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Abstract

Based on an abstract framework for nonmono-

tonic reasoning, Bondarenko et al. have ex-

tended the logic programming semantics of ad-

missible and preferred arguments to other non-

monotonic formalisms such as circumscription,

auto-epistemic logic and default logic. Al-

though the new semantics have been tacitly as-

sumed to mitigate the computational problems

of nonmonotonic reasoning under the standard

semantics of stable extensions, it seems ques-

tionable whether they improve the worst-case

behaviour. As a matter of fact, we show that

credulous reasoning under the new semantics in

propositional logic programming and proposi-

tional default logic has the same computational

complexity as under the standard semantics.

Furthermore, sceptical reasoning under the ad-

missibility semantics is easier { since it is triv-

ialised to monotonic reasoning. Finally, scepti-

cal reasoning under the preferability semantics

is harder than under the standard semantics.

1 Introduction

Bondarenko et al.

[

1997

]

show that many logics for non-

monotonic reasoning, in particular default logic (DL)

[

Reiter, 1980

]

and logic programming (LP), can be un-

derstood as special cases of a single abstract framework.

The standard semantics of these logics can be under-

stood in terms of stable extensions of a given theory,

where a stable extension is a set of assumptions that does

not attack itself and it attacks every assumption not in

the set. In abstract terms, an assumption is attacked

if its contrary can be proven, in some appropriate un-

derlying monotonic logic, possibly with the aid of other

conicting assumptions.

Bondarenko et al.

[

1997

]

also propose two new se-

mantics generalising, respectively, the admissibility se-

mantics

[

Dung, 1991

]

and the semantics of preferred ex-

tensions

[

Dung, 1991

]

and partial stable models

[

Sacc�a

and Zaniolo, 1990

]

for LP. In abstract terms, a set of

assumptions is an admissible argument of a given the-

ory, i� it does not attack itself and it attacks all sets of

assumptions which attack it. A set of assumptions is a

preferred argument i� it is a maximal (wrt. set inclusion)

admissible argument.

The new semantics are more general than the stabil-

ity semantics since every stable extension is a preferred

(and admissible) argument, but not every preferred ar-

gument is a stable extension. Moreover, the new se-

mantics are more liberal because for most concrete log-

ics for nonmonotonic reasoning, admissible and preferred

arguments are always guaranteed to exist, whereas sta-

ble extensions are not. Finally, reasoning under the new

semantics appears to be computationally easier than rea-

soning under the stability semantics. Intuitively, to show

that a given sentence is justi�ed by a stable extension,

it is necessary to perform a global search amongst all

the assumptions, to determine for each such assump-

tion whether it or its contrary can be derived, indepen-

dently of the sentence to be justi�ed. For the semantics

of admissible and preferred arguments, however, a \lo-

cal" search su�ces. First, one has to construct a set

of assumptions which, together with the given theory,

(monotonically) derives the sentence to be justi�ed, and

then one has to augment the constructed set with further

assumptions to defend it against all attacks.

However, from a complexity-theoretic point of view,

it seems unlikely that the new semantics lead to better

lower bounds than the standard semantics since all the

\sources of complexity" one has in nonmonotonic rea-

soning are present. There are potentially exponentially

many assumption sets sanctioned by the semantics. Fur-

ther, in order to test whether a sentence is entailed by a

particular argument one has to reason in the underlying

monotonic logic. For this reason, one would expect that

reasoning under the new semantics has the same com-

plexity as under the stability semantics, i.e., it is on the

�rst level of the polynomial hierarchy for LP and on the

second level for logics with full propositional logic as the

underlying logic

[

Cadoli and Schaerf, 1993

]

. However,

previous results on the expressive power of DATALOG

:

queries by Sacc�a

[

1997

]

suggest that this is not the case

for LP. Indeed, these results imply that reasoning under

the preferability semantics for LP is at the second level

of the polynomial hierarchy.

In this paper, we extend these results and show that



for LP and DL

� credulous reasoning under the admissibility and

preferability semantics has the same complexity as

under the stability semantics,

� sceptical reasoning under the admissibility seman-

tics is easier than under the stability semantics {

since it reduces to monotonic reasoning with the

given theory, and, �nally,

� sceptical reasoning under the preferability seman-

tics is harder than under the stability semantics. In

other words, here intuition seems to clash severely

with the complexity-theoretic results.

The paper is organised as follows. Section 2 sum-

marises the abstract framework introduced by Bon-

darenko et al.

[

1997

]

, its semantics and concrete in-

stances capturing LP and DL. Section 3 gives complexity

theory background and introduces the reasoning prob-

lems. Section 4 gives abstract upper bounds for credu-

lous and sceptical reasoning, parametric wrt. the com-

plexity of the underlying monotonic logic. Section 5 gives

the completeness results. Section 6 discusses the results

and concludes.

2 Default Reasoning via Argumentation

Assume a deductive system (L, R) where L is some

formal language with countably many sentences and R

is a set of inference rules inducing a monotonic deriv-

ability notion `. Given a theory T � L and a formula

� 2 L, Th(T ) = f� 2 L jT ` �g is the deductive closure

of T . Then, an abstract (assumption-based) frame-

work is a triple hT;A; i, where T;A � L and is a

mapping from A into L. T , the theory, is a (possibly

incomplete) set of beliefs, formulated in the underlying

language, and can be extended by subsets of A, the set of

assumptions. An extension of an abstract framework

hT;A; i is a theory Th(T [�), with � � A (sometimes

an extension is referred to simply as T[� or �). Finally,

given an assumption � 2 A, � denotes its contrary.

LP is the instance of the abstract framework hT;A; i

where T is a logic program, the assumptions in A are

all negations not p of atomic sentences p, and the con-

trary not p of an assumption not p is p. ` is Horn logic

provability, with assumptions, not p, understood as new

atoms, p

�

.

DL is the instance of the abstract framework hT;A; i

where the monotonic logic is classical logic augmented

with domain-speci�c inference rules of the form

�

1

; : : : ; �

m

;M�

1

; : : : ;M�

n



where �

i

; �

j

;  are sentences in classical logic. T is a

classical theory and A consists of all expressions of the

form M� where � is a sentence of classical logic. The

contrary M� of an assumption M� is :�.

In the remainder of the paper, without loss of general-

ity, we will assume that the set of assumptions A in the

abstract framework for DL consists of all assumptions

M� occurring in the domain-speci�c inference rules.

Given an abstract framework hT;A; i and an assump-

tion set � � A, � attacks an assumption � 2 A i�

� 2 Th(T [ �) and � attacks an assumption set

�

0

� A i� � attacks some assumption � 2 �

0

.

The standard semantics of extensions of DL

[

Reiter,

1980

]

and stable models of LP

[

Gelfond and Lifschitz,

1988

]

correspond to the \stability" semantics of abstract

frameworks, where an assumption set � � A is stable

i�

1. � does not attack itself, and

2. � attacks each assumption � 62 �.

A stable extension is an extension Th(T [ �) for

some stable assumption set �.

Bondarenko et al. de�ne new semantics for the ab-

stract framework, e.g., by generalising the admissibility

semantics originally proposed for LP by Dung

[

1991

]

. An

assumption set � � A is admissible i�

1. � does not attack itself, and

2. for all �

0

� A, if �

0

attacks � then � attacks �

0

.

Maximal (wrt. set inclusion) admissible assumption

sets are called preferred. In this paper we use the fol-

lowing terminology: an admissible (preferred) argu-

ment is an extension Th(T [ �) for some admissible

(preferred) assumption set �. Bondarenko et al. show

that preferred arguments correspond to preferred exten-

sions

[

Dung, 1991

]

and partial stable models

[

Sacc�a and

Zaniolo, 1990

]

for LP.

In order to illustrate the e�ects of the di�erent seman-

tics, let us consider the following logic program:

p not p; r  not q;

s not r; q  not r:

This logic program has no stable extension, two preferred

arguments (fnot rg and fnot q; not sg) and four admissi-

ble arguments (additionally ; and fnot qg). If we drop

the clause \p not p," we get the same admissible and

preferred arguments. In addition, the preferred argu-

ments are also stable.

In

[

Bondarenko et al., 1997

]

, the de�nition of stable

and admissible sets includes a third condition, namely,

that the set � must be closed, i.e., �=A\Th(T [�),

and in part 2 of the de�nition of admissible sets all �

0

are required to be closed. Here we omit these conditions

because in the LP and DL instances of the framework

every set is guaranteed to be closed. Frameworks with

this property are called at.

In the sequel we will use the following properties:

Prop

1

: Every preferred assumption set is (trivially) ad-

missible and every admissible assumption set is

a subset of some preferred assumption set

[

Bon-

darenko et al., 1997, Theorem 4.8

]

;

Prop

2

: The empty assumption set is always admissible,

trivially, for all concrete LP and DL frameworks.

3 Reasoning Problems and Complexity

We will analyse the computational complexity of the fol-

lowing reasoning problems for the propositional variants



of the frameworks for LP and DL under admissibility

and preferability semantics:

� the credulous reasoning problem, i.e., the prob-

lem of deciding for any given sentence ' in the set

of possible queries whether ' 2 Th(T [�) for some

assumption set � sanctioned by the semantics;

� the sceptical reasoning problem, i.e., the prob-

lem of deciding for any given sentence ' in the set

of possible queries whether ' 2 Th(T [ �) for all

assumption sets � sanctioned by the semantics.

The set of possible queries consists of (variable-free con-

junctions of) literals in the LP case and formulas in

propositional logic in the DL case.

Instead of the sceptical reasoning problem, we will of-

ten consider its complementary problem, i.e.

� the co-sceptical reasoning problem, i.e, the

problem of deciding for any given sentence ' (in a

set of possible queries) whether ' 62 Th(T [�) for

some assumption set � sanctioned by the semantics.

The computational complexity

1

of the above problems

for all frameworks and semantics we consider is located

at the lower end of the polynomial hierarchy. This is an

in�nite hierarchy of complexity classes above NP de�ned

by using oracle machines, i.e. Turing machines that are

allowed to call a subroutine|the oracle|deciding some

�xed problem in constant time. Let C be a class of deci-

sion problems. Then, for any class X de�ned by resource

bounds, X

C

denotes the class of problems decidable on

a Turing machine with an oracle for a problem in C and

a resource bound given by X . Based on these notions,

the sets �

p

k

, �

p

k

, and �

p

k

are de�ned as follows:

�

p

0

= �

p

0

= �

p

0

= P

�

p

k+1

= P

�

p

k

; �

p

k+1

= NP

�

p

k

; �

p

k+1

= co-NP

�

p

k

.

The \canonical" complete problems are sat for

�

p

1

=NP and k-qbf for �

p

k

(k > 1), where k-qbf is the

problem of deciding whether the quanti�ed boolean for-

mula

9~p 8~q : : :

| {z }

k alternating quanti�ers starting with 9

�(~p; ~q; : : :):

is true. The complementary problem, denoted by co-k-

qbf, is complete for �

p

k

.

All problems in the polynomial hierarchy can be solved

in polynomial time i� P = NP. Further, all these prob-

lems can be solved by worst-case exponential time algo-

rithms. Thus, the polynomial hierarchy might not seem

too meaningful. However, di�erent levels of the hierar-

chy di�er considerably in practice, e.g. methods working

for moderately sized instances of NP-complete problems

do not work for �

p

2

-complete problems.

The complexity of the problems we are interested

in has been extensively studied for existing logics for

nonmonotonic reasoning under the standard, stability

1

For the following, we assume that the reader is familiar

with the basic concepts of complexity theory

[

Papadimitriou,

1994

]

, i.e., the complexity classes P, NP, and co-NP and the

notion of completeness with respect to log-space reductions.

semantics

[

Cadoli and Schaerf, 1993; Gottlob, 1992;

Niemel�a, 1990; Marek and Truszczynski, 1993; Stillman,

1992

]

. In particular, the credulous reasoning problem is

NP-complete for LP and �

p

2

-complete for DL, and the

sceptical reasoning problem is co-NP-complete for LP

and �

p

2

-complete for DL.

4 Generic Upper Bounds

We identify upper bounds for the credulous and scepti-

cal reasoning problems by exploiting the following guess-

and-verify algorithm that, in order to decide these prob-

lems, guesses an assumption set, veri�es that it is sanc-

tioned by the semantics, and veri�es that the formula

under consideration is derivable or not derivable, respec-

tively, from the set of assumptions and the given theory

in the underlying monotonic logic. The upper bounds

are parametric on the complexity of the derivability

problem in the underlying monotonic logic. Moreover,

the upper bounds are determined by exploiting upper

bounds for their sub-problem that an assumption set is

sanctioned by the semantics, called the assumption set

veri�cation problem.

In LP, the underlying logic is (propositional) Horn

logic, hence the derivability problem is P-complete (un-

der log-space reductions)

[

Papadimitriou, 1994, p.176

]

.

In DL, the underlying logic is classical (propositional)

logic extended with domain-speci�c inference rules.

However, these extra inference rules do not increase the

complexity of reasoning. It is known (e.g. see

[

Gottlob,

1995, p.90

]

) that for any DL like propositional monotonic

rule system S, checking whether S 6j= ' is NP-complete.

Therefore, the following proposition follows immediately.

Proposition 1 Given a DL framework hT;A; i, decid-

ing for a sentence ' 2 L and an assumption set ��A

whether '2Th(T [�)is co-NP-complete.

We now prove the basic membership result for at

frameworks in general and LP and DL in particular. In

fact, atness seems to be a computationally important

property. For non-at frameworks, the assumption set

veri�cation problem under the admissibility and prefer-

ability semantics seems to become harder in general.

Theorem 2 Given a at framework with derivability

problem in C, the assumption set veri�cation problem

is

1. in P

C

under the stability semantics,

2. in P

C

under the admissibility semantics, and

3. in co-NP

C

under the preferability semantics.

Proof: 1. Only polynomially many C-oracle calls are

needed to verify that a given assumption set � does not

attack itself and it attacks all assumptions � 62 �.

2. The following deterministic, polynomial-time algo-

rithm using a C-oracle decides whether a given assump-

tion set � is admissible:

(a) Verify that � does not attack itself

(j�j calls to a C-oracle).



(b) Compute A

�

=f�2A��j� does not attack �g

(jA��j calls to a C-oracle).

(c) Verify that A

�

[� does not attack �.

(Polynomially many C-oracle calls).

If test (c) fails, then � is not admissible, since A

�

[ �

attacks � but, by (b), � does not attack A

�

and, by

(a), � does not attack itself.

2

Otherwise, let �

0

be any

attack against �. If �

0

� A

�

[�, then, by monotonicity

of the underlying derivability, A

�

[ � attacks �, thus

contradicting that test (c) succeeds. Therefore, �

0

6�

A

�

[ �. Let � 2 �

0

� A

�

� �. By (b), � attacks �.

Thus, � attacks �

0

and, by (a), � is admissible.

3. The following nondeterministic, polynomial-time

algorithm using a P

C

-oracle decides whether a given as-

sumption set � is not preferred:

� Verify that � is admissible (one call to a P

C

-oracle,

by part (2)). If not, succeed, otherwise

� Guess a set �

0

� �.

� Verify that �

0

is admissible (one call to a P

C

-oracle,

by part (2)). If it is, succeed, else fail.

The guess-and-verify algorithm and Theorem 2 di-

rectly give upper bounds for the credulous and (co-

)sceptical reasoning problems. However, properties

Prop

1

and Prop

2

in section 2 allow to reduce these up-

per bounds. Indeed, by Prop

1

, credulous reasoning un-

der the preferability semantics is equivalent to credulous

reasoning under the admissibility semantics, and the two

problems have the same upper bounds. Moreover, by

Prop

2

, the sceptical reasoning problem under the admis-

sibility semantics reduces to the underlying derivability

problem. As a consequence, the following upper bounds

hold, for at frameworks with a derivability problem in

C:

Stable Admissibility Preferability

Credulous NP

C

NP

C

NP

C

Sceptical co-NP

C

C co-NP

NP

C

In particular, the credulous reasoning problem for sta-

bility, admissibility and preferability semantics is in NP

for LP and in �

p

2

for DL, the sceptical reasoning problem

for the stability semantics is in co-NP for LP and �

p

2

for

DL, the sceptical reasoning problem for the admissibility

semantics is in P for LP and co-NP for DL, and the scep-

tical reasoning problem for the preferability semantics is

in �

p

2

for LP and �

p

3

for DL. The results summarised

in section 3 imply that these upper bounds are tight

for the stability semantics. Since the sceptical reasoning

problem for the admissibility semantics reduces to the

derivability problems in the underlying monotonic logic

for LP and DL, and these are P-complete and co-NP-

complete, respectively, the corresponding upper bounds

are also tight. In the next section we will prove that the

remaining upper bounds are tight as well.

2

See that if the framework is not at, the set of assump-

tions A

�

[ � need not to be closed. Therefore, even if (c)

fails, � can be still admissible, since it can be the case that

� attacks an assumption that is derivable from A

�

[�.

5 Completeness Results

By instantiating the generic upper bounds of the previ-

ous section to the concrete reasoning problems we con-

sider in the following, we obtain the necessary member-

ship results. Therefore, in order to show completeness,

it is su�cient to prove hardness.

The next two results show that credulous reasoning

under the admissibility and preferability semantics is as

hard as under the stability semantics. Intuitively, this

is the case because the number of assumption sets that

need to be considered under the admissibility semantics

is not smaller than under the stability semantics, and it

can be, as in the case of stability, exponentially large.

The following theorem is a direct corollary of the result

by Sacc�a

[

1997

]

that the expressive power of DATALOG

:

queries under the \possible M-stable semantics" (corre-

sponding to credulous reasoning under the preferabil-

ity semantics) is DB-NP, i.e., such queries characterise

all collections of databases that are recognisable in NP.

From that it is immediate that credulous reasoning in

propositional logic programs is NP-complete.

Theorem 3 Credulous reasoning in LP under the ad-

missibility and preferability semantics is NP-complete.

As one would expect, reasoning in DL increases the

computational complexity to the second level of the poly-

nomial hierarchy.

Theorem 4 Credulous reasoning in DL under the ad-

missibility and preferability semantics is �

p

2

-complete.

Proof: We have seen that credulous reasoning under

the preferability semantics coincides with credulous rea-

soning under the admissibility semantics. We prove the

theorem by a straightforward reduction from 2-qbf to

the credulous reasoning problem under the admissibil-

ity semantics. Assume the quanti�ed boolean formula

9p

1

;: : : ;p

n

8q

1

;: : : ;q

m

�, with � a formula in 3CNF over

the propositional variables p

1

;: : :; p

n

; q

1

;: : :; q

m

. We con-

struct a default theory (;; D) such that the given quanti-

�ed boolean formula is true i� some admissible argument

for (;; D) contains �.

The language of (;; D) consists of atoms p

1

; : : : ; p

n

. D

consists of the default rules

Mp

i

p

i

;

M:p

i

:p

i

for each i = 1; : : : ; n (simulating the choice of a truth

value for the propositional variable p

i

in �).

Obviously, this construction of (;; D) can be done in

log-space. Moreover, it is easy to see that the given 2-

qbf is true i� there exists an admissible extension of

(;; D) containing �.

As noted earlier, sceptical reasoning under the admis-

sibility semantics is \trivial" in the sense that it reduces

to the underlying derivability problem. Therefore, the

sceptical reasoning problem needs to be considered only

for the preferability semantics. Theorem 2 suggests that



this problem has higher complexity than the correspond-

ing problem under the stability semantics, since in order

to verify that a set is preferred we need to check that

none of its supersets is admissible. The following two

theorems show that we cannot do better than this.

Again Sacc�a

[

1997

]

has shown that the expressive

power of DATALOG

:

queries under the \de�nite M-

stable semantics" (corresponding to sceptical preferabil-

ity semantics) coincides with the class DB-�

p

2

. Hence, as

a corollary we immediately obtain the following result.

Theorem 5 Sceptical reasoning in LP under the prefer-

ability semantics is �

p

2

-complete.

We now show that sceptical reasoning has a similar

e�ect on DL.

Theorem 6 Sceptical reasoning in DL under the prefer-

ability semantics is �

p

3

-complete.

Proof: We show that co-sceptical reasoning is �

p

3

-hard

by a reduction from 3-qbf. Assume the following quanti-

�ed boolean formula: 9p

1

;: : :; p

n

8q

1

;: : :; q

m

9r

1

;: : :; r

k

�;

with � a formula in 3CNF over the propositional vari-

ables p

1

; : : : ; p

n

, q

1

; : : : ; q

m

, r

1

; : : : ; r

k

. We build a de-

fault theory (;; D) such that the given quanti�ed boolean

formula is true i� some sentence F is not contained in

some preferred argument for (;; D).

The language of (;; D) contains atoms p

1

;: : :; p

n

,

q

1

;: : :; q

m

, and r

1

;: : :; r

k

as well as atoms t

1

;: : :; t

n

,

s

1

;: : :; s

m

, intuitively holding if a truth value for the vari-

ables p

1

;: : :; p

n

, q

1

;: : :; q

m

has been chosen. D consists of

M(p

i

^ t

i

)

p

i

^ t

i

;

M(:p

i

^ t

i

)

:p

i

^ t

i

;

M(q

j

^ s

j

)

q

j

^ s

j

;

M(:q

j

^ s

j

)

:q

j

^ s

j

for each i = 1;: : :; n, j = 1;: : :;m (to indicate that vari-

ables are assigned either true or false, but not both, and

that a truth value for p

i

and q

j

has been chosen),

M�

^

j=1;:::;m

:s

j

(to prohibit truth choices on q

j

that render � satis�able),

M:s

j

^

h=1;:::;m

:s

h

;

M:t

i

^

h=1;:::;n

:t

h

^ ^

h=1;:::;m

:s

h

for each i = 1;: : :; n, j = 1;: : :;m (to enforce that truth

value choices are made either for all q

j

's or for no q

j

and

truth value choices are made either for all p

i

's or for none

of the p

i

's and q

j

's), and

M�

:�

;

M:t

i

t

i

;

M:s

j

s

j

:

for each i = 1;: : :; n, j = 1;: : :;m (to guarantee that no

admissible set contains M� or any of M:t

i

and M:s

j

).

We will prove that the given quanti�ed boolean for-

mula is true i� there is a preferred argument not con-

taining F=^

j=1;:::;m

s

j

.

If v is a truth assignment to the p

i

's, we denote by �

p

v

the assumption set fM(p

i

^ t

i

)jv(p

i

) = trueg[fM(:p

i

^

t

i

)jv(p

i

) = falseg. Similarly, we denote by �

q

v

the

assumption set fM(q

i

^ s

i

)jv(q

i

) = trueg [ fM(:q

i

^

s

i

)jv(q

i

) = falseg for some truth assignment v to the

q

i

's.

First of all, it is obvious that no admissible set can

contain any of the assumptions M�, M:s

i

, M:t

i

. Fur-

thermore, it is easy to see that for any truth assignment

v to the p

i

's, the set �

p

v

is an admissible set. Moreover,

every preferred assumption set must contain a set �

p

v

for

some truth assignment v to the p

i

's. Finally, if �

p

v

is not

preferred, then there exists a truth assignment u to the

q

i

's such that �

p

v

[�

q

u

is preferred.

Assume that the quanti�ed boolean formula is true

under a particular truth assignment u to the p

i

's. We

will show that the set �

p

u

is a preferred assumption set.

Suppose that we try to extend �

p

u

by adding to it the set

�

q

k

for some truth assignment k to the q

i

's. If the new set

is admissible, it means that it counter attacks the attack

M�, ie. :� 2 Th(D [ �

p

u

[�

q

k

), hence the qbf is not

true for the truth assignment u, a contradiction. Hence,

Th(D [ �

p

u

) is a preferred argument that does contain

F=^

j=1;:::;m

s

j

.

Conversely, assume that (;; D) has a preferred ar-

gument P = Th(D;�) that does not contain F =

^

j=1;:::;m

s

j

. Clearly �

p

v

� �, for some truth assignment

v to the p

i

's. Since P is preferred and does not contain

F , none of the sets �

p

v

[ �

q

k

, for every possible truth

assignment k to the q

i

's is admissible. This means that

none of these sets of assumptions can counter attack the

attack M� and derive :�, therefore the qbf is true.

Obviously, the above construction can be done in log-

space. Thus, the construction of (;; D) is a log-space

reduction from 3-qbf to co-sceptical reasoning in DL

under preferred arguments and �

p

3

-hardness holds.

It should be noted that similar results to those for DL

have been recently obtained for the case of disjunctive

logic programs

[

Eiter et al., 1998

]

.

6 Discussion

We have shown that credulous reasoning in DL and LP

using the admissibility and preferability semantics is as

hard as it is under the standard, stability semantics.

Moreover, sceptical reasoning under the preferability se-

mantics is harder than under the stability semantics.

There appears to be a clash between these results and

the intuition spelled out in the Introduction, namely,

that admissibility and preferability arguments are seem-

ingly easier to compute than stable extensions. However,

our results are not as surprising as they might appear.

Since the admissibility and preferability semantics do not

restrict the number of extensions, one would expect that

nonmonotonic reasoning under these semantics is as hard

as under the stability semantics. The higher complexity

of the sceptical reasoning problem under the preferabil-

ity semantics is due to the fact that in order to verify

that an assumption set is preferred, one needs to check

that none of its supersets is admissible.

Of course, our results do not contradict the expecta-

tion that in practice constructing admissible arguments



is often easier than constructing stable extensions. For

example, given the propositional logic program P [ fpg,

with P any set of clauses not de�ning the atom p, the

empty set is an admissible argument for the query p

that can be constructed \locally", without accessing P .

Moreover, if P[fpg is strati�ed or order-consistent

[

Bon-

darenko et al., 1997

]

, p is guaranteed to be a credulous

consequence of the program under the stability seman-

tics. Indeed, in all cases where the stability seman-

tics coincides with the preferability semantics (e.g. for

strati�ed and order-consistent abstract frameworks) any

sound (and complete) computational mechanism for the

admissibility semantics is sound (and complete) for the

stability semantics.

The \locality" feature of the admissibility seman-

tics renders it a feasible alternative to the stability

semantics in the �rst-order case, when the proposi-

tional version of the given abstract framework is in�-

nite. For example, given the (negation-free) logic pro-

gram: fq(f(X)); p(0)g, the empty set of assumptions

is an admissible argument for the query p(0) that can

be constructed \locally", even though the propositional

version of the corresponding abstract framework is in�-

nite.

The complexity results in this paper discredit sceptical

reasoning under admissibility and preferability seman-

tics as trivial and \unnecessarily" complex, respectively.

However, this does not seem to matter for the envisioned

applications of this semantics, because credulous reason-

ing only is required for these applications

[

Kowalski and

Toni, 1996

]

. For example, in argumentation in practi-

cal reasoning in general and legal reasoning in particu-

lar, unilateral arguments are put forwards and defended

against all counterarguments, in a credulous manner. In-

deed, these domains appear to be particularly well suited

for credulous reasoning under the admissibility seman-

tics.
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