
Encoding Planning Problems

in Nonmonotonic Logic Programs

Yannis Dimopoulos, Bernhard Nebel, and Jana Koehler

Institut f�ur Informatik, Universit�at Freiburg

Am Flughafen 17, D-79110 Freiburg, Germany

E-mail: <last name>@informatik.uni-freiburg.de

Abstract. We present a framework for encoding planning problems

in logic programs with negation as failure, having computational e�-

ciency as our major consideration. In order to accomplish our goal, we

bring together ideas from logic programming and the planning systems

graphplan and satplan. We discuss di�erent representations of plan-

ning problems in logic programs, point out issues related to their perfor-

mance, and show ways to exploit the structure of the domains in these

representations. For our experimentation we use an existing implementa-

tion of the stable models semantics called smodels. It turns out that for

careful and compact encodings, the performance of the method across

a number of di�erent domains, is comparable to that of planners like

graphplan and satplan.

1 Introduction

Nonmonotonic reasoning was originally motivated by the need to capture in

a formal logical system aspects of human commonsense reasoning that enable

us to withdraw previous conclusions when new information becomes available.

Logic programming systems accommodate nonmonotonic reasoning by means

of a form of negation, called negation as failure (NAF). In their simplest form,

nonmonotonic logic programs (also called normal logic programs) are sets of rules

of the form L A

1

; A

2

; : : : ; A

n

; not B

1

; not B

2

; : : : ; not B

m

, where n;m � 0 and

L, A

i

, B

j

are atoms. Atoms pre�xed with the not operator are called NAF literals

and can be intuitively understood as follows: not B is true i� all possible ways

to prove B fail.

However, it is not always clear what \fail to prove" means. Logic programs

can exhibit quite complicated structure, especially when some NAF literals de-

pend on other NAF literals. Consider the following program P :

a not b

b not a

Di�erent semantics give di�erent \meaning" to the above program. Two of the

most inuential semantics for normal logic programs are the stable models se-

mantics [6] and the well-founded semantics [13]. Under the 2-valued semantics



of stable models, P has two models, one that assigns a the value true and b the

value false, and another one that assigns the opposite values. Under the 3-valued

well-founded semantics, both a and b are assigned the value unknown.

Here we are mainly interested in systems that implement the stable model seman-

tics, but we will also use the well-founded model information for preprocessing

and simplifying planning theories. Recent implementations of the stable model

semantics include slg [3], smodels [12], and the branch and bound method

described in [14].

The relation between nonmonotonic logic programming and reasoning about

action has been studied quite extensively in the literature, e.g. by Gelfond and

Lifschitz [7]. In fact, there is some work on relating planning and logic program-

ming, for example by using the Event Calculus in combination with abduction

[4], or, similarly to what we describe here, logic programs and the stable model

semantics or its variants [7,5,15]. Most of the research though is concerned more

with the representational adequacy of logic programming as a formalism for

representing theories of action and less with issues related to computational

e�ciency.

In this paper we present some preliminary results on representing planning

problems in logic programming systems and discuss e�ciency issues. For our

encodings we borrow from the planning systems graphplan [2] and satplan

[10]. The basic idea is simple: we encode the planning problems in such a way

that the stable models of the encodings correspond to valid sequences of actions.

Consequently, planning is the problem of �nding a stable model that, for a certain

time instant t, assigns true to all the uents that belong to the �nal state. Action

predicates that are true in the stable model and refer to time instants earlier

than t, constitute a plan that achieves the goals.

In more detail, we present a number of di�erent encodings of planning prob-

lems in logic programming and discuss nonmonotonic reasoning techniques that

can be applied to them. Moreover we show how these representations can exploit

the structure of the planning domains. Namely, in order to make the representa-

tion of the problems more compact we exploit the post-serializability property.

Roughly speaking, a set of actions is post-serializable if, when applied in parallel

and some of their preconditions contradict some of their e�ects, there is always

an order such that if the actions are applied in this order, earlier actions never

delete the preconditions of later ones.

We have conducted a number of experiments on problems taken from the

planning literature. For these experiments we used smodels [12], a recent e�-

cient implementation of the stable model semantics that seems to outperform

other existing systems. It turns out that the combination of the above tech-

niques gives an e�ective planning method. Its performance on a number of hard

blocks-world and logistics problems, compares well with other existing systematic

planning methods.



2 Stable Model Semantics and smodels

In this section we briey review the stable model semantics and the smodels

algorithm. Throughout the paper we assume basic knowledge of logic program-

ming and familiarity with the planning systems graphplan [2] and satplan

[10]. Due to space limitations we will not discuss the well-founded semantics [13].

A (normal) logic program is a set of rules of the form

L A

1

; A

2

; : : : ; A

n

; not B

1

; not B

2

; : : : ; not B

m

where n;m � 0 and L, A

i

, B

j

are atoms. We assume that programs are ground,

i.e., all atoms are ground. LetM be a set of atoms and P a normal logic program.

We de�ne as P

M

the Horn program obtained from P by deleting (a) all rules that

contain not B

i

for B

i

2M (b) all NAF literals from the bodies of the remaining

rules. The resulting program P

M

is a Horn program as no NAF literal occurs in

it. The semantics of a Horn program P

h

is exactly its minimal model, denoted

byM(P

h

).

De�nition 1. [6] A set of atomsM is a stable model of a normal logic program

P i� M =M(P

M

).

Example 2. Consider the following logic program P :

m a

k  b

a p; not b

b p; not a

p 

It is not di�cult to see that both M

1

= fm; a; pg and M

2

= fk; b; pg are stable

models of P . The well-founded model assigns true to p and unknown to all other

atoms.

The above de�nition of stable model semantics is not constructive and can

only be used to verify whether a set of atoms is a stable model of a program

or not. In fact, determining whether a propositional logic program has a stable

model is an NP-complete task.

Smodels is an e�ective algorithm for computing the stable models of function-

free normal logic programs. Non-ground programs are �rst grounded by a parser

that is part of the system. The stable models of the resulting propositional pro-

gram are computed by the smodels algorithm

1

that works roughly as follows.

At each step, it �rst chooses a NAF literal to which it assigns a truth value

(starting with the value false, meaning that the corresponding atom is excluded

from the stable model currently under construction) and then it employs func-

tions that propagate the assumed value in the program and check for conicts

1

For all experiments reported here we used smodels version 1.5 and the parser version

0.13.



with other values. If an inconsistency is detected, it backtracks and assigns a dif-

ferent value to the literal. Finally, it employs a heuristic for selecting the NAF

literal on which it branches. We used this heuristic as it is.

It is important to note that since Smodels branches only on NAF literals,

the search space consists only of atoms that occur negated in the program. Atoms

that occur only positively in the program are not choice points for the algorithm.

3 Representing Planning Problems

In this section we present the basic domain independent method for encoding

plans in nonmonotonic logic programs. To facilitate discussion we assume that

we are given a strips-style speci�cation of a planning problem L over a set of

uents F and a set of operatorsO. Moreover, we assume that the preconditions of

the operators contain only positive literals.

2

With L we associate a logic program

P

L

as follows. For every uent fluent

i

2 F , P

L

contains a set of rules

fluent

i

(t) oper

j

(t� 1) (1)

for every oper

j

2 O that contains fluent

i

in its add e�ects and every time in-

stant t. For every operator oper

i

, P

L

contains the rule schemata

oper

i

(t) precon

i1

(t); : : : ; precon

im

(t); switchon

i

(t); not contradict

i

(t)

contradict

i

(t) controp

i1

(t)

: : :

contradict

i

(t) controp

in

(t)

(2)

where precon

ij

for 1 � j � m are the preconditions of operator oper

i

, and

controp

il

, for 1 � l � n, are operators that contradict with oper

i

. An operator

oper

j

contradicts with the operator oper

i

if the e�ects of oper

j

either contradict

the e�ect of oper

i

(i.e., if applied in parallel lead to invalid world states) or

are inconsistent with the preconditions of oper

i

.

3

It is important to note that

contradictory operators need not have di�erent predicate names. In the blocks-

world for example, the operator move(X;K;Z; T ) (where the arguments denote,

from left to right, the object, the destination, the origin and the time instant)

contradicts with move(X;Y; Z; T ) for K 6= Y , since a block can not move to two

di�erent places at the same time. Similarly, move(L; Y;M; T ) contradicts with

move(X;Y; Z; T ) for L 6= X and Y 6= table.

The switchon

i

predicate implements the choice the system has at each time

step t, between applying operator oper

i

or keeping it blocked. To realize this

e�ect, we add for each switchon

i

predicate the following two rules:

switchon

i

(t) not blocked

i

(t)

blocked

i

(t) not switchon

i

(t)

2

Negative preconditions can be represented as in graphplan [2], which adds only

polynomial overhead [1].

3

In graphplan terminology this is called operator interference. We partly drop this

restriction later in the paper by introducing the notion of post-serializable actions.



This pair of rules encodes a local (i.e., not inuenced by choices on other literals

in the program P

L

) decision on the values of switchon

i

and blocked

i

. By the

stable model semantics, exactly one of these atoms will be true while the other

will be false. If switchon

i

(t) gets the value true, operator oper

i

(t) can be applied,

provided that the rest of the literals in the body of the rule with oper

i

(t) in the

head are also true.

Finally, we need a set of rules to represent inertia. For each uent fluent

i

,

P

L

contains the rule:

fluent

i

(t) fluent

i

(t� 1); not changefluent

i

(t� 1)

The rule simply states that a uent that is true at time t� 1 remains true at t

unless an action changes its value to false. This change is encoded by the NAF

literal not changefluent

i

(t� 1) and a set of rules

changefluent

i

(t) oper

j

(t)

for every operator oper

j

(t) that has fluent

i

in its delete e�ects.

To the above we also add the uents that are true in the initial state (time

t

0

), �x a number of time instants t

0

; t

1

; : : : ; t

k

and add type information. In this

way we obtain the program P

L

. Assume that the �nal state must contain a set

of uents F

1

; : : : ; F

n

. The planning problem then amounts to �nding a stable

model M of P

L

that assigns true to the atoms F

1

(t

k

); : : : ; F

n

(t

k

).

The translation we presented above is not the only possible. In fact, in many

cases we can have more compact representations by omitting literals, rules or

variables. Consider for instance, part of the encoding we used for the �xit domain

[2], as depicted in Figure 1. It contains the de�nition of the rem-wheel (\remove

wheel") predicate and some related uents. In this logic program there is no

switchon predicate for the rem-wheel operator, but the blocked predicate that

may block the application of rem-wheel is directly attached to the operator

de�nition. The prevtime predicate represents explicitly the relation between

time instants. Since smodels cannot handle function symbols, all programs

contain a set of assertions prevtime(t

0

; t

1

), prevtime(t

1

; t

2

), etc.

free(Y,T):-hub(Y),wheel(X),prevtime(T,T1),rem-wheel(X,Y,T1).

have(X,T):-hub(Y),wheel(X),prevtime(T,T1),rem-wheel(X,Y,T1).

rem-wheel(X,Y,T):-hub(Y),wheel(X),time(T),high(Y,T),on(X,Y,T),

unfastened(Y,T),not blocked11(X,Y,T).

blocked11(X,Y,T):-hub(Y),wheel(X),time(T),not rem-wheel(X,Y,T).

free(Y,T):-hub(Y),wheel(X),prevtime(T,T1),free(Y,T1),not occ(Y,T1).

occ(Y,T):-hub(Y),wheel(X),time(T),put-wheel(X,Y,T).

Fig. 1. The �xit domain



Moreover, by modifying slightly the above encoding it is possible to reduce

the number of NAF literal. For instance, instead of representing operator inter-

ference through the rule schema (2) we can write:

oper

i

(t) precon

i1

(t); : : : ; precon

im

(t); switchon

i

(t)

inco oper

i

(t); controp

i1

(t)

: : :

inco oper

i

(t); controp

in

(t)

(2')

and compute a stable model where the facts of the �nal state are true, but inco

is false. In this way we prohibit the parallel execution of contradicting actions,

and avoid including in the program the NAF literal not contradict

i

(t) of rule

schema (2). We call these encodings constraint-based. There are also other ways

to "optimize" the logic programming representation of planning problems, which

we will not discuss here due to space limitations.

The method we put forward di�ers from the encoding of planning problems

in satis�ability proposed by Kautz and Selman [9], [10]. It is di�erent from the

propositional theories of [9] in that the logic program representation explicitly

encodes contradictions between operators through the rule schemata (2). More-

over, it does not include axioms stating that actions imply their preconditions.

The set of rules (2) and the minimality of the stable models su�ce to ensure that

an operator is applicable only if its preconditions hold. The logic programming

representation is also di�erent from the graphplan-based encoding [10] in that

it uses frame axioms instead of no-ops to solve the frame problem.

More importantly, the search spaces of smodels and propositional logic en-

codings are di�erent. On one hand, the logic programming encoding introduces

new predicate symbols in the problem representation (e.g., the block or switchon

predicates) that do not appear in a strips-style problem description. But on the

other hand, recall that the search space for the smodels algorithm consists of

NAF literals only.

4 Computing with Logic Programs

In this section we describe a number of di�erent encodings of planning problems,

discuss some e�cient pre- and post-processing methods, and report on a number

of experiments we conducted with the smodels system.

4.1 Linear Encodings

Recall that smodels computes the stable models of ground logic programs,

therefore its performance (similar to graphplan and satplan) depends cru-

cially on the number and the arity of the predicates of the input theory. For

domains that contain predicates with high arity and variables with large do-

mains, grounding can result in prohibitively large theories (here ground logic

programs). Kautz and Selman [9] describe a method, called linear encoding,

that splits operators with many arguments into a number of predicates with less



on(X,Y,T1):-prevtime(T1,T2),di�(X,Y),mvable(X),on(X,Y,T2),not move-obj(X,T2).

on(X,Y,T1):-prevtime(T1,T2),mvable(X),di�(X,Y),di�(X,Z),di�(Z,Y),

on(X,Z,T2),move-obj(X,T2),move-dest(Y,T2).

clear(X,T):-mvable(X),time(T),not occ(X,T).

occ(X,T):-mvable(X),mvable(Y),time(T),on(Y,X,T).

move-obj(X,T):-mvable(X),clear(X,T),not otherobj(X,T),not blocked(X,T).

otherobj(X,T):- mvable(X),mvable(Y),di�(X,Y),move-obj(Y,T).

blocked(X,T):-mvable(X),not move-obj(X,T).

move-dest(X,T):-clear(X,T),mvable(Y),move-obj(Y,T),di�(X,Y),not otherdest(X,T).

otherdest(X,T):-di�(X,Y),move-dest(Y,T).

Fig. 2. Blocks-world with linear encodings

(in fact two) arguments. With this encoding, only one action can be applied at

each time. Obviously, it is possible to obtain similar encodings for logic program-

ming representations. Such a program for the blocks-world domain is depicted

in Figure 2. Note that the representation explicitly requires that only one move

action can be applied at each time.

4

If the number of time steps is set to the length of the optimal plan, smodels

is able to solve within reasonable time some hard blocks-world instances which are

variants of those introduced in [10] (see Table 1). However, the algorithm seems

to be quite sensitive to the \details" of the encoding. For instance, by replacing

the rules for move-obj, otherobj and blocked of Figure 2 with the rules:

move-obj(X;T ) : �mvable(X); time(T ); clear(X;T ); not blocked(X;T ):

blocked(X;T ) : �mvable(X);mvable(Y ); diff(X;Y ); time(T );move-obj(Y; T ):

blocked(X;T ) : �time(T );mvable(X); not move-obj(X;T ).

the runtime for the problem bw-large.c [10] increases by 40%. Nevertheless,

the largest di�erence observed in the runtimes was never more than 70%. The

phenomenon seems to be related to the heuristic used by the algorithm to select

the branch literals.

4.2 Using the Well-Founded Semantics to Prune the Representation

The well-founded semantics [13] is essentially a 3-valued model that always ex-

ists, is unique for every logic program, and is traditionally considered to be a

polynomial time \approximation" of the stable model semantics. Whenever the

well-founded semantics assigns the value true to an atom, this atom will be

true in all stable models and symmetrically, all atoms that are false in the well-

founded model will be false in all stable models. The atoms that are not assigned

4

A move action at time t is represented by move-obj and move-dest at time t.



a value in the well-founded model (unknown atoms) can have di�erent values

in di�erent stable models. Although the well-founded semantics is too weak for

planning problems (it is eager to assign the value unknown whenever confronted

with a choice) it can be a useful and cheap preprocessing step that can reduce

the size of planning problems.

To see how it works, consider a blocks-world problem with initial state on(A;

table), on(B;A), on(C;B). Clearly blocks B and A are occupied at time t

0

and

the well-founded semantics will assign true to occ(A; t0) and occ(B; t0). Then,

by the frame axiom (regardless of where C moves) on(B;A); on(A; table) hold

for time t1. Consequently occ(A; t1) and on(A; table; t2) hold. Therefore, we can

omit ground rules and atoms that are not consistent with the above information,

for instance we can omit the ground literal on(A;C; t1) and all ground rules in

which it occurs.

Using the information provided by the well-founded model, we can produce

smaller ground instances. For the bw-large.c problem [10] for instance, the

number of atoms reduces from 5,101 to 4,558 and the number of rules from

58,201 to 47,729 (see also Table 1). Computing the well-founded model never

takes more than a few seconds.

4.3 Parallel Steps, Post-Serializability, and Weak Post-Serializability

Although linear encodings give compact representations, they have the disad-

vantage that they do not allow for parallel actions. Therefore, the number of

time steps of a plan equals the number of actions in this plan. If we abandon

linear encodings and adopt parallel actions, the arity of the operator predicates

increases but at the same time we may obtain plans that achieve the goals in

considerably fewer time steps. Therefore, it may happen that the size of the

ground logic program also decreases and, more importantly, �nding a solution

becomes easier.

Clearly, the encoding we presented in Section 3 allows for parallel steps. For

some domains however, it is possible to gain, by exploiting their structure, more

parallelism during plan generation. First, we de�ne some necessary notions. For

a set of actions A, we de�ne the preconditions-e�ects graph of A, denoted by

A

G

, to be the graph that contains a node for each action in A, and an edge from

an action a

i

to an action a

j

if the preconditions of a

i

are inconsistent with the

e�ects of a

j

.

De�nition 3. A set of actions A that refer to the same time instant is post-

serializable if (a) the union of their preconditions is consistent (b) the union of

their e�ects is consistent and (c) the graph A

G

is acyclic.

If a domain contains a set of post-serializable actions A, then we can apply

these actions in parallel at a time instant t during plan generation, and then

serialize them during a post-processing phase that works as follows: index with

time t all actions that have in-degree 0 in A

G

, remove these actions form A

G

and

index all actions that have in-degree 0 in the new graph with time t+1. Repeat



this procedure until all actions are removed and assume that the last time index

used is t + k. Then assign time t + k + 1 to all actions that have been applied

at time t+ 1 in the original plan. In the next section, we will see some domains

where the post-serializability property holds.

Consider now the blocks-world domain and suppose that we want to �nd

plans that achieve goals expressed in terms of the on predicate. Assume that we

encode the domain in a logic program that disables the operatorsmove(X;M;Z)

and move(K;Y; L) whenever the operator move(X;Y; Z) is applicable, but it

does not disable the operatormove(N;X; P ). Clearly, this domain representation

enables parallel execution of actions that are not post-serializable. Consider for

example two blocks A and B that are on the table and clear. Then, the actions

move(A;B; table) and move(B;A; table) can be applied in parallel, but they

create a cycle since each of them deletes the clear precondition of the other.

However, for planning problems that involve such sets of parallel actions, the

weak post-serializability property may hold.

A set of actions A is weakly post-serializable if for the actions of A that refer

to the same time instant the following conditions hold: (a) the union of their

preconditions is consistent (b) there exists a function that maps the nodes of

every possible cycle of A

G

into a consistent set of acyclic actions such that all

other actions of A remain valid with respect to the new set of actions and (c) if

A achieves a consistent goal G, the new set of actions also achieves G.

Intuitively, a set of actions A is weakly post-serializable if whenever a cycle

occurs in A

G

, there is a way to break the cycle by replacing some of the actions

in the cycle by other actions. Therefore, if the actions of a plan are weakly post-

serializable, we can transform these actions into a valid plan, if one exists. Note

that the action replacement must be local, i.e., no other actions of the plan must

be a�ected. The way that cycles can be removed in the blocks-world domain is

simple: move to the table one or more of the blocks involved in the cycle. This

is a local replacement. Blocks that form a cycle cannot be cleared by any future

actions and therefore they do not a�ect the rest of the plan. Figure 3 displays

a weakly post-serializable move operator for the blocks-world domain. Observe

that there is no rule that prohibits a block to move and at the same time another

block to move on top of it

5

. Therefore in a state where blocks A, B and C are

clear, the operatorsmove(A;B; t

i

) and move(B;C; t

i

) can be applied in parallel.

In the post-processing phase, the second action will be ordered before the �rst.

In terms of the logic programming approach we use here, all the above mean

that it may be possible to remove from the representation some of the contra-

dictions between the operators, and push the conict resolution into the post-

processing phase. This enables the planner to shorten plan length, and �nd

an initial solution in fewer steps. This solution is then transformed, by post-

processing, into the �nal plan.

5

Observe also that the source of a block that moves is not speci�ed in the move

operator. This information can be easily derived in the post-processing phase from

the move and on predicates.



move(X,Y,T):-moveable(X),time(T),block(Y),di�(X,Y),di�(X,Z),di�(Z,Y),

on(X,Z,T),clear(X,T),clear(Y,T),switchon(X,T),not other(X,Y,T).

other(X,Y,T):-moveable(X),time(T),block(Y),di�(X,Y),di�(Y,Z),move(X,Z,T).

other(X,Y,T):-moveable(X),moveable(Y),time(T),block(Y),di�(X,Y),di�(X,Z),

di�(Y,Z),move(Z,Y,T).

switchon(X,T):-moveable(X),time(T),not blocked(X,T).

blocked(X,T):-moveable(X),time(T),not switchon(X,T).

Fig. 3. Blocks-world with weakly post-serializable move operator

It turns out that action parallelism can have serious mitigating e�ects on the

computation. For the 15 blocks problem bw-large.c, for instance, the method

achieves the goals in 6 time steps (contrast this with the 14 steps of the linear

encoding). Although in the parallel encoding the number of atoms and rules

increases slightly, the overall runtime is smaller. The combination of parallel

representation with well-founded model preprocessing reduces further the com-

putation time (see Table 1). For the same problem, graphplan with operators

that allow parallel move actions, needs 31 minutes and 8 time steps. If we in-

crease the number of blocks by two (problem bw-large.d), graphplan �nds a

solution after 61 hours. The even larger problem bw-large.e with 19 blocks is

practically unsolvable for graphplan. The runtimes for smodels are given in

Table 1. The rows showing GP-parallel in this table refer to an encoding that

allows as much parallelism as graphplan does. Note that it can be the case

that grounding is more expensive than �nding a solution.

Problem Time/Actions Atoms Rules Time

bw-large.c (linear) 14/14 5,101 58,201 1,482 (125)

bw-large.c (linear/well-found.) 14/14 4,558 47,729 1,110

bw-large.c (parallel) 6/20 5,572 65,851 483 (200)

bw-large.c (parallel/well-found.) 6/21 4,404 46,126 190

bw-large.d (parallel/constraint) 6/32 8,138 85,101 157 (639)

bw-large.d (GP-parallel/constraint) 9/36 11,874 169,102 450 (1,976)

bw-large.e (parallel/constraint) 7/37 11,623 139,499 365 (1,568)

bw-large.e (GP-parallel/constraint) 10/44 16,211 260,700 1,216 (4,270)

logistics.c (parallel) 8/68 2,529 10,531 18 (23)

trains.a (parallel/constraint) 8/39 1,957 7,786 647 (14)

trains.b (parallel/constraint) 7/34 2,234 13,746 1,261 (17)

trains.c (parallel/constraint) 8/42 2,514 15,942 5,989 (22)

Table 1. Runtimes for solving planning instances on a SUN ULTRA with 256M RAM.

Times for grounding/parsing are given in brackets. All times are in CPU seconds.

Smodels was run with the lookahead option on.



4.4 Other Domains

We have tested the method on a number of other domains in order to obtain

a more complete idea of its performance. The �xit domain, as it appears in

graphplan's distribution, is interesting because it contains a fairly large num-

ber (in fact 13) of operators and part of the actions are post-serializable (e.g.,

putting something in the boot and closing the boot at the same time). The per-

formance of smodels (without well-founded preprocessing solved in 0.23 sec) is

comparable to graphplan (0.11 sec).

A more interesting domain is the logistics domain [10]. A number of packages

are in di�erent places in the initial state and the task is to deliver these packages

to destinations speci�ed in the �nal state, using the available resources (trucks

and planes). This domain also contains post-serializable actions. The actions of

loading a package to a truck/plane, unloading the package from a truck/plane

and driving the truck/ying the plane can occur at the same time. During post-

processing all drive/y actions will be delayed for one time step after the load

and unload action with which they conict.

This domain is hard even for graphplan. Graphplan was not able to

solve the problem logistics.c after running for 6 CPU hours

6

. If the number

of time steps is set to the length of the optimal plan, smodels with parallel

encoding and without well-founded model preprocessing solves this problem in

18 seconds. Part of the e�ciency of the method can be attributed to the use

of simple constraints that, although implied by the rules, help the algorithm to

detect dead-ends earlier. These constraints are:

inco : �veh(Y ); obj(X); veh(Z); diff(Y; Z); in(X;Y; T ); in(X;Z; T ):

inco : �obj(X); loc(Y ); loc(Z); diff(Y; Z); at(X;Y; T ); at(X;Z; T ):

inco : �veh(X); corloc(X;Y ); corloc(X;Z); diff(Y; Z); at(X;Y; T ); at(X;Z; T ):

inco : �obj(X); loc(Y ); at(X;Y; T ); veh(Z); in(X;Z; T ):

where the predicate corloc contains the possible location of the vehicles. Like in

a constraint-based encoding, smodels is asked to compute a stable model where

the facts of the �nal state are true and inco is false. If during search, the assumed

values derive inco, the algorithm backtracks immediately. Finally note that due

to the high branching factor of the domain the well-founded model information

is not of much help.

Similar to the logistics is the trains domain [8]. We are given a number of cars

that can carry commodities and a number of engines that can be coupled with

cars and move between cities that are connected by tracks. The task is to carry

the commodities to their destinations. We can also require that the cars/engines

are in speci�ed locations in the �nal state. The main feature of the domain,

in its ucpop description, is a conditional move operator: if a car is coupled to

an engine, it moves with the engine. Again, our encoding contains constraints

similar to those of the logistics domain. We give some representative runtimes

6

Kautz and Selman [10] report that for Walksat and state-based encodings the problem

is solved in 1.9 seconds on a SGI Challenge/150 MHz. For other encodings and

algorithms the problem is unsolvable (needs more than 10 hrs of CPU time).



for this domain in Table 1. The interesting point here is that although these

theories are relatively small, they can be very hard for smodels.

The last set of experiments concerns the towers of Hanoi domain. Smodels

can solve the 4 blocks problem in a few seconds but the 5 blocks problem seems

to be beyond its capabilities, at least for our encoding. Even though we have not

applied the well-founded model preprocessing that can presumably reduce the

complexity, the domain seems to have features that make it hard for the method;

action parallelism is low and the constraints to be satis�ed are very tight.

4.5 Other Issues

Finding a correct plan is not the only issue. Minimizing the number of actions is

also important. This becomes especially important for systems like smodels that

view planning as a constraint satisfaction problem. In fact, the plans synthesized

by smodels often contain obviously redundant actions. This raises the question

of what are good methods that remove redundant actions from plans. It seems

that for domains like the blocks-world the problem is harder than for domains

similar to logistics.

One possible way around this problem could be to give smodels' output,

i.e., the set of actions that achieves the goal, as input to an e�cient planner like

graphplan. If the number of (ground) operators (i.e., the actions in the initial

plan) is small, it is possible that the planner will �nd a solution quickly and

at the same time remove some of the redundant actions. The idea is related to

the methods for ignoring irrelevant facts and operators during plan generation

developed by Nebel et al. [11].

When using logic programming representations, we are confronted with an-

other important issue. The run times we report above are for logic program

representations with the number of time steps set to the length of the optimal

plan. For practical problem solving, we can use binary search over the length of

the plan [10] (or a similar method, depending on the size of the problem). This

raises the question of how fast the algorithm fails in cases where the allowed

plan length is less than necessary. For the blocks-world domain and the paral-

lel encoding, the well-founded model information helps the system to determine

unsolvability in a few seconds. Similarly for the trains problems of Table 1. For

the logistics domain, proving unsolvability is harder, but still the di�erence be-

tween the performance of the method and graphplan or satplan is dramatic.

For the logistics.c problem, if the allowed length is set to one less than the

minimum, smodels reports that no stable model exists in 1,447 secs.

5 Conclusions

We presented techniques for encoding planning problems in nonmonotonic logic

programs. We have provided some initial evidence that the combination of ideas

from nonmonotonic reasoning and planning may deliver e�ective planning sys-

tems. We have also shown that planning problems constitute an interesting and



challenging set of benchmarks for nonmonotonic reasoning system implementa-

tions.

In the future, we intend to work on a tighter integration of planning and non-

monotonic reasoning methods. One issue is how techniques used in graphplan,

like the automatic derivation of exclusive pairs, can be captured in the logic pro-

gramming framework. Moreover, it is still open whether the branching heuristic

can be modi�ed in a way that it becomes more e�ective for logic programs that

correspond to planning problems.

Acknowledgments

We would like to thank Alfonso Gerevini, Bertram Lud�ascher and Ilkka Niemel�a

for their feedback.

References

1. C. B�ackstr�om. Equivalence and tractability results for SAS

+

planning. KR-92.

2. A. Blum and M. Furst. Fast Planning Through Planning Graph Analysis. Arti�cial

Intelligence, Vol. 90(1-2), 1997.

3. W. Chen and D.S. Warren. Computation of Stable Models and its Integration with

Logical Query Processing. IEEE Transactions on Knowledge and Data Engineer-

ing, to appear.

4. M. Denecker, L. Missiaen and M. Bruynooghe. Temporal Reasoning with Abduc-

tive Event Calculus. ECAI-92.

5. P. M. Dung. Representing Actions in Logic Programming and its Applications in

Database Updates. ICLP-93.

6. M. Gelfond and V. Lifschitz. The Stable Models Semantics for Logic Programs.

ICLP-88.

7. M. Gelfond and V. Lifschitz. Representing Actions and Change by Logic Programs.

Journal of Logic Programming, Vol. 17, 1993.

8. A. Gerevini and L. Schubert. Accelerating Partial-Order Planners: Some Tech-

niques for E�ective Search Control and Pruning. Journal of Arti�cial Intelligence

Research, Vol. 5, 1996.

9. H. Kautz and B. Selman. Planning as Satis�ability. ECAI-92.

10. H. Kautz and B. Selman. Pushing the Envelope: Planning, Propositional Logic,

and Stochastic Search. AAAI-96.

11. B. Nebel, Y. Dimopoulos and J. Koehler. Ignoring Irrelevant Facts and Operators

in Plan Generation. ECP-97, this volume.

12. I. Niemela and P. Simons. E�cient Implementation of the Well-founded and Stable

Model Semantics. International Joint Conference and Symposium on Logic Pro-

gramming, 1996.

13. A. Van Gelder, K. Ross and J. Schlipf. The Well-founded Semantics for General

Logic Programs. Journal of the ACM, Vol. 38, 1991.

14. V.S. Subrahmanian, D. Nau and C. Vago. WFS + Branch and Bound = Stable

Models. IEEE Transactions on Knowledge and Data Engineering, Vol. 7, 1995.

15. V. S. Subrahmanian and C. Zaniolo. Relating Stable Models and AI Planning

Domains. ICLP-95.


