@po

. o . = (g — T . o )T
Therefore, in order to perform the filtering of rotationsgon?i = (%i =7z, yi —7y)" a@ndv; = (j —ry,y; —1,)" are
has to determine the rotation center,,r,) and rotation vectors derived from tracking images | and J, respectively.
anglea. Then, the angle between these vectars- Z(v;,v;) can

Rotating points of different radii describe concentric? e calculated from the cross product as follows.

circles around the rotation center. If considering v X vy = [|vil| - [Jv;]] - sin(e) (4)
two feature trackings whose features are lying

on a circle, one can see that the perpendiculstiven the rotation centefr,,r,) from the previous es-
bisectors of the two lines, respectively connectinmation, one can determine the true rotation angle
start- and endpoint of each feature tracking, subteRy averaging over rotation angles from all single feature

in the rotation center, as shown by Figure 4(a).trackings. _
Finally, it is necessary to prevent the algorithm to be

executed on rotation free sequences. This is achieved by
only adding a center of rotation to the histogram, if it is
located within the bounding box of the image. Center of
rotations that are far from the bounding box are most likely
due to quasi-parallel feature translations, which in turn
indicate a rotation free movement. If the number of centers
of rotation is bellow a threshold, the transformation of
Equation 3 is not applied. We determined experimentally

We exploit this property with a Monte Carlo algorithm
r estimating the true center of rotation (see Figure 4(b))
ﬁst, up ton possible centers of rotation are sampled from

. (a) _ _ (b) P
Fig. 4. (a) The perpendicular bisectors of the side (green) of the
tracking vectors (red) subtend at the center of the circle (magenta).
(b) Example of the Monte Carlo algorithm: The perpendicular
bisectors of the side (green) point to the center of rotation V. CLASSIFICATION

(magenta). Red dots depict the sampled intersection points. From the set of filtered translation vectors, one can
determine the robot’s translation. However, the projec-

INote that these weights are used during the voting procdsshwill tion from trans_latlon vectors of the_VIS.IOI‘? system to the
be described in Section V. robot’s translation depends on the intrinsic parameters of



Tile coding is based on tilings which discretize the input
space in each dimension. Shape and granularity of these
discretizations can be adjusted according to the taskxfor e
ample, the discretizations regarding the originy has been
chosen coarse due to minor local differences regarding the
correlation with the class assignment. Furthermore,gdlin
are overlaid with a randomized offset in order to facilitate

. (@) : N
Fig. 5. Example of the rotation correction while t?1e robot changegeneralization. During learning each tile is updated after
the angles of its front flippers. The feature vectors before (a) and

after (b) the correction.

Wip1 = wi +a - (piy1 — w;), (6)
the camera, e.g. focal length and lens distortion, and éf'erewi IS th.e weight stored n the tiley; e'{O,.l} the
the extrinsic parameters of the camera, e.g. the translati ass lprobabmty, gndy the learning rate, which is set t9
and rotation relative to the robot’s center. This projamtioa =+ Wherem is the_ number of_t_o_tal update steps, in
can either be determined analytically or by a mappin%rder to ensure normalized probabilities.
function. Due to the assumption of a simplified kinematic

model, we decided to learn this mapping with a functioB. Classification by voting

appproximator Qescribed in this section. , ... Based on the probability distribution in equation 5, each
Figure 6 depicts the effects from vehicle translation if

_ L e Vectorv; votes individually for a class assignmentwith
the camera is mounted towards the driving direction ar?gspect to its location, length and heading:

perpendicular to it. As can clearly be seen, forward and
backward translat!ons are easier to de_tect if t_he camera is ¢; = argmax P(c | z;,yi, li, i) ©)
mounted perpendicular, hence we decided, without loss of ceC

generality, to mount the camera in this way. o _ _
Let ¢¥ = I (¢; = k) be the class indicator function, which

returns 1 if ¢; = k and otherwise0. Then, the final
classificationa can be decided based on the maximal sum
of weighted individual votes from each vector:

N

a = argmax E ci-“ - w; (8)
kec

Note thatw; increases according to the number of times

a b !
Fig. 6. The efféct) of the robot’s forward transle(tti())n regarding twdhe underlying feature has successfully been tracked by the
different ways of mounting the camera on the vehicle: (a) towardigature tracker described in Section IV.
the driving direction and (b) perpendicular to it. As can be seen by
the vector length, the latter arrangements allow an easier detectjon

of translation. . Generating odometry using a IMU

In order to determine the distanektraveled between
A. Learning of classification probabilities two images/ and J, we assume a constant translational
aﬁlocity vr of the robot?. Given time stamp; andt; of

The learning is based on data collected and automatic )
age! and.J, respectivelyd can be calculated by:

labeled during teleoperation runs under mild conditions,

i.e. without heavy slippage. During a second phase, the

data labeling has been verified on a frame to frame basis. )

This procedure allows the efficient labeling of thousands @ = § —vr - (t; —t;) if class = backward  (9)

of trackings since single images contain several features. 0 otherwise

Each labeled tracking is described by the class assign-

ment ¢ € C and the vectorv = (-’If,y, l, Oé)T, where Fina”y, we calculate from the yaw ang%of the IMU and

xz,y denotes the origin in the imagé,the vector length the robot's last poser,id, Yoid, fora)” the new pose of the

and o the vector heading. As already mentioned, claggbot:

assignments are regarding the robot'’s translation,®.g. - . .

{forward, backward, ...}. (Tnew, Ynew; Onew)” = (Zoat+d-cos(0), Yora+d-sin(0),0)
Given the labeled data, tile coding [10] function approx- (10)

imation is used for learning the probability distribution

vr - (¢ —t;) if class = forward

2Note that this value could also be automatically be adjustedraing
Ple| z,y,l,a). (5) to the vehicles current set-velocity.
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Visual Odomeiry

Run [[ Trav. dist. [m] [ Vis. odo. [cm/m] [ Wh. odo. [cm/m] | Wheeled Odometry O
lab.1 (2D) 91.53 782 L 1.84 617154 7000 ¢
lab_2 (2D) 73.72 8.25 + 2.46 7.59+1.94 6000 - |
cellar (2D) 98.40 10.72 £ 4.68 11.77 £ 4.42
ramp (3D) 6.36 13.28 +9.2 - 5000 - ]
palette (3D) 2.37 22.08 + 8.87 - g
TABLE | 'S 4000 1
i

RELATIVE ERROR OF THE VISUAL ODOMETRY AND WHEELED 3000 F |

ODOMETRY COMPARED TO GROUND TRUTH DATA(EITHER MANUALLY

MEASURED FOR3D RUNS OR ESTIMATED BY SCANMATCHING FOR2D 2000 1
RUNS). 1000 - ]
ok L L
0 25 50
Traveled distance [m]
VI. EXPERIMENTAL RESULTS (a)

Extensive experiments have been carried out on both ;4400
the tracked robot.urker, operating on 3D obstacles, and
the wheeled roboZerg, operating on flat surfaces (see
Section Ill for a description of these robot platforms).
The 2D setting has the advantage that results from the 7000 - 1
visual odometry system can directly be compared with z 6000+ 1
accurate ground truth data. We determine position ground% 5000 - A
truth from shaft encoder and IMU measurements, whichL%
are processed by dead reckoning, and ranges measured by
a Hokuyo URG-X003 Laser Range Finder (LRF), which
are processed by a scanmatching method [3]. Ground truth
on 3D obstacles was measured manually. 1000 1

Table | gives an overview on the measured mean and 0 . . .
standard deviation of the relative distance error fromalisu 0 2 %0 S

Traveled distance [m]
odometry and wheeled odometry on both robot platforms. (b)
Since we are mainly interested in tracked vehicles 2@ i 7. The accumulating distance error of the visual odometry
kinematics has been modified in order to be similar to thaethod compared to conventional shaft encoder odometry: (a)
of tracked vehicles, i.e. to allow only a subset of possibleeasured in the robotic labjan x 5m squared area. (b) measured

Ve|ocitie5, which are in case of thleurker robot: Stop in a cellar of 15m x 50m on the campus of the University of
forward, andbackward Freiburg.
The results clearly show that on tlerg platform the
visual odometry reaches an accuracy comparable to the
conventional odometry and thus could possibly replace orThe results indicate that, in case of tracked robots, the
support it. In the cellar environment, the visual odometrjle coding classification and voting applied to a simple
turned out to be even superior, which can be explained I§'y1ematic model lead to sufficiently accurate results. From
the higher degree of wheel slippage that we noticed withi@g files it has been determined that during tredlar run
this harsh environment. 87% (96%), the ramp run 81% (93%), and thepalette
Figures 7 (a) and (b) depict the accumulation of th@in 94% (99%) of the classifications detected the correct
distance error of both the visual odometry and wheelggotion of the robot, whereas numbers in brackets denote
odometry, within the lab and cellar environment, respe#he voting-based improvement.
tively. The robot’s visual odometry-based trajectoriemvir ~ While processing an image resolution 820 x 240
the robotic lab and cellar are shown in Figure 8. on a IntelPentiumM,1.20GHz, we measured for the
The real advantage of the visual odometry, howevarpmplete processing without KLT feature tracking an av-
reveals if the robot operates on 3D obstacles. The resudtmge processing time df4.08 + 0.64ms. This leads,
in Table | indicate that the introduced method, if applietbgether with the feature tracker, to a maximal frame rate
while operating on 3D obstacles, provides reasonable medi-5.34 + 1.17Hz. If processing an image resolution of
surements of the robot’s motion. We are confident tha60 x 120, the complete processing without KLT feature
these results are sufficient for controlling the executidimacking needss.68 + 0.3ms and allows a total frame
of behaviors, and probably also allow first steps towardate of 17.27 + 1.81Hz. Experiments proposed in this
SLAM on 3D obstacles. Figures 9 (a) and (b) depict theaper were carried out with the higher resolution. However,
accumulation of the distance error during locomotion ovexperiments with the lower resolution showed, that the
3D obstacles. results lead to a comparable accuracy.
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Fig. 8. Trajectories, generated by the visual odometry, projected
onto the maps of (a) the robotic lab and (b) the cellar of building
52 on the campus of the University of Freiburg, respectively. 507y Jﬂ )
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VII. CONCLUSION 0 1000 2000 3000 4000 5000 6000 7000
Time
We proposed an efficient method for visual odometry (b)

that can be applied in the context of tracked vehicles. THég. 9. Results from driving over (a) a ramp and (b) a wooden

method has been evaluated with a cheap camera Sys%‘?tte- The blue curve indicates the manually measured ground

(below 50 US$) that can be connected to nearly every CO{/ﬁu_th, and the green curve indicates the distance estimated by
i

ual odometry, respectively.
puter. As our results show, the accuracy of the method, fs Y. resp Y
applied while driving on flat surfaces, is comparable to thal3] D. Hahnel. Mapping with Mobile RobotsDissertation, Universit

; ; ; ; ; Freiburg, Freiburg, Deutschland, 2005.
one found on wheeled robots, and, if applied while climbin ] DM. Helmick, Y. Chang, S.. Roumeliotis, D. Clouse, and

3D obstacles, leads to reasonable pose estimates, which Tor | matthies. Path following using visual odometry for a marsemn
example can be taken as a basis for the autonomous control in high-slip environments. IEEE Aerospace Conferenc2004.
of the vehicle [5] Intersense. Intersense IntertiaCube2 2005. http://

. intersense.com/products/prec/ic2/InertiaCube?2.
In future work we will evaluate the method further for  par .

the execution of autonomous behaviors on obstacles af@ Logitech.  Logitech QuickCam Pro 40002006.  http:

P : IIwww.logitech.com/index.cfm/products/details/
for SLAM and Monte Carlo Localization (MCL) while US/EN, CRID=2204, CONT%ENTID=5042 .

driving in the plane. Furthermore, we would like to decreasgr] A. Milella and R. Siegwart. Stereo-based ego-motionreation
the latency of the system in order to allow even higher using pixel tracking and iterative closest point.|HEE International

frame rates, and also to allow the pose estimation by more gggéerence on Computer Vision Systems ICVS (aes 21- 21,

than one camera, i.e. to capture also translations into thg b. Nister, 0. Naroditsky, and J. Bergen. Visual odometry.Proc.
other two dimensions. We are confident that the perfor- [EEE Computer Society Conference on Computer Vision artetipat

: : ; Recognition (CVPR 2004yolume 1, pages 652-659, 2004.
mance of the system can eaSIIy be increased by reduci A. Nuechter, H. Surmann, K. Lingemann, J. Hertzberg, anthsun.

the resolution of the camera, and also by decreasing the ed slam with an application in autonomous mine mapping. In
number of features by selecting them more specific to the In Proc. of the IEEE International Conference on Roboticsd an
environment Automation (ICRA)2004.
) [10] R.Sutton and G.Barto. Reinforcement Learningchapter Linear
Methods. The MIT Press, 1998.
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