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Abstract. Globalvisionsystemsasfoundin thesmallsizeleagueareprohibited
in themiddle sizeleague This papemresentsnethodgor creatingaglobalview
of the world by cooperatie sensingof a team of robots. We develop a multi-
objecttrackingalgorithmbasedon Kalmanfiltering anda single-objectracking
methodinvolving a combinationof Kalmanfiltering andMarkov localizationfor
outlier detectionWe apply thesemethodsfor robotsparticipatingin themiddle-
sizeleagueand comparethemto a simpleaveragingmethod.Resultsincluding
situationsfrom real competitiongamesarepresented.

1 Introduction

Mobile robotsusuallycanonly perceve a limited areaof their ervironmentat atime.
In general,sensorsuchaslaserrangefinders(LRFs), ultrasonicsensorsor cameras
have alimited field of view, so anagentcannotsenseall objectsaroundhim from one
sensotframe. Furthermorea robot doesnot know aboutobjectsthat are occludedby
otherobjects,e.g.by wallsin anoffice environment.

Thereare two waysto overcometheselimitations. For one, an agentcankeepa
history of sensorframes(or interpretationghereof)to reasonaboutpossibleobjects
andtheir locationsin the environment.For example,a robot canmap an ervironment
by maintainingan occupang grid [9] wherethe grid cells represenipossibleobject
locations However, if the ervironmentis dynamic,thegrid cellsonly reflectsnapshots
of situationswhenthe datawasrecorded.

Another possibility is to deploy multiple robotsin the ervironment,eachwith its
own sensorsandto communicateheir sensoinformationsto amodulefor multi-agent
sensofusion.This approachs especiallyusefulfor dynamicervironmentsvheremov-
ing objectsarepresenthatcannotbereliably trackedby a singlerobot.

This work addresseshe secondclassof methods.We develop methodsfor two
differentkindsof scenariosn dynamicenvironments One,whereanunknovn number
of multiple objectshave to betrackedby agroupof robotsundertheassumptionhatthe
sensedlatais noisybut reliable,andsecondthetrackingof a singleobjectby a group
of robotswheresensoreadingsarenoisyandunreliable! In both casesve assumehat
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eachrobotin the teamknows its own positionwith high accurag andthatall sensor
informationis acquiredby on-boardsensoronly.

We applythesemethodsto theworld of RoboCupfor the middle sizeleaguewhere
in our approacha teamof robotsmaintainsa consistentandaccurateworld model of
teammatesppponentandtheball. Note,however, thatthemethodsaregeneraknough
to applyto otherdomainstoo, undertheassumptiongivenabore.

2 Multi Sensor Fusion in the RoboCup Environment

When developing an object tracking method,one usually hasto dealwith track ini-
tiation, track updateincluding predictionand dataassociationand track deletion[1,
2]. This sectiondescribeghe stepsin our systemnecessaryor trackingobjectsin the
RoboCupervironment.

Eachrobot first localizesitself by matchinga scanfrom the LRF with ana priori
line modelof thesocceffield. Experimentshav thatthis localizationtechniques very
accuratgusually< 2 cmand< 1°) andthatit is fasterandmorerobustthancompeting
methodq5].

After estimatingits own position, the robot extractsother playersthat are present
in the field by discardingall scanpoints belongingto field walls and clusteringthe
remainingones.For eachclusterthe centerof gravity is assumedo correspondo the
centerof anotherrobot. Inherentin this approachis the systematicerror due to the
differentrobotshapesHowever, it canbe notedthatmeasuremen@reusuallyreliable
(nofalsepositives).

Sinceour lasersaremountedat a level that prohibitsthe detectionof the ball, we
useacamerdor obtaininginformationaboutwheretheball is. Unfortunatelyourvision
systemhasa limited quality andcolorsaredifficult to train. Thus,ball obsenationsare
noisy and unreliable,e.g. we had problemswith white field markingsbecausevhen
trainingthe ball color, shiry reflectionson the ball appearedo have a similar color.

All playerssendtheir own position,the positionof obsered otherplayersandthe
position of the ball (if detected}o a global sensolintegration unit which in our case
runsonacentralcomputemutsidethe socceffield. Herethe measurementrefusedin
thefollowing way.

For aplayersown position,nofurtheractionshave to becarriedout sincetherobots
alreadydeterminedheir own positionwith high accurag. However, for eachplayera
trackis initiatedfor fusingplayerobsenrationscomingfrom its teammates.

For eachplayerdetectedy arobot,a new trackis initiatedor, if the playercanbe
associateavith analreadyexisting track, it is fusedwith this track. We usea geometric
methodfor dataassociatiorand Kalman filtering for datafusion. Trackscontaining
measurementsom anown playeraremarkedasteammate all othersasopponent

The ball positionis determinecby a probabilisticintegration of all ball measure-
mentscoming from the players.Here we usea combinationof Kalmanfiltering and
Markov localizationfor achiering maximumaccurag androbustness.

If no measuremenisanbeassociateavith atrackfor acertainamountof time (e.g.
5 secdn ourimplementation)thetrackis deleted.

Thefusedpositionsof playersandball aresentbackto all robotson aregularbasis
wherethey areintegratedinto eachrobot’'sworld model. Thisenablesplayerto extend
its own view with objectsit doesnot currentlyperceve andalsoto know aboutwhich
playeris friend or foe. As a result,our playershave a muchgreaterknowledgeof the



world thanwhen using local perceptiononly. Especiallyknowing wherethe ball is,
appeargo be usefulin almostall situationsandwe usethe sharingof this information
for developingsophisticatedkills [14].

Detailsaboutour probabilisticsensofusionmethodgor trackingmultiple andsin-
gle objectsaredescribedn the next section.

2.1 Multi-Object Tracking from Reliable Data

Considethetrackingof ana priori unknavn numberof objectsby ateamof robotsun-
dertheassumptiorthatthe measurementrereliablebut might be corruptedby Gaus-
siannoise. This scenariooccursin the RoboCupervironmentwhenplayersextracted
from therobot's rangefindersarefusedin the global sensoiintegrationmodule.

Eachof our robotsdetectsotherplayersin thefield from datarecordedoy the LRF
andcomputeseadingandvelocity informationbasedon the lastfew obsenationsbe-
longingtothis playerusingdifferentiation Position headingandvelocity of eachobject
arethencommunicatedo the multi-sensorintegration module. Thus,the obsenation
modelis arandomvariablex, = (z, ys, s, vs,w;s)” with meanx, andcovarianceX,
where(z,, y;) is the position,f, the headingandv, andw, arethe translationaland
rotationalvelocitiesof the objectrespectiely.

As our robotsknow their own positionwith high accurag andthe LRF provides
accuratelata,we assumehatfor playerobsenations,Y; is aconstantiagonalmatrix

X, = diag(ais , 0'55, 0'35,0'55, 0'3)5) Q)
wherediag(...) is a squarematrix with its diagonalelementssetto the given argu-
mentsandall otherelementssetto 0, ando, oy, , 04, 0y, andoy, areconstanstan-
darddeviationsfor position,headingandvelocity whichwe manuallyadjustedhrough
experiments.

Wheneer a robot sendsinformationabouta playerfor which no alreadyexisting
trackcanbefound,i.e. if thedistanceo all existing tracksexceedsa certainthreshold,
anew trackis initiated. TracksaremodeledasGaussiarvariablesx, with meanx, and
covarianceX,.. Thus,wheninitiating a new track, it is setto

X, =Xy, Sy = 5, )

For predictingthe stateof a track over time, we usea simplemotion modelwherewe
assumehat the object moves and rotateswith constantspeed.Given a certaintime
interval ¢, thetrackis projectedaccordingto

Z, + cos(ér)ﬁrt
Ur + sin(ér){jrt
X, ¢ Fy(X,t) = b, + ot (3)
Up
a’r
5y« VF,5,VFT 4 5,(1) 4)

whereV F, is theJacobiarof F; and X, (¢) is thecovarianceof someadditive Gaussian
noisewith zeromean:

Ya(t) = diag(rrgat,(rjat,agat,rrzat,rriat) (5)



with o, 0y., 04,, 0, andeo,,, beingsomeconstantstandarddeviations which we
estimatedhroughexperiments.

Now, whenanex measuremerx;, arrivesfrom oneof ourrobotswhichcorresponds
to atrackx,, we fuseobsenationandtrackaccordingto:

X — (E7V 4+ 27N THEI ) + 20K) (6)
o (E s 7

Note,thatsinceour sensomodeldoesdirectly obsene the systemstate we canutilize
thesimplified Kalmanfilter equationgoundin Maybeck[8].

The succes®f a Kalmanfilter dependson a reliable dataassociatiormethod.In
ourimplementatiorwe usea geometrianethodthatassignsneasurement® tracksby
minimizing the sum of squarederror distancedetweenobsenationsandtracks[13].
Although this alreadyyields reasonableesultsin practice,we wantto notethat the
applicationof a probabilisticmethodsuchasjoint probabilisticdataassociatiorilters
(JPDAF) [2,11] mightstill improve our results.

2.2 Single-Object Tracking from Noisy Data

Oftenthetaskis notto trackmultiple objectsbut asingleobjectwhereobsenationsare
bothnoisyandunreliable Consideithecaseof keepingrackof theball in theRoboCup
scenarioTherecanonly beoneball in thefield duringa game However, sincefor ball
recognitionone usually employsvision, accurag and robustnessarein generallow
comparedo LRFswhich — in our case— aremountedabove a heightwherethey can
detecttheball.

Againwe useaKalmanfilter asdescribedn section2.1for accuratelytrackingthe
ball. Eachof ouragentsegularly sendsall obsenationsto theglobalsensointegration
module However, thevision sensois only ableto determingheheadingo theball with
goodaccuray but fails to provide accurateangedata,especiallyif theball is far avay
from therobot. For a ball obsenation x, we cannotassumea constantcovarianceX’,
dueto this characteristics. i

Giventheranger, = /(& — #r00)> + (U6 — 9rov) > @andheadingp, = tan=' (g, —
Urob) /(21 — Zrop) OF the ball with respecto the robotlocatedat position (o, grob),
we modelthe uncertaintyX, , of ball positionas

g = diag(fbafb,aib) (8)

whereo,, andoy, aresomeconstanstandarddeviationswe adjustedoy hand.From
this, we cancomputethe obsenationerroras

5 =VP5,VPT )
where

Trob + b COS(éb + g;b)
Yrob + Tp S}ﬂ(9b + o)
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andoy,, 0., ando,, arefurtherconstanstandardieviationswe estimatedy hand.
For trackinitiation we createa new track x,, andsetit to thelastball obsenration:

Xr = Xp, Xy = X (10)

For predictingtheball stateovertime we useasimilar functionasfor playermovements
but assumehatthe ball rolls in a straightline andslows dowvn with deceleratioruy,

.+ cos(ér ) (0 — apt’)t!
Ur + qm(ér (ﬁr — apt’)t
Xp ¢ Fy(X,1) = 0, (11)
Vp — (lbtl
Wy
5« VBRI, VE + X (1) (12)

wheret’ = min(¢, v/a,) and X’ (¢) is a similar constantcovariancematrix as X, (¢)
to flatten the Gaussiardistribution over time. Finally, fusing newv obsenationsto this
trackis analogoudo equationg6) and(7).

It shouldbe notedthata Kalmanfilter with this sensomodelproducesnoreaccu-
rateresultswhenfusingobsenationsfrom differentviewpointsthane.g.a simpleaver-
agingmethod.This canbe seenfrom Fig. 1(a) wherethe ball estimatef two players
(indicatedby grey circles)areintegrated.Eventhoughthereis a large rangeerror, the
Kalmanfilter caneffectively triangulatemeasurementsom two separat@iewpointsto
localizethe objectmuchmoreprecisely becausghe angularerroris small.
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Fig. 1. Fusingball obsenations.Triangulation(a) andfalsepositive obsenationsby Player2 (b).
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The Kalmanfilter for ball trackingpresentedn this sectionassumesoisy but re-
liable data,thatis, no outliers areintegrated.However, in our systemwe sometimes
obsered completelywrong ball measurementsy oneof our robotsdueto reflections
onwalls or poorly trainedcolors.One possibility to filter out suchoutliersis to usea
validationgatethat discardsmeasurementwhoseMahalanobidistanceis largerthan
acertainthresholdd, whered is choserfrom a y? distribution.

Suchavalidationgate ,however, hasthe problemthatwhenonerobotis constantly
sendingoutwrongobsenationsandthe Kalmanfilter for somereasonss trackingthese
wrongobsenationsandfilters outall others theglobalball positionbecomesinusable.
Furthermorewhenthe robot stopssendingwrong obsenationsit takesseveral cycles
until otherobsenationsaretakeninto accountagain.For thesereasonsve decidedto
developamoresophisticatedilter methoddescribedn the next section.



2.3 Markov Localization as Observation Filter

In localizationexperimentscarriedout on a mobile robot, Gutmann Fox, Burgardand
Konoligefound out that Markov localizationis morerobust, while Kalmanfiltering is
moreaccuratevhencomparedo eachother[3]. They proposeto usea combinationof
bothmethodgo getamaximumrobustandaccuratesystem.

In this paper we follow the sameideaandshav how to usea Markov processas
an obsenation filter for our Kalman filter. We use a grid-basedapproachwith a 2-
dimensional(z, y) grid whereeachcell z reflectsthe probability p(z) thatthe ball is
in this cell. We initialize this grid with a uniform distribution beforeary obsenrationis
processedT heintegrationof new ball measurements thendonein two stepsypredic-
tion andupdate.

In the predictionstep,ball motionis modeledby a conditionalprobabilityp(z | z)
which denoteghe probability thatthe ball is at positionz giventhatit wasat position
z'. Uponball motion,the new ball positionis calculatedas:

p(z) « Zp(z | 2 Yp(2") (13)

Grid-basedVarkov localizationcanbe computationakxpensve if the sizeandes-
peciallythe dimensionof the grid is large. For efficiengy, we only usea 2-dimensional
grid that doesnot storeary headingor velocity informationof the ball, which means
that we cannotaccuratelyestimatethe positionwhenthe ball moves. For the motion
modelp(z | z') we assumehatall directionsare equally possibleandvelocitiesare
normally distributed with zero meanand covarianceo?. Therefore,p(z | 2') canbe
expressedsa Gaussiaristribution aroundz’:

p(z | 2') ~ N(Z, diag(c?t, agt)) (14)

wheret is thetime passediuringball motion.
In theupdatestep,anew ball obsenationz; is fusedinto theprobabilitydistribution
accordingto Bayes'law:

i p(z | 2)p(2)
P S o (@) (15)

Thesensomodelp(z;, | z) determineshe likelihood of observingz, giventheball is
atpositionz. We modelit accordingto:

p(2 | 2) ~ N (2, Zp) (16)

wherez, arethe (z, y) component®f ball obserationx, asdefinedin section2.2and
X istheupperleft 2 x 2 submatrix of X, ascalculatedn equation(9).

Maintaining the multi-modal probability grid makesit very easyto distinguish
which ball measuremerghouldbe integratedoy the Kalmanfilter andwhich not. After
updatingthe grid with a new measuremenwe determineghe mostlikely ball position,
thatis, the cell with the highestprobability Only measurementthat are closeto the
mostlikely positionare fusedinto the Kalmanfilter andall othersare considerecas
outliers.Furthermorejf the currentstateof the Kalmanfilter doesnot correspondo
the mostlikely ball positionin the grid, we re-initialize the Kalmanfilter usingthis
position.By usingthis dualprobabilisticlocalizationmethodwe achieve high accurag
throughKalmanfiltering togetherwith high robustnesghroughMarkov localization.
Experimentatesultsusingthis techniquearepresentedh the next section.




3 Results

The methodspresentedn the previous sectionhave beenimplementedon our mobile
robotsocceteam(seeFig. 2) andhave beensuccessfullyusedsinceour participationin

theRoboCupl1999world competition.For our first participationin 1998we developed
asimilar but muchsimplerapproactor fusingmeasurementsom differentrobots[4].

In this approacha greedynearest-neighborhoadethodhandleddataassociationfor
computingobject positions,a weightedaveragingof obsenationsfrom the different
playerswasemployedln this sectionwe comparethis simpleaveragingmethodto our
new probabilisticapproachHrom Section2.

Fig. 2. CSFreiturg players Eachoneis aPioneer robotequippedvith SICKLRF, Cognatirome
vision system Libretto notebookWaveLanwirelessethernetandsemi-professionaticking de-
vice developedby SICKAG. For anoverview, see[4, 14].

In the caseof multi-objecttracking,we generallyobserneda moreconsistentvorld
modelfor the new tracking methodwith a slightly higher run time due to the more
sophisticatedlataassociatiormethod.However, the differencesin the world model
wereonly maginal which we attributeto thefact thataftersolvingthe correspondence,
themethodsarevery similar.

On the other hand,we got much betterresultsfor our new single-objectracking
algorithmcomparedo the simplealgorithm.Therefore our mainfocusin this section
is onresultsobtainedby the single-objectracker

3.1 An Ambiguous Situation

We now shav how the algorithmfor trackingsingle objectsperformsin anambiguous
situation.Fig. 1(b) displaysa setupwheretwo robots,Playerl and3, seethe ball atthe
truelocationin front of the goal but onerobot, Player2, getsit all wrong andthinks
the ball is somavhereon the centerline. If we assumehatall threeplayerssendtheir
ball obsenationsto the global sensoiintegrationmoduleon a regularbasis,we getthe
probabilitydistributionsasshown in Fig. 3.

Whenintegratingthefirst threemeasurementsll of themarefusedby the Kalman
filter sincenoneof themhasbeendetectedo beanoutlieryet. Notethatafterupdating
the grid with the 2nd measurementhe probability distribution hasa sharppeakat the
centerline causedy thelow uncertairmeasurementf Player2 which thinksthe ball



after 3rd (correct) measurement

Fig. 3. Evolution of the positionprobability grid.

is close After integratingmoremeasurementshe probability distribution concentrates
moreandmoreon thetruelocationof the ball andfurther measurementisom Player2
(graphin the centerof bottomrow in Fig. 3) cannotout-weighthetruelocationof the
ball anymore. Thus, after the first integration of obsenationsfrom all players,subse-
guentreadingsfrom Player2 arefiltered outandthe Kalmanfilter tracksthe ball based
onobsenationsfrom Playerl and3 only.

3.2 Real Game Scenarios

Anotherexampleis shavn in Fig. 4(a). This situationhasbeenrecordedin the final
gameagainsthe CoPSStuttgartteamduring the GermandomesticVisionCupcompe-
tition heldin October1999.
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Fig. 4. Ball tracking using simple averaging(a) and combinationof Markov localizationand
Kalmanfiltering.

Depictedis a situationwherethe ball is at the wall closeto Player3, Player3 and
5 obsere the ball approximatelyat the right location but Player4 thinks the ball is
right in front of the opponentgoal. The simple averagingmethodcomputesa global
ball position somevhere betweenall thesemeasurementahich is shovn asa white
circlein Fig. 4(a). It is obvious thatthis global ball positionis unusableand— if taken
seriouslyby Player3 — could leadto a disadwantageousituationwhere,after Player3
moving towardsthe global ball position,the opponentplayercloseto Player5 could
takeover ball control.



Usingour single-objectrackingmethod,the measurementsom Player5 arereli-
ably filtered out andthe global ball positionactuallyrepresentshetruelocationof the
ball (seeFig. 4(b)). Takingthis informationinto accountPlayer3 cansafelyapproach
theball andclearthe situationby pushingthe ball towardsthe opponent half.

In a further investigation,we examineddatafrom the RoboCup2000 competition
heldin Melbourne,Australia. During this competition,our robotsrecordeda total of
about120,000ball obsenationsin 10 gameswith atotal playing time of morethan2
hourg. It turnsoutthatin only about0.7%of all ball obsenations(about50 secs)our
Markov localizationapproachdetectedanoutlier. Thislow numbercanbeexplainedby
the fact that false positive measurementare rareand simultaneoudbsenationsby 2
or morerobotsdo notoccurall thetime. If we compareour dualapproactto onewhere
only a Kalmanfilter integratesall measurementthenin 72% of the filtered caseghe
ball positionchange$y morethan30 cm. Of courseit is hardto tell which methodis
closerto therealworld asthereis no groundtruth informationfrom the games.

A last experimentwas carriedout to find out aboutthe accurag of our approach
comparedo thesimpleaveragingone.In our laboratorythe ball wasfixedatthecenter
of thefield (the origin of our globalworld model)with threerobotsaroundobserving
it. From 2000 measurementhe simpleaveragingmethodreporteda meanof (18 cm,
0 cm)with standarddeviation (47 cm, 19 cm)whereaour methoddelivereda meanof
(-2 cm, 4 cm) with standarddeviation (8 cm, 9 cm). Thus,our new methodis signifi-
cantlymoreaccurateghanthe averagingone.

4 Related Work

Ourwork is relatedto two researctareasobjecttrackingandmulti-robotsystems.

Kluge etal. [7] trackmultiple moving objectsarounda wheelchaitby employinga
maximum-flav algorithmfor dataassociationWe usea similar geometricmethodbut
alsoprobabilisticallyintegratethe measurementssingmotionandsensomodels.

Schulzetal. [11] useJPDAFs [2] for trackingmultiple moving targetsaroundtheir
robotand employ particlefilters for achiezing robust stateestimation.However, they
reporta runningtime of 2 scansper secondwhich is infeasibleon our systemwhere
eachrobotsendsall of its obsenationsevery 100ms.

Multi-robot systemgyainedsignificantattractionin recentyears For all differentas-
pectsof mobile robotnavigation, multi-robotsolutionshave beendevelopedthatmake
useof the exchangeof informationabouttherobots’beliefsandtheir intentions.

Probablythe mostrelatedwork to oursis thatof otherteamsin the RoboCupmid-
dle sizeleague.The CMU HammerheadRoboCupteamalsousesKalmanfilters for
object stateestimationand reportspromising resultson the accurag of this method
[12]. However, they do not apply a motion modelto the statesthusobsenationshave
to betakenatthesametime. Furthermorethey do notconsidedataassociatioranduse
validation gatesfor detectingoutliers. We usea more sophisticatedutlier detection
methodwhichis superiorto simplevalidationgates.

A similar probabilisticapproactto oursis thatof the Agilo team[10]. They usean
iterative optimizationtechniqueor estimatingobjectpositions[6] andemployJPDAFs
for dataassociatiorf10]. However, they do not dealwith outliersaswe do.

2 Seehttp::/wwwinformatik.uni-freiburg.de*robocupfor watchinglog files of CS Freiturg’s
competitiongamesn a Javaapplet.
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Conclusion

We developednen methodsfor tracking multiple and single objectsfrom noisy and
unreliablesensordataandcomparedhemto a simpleaveragingmethod.Experiments
shav thatthe methodsaremorerobustandaccuratehanthe simpleaveragingonedue
to betterprobabilistic modelingof motion and sensingof objects,and a dual sensor
integrationapproactinvolving Markov localizationandKalmanfiltering.

Our approachpresentedn this paperis very similar to a decentralizedilter with

feedbacko localfilters[1, pp.371-377].As decentralizedilters canbe sub-optimal,t
would beinterestingto compareour resultsto a centralfilter thatreadsall sensordata
from ourrobots? Thisis partof futurework.
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