
Automatic Abstraction Refinement for Timed Automata

Henning Dierks1, Sebastian Kupferschmid2, and Kim G. Larsen3

1 OFFIS, Oldenburg, Germany
dierks@offis.de

2 University of Freiburg, Germany
kupfersc@informatik.uni-freiburg.de

3 Aalborg University, Denmark
kgl@cs.auc.dk

Abstract. We present a fully automatic approach for counterexample guided
abstraction refinement of real-time systems modelled in a subset of timed au-
tomata. Our approach is implemented in the MOBY/RT tool environment, which
is a CASE tool for embedded system specifications. Verification in MOBY/RT
is done by constructing abstractions of the semantics in terms of timed automata
which are fed into the model checker UPPAAL. Since the abstractions are over-
approximations, absence of abstract counterexamples implies a valid result for
the full model. Our new approach deals with the situation in which an abstract
counterexample is found by UPPAAL. The generated abstract counterexample is
used to construct either a concrete counterexample for the full model or to iden-
tify a slightly refined abstraction in which the found spurious counterexample
cannot occur anymore. Hence, the approach allows for a fully automatic abstrac-
tion refinement loop starting from the coarsest abstraction towards an abstraction
for which a valid verification result is found. Nontrivial case studies demonstrate
that this approach computes small abstractions fast without any user interaction.

1 Introduction

Embedded systems often control safety critical systems. Hence, formal methods are
mandatory to establish correctness results for such systems. Since model checking is
a technique that does the analysis without any user interaction it is widely examined
in the literature and many tools are available. However, model checking suffers from
the so called state space explosion problem, i. e., the complexity of the verification
procedure is exponential in the size of the system. Therefore, several techniques have
been invented to tackle this problem like symbolic representation and abstractions. In
most cases the requirements of embedded systems refer to thetiming. Verification of
real-time systems by model checking is even more difficult because time adds another
source of complexity. As a consequence, checking a model that represents a nontrivial
real-time system always requires to find an appropriate abstraction that can be checked
within the given resources of memory and time. If the used abstraction is an over-
approximation, then the absence of an abstract counterexample implies the absence of
concrete counterexamples. Such an abstraction is called asafeabstraction. However, if a
model checker analyses a safe abstraction and discovers a counterexample, the question

2 Henning Dierks, Sebastian Kupferschmid, and Kim G. Larsen

arises whether the counterexample is spurious or not, i. e.,whether there is a concrete
counterpart in the full model.

Without automation, model checking by abstractions consists of several, error-prone
and time-consuming tasks. First, the user has to select a proper initial abstraction which
usually requires a deep knowledge of the system under consideration. If the model
checker finds a counter example in this abstraction, then theuser has to analyse whether
it is spurious or not. If the counterexample is real, then theuser is done, otherwise the
selected abstraction was too coarse. In this case the initial abstraction must be refined
so that the spurious counterexample is eliminated. These steps are repeated until there
is no abstract counterexample, or the abstract counterexample is also a counterexample
for the full system.

The approach presented in this paper automatesall steps of the abstraction refine-
ment loop in the setting of real-time specifications given asPLC automata [11]. This
leads to a fully automated abstraction refinement loop as depicted in Fig.1. This loop
starts with the coarsest possible abstraction and iteratesas long as spurious counterex-
amples are found. If the model checker finds an abstract counterexample, then a coun-
terexample analyser is used to check whether it is spurious.Our analyser first constructs
a test automaton from the abstract counterexample. The composition of the full model
with the newly generated automaton is then fed into the modelchecker. We extended the
model checker in such a way that if the counterexample is spurious, the model checker
also reports hints why it is spurious. These hints are then used in the refinement step
in order to eliminate the abstract counterexample. The termination of this abstraction
refinement loop is guaranteed by the fact that each iterationremoves at least one of
finitely many abstracted variables.

To demonstrate the potential of our approach we carried out several nontrivial case
studies, i. e., the respective full models cannot be handledwithin the given memory
resources. Our approach is able to handle them with only a fraction of the resources,
starting from the initial abstraction towards a refined abstraction for which a definite
answer could be found.

Refinement

Abstraction

Counterexample
Analysis

Model Checkingverification
task

true

false

Fig. 1.Counterexample guided abstraction refinement loop.

The remainder of the paper is structured as follows: the nextsection briefly intro-
duces the formalisms we work with, Section3 shows how we check for spuriousness
of counterexamples. Section4 describes our used abstraction refinement cycle and the
algorithms to provide the necessary information. Section5 provides experimental eval-

Automatic Abstraction Refinement for Timed Automata 3

uation of the implementation of the method within UPPAAL. In Section6 we discuss
related work and Section7 concludes.

2 Preliminaries

In our setting, a verification task consists of a real-time system, which is given in terms
of PLC automata, together with a temporal property to verify. To solve such a verifica-
tion task with our framework, we use MOBY/RT to compute an abstraction of the given
PLC automata. MOBY/RT is a tool for the development and analysis of PLC automata
[20]. From the verification perspective the most important feature of MOBY/RT is the
generation of safe abstractions of an arbitrary set of PLC automata together with a tem-
poral property into the input syntax of UPPAAL 3.4. These abstractions are generated
according to the entities (e. g., variables and delays) of the PLC automata the user has
chosen for abstraction.

In the following we will briefly describe PLC automata, timedautomata and the
relation between these two formalisms.

2.1 PLC Automata

The formal specification language called PLC automata has been developed to enable
formal verification of real-time properties of PLC programs. A Programmable Logic
Controller (PLC) is a standardised hardware platform whichis especially equipped
to simplify the design of real-time controllers in practice. It can be seen as a simple
computer with a special real-time operating system. A PLC communicates with the en-
vironment via unbuffered asynchronous input and output channels. The environment
may change the values of the inputs arbitrarily whereas the outputs are controlled by
the PLC. PLCs behave in a cyclic manner where every cycle consists of the following
three phases: first the inputs are polled, then the new outputvalues are computed and
finally the outputs are updated. The repeated execution of this cycle is managed by the
operating system. The only part the programmer has to adapt is the computing phase.
Depending on the program and on the number of inputs and outputs there is an upper
time bound for such a cycle.

In the definition of PLC automata we consider the upper time bound for a complete
cycle and the possibility to delay the system’s reactions depending on state and input.
Figure2 gives an example of a PLC automaton. The automaton has three locationsq0,
q1, q2 and an output variableoutput that ranges overok, test andalarm. It reacts to
a Boolean input variablesignal. Every state has two labels shown below its name in
the picture. They define a delay timed and a constraintS on the input. The value of
d defines theminimalamount of time that the system should stay in the corresponding
state provided that, meanwhile, only input values satisfyingS are polled.

A PLC automaton describes the behaviour of the system in the computation phase.
The operational behaviour is similar to a finite state machine, i. e., depending on the
polled input value the system changes both its state and its output. The behaviour is
modified in only one case: if the annotations of the current state ared andS, then a
transition is only executed when the polled input does not satisfy S or the current state

4 Henning Dierks, Sebastian Kupferschmid, and Kim G. Larsen

ct ≤ 2q0

0

q1

90,¬signal

q2

0
signal

output := ok

¬signal
output := test

¬signal
output := alarm

Fig. 2. An example of a PLC automaton.

holds longer thand time units. That means a transition is disabled if the polledinput
satisfiesS and the current state has not exceeded the delay timed.

Thus, the PLC automaton in Fig.2 behaves as follows: it starts in stateq0 and
remains there as long as it reads only the inputsignal. The first time it reads¬signal
it changes to stateq1. In q1 the automaton reacts to the input valuesignal by changing
the state back toq0 independentlyof the time it stayed in stateq1. If it reads¬signal
in q1 the behaviour of the system depends on the duration it already stayed inq1. If 90
time units have elapsed it can take the transition toq2. Otherwise, no transition is fired.
In q2 the automaton remains forever. Hence, we know that the automaton changes its
output toalarm when¬signal holds a little bit longer than 90 time units because the
cycle time (2 time units) has to be considered.

Note that PLC automata are implementable. In [9] a translation of PLC automata
into source code for PLCs is given. In [20] also a translation into C++ code (tailored to
Lego Mindstorms) has been developed. The intended logical relationship between the
execution of the code by the real-world hardware and the semantics given in the rest of
this paper isrefinement. In other words: the real-world implementation cannot showa
behaviour that is not covered by the formal semantics.

2.2 UPPAAL and Timed Automata

UPPAAL4 is a modelling, simulation, and verification tool for real-time systems mod-
elled as networks of extended timed automata [2, 3]. We assume the reader is roughly
familiar with timed automata and their commonly used extensions. Therefore, we only
provide a short description of timed automata and the extensions which we use for the
construction of test automata. For more details about this tool the reader is referred to
the UPPAAL tutorial [5].

Figure3 shows a network of three parallel timed automataP , Q andR as it is used
in UPPAAL. The system has three clocksx, y andz, three integer variablesk, m and
n, binary synchronisation labelsa andb and a committed locationq2 (indicated by the
“c:”). The initial state of the overall system is given by the three initial locationsp1,
q1 andr1 together with the initial values of the integer variables and the initial values
for the clocks. All clocks and integer values are 0 in this state. The bounded integer
variables are part of each system state, they can occur in transition guards and can be
changed with the assignment of a transition. Two edges of different automata can fire

4 seehttp://www.uppaal.com/

http://www.uppaal.com/

Automatic Abstraction Refinement for Timed Automata 5

P p1

x ≤ 11

p2 p3

x > 4

x := 0

x == 6, a?

m := k

Q q1 c:q2 q3

y == 13, a!

k := 42

b!

R r1 r2 r3

b?

n := k

z > 28

Fig. 3.A simple UPPAAL model.

a synchronised transition of the system if they are labelledwith complementary syn-
chronisation labels (represented by “!” and “?” respectively). Suppose the system is in
a state where it is inp2 andq1 and the guards of the outgoing edges of these two lo-
cations are enabled, then the system can take a synchronisedtransition, which leads to
a state whereP is in p3 andQ is in q2. For an edge annotated with a synchronisation
label it is not possible to fire a transition without a synchronisation partner. Edges with-
out synchronisation label are calledτ -transitions. A system state is a committed state
if at least one of the current automata locations is committed. Committed locations are
a mechanism to restrict the behaviour of the overall system.A committed state cannot
delay and the next transition applied to this state must involve an outgoing edge of a
committed location. For example, if the system is in a state whereP is atp1, Q is at the
committed locationq2 andR is atr1, then this system state is committed. The system
then has to take the edge fromq2 to q3 which requiresQ to synchronise withR. The lo-
cationp1 is labelled with a location invariant. This restricts the duration the system can
idle in the current state. Suppose the system is in a state whereP is atp1 and the value
of the clockx is 0, then the system can remain at most 11 time units before leaving this
state.

2.3 Timed Automata Semantics of PLC Automata

The semantics of PLC automata is defined in terms of timed automata [9, 11]. Due
to space limitations we can just present a sketch using the example of Fig.2. The se-
mantics of this automaton, depicted in Fig.4, consists of two timed automata and the
following (global) variables and clocks:z is a clock that represents the duration of the
PLC cycle,y is a clock that measures how long the system stays inq1, Out andsig
represent the variablesOutput resp.signal used in the PLC automaton andPsig is
a variable that represents thepolled value of the input variablesignal. The states of
the PLC automaton appear as a set of locations in the timed automaton. For exam-
ple, the stateq0 has two representatives in the timed automaton in order to represent
the internal state of the PLC within the cycle (q0/p stands for polling,q0/cu stands
for computing and updating). The transitions betweenq0/p andq0/cu implement the
polling behaviour of the PLC automaton in stateq0. The polling step copies the cur-
rent value ofsig to the variablePsig which is used for the subsequent computations.

6 Henning Dierks, Sebastian Kupferschmid, and Kim G. Larsen

The outgoing transitions fromq0/cu represent the reactions of the PLC automaton in
stateq0. Depending on the polled value ofsig the system switches toq1 or remains
in q0. Moreover, these transitions reset thez clock because the cycle has been finished.
If the automaton switches toq1 the output variable is changed appropriately and the
clocky is reset to be able to check whether 90 time units have elapsedwhile staying in
stateq1. Sinceq1 is equipped with a delay the semantics needs more locations to rep-
resent the behaviour. After polling (transition fromq1/p to q1/c) the timed automaton
checks whether the delay time has passed or the delay condition is not satisfied. If this
is the case, then a transition toq1/u is enabled. Otherwise the system can switch to
q1/d (“delayed”) where the cycle is finished. Note that the semantics is nondeterminis-
tic with respect to the timing in order to model the physical reality. To ensure progress
each state has the invariantz ≤ 2. Therefore, the timed automaton has to execute a cy-
cle within the upper bound because only transitions toqi/p reset thez clock. To model
the environment that can change the input variablesig arbitrarily a driver automaton is
added that can always toggle the input.

q0/p

q0/cu

z
>

0
P
s
i
g

:=
s
i
g

Psig

z := 0

q1/p

q1/c

q1/d

q1/u

z > 0
Psig := sig

y ≤ 90
∧¬Psig

z := 0

y > 90 ∨ Psig

q2/p

q2/cu

z > 0
Psig := sig

true
z := 0

¬Psig

z := 0, y := 0,
Out := Test

Psig

z := 0, Out := Ok

¬Psig

z := 0, Out := Alarm

for all states:
invariantz ≤ 2

l

tr
u
e

s
i
g

:=
¬
s
i
g

Fig. 4.Semantics of the PLC automaton from Fig.2 in terms of timed automata.

Abstractions of this semantics are generated by selecting aset of variables and
clocks. Then the abstract semantics is derived from the fullsemantics by removing
all assignments to the abstracted variables and clocks and replacing all constraints by
the strongest constraint that is weaker than the original and that does not contain ab-
stracted entities. For example, the guardy ≤ 90∧Psig is replaced byPsig if the clock
y is abstracted andsig is not.

3 Counterexample Analysis

In the abstraction refinement loop, when model checking a safety property of an abstract
system returns a counterexample, one has to investigate whether it is spurious or not.
One possible way of doing this is to build alinear test automatonT , in which every
location has at most one outgoing edge, from the abstract counterexample. This test

Automatic Abstraction Refinement for Timed Automata 7

automaton is then composed with the full systemF to be verified. If the last location of
the test automaton is reachable in the composed system, thenwe know that the abstract
counterexample is also a counterexample for the full system.

It is desirable that the test automatonT is able to find a concretisation if there is
any and, moreover, it is mandatory thatT restricts the behaviour of the full system as
much as possible. If this is not the case, the test automaton is useless because it would
make no difference to model check the full system only. We therefore construct the test
automaton so that it synchronises with the full model as often as possible. By doing
this, only a small fraction of the state space of the full model is explored. This makes
perfect sense, because we are only interested in a concretisation of the abstract trace.

A UPPAAL counterexample is a finite sequence of states that are eitherconnected
via transitions or via delays with a certain duration. For example, for the timed automata
system given in Fig.3 and the temporal formulaE♦(p3 ∧ q3 ∧ r3), UPPAAL reports the
error trace given in Fig.5. The trace starts with the initial state of the system and ends
with a state satisfying the given property. Each state of thetrace assigns each automaton
of the system a location, each variable a value of the variable’s domain and each clock
a rational value. A test automaton built from such a trace proceeds if the full model
of the system executes a transition that enables the guard ofthe next transition of the
test automaton. The problem is to decide whether a step in thefull model matches.
Checking the values of the variables is straight-forward. To check the clock values
is a bit tricky because a trace may also have clock valuationswith rational numbers.
Below we show how this problem can be solved. Another problemis to match the
locations. The locations are not subject to abstractions. Hence, they appear in both the
full and the abstract model. However, UPPAAL does not provide any syntactic means
to refer to locations in guards. Therefore, we introduce an auxiliary integer variable for
each automaton of the system. The current value of this variable identifies uniquely the
current location of the automaton. Thus, the test automatonis able to match locations by
checking the corresponding auxiliary variable. In order topreserve the same behaviour
with respect to global time we add a clocktime to the test automaton. This clock is
never reset and therefore it represents the current duration of the trace at any time. The
next three paragraphs give a detailed description on how to build a test automaton.

The first element of an abstract trace is the initial state of the abstract system. Al-
though we do not expect any differences with the full model here, we add a correspond-
ing check for reasons of completeness. We add a transition leading from the initial lo-
cationt0 of the test automaton to a new locationt1. The guard of this transition checks
if the system’s variables have the right values at time pointtime = 0. To restrict the
full model’s behaviourt0 is a committed location.

A delay transition with durationd ∈ Q of the abstract counterexample is translated
as follows: suppose that, after the transition is made, the system is in a state which is
described by the valuationval and thatT ∈ Q is the sum of all durations that occur
before the transition. Let the most recently added locationof the test automaton betn.
In this case we add two locationstn+1 and tn+2 to the test automaton and the two

transitionstn
await(T+d)
−−−−−−−→ tn+1 andtn+1

await(T+d)∧check(val)
−−−−−−−−−−−−−−−→ tn+2. Hereawait(q)

for q ∈ N is time = q and forq ∈ Q \ N is ⌊q⌋ > time ∧ time < ⌈q⌉. Note that
by the definition ofawait(q) the test automaton searches for an over-approximation of

8 Henning Dierks, Sebastian Kupferschmid, and Kim G. Larsen

(P.p1 Q.q1 R.r1) x=0 y=0 z=0 k=0 m=0 n=0
Delay: 7

(P.p1 Q.q1 R.r1) x=7 y=7 z=7 k=0 m=0 n=0
P.p1->P.p2 x > 4, tau, x := 0

(P.p2 Q.q1 R.r1) x=0 y=7 z=7 k=0 m=0 n=0
Delay: 6

(P.p2 Q.q1 R.r1) x=6 y=13 z=13 k=0 m=0 n=0
Q.q1->Q.q2 y == 13, a!, k := 42
P.p2->P.p3 x == 6, a?, m := k

(P.p3 Q.q2 R.r1) x=6 y=13 z=13 k=42 m=42 n=0
Q.q2->Q.q3 1, b!, 1
R.r1->R.r2 1, b?, n := k

(P.p3 Q.q3 R.r2) x=6 y=13 z=13 k=42 m=42 n=42
Delay: 15.5

(P.p3 Q.q3 R.r2) x=21.5 y=28.5 z=28.5 k=42 m=42 n=42
R.r2->R.r3 z > 28, tau, 1

(P.p3 Q.q3 R.r3) x=21.5 y=28.5 z=28.5 k=42 m=42 n=42
Delay: 0.5

(P.p3 Q.q3 R.r3) x=22 y=29 z=29 k=42 m=42 n=42

Fig. 5.Trace reported by UPPAAL for the queryE ♦(p3 ∧ q3 ∧ r3) of the system from Fig.3.

the given abstract trace. The expressioncheck(val) is the conjunction of tests whether
all discrete variables ofval equal the valuation of the state. Note that this approach is
correct because if there is no concretisation found using this over-approximation then
there is no concretisation at all. If a concretisation is found then the concrete trace may
differ from the abstract trace with respect to the non-integer delays but it is a trace of
the full model that satisfies the reachability property. An alternative approach would be
to multiply all timing constants with the common denominator and check for equality
only.

A τ -transition in the counterexample also introduces two locations in the test au-
tomaton. Suppose the last added location of the test automaton is tn and after theτ -
transition the system is in a state described by the valuation val . LetT andtn be defined
as above. Here, we add the locationstn+1 andtn+2 to the test automaton and the two

transitionstn
await(T)∧C?
−−−−−−−−→ tn+1 andtn+1

await(T)∧check(val)
−−−−−−−−−−−−−→ tn+2. Note that we ex-

ploit the fact that the abstract model made aτ -transition to introduce a synchronisation
of the test automaton with the full model via the channelC. By this, the test automaton
is notified as soon as the full model changed the values for thevariables and the search
space is reduced. Since time is supposed to pass, the location tn cannot be committed.
However, to restrict the behaviour of the systemtn+1 can be committed.

A synchronised transition of the counterexample is translated as follows: suppose
again, that the valuationval , T andtn are defined as above. In contrast to how we handle
aτ -transition, we cannot force the test automaton to participate. However, we know that
whenever MOBY/RT generates a synchronised transition this only happens directly af-
ter aτ -transition and that all synchronised transitions are leaving a committed location.

Therefore we add the locationtn+1 and the transitiontn
check(val)∧await(T)
−−−−−−−−−−−−−→ tn+1. As

Automatic Abstraction Refinement for Timed Automata 9

t0
time=0∧k=0∧m=0∧n=0
−−−−−−−−−−−−−−−−→ t1

t1
time=7
−−−−→ t2

time=7∧p=q=r=1∧k=m=n=0∧x=y=z=7

−−−−−−−−−−−−−−−−−−−−−−−−−−−→ t3

t3
time=7∧C?
−−−−−−−→ t4

time=7∧p=2∧q=r=1∧k=m=n=0∧x=0∧y=z=7

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ t5

t5
time=13
−−−−−→ t6

time=13∧p=2∧q=r=1∧k=m=n=0∧x=6∧y=z=13

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ t7

t7
time=13∧p=3∧q=2∧r=1∧k=m=42∧n=0∧x=6∧y=z=13

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ t8

t8
time=13∧p=q=3∧r=2∧k=m=n=42∧x=6∧y=z=13

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ t9

t9
28<time<29
−−−−−−−−→ t10

28<time<29∧p=q=3∧r=2∧k=m=n=42∧21<x<22∧28<y,z<29

−−→ t11

t11
28<time<29∧C?
−−−−−−−−−−→ t12

28<time<29∧p=q=r=3∧k=m=n=42∧21<x<22∧28<y,z<29

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ t13

Fig. 6.Test automaton for the trace in Fig.5

synchronised transitions can happen sequentially when more than one automaton is in
the network and the transition’s origin is a committed location we have to make location
tn committed, too.

Consider the trace generated by UPPAAL in Fig. 5 again. If we apply the above
construction rules we get the test automaton described in Fig. 6.

4 Abstraction Refinement

When an abstract counterexample reveals to be spurious, a model checker normally
does not give any hint why this is the case. Usually, the next steps one has to do in order
to get a refined version of the current abstraction is to analyse the counterexample. Here,
one has to identify variables or clocks respectively that hinder the progress of the test
automaton. Normally, this has to be donemanuallyand, on the one hand, is a tedious
and time consuming procedure and on the other hand requires adeep understanding of
the model to verify. We will henceforth refer to integer variables and clocks as variables
respectively.

Our approach automates the analysis of the counterexample.We did this by extend-
ing UPPAAL so that if an abstract counterexample is spurious, UPPAAL reports thisand
at the same time provides a set of variables that should not beabstracted in the next
iteration of the abstraction refinement loop.

To determine a refined abstraction, we exploit the fact that our test automata are
linear. If the abstract counterexample turns out to be spurious, then there is a unique
transition in the test automaton whose starting location isreached, but not its target
location. We call the starting location of this transition the dead end locationand the
transition itself we call thedead end transition. The dead end transition can either be
blocked because there is no enabled transition in the full system that can synchronise
with the test automaton, or when there is no reachable state with a valuation of the
variables that satisfies the guard of the dead end transition.

10 Henning Dierks, Sebastian Kupferschmid, and Kim G. Larsen

Our approach determines a minimal set of variablesuhint , so that if these variables
had different values, the test automaton could take at leastthe dead end transition. This
is done on the fly, while UPPAAL checks if the error trace is spurious. Figure7 sketches
UPPAAL’s verification algorithm for safety properties. The arguments of theverify func-
tion are the initial state of the systems0 and the propertyφ to verify. We extended this
algorithm by including the lines 13–15.

1 function verify(s0, φ):
2 open ={s0}, closed =∅
3 while open6= ∅:
4 s = open.pop()
5 if s |= φ:
6 return True
7 if s 6∈ closed:
8 closed.push(s)
9 for eachoutgoing transitiont of s:

10 if t is enabled:
11 s′ = succ(s, t)
12 open.push(s′)
13 progress(s′)
14 else:
15 analyse(s, t)
16 return False

Fig. 7. Reachability analysis.

During the analysis, UPPAAL checks each outgoing transition from a location in
the current states if it is enabled. If this is the case, the successor states′ is computed
and added to the open list. In addition to the normal verification function, we now call
progresswith the successor states′ (line 13). Pseudo-code for theprogressfunction is
given in Fig.8. It determines the reached location of the test automaton which has cur-
rently the smallest distance to the test automaton’s last location. Remember, if the last
location of the test automaton is reachable, then the counterexample is a real counterex-
ample. After the execution of theverify functiondead end is the dead end location.

1 function progress(s):
2 if dist(s(test)) < dist(dead end):
3 dead end = s(test)
4 uhint = ∅

Fig. 8.On the fly detection of the dead end location.

If, during the generation of successor states, a transitiont is not enabled it is passed
together with its starting states to theanalysefunction (line 15). Pseudo code for this
function is shown in Figure9. The analysefunction checks if the test automaton in

Automatic Abstraction Refinement for Timed Automata 11

s is in the currentdead end location. If this is the case, then it checks if applyingt
would enable the current dead end transitiontdead end . If this is the case, thenanalyse
collects all the variables and clocks respectively that appear in unsatisfied constraints of
t’s guard. If the set of these variablesu is smaller thanuhint , thenuhint is updated. After
the execution of theverify functionuhint contains variables that hinder the execution of
the dead end transition.

1 function analyse(s, t):
2 if s(test) 6= dead end :
3 return
4 if tdead end is synchronised:
5 if t can synchronise withtdead end :
6 u = {c ∈ inv(succ(s, t)) | c unsat constraint}∪
7 {c ∈ guard(t) | c unsat constraint}
8 if |u| ≤ |uhint| ∨ uhint = ∅:
9 uhint = u

10 else ifassignment oft makesguard(tdead end) True:
11 u = {c ∈ inv(succ(s, t)) | c unsat constraint}∪
12 {c ∈ guard(t) | c unsat constraint}
13 if |u| ≤ |uhint| ∨ uhint = ∅:
14 uhint = u

Fig. 9.On the fly extraction of least blocking variables. Used expressions:inv(s): conjunction of
s’s location invariants,s(test): the location of the test automaton ins, succ(s, t): the successor
state ofs reached throught, guard(t): t’s guard,dist(l): distance from a locationl of the test
automaton to the last location of the test automaton in terms of transitions.

After UPPAAL has checked that the counterexample is spurious, all variables that
occur in the set of unsatisfied constraintsuhint are reported. These variables should not
be abstracted in the next iteration, as they hinder the progress of the test automaton.
This ensures that the revealed spurious counterexample will not be found in the next
iteration. In the following, we explain that the reported variables are likely to be helpful.

From the construction of the test automaton we know that there are at most two
types of transitions in the test automaton: synchronised transitions andτ -transitions.
The guard of such a synchronised transition is always satisfiable because it was already
satisfied when the starting location of the transition was reached. It only checks that no
time elapses since the last transition. Depending on which part the transitions represent
from the abstract counterexample, we can distinguish threedifferent cases.

If the dead end transition belongs to one of the transitions introduced for a delay
in the abstract counterexample, then the progress of the test automaton is blocked be-
cause the full system cannot idle due to an unsatisfied location invariant. This is only
possible if this location invariant talks about a clock thatwas abstracted away because
in the abstraction it is possible to take this transition. Therefore this clock should not be
abstracted in the next iteration of the abstraction refinement loop.

If the dead end transition belongs to one of the two transitions introduced for aτ -
transition in the abstract counterexample, then we know that the progress of the test

12 Henning Dierks, Sebastian Kupferschmid, and Kim G. Larsen

automaton stops because of aτ -transition in the full system. The reason for this is
that the clock guards of the two introduced transitions are satisfied. So the only reason
why this may block is that the guard that checks the valuationof the variables is not
satisfied. But this is only possible if there is no enabledτ -transition in the full system
whose assignments would make the guard true. As there is sucha transition in the
abstraction, we again know that this must be because of an unsatisfied transition guard.
So the variables that occur in the unsatisfied constraints ofthis guard should not be
abstracted in the next iteration.

The last possible reason why the dead end transition is blocked is that there is no
enabled transition with an assignment that would make the guard of the dead end tran-
sition true. From the construction of the test automaton this can only be a synchronised
transition in the full system because aτ -transition in the full system always has to
synchronise with the test automaton which is not possible. As we know that there is
a synchronised transition in the abstract system that makesthe guard of the dead end
transition true, this transition would do it also in the fullsystem. The reason why the
progress of the test automaton is stopped is that either the guard of this synchronised
transition or a location invariant of the successor state isnot satisfied.

5 Experiments

To demonstrate the potential of our approach we chose the “Single-tracked Line Seg-
ment” (SLS) case study which stems from the UniForM-project[15]. It is the specifi-
cation of a control system for a single-tracked line segmentfor tramways. It is imple-
mented by distributed PLC automata [10]. We took three different models of the SLS
case study [10] as examples. As the safety property to verify, we chose the mutual ex-
clusion of drive permissions, i. e., the control system never gives permission to both
directions simultaneously.

The first model (M1) we checked is a manipulated system that weobtained by
changing a delay time but with the assumption that everything is implemented on only
one hardware device. The full UPPAAL model we got from MOBY/RT had 9 processes,
2 clocks and 24 integer variables. Table1 shows in the first row the resources needed to
check the full model of M1 using the standard UPPAAL verification engine. It took 310
seconds to verify that the manipulated delay time does not lead to an error if the system
is implemented on one device. In the following rows the stepsof the abstraction refine-
ment loop are given. Each step consists of a verification run to find an abstract coun-
terexample (left columns) and the check for spuriousness (right columns). For these
runs we use a variant of UPPAAL called UPPAAL/DMC that allows fordirected model
checking[16, 17]. Directed model checking is the application of heuristicsto model
checking and was pioneered a few years ago by Edelkamp et al. [12, 13], christening
this research direction directed model checking. The use ofdirected model checking
makes sense because it can be expected that the current abstraction contains (abstract)
counterexamples and directed model checking detects counterexamples faster. Note that
whenever a spurious counterexample is found a refined abstraction is derived. This re-
fined abstraction considers more entities (at least one clock or one integer variable more
than before).

Automatic Abstraction Refinement for Timed Automata 13

Table 1.Abstraction refinement results for the experiments. Abbreviations: #c:number of clocks,
p: number of processes, # v: number of integer variables, time: runtime in seconds, mem:
memory peak in MB, trace: length of found error trace, CE: counterexample

Model # c # p # v time memtrace # c # p # v time memresult

M1: full 2 9 24 310.0 721 verified
Abstr. #1 0 4 3 0.0 8 20 3 10 24 0.0 7 spurious CE
Abstr. #2 1 4 3 0.0 9 22 3 10 24 3.2 36 spurious CE
Abstr. #3 1 5 5 0.0 9 23 3 10 24 0.4 11 spurious CE
Abstr. #4 1 5 6 0.0 9 23 3 10 24 1.3 20 spurious CE
Abstr. #5 1 5 8 0.0 9 34 3 10 24 2.2 27 spurious CE
Abstr. #6 1 5 10 0.8 9 – verified

M2: full 3 10 25 > 1527.0> 2048out of memory
Abstr. #1 0 5 3 0.0 8 27 4 11 25 0.0 8 spurious CE
Abstr. #2 1 5 3 0.0 9 29 4 11 25 0.0 8 spurious CE
Abstr. #3 2 5 3 0.0 9 30 4 11 25 113.6 491 spurious CE
Abstr. #4 2 5 6 0.1 9 88 4 11 25 44.6 247 spurious CE
Abstr. #5 2 6 8 0.4 9 64 4 11 25 7.6 64 spurious CE
Abstr. #6 2 6 9 0.1 9 44 4 11 25 14.3 108 spurious CE
Abstr. #7 2 6 11 0.2 9 62 4 11 25 15.8 97 spurious CE
Abstr. #8 3 6 11 0.2 9 77 4 11 25 0.5 12 disproved

M3: full 3 10 25 > 1242.0> 2048out of memory
Abstr. #1 0 5 3 0.0 8 27 4 11 25 0.0 8 spurious CE
Abstr. #2 1 5 3 0.0 9 29 4 11 25 0.0 8 spurious CE
Abstr. #3 2 5 3 0.0 9 30 4 11 25 117.8 753 spurious CE
Abstr. #4 2 5 6 0.1 9 88 4 11 25 45.3 312 spurious CE
Abstr. #5 2 6 8 0.4 9 64 4 11 25 7.7 80 spurious CE
Abstr. #6 2 6 9 0.1 9 44 4 11 25 14.5 141 spurious CE
Abstr. #7 2 6 11 0.2 9 62 4 11 25 15.9 130 spurious CE
Abstr. #8 3 6 11 3.3 13 – verified

For M1 it turns out that with our counterexample guided abstraction refinement we
can prove correctness of the model using an abstraction with1 clock, 4 processes and
14 integer variables less than the full model. The required memory is about 5 % and the
summarizedtime consumption is approx. 3 % compared to the full model. Note that in
abstraction 3, the number of processes has changed. The reason for this is that whenever
a variable is added to the next abstraction that is triggeredby the environment, then
an additional automaton is added to the system that drives this variable. These driver
automata are automatically generated by MOBY/RT.

For the next verification problem we removed the assumption about the partitioning
of the PLC automata onto hardware devices. The second experiment (M2) represents
a distributed system. Now, the manipulated delay time leadsto an incorrect system.
However, it was not possible to find a counterexample in the full model within the given
memory limit of 2 GBs. This time the abstraction refinement loop had to iterate 8 times
to generate an abstraction for which a definite answer was found, i. e., a counterexample
in the full model. The computed abstraction saved 4 processes and 14 integer variables.

14 Henning Dierks, Sebastian Kupferschmid, and Kim G. Larsen

The memory and time consumption wasat most25 % respectively 14 % compared to
the full model.

In our final experiment (M3) we reverted to the original delaytime. Again, it was
not possible to check the full model within the memory limits. The abstraction refine-
ment loop generated the same sequence of refined abstractions and terminated after 8
iterations again. But this time UPPAAL was able to verify that the final abstraction has
no counterexample.

All these experiments show that the abstraction refinement presented in this paper
is able to generate abstractions effectively for which definite verification results can
be found. The main benefits are that there is no need for human interaction at all, an
abstraction of the model is computed automatically for which a reliable verification
result can be computed and that this approach reduces significantly the resources (time
and memory). However, there is no guarantee that this approach computes aminimal
abstraction but it is obvious that it will terminate since each iteration adds at least one
of the finitely many entities of the model.

6 Related Work

Abstraction refinement was pioneered by Clarke et al. [8] in the early 90s. Since then
many researchers have automated this process starting withthe work of Balarin and
Sangiovanni-Vincentelli [4]. The term counterexample guided abstraction refinement
was coined by Clarke et al. [7]. This work deals with discrete timed systems and ACTL∗

formulas. It has been extended to continuous-time models in[6, 14]. The main idea of
these approaches is to refine the discrete state space by an appropriate replication of
states which have been involved in a spurious counterexample to avoid this trace in the
next iteration.

Alur et al. [1] have proposed a predicate abstraction based approach for acoun-
terexample guided abstraction refinement procedure applicable to hybrid systems. The
refined abstraction extends the state space by predicates describing additional infor-
mation on the continuous state space. These additional predicates are constructed by
identifying the dead-end state of a spurious trace and an analysis which polyhedron in
the continuous state space avoid a reoccurrence of the trace.

A similar approach was proposed by Segelken [21]. Here the analysis of the spu-
rious trace generates an automaton that is put in parallel with the model in the next
iteration of the abstraction refinement loop. This automaton represents an infeasible
fragment of the previous spurious trace. By the construction of the automaton this in-
feasible fragment is avoided.

Also in the area of timed automata there are approaches for model checking by
iterative refinement of approximations. One of these approaches was implemented in
Laroussinie’s and Larsen’s compositional model checker CMC [18]. This tool starts
with a small subset of the automata of the system. It subsequently adds automata to this
set and minimises the intermediate result.

Another abstraction refinement approach was developed by Sorea et al. [19, 22]
in which predicate abstraction was used on the level of the regions which are defined
by predicates over clocks. The approach uses symbolic counterexamples from failed

Automatic Abstraction Refinement for Timed Automata 15

model-checking attempts. Such a symbolic counterexample represents a sequence of
sets of states, and can be seen as generalisation of a linear counterexample. To exclude
a spurious symbolic counterexamples from further iterations, new abstraction predicates
are chosen randomly from a set of predefined predicates. Except for the fact that new ab-
straction predicates are chosen randomly, this approach is, in some respect, quite similar
to what we are proposing here. The main differences are the nature of the counterexam-
ples and that new abstraction variables are selected more carefully. Unfortunately the
authors do not give any runtime results.

7 Conclusion and Future Work

We presented an approach for counterexample guided abstraction refinement for a sub-
class of timed automata. In this paper we defined how to construct test automata that
can be used to check whether a full model is able to behave as the abstract trace, i. e.,
to check whether an abstract trace is spurious or not. Moreover, we extended the model
checker UPPAAL in such a way that it executes an analysis ofwhya full model cannot
execute a spurious trace. The result of this analysis is usedto refine the given abstrac-
tion in a way that the spurious counterexample cannot occur anymore. This approach
enabled us to construct a closed abstraction refinement loopin which verification of
a system starts with the coarsest abstraction and with each iteration the abstraction is
refined until a result is found that holds for the full model, too.

In its current version our approach is able to refine the abstraction by adding vari-
ables or clocks. From our point of view, the most promising direction of future work
is to extend the approach such that it also refines the set of automata considered in the
abstraction. At present the set of PLC automata is fixed. However, if a system consists
of many parallel components it makes sense to start with a small subset thereof. Since
the semantics of a subset is an over-approximation this fits our approach. Then the
abstraction refinement analysis needs to be extended accordingly in a way that it can
also identify PLC automata for the abstraction refinement. Having such an extension
the abstraction refinement loop would start with the coarsest abstraction of only those
automata that manipulate variables appearing in the requirement.

In this paper we have presented and implemented an abstraction refinement method-
ology for PLC automata. However, the methodology is generally applicable to the full
range of timed automata based models expressible within UPPAAL. Here, a particularly
challenge will be the generalisation of the automated analysis of counterexamples pre-
sented in Section4 to deal with the rich imperative language (including structured data
types, user-defined types as well as user-defined functions and procedures) provided in
UPPAAL 4.0. We envisage the need for incorporating the work of Sørensen and Trane
on slicing UPPAAL 4.0 models [23].

Acknowledgments

This work was partly supported by the German Research Council (DFG) as part of the
Transregional Collaborative Research Center “Automatic Verification and Analysis of

16 Henning Dierks, Sebastian Kupferschmid, and Kim G. Larsen

Complex Systems” (SFB/TR 14 AVACS). Seehttp://www.avacs.org/ for more
information.

References

[1] Rajeev Alur, Thao Dang, and Franjo Ivancic. Predicate abstraction for reachability
analysis of hybrid systems.ACM Transactions in Embedded Computing Systems,
5(1):152–199, 2006.

[2] Rajeev Alur and David L. Dill. Automata for modeling real-time systems. In
Michael S. Paterson, editor,ICALP 90: Automata, Languages, and Programming,
volume 443 ofLecture Notes in Computer Science, pages 322–335. Springer-
Verlag, 1990.

[3] Rajeev Alur and David L. Dill. A theory of timed automata.Theoretical Computer
Science, 126:183–235, 1994.

[4] Felice Balarin and Alberto L. Sangiovanni-Vincentelli. An iterative approach to
language containment. In Costas Courcoubetis, editor,Proceedings of the 5th
International Conference on Computer Aided Verification (CAV 1993), volume
697 ofLecture Notes in Computer Science, pages 29–40. Springer-Verlag, 1993.

[5] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on UPPAAL.
In Marco Bernardo and Flavio Corradini, editors,Formal Methods for the Design
of Real-Time Systems, International School on Formal Methods for the Design of
Computer, Communication and Software Systems (SFM-RT 2004), volume 3185
of Lecture Notes in Computer Science, pages 200–236. Springer-Verlag, 2004.

[6] Edmund M. Clarke, Ansgar Fehnker, Zhi Han, Bruce H. Krogh, Jöel Ouaknine,
Olaf Stursberg, and Michael Theobald. Abstraction and counterexample-guided
refinement in model checking of hybrid systems.International Journal of Foun-
dations of Computer Science, 14(4):583–604, 2003.

[7] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, andHelmut Veith.
Counterexample-guided abstraction refinement. In E. AllenEmerson and
A. Prasad Sistla, editors,Proceedings of the 12th International Conference on
Computer Aided Verification (CAV 2000), volume 1855 ofLecture Notes in Com-
puter Science, pages 154–169. Springer-Verlag, 2000.

[8] Edmund M. Clarke, Orna Grumberg, and David E. Long. Modelchecking
and abstraction.ACM Transactions on Programming Languages and Systems,
16(5):1512–1542, 1994.

[9] Henning Dierks.Specification and Verification of Polling Real-Time Systems. PhD
thesis, University of Oldenburg, 1999.

[10] Henning Dierks. PLC-Automata: A new class of implementable real-time au-
tomata.Theoretical Computer Science, 253(1):61–93, 2001.

[11] Henning Dierks.Time, Abstraction and Heuristics – Automatic Verification and
Planning of Timed Systems using Abstraction and Heuristics. Habilitationsschrift,
University of Oldenburg, 2006. Nr. 01–06.

[12] Stefan Edelkamp, Alberto Lluch-Lafuente, and Stefan Leue. Directed explicit
model checking with HSF-SPIN. In Matthew B. Dwyer, editor,Proceedings of the
8th International SPIN Workshop on Model Checking of Software (SPIN 2001),

http://www.avacs.org/

Automatic Abstraction Refinement for Timed Automata 17

volume 2057 ofLecture Notes in Computer Science, pages 57–79. Springer-
Verlag, 2001.

[13] Stefan Edelkamp, Alberto Lluch-Lafuente, and Stefan Leue. Directed explicit-
state model checking in the validation of communication protocols. International
Journal on Software Tools for Technology Transfer (STTT), 2004.

[14] Ansgar Fehnker, Edmund M. Clarke, Sumit Kumar Jha, and Bruce H. Krogh. Re-
fining abstractions of hybrid systems using counterexamplefragments. In Manfred
Morari and Lothar Thiele, editors,Proceedings of the 8th International Workshop
on Hybrid Systems: Computation and Control (HSCC 2005), volume 3414 ofLec-
ture Notes in Computer Science, pages 242–257. Springer-Verlag, 2005.

[15] Bernd Krieg-Br̈uckner, Jan Peleska, Ernst-Rüdiger Olderog, and Alexander Baer.
The uniform workbench, a universal development environment for formal meth-
ods. In Jeannette M. Wing, Jim Woodcock, and Jim Davies, editors, World
Congress on Formal Methods (FM 1999), volume 1709 ofLecture Notes in Com-
puter Science, pages 1186–1205. Springer-Verlag, 1999.

[16] Sebastian Kupferschmid, Klaus Dräger, J̈org Hoffmann, Bernd Finkbeiner,
Henning Dierks, Andreas Podelski, and Gerd Behrmann. UPPAAL/DMC –
abstraction-based heuristics for directed model checking. In Orna Grumberg and
Michael Huth, editors,13th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS 2007), volume 4424 ofLecture
Notes in Computer Science, pages 679–682. Springer-Verlag, 2007.

[17] Sebastian Kupferschmid, Jörg Hoffmann, Henning Dierks, and Gerd Behrmann.
Adapting an AI planning heuristic for directed model checking. In Antti Valmari,
editor,Proceedings of the 13th International SPIN Workshop (SPIN2006), volume
3925 ofLecture Notes in Computer Science, pages 35–52. Springer-Verlag, 2006.

[18] François Laroussinie and Kim G. Larsen. CMC: A tool forcompositional model-
checking of real-time systems. In Stanislaw Budkowski, AnaR. Cavalli, and Elie
Najm, editors,Proceedings of the Joint International Conference on Formal De-
scription Techniques for Distributed Systems and Communication Protocols and
Protocol Specification, Testing and Verification (FORTE/PSTV 1998), volume 135
of IFIP Conference Proceedings, pages 439–456. Kluwer, 1998.

[19] M. Oliver Möller, Harald Rueß, and Maria Sorea. Predicate abstractionfor dense
real-time system.Electronic Notes in Theoretical Computer Science, 65(6), 2002.

[20] Ernst-R̈udiger Olderog and Henning Dierks. Moby/RT: A tool for specification
and verification of real-time systems.Journal of Universal Computer Science,
9(2):88–105, 2003.

[21] Marc Segelken. Abstraction and counterexample-guided construction of omega-
automata for model checking of step-discrete linear hybridmodels. In Werner
Damm and Holger Hermanns, editors,Proceedings of the 19th International Con-
ference on Computer Aided Verification (CAV 2007), volume 4590 ofLecture
Notes in Computer Science. Springer-Verlag, 2007.

[22] Maria Sorea. Lazy approximation for dense real-time systems. In Yassine
Lakhnech and Sergio Yovine, editors,Proceedings of the 2nd Joint International
Conferences on Formal Modelling and Analysis of Timed Systems (FORMATS
2004), volume 3253 ofLecture Notes in Computer Science, pages 363–378.
Springer-Verlag, 2004.

18 Henning Dierks, Sebastian Kupferschmid, and Kim G. Larsen

[23] Uffe Sørensen and Claus Trane. Optimization for the UPPAAL verification tool.
Technical report, Aalborg University, 2007.

	Introduction
	Preliminaries
	PLC Automata
	Uppaal and Timed Automata
	Timed Automata Semantics of PLC Automata

	Counterexample Analysis
	Abstraction Refinement
	Experiments
	Related Work
	Conclusion and Future Work

