Automatic Abstraction Refinement for Timed Automata

Henning Dierk$, Sebastian Kupferschnfidand Kim G. Larseh

1 OFFIS, Oldenburg, Germany
di erks@ffis.de
2 University of Freiburg, Germany
kupfersc@nfornati k. uni -freiburg. de
3 Aalborg University, Denmark
kgl @s. auc. dk

Abstract. We present a fully automatic approach for counterexample guided
abstraction refinement of real-time systems modelled in a subset of timed a
tomata. Our approach is implemented in the®t/RT tool environment, which

is a CASE tool for embedded system specifications. Verification 3BMRT

is done by constructing abstractions of the semantics in terms of timed aatoma
which are fed into the model checkerrBaAL. Since the abstractions are over-
approximations, absence of abstract counterexamples implies a valild fier

the full model. Our new approach deals with the situation in which an abstract
counterexample is found byR#»AAL. The generated abstract counterexample is
used to construct either a concrete counterexample for the full modeliden-

tify a slightly refined abstraction in which the found spurious counterei@amp
cannot occur anymore. Hence, the approach allows for a fully atitatastrac-

tion refinement loop starting from the coarsest abstraction towardsstraetion

for which a valid verification result is found. Nontrivial case studies destrate
that this approach computes small abstractions fast without any usecina.

1 Introduction

Embedded systems often control safety critical systemscéleformal methods are
mandatory to establish correctness results for such sgst8imce model checking is
a technique that does the analysis without any user interaittis widely examined
in the literature and many tools are available. However, ehatiecking suffers from
the so called state space explosion problem, i.e., the @fditplof the verification
procedure is exponential in the size of the system. Theze&mveral techniques have
been invented to tackle this problem like symbolic represgn and abstractions. In
most cases the requirements of embedded systems refer timthg. Verification of
real-time systems by model checking is even more difficutalbse time adds another
source of complexity. As a consequence, checking a modetépeesents a nontrivial
real-time system always requires to find an appropriateadigin that can be checked
within the given resources of memory and time. If the usedrabon is an over-
approximation, then the absence of an abstract countem&lies the absence of
concrete counterexamples. Such an abstraction is caflaféabstraction. However, if a
model checker analyses a safe abstraction and discovemmtecexample, the question

2 Henning Dierks, Sebastian Kupferschmid, and Kim G. Larsen

arises whether the counterexample is spurious or notyvieether there is a concrete
counterpart in the full model.

Without automation, model checking by abstractions cassisseveral, error-prone
and time-consuming tasks. First, the user has to selecipepimitial abstraction which
usually requires a deep knowledge of the system under cenagidn. If the model
checker finds a counter example in this abstraction, theangbehas to analyse whether
it is spurious or not. If the counterexample is real, thenuber is done, otherwise the
selected abstraction was too coarse. In this case thd ilitiraction must be refined
so that the spurious counterexample is eliminated. Thegs sire repeated until there
is no abstract counterexample, or the abstract counte@ramalso a counterexample
for the full system.

The approach presented in this paper autormatesteps of the abstraction refine-
ment loop in the setting of real-time specifications giverPa€ automatall]. This
leads to a fully automated abstraction refinement loop a&tebin Fig.1. This loop
starts with the coarsest possible abstraction and iteaatéeng as spurious counterex-
amples are found. If the model checker finds an abstract ecexgmple, then a coun-
terexample analyser is used to check whether it is spur@@usanalyser first constructs
a test automaton from the abstract counterexample. The asitigm of the full model
with the newly generated automaton is then fed into the mdustker. We extended the
model checker in such a way that if the counterexample is@psirthe model checker
also reports hints why it is spurious. These hints are thed us the refinement step
in order to eliminate the abstract counterexample. Theitetion of this abstraction
refinement loop is guaranteed by the fact that each iteradoroves at least one of
finitely many abstracted variables.

To demonstrate the potential of our approach we carriedexgral nontrivial case
studies, i.e., the respective full models cannot be handi¢in the given memory
resources. Our approach is able to handle them with onlyctidraof the resources,
starting from the initial abstraction towards a refined edatton for which a definite
answer could be found.

verification
task

Abstraction Model Checking | true

1

T
Refinement Counterexample false
Analysis))

)

Fig. 1. Counterexample guided abstraction refinement loop.

The remainder of the paper is structured as follows: the sestion briefly intro-
duces the formalisms we work with, SectiB8rshows how we check for spuriousness
of counterexamples. Secti@ndescribes our used abstraction refinement cycle and the
algorithms to provide the necessary information. Sedipnovides experimental eval-

Automatic Abstraction Refinement for Timed Automata 3

uation of the implementation of the method withirPRAAL. In Section6 we discuss
related work and Sectionconcludes.

2 Preliminaries

In our setting, a verification task consists of a real-timgtem, which is given in terms
of PLC automata, together with a temporal property to vefifysolve such a verifica-
tion task with our framework, we use ®BY/RT to compute an abstraction of the given
PLC automata. MBY/RT is a tool for the development and analysis of PLC automata
[20]. From the verification perspective the most importantdeabf MoBY/RT is the
generation of safe abstractions of an arbitrary set of PLtGraata together with a tem-
poral property into the input syntax ofR@AAL 3.4. These abstractions are generated
according to the entities (e. g., variables and delays) ®@PhC automata the user has
chosen for abstraction.

In the following we will briefly describe PLC automata, timadtomata and the
relation between these two formalisms.

2.1 PLC Automata

The formal specification language called PLC automata hes Heveloped to enable
formal verification of real-time properties of PLC programsProgrammable Logic
Controller (PLC) is a standardised hardware platform whglespecially equipped
to simplify the design of real-time controllers in practitecan be seen as a simple
computer with a special real-time operating system. A PLQrooinicates with the en-
vironment via unbuffered asynchronous input and outputchb. The environment
may change the values of the inputs arbitrarily whereas thputs are controlled by
the PLC. PLCs behave in a cyclic manner where every cycleistsns the following
three phases: first the inputs are polled, then the new ougues are computed and
finally the outputs are updated. The repeated executiori©ticle is managed by the
operating system. The only part the programmer has to addpéeicomputing phase.
Depending on the program and on the number of inputs and tutipere is an upper
time bound for such a cycle.

In the definition of PLC automata we consider the upper timedor a complete
cycle and the possibility to delay the system’s reactionsedding on state and input.
Figure?2 gives an example of a PLC automaton. The automaton has thratdnsg,
q1, ¢2 and an output variableutput that ranges ovesk, test andalarm. It reacts to
a Boolean input variableignal. Every state has two labels shown below its name in
the picture. They define a delay tirdeand a constraint on the input. The value of
d defines theaminimalamount of time that the system should stay in the correspgndi
state provided that, meanwhile, only input values satigfyd are polled.

A PLC automaton describes the behaviour of the system indh®atation phase.
The operational behaviour is similar to a finite state maghire., depending on the
polled input value the system changes both its state andiffsub The behaviour is
modified in only one case: if the annotations of the curreatestred and S, then a
transition is only executed when the polled input does niigfyaS or the current state

4 Henning Dierks, Sebastian Kupferschmid, and Kim G. Larsen

l —signal —signal
output := test ./~ output := alarm
qo a q2

0 90, —-signal 0
signal ~— =

output := ok

Fig. 2. An example of a PLC automaton.

holds longer thanl time units. That means a transition is disabled if the poiiguiit
satisfiesS and the current state has not exceeded the delaydime

Thus, the PLC automaton in Fig@. behaves as follows: it starts in stajg and
remains there as long as it reads only the infiiginal. The first time it reads:signal
it changes to statg . In ¢; the automaton reacts to the input vakignal by changing
the state back tg, independentlpf the time it stayed in statg . If it reads—signal
in ¢; the behaviour of the system depends on the duration it giretaged ing, . If 90
time units have elapsed it can take the transitiog,tdtherwise, no transition is fired.
In ¢» the automaton remains forever. Hence, we know that the aitonthanges its
output toalarm when—signal holds a little bit longer than 90 time units because the
cycle time (2 time units) has to be considered.

Note that PLC automata are implementable.dhd translation of PLC automata
into source code for PLCs is given. 1&(] also a translation into C++ code (tailored to
Lego Mindstorms) has been developed. The intended logitationship between the
execution of the code by the real-world hardware and the sgosagiven in the rest of
this paper igefinementin other words: the real-world implementation cannot staow
behaviour that is not covered by the formal semantics.

2.2 UppaAL and Timed Automata

UppPAAL* is a modelling, simulation, and verification tool for reahe systems mod-
elled as networks of extended timed autom&{e8]. We assume the reader is roughly
familiar with timed automata and their commonly used extars Therefore, we only
provide a short description of timed automata and the eideasvhich we use for the
construction of test automata. For more details about tukthe reader is referred to
the UPPAAL tutorial [5].

Figure3 shows a network of three parallel timed autom&ta&) andR as it is used
in UPPAAL. The system has three clocksy andz, three integer variables, m and
n, binary synchronisation labetsandb and a committed locatiog, (indicated by the
“c:"). The initial state of the overall system is given by theeth initial locationsp;,
q1 andr; together with the initial values of the integer variabled #ime initial values
for the clocks. All clocks and integer values are 0 in thidestdhe bounded integer
variables are part of each system state, they can occurnsitin guards and can be
changed with the assignment of a transition. Two edges tdrdifit automata can fire

4seeht t p: / / www. uppaal . cont

http://www.uppaal.com/

Automatic Abstraction Refinement for Timed Automata

T >4

T ==6,a?
DD
z:=0 m:=k

r <11

y == 13, a!m
Q —»@ C.q2
=42 N/

b!
®

b? z > 28
-0
n:=k

Fig. 3. A simple UppPAAL model.

a synchronised transition of the system if they are labeNgt complementary syn-
chronisation labels (represented by “I” and “?” respedyieSuppose the system is in
a state where it is ipy andgq; and the guards of the outgoing edges of these two lo-
cations are enabled, then the system can take a synchrarassition, which leads to

a state wherd” is in p3 and(is in ¢o. For an edge annotated with a synchronisation
label it is not possible to fire a transition without a syncfigation partner. Edges with-
out synchronisation label are calleetransitions. A system state is a committed state
if at least one of the current automata locations is comahitBommitted locations are

a mechanism to restrict the behaviour of the overall systecommitted state cannot
delay and the next transition applied to this state musths@van outgoing edge of a
committed location. For example, if the system is in a stdier®P is atpy, @ is at the
committed locationy; and R is atry, then this system state is committed. The system
then has to take the edge frgmto g3 which requires) to synchronise with. The lo-
cationp;, is labelled with a location invariant. This restricts theation the system can
idle in the current state. Suppose the system is in a stateewhis atp; and the value

of the clockz is 0, then the system can remain at most 11 time units befavinig this
state.

2.3 Timed Automata Semantics of PLC Automata

The semantics of PLC automata is defined in terms of timednzato P, 11]. Due

to space limitations we can just present a sketch using tampbe of Fig.2. The se-
mantics of this automaton, depicted in Fjy.consists of two timed automata and the
following (global) variables and clocks:is a clock that represents the duration of the
PLC cycle,y is a clock that measures how long the system stayg,i@ut andsig
represent the variablésitput resp.signal used in the PLC automaton aRdig is

a variable that represents tpelled value of the input variableignal. The states of
the PLC automaton appear as a set of locations in the timeamation. For exam-
ple, the statey, has two representatives in the timed automaton in orderpresent
the internal state of the PLC within the cyclg (p stands for pollinggo/cu stands
for computing and updating). The transitions betwegfp andq/cu implement the
polling behaviour of the PLC automaton in state The polling step copies the cur-
rent value ofsig to the variablePsig which is used for the subsequent computations.

6 Henning Dierks, Sebastian Kupferschmid, and Kim G. Larsen

The outgoing transitions fromy, /cu represent the reactions of the PLC automaton in
stateqy. Depending on the polled value etg the system switches t@ or remains

in go. Moreover, these transitions reset thelock because the cycle has been finished.
If the automaton switches t@ the output variable is changed appropriately and the
clocky is reset to be able to check whether 90 time units have elapisitel staying in
stateq;. Sinceq; is equipped with a delay the semantics heeds more locatorept
resent the behaviour. After polling (transition frafgyp to ¢, /¢) the timed automaton
checks whether the delay time has passed or the delay candithot satisfied. If this

is the case, then a transition 49/« is enabled. Otherwise the system can switch to
¢1/d (“delayed”) where the cycle is finished. Note that the semari$ nondeterminis-
tic with respect to the timing in order to model the physieadlity. To ensure progress
each state has the invarianK 2. Therefore, the timed automaton has to execute a cy-
cle within the upper bound because only transitiong f@ reset the: clock. To model
the environment that can change the input variatearbitrarily a driver automaton is
added that can always toggle the input.

Psig K/\ —Psig

— U
Go/p z :=0,0ut := 0k b z :=0,0ut := Alarm a2/p

y > 90V Psig >0

o
0
P
0q
|
]
P
0q
C

z>0

z:=0 60
il

‘I{J

3 “— s L

b Psig := sig § I
—Fsig bo

q1/p .

z:=0,y:=0, w z:=0 for all states: a

Out := Test invariantz < 2

Fig. 4. Semantics of the PLC automaton from Fign terms of timed automata.

Abstractions of this semantics are generated by selectiset af variables and
clocks. Then the abstract semantics is derived from theskihantics by removing
all assignments to the abstracted variables and clocksegidcing all constraints by
the strongest constraint that is weaker than the origindlthat does not contain ab-
stracted entities. For example, the guard 90 APsig is replaced bysig if the clock
y is abstracted anglig is not.

3 Counterexample Analysis

In the abstraction refinement loop, when model checkingetygafoperty of an abstract
system returns a counterexample, one has to investigatiherhieis spurious or not.
One possible way of doing this is to buildliaear test automatod’, in which every

location has at most one outgoing edge, from the abstracttemxample. This test

Automatic Abstraction Refinement for Timed Automata 7

automaton is then composed with the full systerto be verified. If the last location of
the test automaton is reachable in the composed systemythknow that the abstract
counterexample is also a counterexample for the full system

It is desirable that the test automat®his able to find a concretisation if there is
any and, moreover, it is mandatory tHatestricts the behaviour of the full system as
much as possible. If this is not the case, the test automatoseless because it would
make no difference to model check the full system only. Weetftge construct the test
automaton so that it synchronises with the full model asnoéte possible. By doing
this, only a small fraction of the state space of the full Maslexplored. This makes
perfect sense, because we are only interested in a coatiatisf the abstract trace.

A UpPAAL counterexample is a finite sequence of states that are eineected
via transitions or via delays with a certain duration. Faraple, for the timed automata
system given in Fig3 and the temporal formulg {(ps A g3 Ar3), UPPAAL reports the
error trace given in Figh. The trace starts with the initial state of the system andgend
with a state satisfying the given property. Each state ofriee assigns each automaton
of the system a location, each variable a value of the va'mdbmain and each clock
a rational value. A test automaton built from such a trace@eds if the full model
of the system executes a transition that enables the gualet afext transition of the
test automaton. The problem is to decide whether a step ifuthenodel matches.
Checking the values of the variables is straight-forwaml.clieck the clock values
is a bit tricky because a trace may also have clock valuatigtis rational numbers.
Below we show how this problem can be solved. Another probieno match the
locations. The locations are not subject to abstractioesi.cd, they appear in both the
full and the abstract model. HoweverpBAAL does not provide any syntactic means
to refer to locations in guards. Therefore, we introduceadiliary integer variable for
each automaton of the system. The current value of thishlaridentifies uniquely the
current location of the automaton. Thus, the test autoniatainle to match locations by
checking the corresponding auxiliary variable. In ordepteserve the same behaviour
with respect to global time we add a clotikne to the test automaton. This clock is
never reset and therefore it represents the current doraetithe trace at any time. The
next three paragraphs give a detailed description on howitd & test automaton.

The first element of an abstract trace is the initial staténefabstract system. Al-
though we do not expect any differences with the full mode¢hee add a correspond-
ing check for reasons of completeness. We add a transitaating from the initial lo-
cationt, of the test automaton to a new locatign The guard of this transition checks
if the system’s variables have the right values at time ptint = 0. To restrict the
full model’s behaviout, is a committed location.

A delay transition with duratiod € Q of the abstract counterexample is translated
as follows: suppose that, after the transition is made, ygtem is in a state which is
described by the valuatioms! and that" € Q is the sum of all durations that occur
before the transition. Let the most recently added locatifdihe test automaton big.

In this case we add two locatiots; andt, .o to the test automaton and the two
awast(T+d) await(T+d)Acheck(val)
_—

transitionst,, tne1 andt, 1 tn12. Hereawait(q)
for ¢ € Nis time = qgand forg € Q \ Nis |g| > time A time < [q]. Note that
by the definition ofawait(q) the test automaton searches for an over-approximation of

8 Henning Dierks, Sebastian Kupferschmid, and Kim G. Larsen

(P.pl Qgl Rrl) x=0 y=0 z=0 k=0 m=0 n=0
Del ay: 7

(P.pl Qgl Rrl) x=7 y=7 z=7 k=0 m=0 n=0
P.pl->P.p2 x > 4, tau, x :=0

(P.p2 Qgl Rrl1) x=0 y=7 z=7 k=0 n¥0 n=0
Del ay: 6

(P.p2 Qgl Rrl) x=6 y=13 z=13 k=0 nr0 n=0
Qgl->Qqg2 y == 13, al, k := 42
P.p2->P.p3 x == 6, a?, m:= k

(Pp3 Qg2 Rrl) x=6 y=13 z=13 k=42 n¥42 n=0
QQg2->Qqg3 1, b!, 1
Rri1->Rr2 1, b?, n:=k

(P.p3 Qg3 Rr2) x=6 y=13 z=13 k=42 n¥42 n=42
Del ay: 15.5

(P.p3 Qg3 Rr2) x=21.5 y=28.5 z=28.5 k=42 nr42 n=42
Rr2->Rr3 z > 28, tau, 1

(P.p3 Qg3 Rr3) x=21.5 y=28.5 z=28.5 k=42 n¥42 n=42
Del ay: 0.5

(P.p3 Qg3 Rr3) x=22 y=29 z=29 k=42 nr42 n=42

Fig. 5. Trace reported by BPAAL for the queryE ¢ (ps A g3 A r3) of the system from FigB.

the given abstract trace. The expressiback (val) is the conjunction of tests whether
all discrete variables ofal equal the valuation of the state. Note that this approach is
correct because if there is no concretisation found usirsgaver-approximation then
there is no concretisation at all. If a concretisation isfthen the concrete trace may
differ from the abstract trace with respect to the non-iategdelays but it is a trace of
the full model that satisfies the reachability property. Ateraative approach would be
to multiply all timing constants with the common denominadad check for equality
only.

A r-transition in the counterexample also introduces twotiooa in the test au-
tomaton. Suppose the last added location of the test aubonist, and after ther-
transition the system is in a state described by the valuatib LetT" andt,, be defined

as above. Here, we add the locatieps; andt, - to the test automaton and the two

... wait(TYNC? wait(T)Acheck l
transitionsr,, “““ ATy andt,,, LeetTInchecklval) L Note that we ex-

ploit the fact that the abstract model made-ttansition to introduce a synchronisation
of the test automaton with the full model via the chanfieBy this, the test automaton
is notified as soon as the full model changed the values forghiables and the search
space is reduced. Since time is supposed to pass, the lo¢atiannot be committed.
However, to restrict the behaviour of the system; can be committed.

A synchronised transition of the counterexample is traadlas follows: suppose
again, that the valuatiom!, T" andt,, are defined as above. In contrast to how we handle
ar-transition, we cannot force the test automaton to pagteipHowever, we know that
whenever MbBY/RT generates a synchronised transition this only happieastly af-
ter ar-transition and that all synchronised transitions areiteaa committed location.
check(val) Aawait(T)

trn+1- As

Therefore we add the locatian ., and the transition,,

Automatic Abstraction Refinement for Timed Automata 9

time=0Ak=0Am=0An=0

to tl
time=T7 time=TAp=g=r=1ANk=m=n=0Ax=y=2z=7
g — t2 t3
time=TAC? time=TAp=2Aq=r=1Nk=m=n=0Ax=0Ay=2=7
tg —— ty ts
time=13 time=13Ap=2Aq=r=1Ak=m=n=0Az=6Ay=2=13
s —— te tr
time=13Ap=3Ag=2Ar=1ANk=m=42An=0Az=6Ay=2z=13
t7 tS
time=13Ap=q=3Ar=2Ak=m=n=42Axz=6Ay=2=13
ts ty
28<time<29 28<time<29Ap=q=3Ar=2Ak=m=n=42N21<x<22N28<y,z<29
tg ————— tio ti1
28<time<29NC? 28<time<29NAp=qg=r=3Nk=m=n=42A21<x<22A28<y,2<29
tin ————— tiz t13

Fig. 6. Test automaton for the trace in Fig.

synchronised transitions can happen sequentially whee than one automaton is in
the network and the transition’s origin is a committed |lcmatve have to make location
t,, committed, too.

Consider the trace generated byrAAL in Fig. 5 again. If we apply the above
construction rules we get the test automaton describedyjirbFi

4 Abstraction Refinement

When an abstract counterexample reveals to be spurious, al rleeicker normally
does not give any hint why this is the case. Usually, the rtexissone has to do in order
to get a refined version of the current abstraction is to aedlye counterexample. Here,
one has to identify variables or clocks respectively thathr the progress of the test
automaton. Normally, this has to be domanuallyand, on the one hand, is a tedious
and time consuming procedure and on the other hand requitesmunderstanding of
the model to verify. We will henceforth refer to integer adies and clocks as variables
respectively.

Our approach automates the analysis of the counterexakipldid this by extend-
ing UPPAAL so that if an abstract counterexample is spuriolERAAL reports thisand
at the same time provides a set of variables that should nabbg&acted in the next
iteration of the abstraction refinement loop.

To determine a refined abstraction, we exploit the fact thattest automata are
linear. If the abstract counterexample turns out to be spsyithen there is a unique
transition in the test automaton whose starting locatioreéched, but not its target
location. We call the starting location of this transitidre dlead end locatiorand the
transition itself we call thelead end transitionThe dead end transition can either be
blocked because there is no enabled transition in the fetesy that can synchronise
with the test automaton, or when there is no reachable sti#élteawaluation of the
variables that satisfies the guard of the dead end transition

10 Henning Dierks, Sebastian Kupferschmid, and Kim G. Larsen

Our approach determines a minimal set of variahlgs,, so that if these variables
had different values, the test automaton could take at teastead end transition. This
is done on the fly, while BPAAL checks if the error trace is spurious. Figureketches
UpPPAAL's verification algorithm for safety properties. The argumseof theverify func-
tion are the initial state of the systesy and the property to verify. We extended this
algorithm by including the lines 13-15.

1 function verify(so, ¢):

2 open={so}, closed =)
3 while open# 0:

4 s = open.pop()

5 if s E ¢:

6 return True

7 if s & closed:

8 closed.push

9 for each outgoing transitiort of s:
10 if ¢ is enabled:
11 s’ = succg, t)
12 open.pushx()
13 progress{()
14 else
15 analyseq, t)

16 return False

Fig. 7. Reachability analysis.

During the analysis, BPAAL checks each outgoing transition from a location in
the current state if it is enabled. If this is the case, the successor state computed
and added to the open list. In addition to the normal verificetunction, we now call
progresswith the successor staté (line 13). Pseudo-code for throgressfunction is
given in Fig.8. It determines the reached location of the test automatachatas cur-
rently the smallest distance to the test automaton’s lasition. Remember, if the last
location of the test automaton is reachable, then the coexdmple is a real counterex-
ample. After the execution of theerify function dead_end is the dead end location.

1 function progress{):

2 if dist(s(test)) < dist(dead_end):
3 dead_end = s(test)

4 Uhint = @

Fig. 8. On the fly detection of the dead end location.
If, during the generation of successor states, a trangiti®not enabled it is passed

together with its starting stateto theanalysefunction (line 15). Pseudo code for this
function is shown in Figur®. The analysefunction checks if the test automaton in

Automatic Abstraction Refinement for Timed Automata 11

s is in the currentdead _end location. If this is the case, then it checks if applying
would enable the current dead end transitign,_..q. If this is the case, theanalyse
collects all the variables and clocks respectively thatapm unsatisfied constraints of
t's guard. If the set of these variabless smaller thanuy,;,,;, thenuy;,; is updated. After
the execution of thgerify functionu,;,,; contains variables that hinder the execution of
the dead end transition.

1 function analyse{, t):
if s(test) # dead_end:
return
if tdead_end 1S SyNchronised:
if ¢ can synchronise Withicqd_cna:
u = {c € inv(succ(s, t)) | c unsat constraift)
{c € guard(t) | c unsat constrairt
if |u| S \uhint| V Unint = @:
Uhint = U
10 else ifassignment of makesguard(tgeqd_end) True:
11 u = {c € inv(succ(s, t)) | c unsat constraiftJ

O©oOo~NOOOLDWN

12 {c € guard(t) | c unsat constrairt
13 if |u| < |Uhint| V Unhint = ®:
14 Uhint = U

Fig. 9. 0n the fly extraction of least blocking variables. Used expressiamn$s): conjunction of
s's location invariantss(test): the location of the test automatondnsucc(s, t): the successor
state ofs reached through, guard(¢): ¢'s guard,dist(!): distance from a locatiohof the test
automaton to the last location of the test automaton in terms of transitions.

After UPPAAL has checked that the counterexample is spurious, all Jaesidabat
occur in the set of unsatisfied constraintg,,; are reported. These variables should not
be abstracted in the next iteration, as they hinder the pssgof the test automaton.
This ensures that the revealed spurious counterexamgi@etibe found in the next
iteration. In the following, we explain that the reportedisbles are likely to be helpful.

From the construction of the test automaton we know thaktlaee at most two
types of transitions in the test automaton: synchronisadsttions and--transitions.
The guard of such a synchronised transition is always satisfbecause it was already
satisfied when the starting location of the transition washed. It only checks that no
time elapses since the last transition. Depending on whachtpe transitions represent
from the abstract counterexample, we can distinguish tilifesrent cases.

If the dead end transition belongs to one of the transitiotr®duced for a delay
in the abstract counterexample, then the progress of thadésmaton is blocked be-
cause the full system cannot idle due to an unsatisfied mtatvariant. This is only
possible if this location invariant talks about a clock tivais abstracted away because
in the abstraction it is possible to take this transitionefBfiore this clock should not be
abstracted in the next iteration of the abstraction refineroap.

If the dead end transition belongs to one of the two transstiotroduced for a-
transition in the abstract counterexample, then we knowttieprogress of the test

12 Henning Dierks, Sebastian Kupferschmid, and Kim G. Larsen

automaton stops because ofrdransition in the full system. The reason for this is
that the clock guards of the two introduced transitions atisfied. So the only reason
why this may block is that the guard that checks the valuatiotihe variables is not
satisfied. But this is only possible if there is no enabteansition in the full system
whose assignments would make the guard true. As there isatidnsition in the
abstraction, we again know that this must be because of aisiisd transition guard.
So the variables that occur in the unsatisfied constrainthisfguard should not be
abstracted in the next iteration.

The last possible reason why the dead end transition is étbikthat there is no
enabled transition with an assignment that would make tlaedgof the dead end tran-
sition true. From the construction of the test automatomdhin only be a synchronised
transition in the full system becauseraransition in the full system always has to
synchronise with the test automaton which is not possibewa know that there is
a synchronised transition in the abstract system that misleeguard of the dead end
transition true, this transition would do it also in the fallstem. The reason why the
progress of the test automaton is stopped is that eithertasdgf this synchronised
transition or a location invariant of the successor statmtsatisfied.

5 Experiments

To demonstrate the potential of our approach we chose thglSiracked Line Seg-
ment” (SLS) case study which stems from the UniForM-proj&é&. It is the specifi-
cation of a control system for a single-tracked line segnfi@ntramways. It is imple-
mented by distributed PLC automatt)[. We took three different models of the SLS
case study0] as examples. As the safety property to verify, we chose thtiah ex-
clusion of drive permissions, i.e., the control system nerees permission to both
directions simultaneously.

The first model (M1) we checked is a manipulated system thabbtained by
changing a delay time but with the assumption that evergtlgnmplemented on only
one hardware device. The fullRpAAL model we got from MbBY/RT had 9 processes,
2 clocks and 24 integer variables. Talilshows in the first row the resources needed to
check the full model of M1 using the standar@®AAL verification engine. It took 310
seconds to verify that the manipulated delay time does aotte an error if the system
is implemented on one device. In the following rows the stifike abstraction refine-
ment loop are given. Each step consists of a verification eudintd an abstract coun-
terexample (left columns) and the check for spuriousndght(columns). For these
runs we use a variant of RPAAL called UPPAAL/DMC that allows fordirected model
checking[16, 17]. Directed model checking is the application of heuristicanodel
checking and was pioneered a few years ago by Edelkamp ét2all 3], christening
this research direction directed model checking. The usdiretted model checking
makes sense because it can be expected that the curreactbstcontains (abstract)
counterexamples and directed model checking detectsemxaimples faster. Note that
whenever a spurious counterexample is found a refined abetras derived. This re-
fined abstraction considers more entities (at least on& doane integer variable more
than before).

Automatic Abstraction Refinement for Timed Automata 13

Table 1.Abstraction refinement results for the experiments. Abbreviationsidfober of clocks,
p: number of processes, # v: number of integer variables, timéinrerin seconds, mem:
memory peak in MB, trace: length of found error trace, CE: counsengte

Model |# c|# p|# v|time|mentracd|# c|# p|# v| timg] menjresult

M1: full 2| 9/24 310.0 721verified
Abstr. #1 0| 4| 3| 0.00 8| 20| 3|10 24 0.0 7|spurious CE
Abstr. #2 1| 4| 3| 0.00 9| 22| 3|10 24 3.2 36|spurious CE
Abstr. #3 1| 5| 5/ 0.00 9| 23| 3|10 24 0.4 11|spurious CE
Abstr. #4 1| 5| 6| 0.00 9| 23| 3|10 24 1.3 20|spurious CE
Abstr. #5 1| 5| 8| 0.00 9| 34| 3|10 24 2.2 27|spurious CE
Abstr. #6§ 1| 5/10 0.8 9 - verified

M2: full 3| 10| 25> 1527.0> 2048out of memory
Abstr. #1 O 5| 3| 0.0 8| 27| 4|11] 25 0.0 8|spurious CE
Abstr. #2 1| 5| 3| 0.00 9| 29| 4|11 25 0.0 8|spurious CE
Abstr. #3 2| 5| 3| 0.00 9| 30| 4|11/ 25 113.§ 491 spurious CE
Abstr.#4 2| 5| 6| 0.1] 9| 88| 4|11] 25 44.§ 247|spurious CE
Abstr. #5 2| 6| 8| 0.4 9| 64| 4|11 25 7.6 64|spurious CE
Abstr.#6 2| 6| 9| 0.1 9| 44| 4]11] 25 14.3 108spurious CE
Abstr. #7 2| 6|11 0.21 9| 62|| 4|11] 25 15.8 97|spurious CE
Abstr. #8 3| 6|11 0.2 9| 77| 4|11 25 0.5 12|disproved

M3: full 3| 10 25> 1242.0> 2048 out of memory
Abstr. #1 0| 5| 3| 0.00 8| 27| 4|11 25 0.0 8|spurious CE
Abstr. #2 1| 5| 3| 0.00 9| 29| 4|11 25 0.0 8|spurious CE
Abstr. #3 2| 5| 3| 0.00 9| 30| 4|{11/25 117.8 753spurious CE
Abstr. #4 2| 5| 6| 0.1 9| 88| 4|11 25 45.3 312spurious CE
Abstr. #5 2| 6| 8| 0.4 9| 64| 4|11 25 7.7 80|spurious CE
Abstr. #§ 2| 6| 9| 0.1 9| 44| 4|11 25 14.9 141jspurious CE
Abstr. #7 2| 6|11 0.2 9| 62| 4|11 25 15.9 130spurious CE
Abstr. #8 3| 6|11 3.3 13 - verified

For M1 it turns out that with our counterexample guided augion refinement we
can prove correctness of the model using an abstractionigthck, 4 processes and
14 integer variables less than the full model. The requiredthory is about 5% and the
summarizedime consumption is approx. 3 % compared to the full modeteNbat in
abstraction 3, the number of processes has changed. Tlafeathis is that whenever
a variable is added to the next abstraction that is triggbsethe environment, then
an additional automaton is added to the system that drives#niable. These driver
automata are automatically generated bgat/RT.

For the next verification problem we removed the assumptimutthe partitioning
of the PLC automata onto hardware devices. The second expetriM2) represents
a distributed system. Now, the manipulated delay time léadmn incorrect system.
However, it was not possible to find a counterexample in thefadel within the given
memory limit of 2 GBs. This time the abstraction refinemewpldad to iterate 8 times
to generate an abstraction for which a definite answer wasifdue., a counterexample
in the full model. The computed abstraction saved 4 prosemse 14 integer variables.

14 Henning Dierks, Sebastian Kupferschmid, and Kim G. Larsen

The memory and time consumption watsmost25 % respectively 14 % compared to
the full model.

In our final experiment (M3) we reverted to the original delae. Again, it was
not possible to check the full model within the memory limithe abstraction refine-
ment loop generated the same sequence of refined absteaatidrterminated after 8
iterations again. But this time RPAAL was able to verify that the final abstraction has
no counterexample.

All these experiments show that the abstraction refinemesstemted in this paper
is able to generate abstractions effectively for which diefimerification results can
be found. The main benefits are that there is no need for huntaraction at all, an
abstraction of the model is computed automatically for Wwhicreliable verification
result can be computed and that this approach reduces samntifi the resources (time
and memory). However, there is no guarantee that this approamputes aninimal
abstraction but it is obvious that it will terminate sincelederation adds at least one
of the finitely many entities of the model.

6 Related Work

Abstraction refinement was pioneered by Clarke et8li the early 90s. Since then
many researchers have automated this process startingheitivork of Balarin and
Sangiovanni-Vincentelli4]. The term counterexample guided abstraction refinement
was coined by Clarke et alf]. This work deals with discrete timed systems and ACTL
formulas. It has been extended to continuous-time moddls, it]. The main idea of
these approaches is to refine the discrete state space bywapagte replication of
states which have been involved in a spurious counterexatogvoid this trace in the
next iteration.

Alur et al. [1] have proposed a predicate abstraction based approachcfmura
terexample guided abstraction refinement procedure atyido hybrid systems. The
refined abstraction extends the state space by predicaseslieg additional infor-
mation on the continuous state space. These additionaicpted are constructed by
identifying the dead-end state of a spurious trace and agsasavhich polyhedron in
the continuous state space avoid a reoccurrence of the trace

A similar approach was proposed by Segelk2tj.[Here the analysis of the spu-
rious trace generates an automaton that is put in paraltél thé model in the next
iteration of the abstraction refinement loop. This automatpresents an infeasible
fragment of the previous spurious trace. By the constrnabiothe automaton this in-
feasible fragment is avoided.

Also in the area of timed automata there are approaches fdehuhecking by
iterative refinement of approximations. One of these apres was implemented in
Laroussinie’s and Larsen’s compositional model checkerGQ¥g]. This tool starts
with a small subset of the automata of the system. It subsglguelds automata to this
set and minimises the intermediate result.

Another abstraction refinement approach was developed bgaSa al. 19, 22|
in which predicate abstraction was used on the level of th®ns which are defined
by predicates over clocks. The approach uses symbolic emxamples from failed

Automatic Abstraction Refinement for Timed Automata 15

model-checking attempts. Such a symbolic counterexanggeesents a sequence of
sets of states, and can be seen as generalisation of a lmaateexample. To exclude
a spurious symbolic counterexamples from further iteretjoew abstraction predicates
are chosen randomly from a set of predefined predicatespEfardhe fact that new ab-
straction predicates are chosen randomly, this approaictsisme respect, quite similar
to what we are proposing here. The main differences are tiuieenaf the counterexam-
ples and that new abstraction variables are selected moz&ultp Unfortunately the
authors do not give any runtime results.

7 Conclusion and Future Work

We presented an approach for counterexample guided atistraefinement for a sub-
class of timed automata. In this paper we defined how to aactstest automata that
can be used to check whether a full model is able to behaveeaabitract trace, i. e.,
to check whether an abstract trace is spurious or not. Mereae extended the model
checker WPAAL in such a way that it executes an analysiswbfy a full model cannot
execute a spurious trace. The result of this analysis is tsegfine the given abstrac-
tion in a way that the spurious counterexample cannot oaoymare. This approach
enabled us to construct a closed abstraction refinementitowgnich verification of
a system starts with the coarsest abstraction and with éaction the abstraction is
refined until a result is found that holds for the full modebt

In its current version our approach is able to refine the abstm by adding vari-
ables or clocks. From our point of view, the most promisinggclion of future work
is to extend the approach such that it also refines the setofata considered in the
abstraction. At present the set of PLC automata is fixed. Mewd a system consists
of many parallel components it makes sense to start with 8 smoizset thereof. Since
the semantics of a subset is an over-approximation this titsapproach. Then the
abstraction refinement analysis needs to be extended &uglyrih a way that it can
also identify PLC automata for the abstraction refinemeiatvikty such an extension
the abstraction refinement loop would start with the coamslestraction of only those
automata that manipulate variables appearing in the rexaint.

In this paper we have presented and implemented an abstraefinement method-
ology for PLC automata. However, the methodology is geheegiplicable to the full
range of timed automata based models expressible withiraldL. Here, a particularly
challenge will be the generalisation of the automated aimlyf counterexamples pre-
sented in Sectiod to deal with the rich imperative language (including stonet data
types, user-defined types as well as user-defined functimhpr@cedures) provided in
UpPAAL 4.0. We envisage the need for incorporating the work of Samemand Trane
on slicing UPPAAL 4.0 models 23].

Acknowledgments

This work was partly supported by the German Research Co{IDieG) as part of the
Transregional Collaborative Research Center “Automagidfiéation and Analysis of

16 Henning Dierks, Sebastian Kupferschmid, and Kim G. Larsen

Complex Systems” (SFB/TR 14 AVACS). Sket p: / / ww. avacs. or g/ for more
information.

References

[1] Rajeev Alur, Thao Dang, and Franjo lvancic. Predicatgr@ation for reachability

analysis of hybrid system&CM Transactions in Embedded Computing Systems

5(1):152-199, 2006.

[2] Rajeev Alur and David L. Dill. Automata for modeling retilne systems. In
Michael S. Paterson, editdCALP 90: Automata, Languages, and Programming
volume 443 ofLecture Notes in Computer Sciengeges 322-335. Springer-
Verlag, 1990.

[3] Rajeev Alur and David L. Dill. A theory of timed automafBheoretical Computer
Science126:183-235, 1994.

[4] Felice Balarin and Alberto L. Sangiovanni-Vincentelln iterative approach to
language containment. In Costas Courcoubetis, edtmgeedings of the 5th
International Conference on Computer Aided Verificatio®\{{C1993) volume
697 ofLecture Notes in Computer Scienpages 29-40. Springer-Verlag, 1993.

[5] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tialoon UPPAAL.

In Marco Bernardo and Flavio Corradini, editoFsrmal Methods for the Design
of Real-Time Systems, International School on Formal Mistior the Design of
Computer, Communication and Software Systems (SFM-RT),288/dme 3185
of Lecture Notes in Computer Scienpgages 200-236. Springer-Verlag, 2004.

[6] Edmund M. Clarke, Ansgar Fehnker, Zhi Han, Bruce H. Krogtél Ouaknine,
Olaf Stursberg, and Michael Theobald. Abstraction and taremample-guided
refinement in model checking of hybrid systentisternational Journal of Foun-
dations of Computer Scienck4(4):583-604, 2003.

[7] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu,Helchut Veith.
Counterexample-guided abstraction refinement. In E. Algnerson and
A. Prasad Sistla, editor®roceedings of the 12th International Conference on
Computer Aided Verification (CAV 20Q@plume 1855 ot ecture Notes in Com-
puter Sciencepages 154-169. Springer-Verlag, 2000.

[8] Edmund M. Clarke, Orna Grumberg, and David E. Long. Modeécking

and abstraction.ACM Transactions on Programming Languages and Systems

16(5):1512-1542, 1994,
[9] Henning Dierks Specification and Verification of Polling Real-Time Systdpn®
thesis, University of Oldenburg, 1999.

[10] Henning Dierks. PLC-Automata: A new class of implenadé real-time au-
tomata.Theoretical Computer Scienc253(1):61-93, 2001.

[11] Henning Dierks.Time, Abstraction and Heuristics — Automatic Verificatiorda
Planning of Timed Systems using Abstraction and Heurigtedilitationsschrift,
University of Oldenburg, 2006. Nr. 01-06.

[12] Stefan Edelkamp, Alberto Lluch-Lafuente, and Stefaué. Directed explicit
model checking with HSF-SPIN. In Matthew B. Dwyer, edit®rpceedings of the
8th International SPIN Workshop on Model Checking of Sa#w&PIN 2001)

http://www.avacs.org/

(13]

(14]

(19]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

Automatic Abstraction Refinement for Timed Automata 17

volume 2057 ofLecture Notes in Computer Sciengeages 57—79. Springer-
Verlag, 2001.

Stefan Edelkamp, Alberto Lluch-Lafuente, and Stefaué. Directed explicit-
state model checking in the validation of communicatiortgeols. International
Journal on Software Tools for Technology Transfer (STZ2UD4.

Ansgar Fehnker, Edmund M. Clarke, Sumit Kumar Jha, andt8H. Krogh. Re-
fining abstractions of hybrid systems using counterexarfnaignents. In Manfred
Morari and Lothar Thiele, editor®roceedings of the 8th International Workshop
on Hybrid Systems: Computation and Control (HSCC 20@8ume 3414 of ec-
ture Notes in Computer Scienqeges 242—-257. Springer-Verlag, 2005.

Bernd Krieg-Biickner, Jan Peleska, Ernstifiiger Olderog, and Alexander Baer.
The uniform workbench, a universal development envirortrf@nformal meth-
ods. In Jeannette M. Wing, Jim Woodcock, and Jim DaviesoegitNorld
Congress on Formal Methods (FM 1999plume 1709 of_ecture Notes in Com-
puter Sciencegpages 1186-1205. Springer-Verlag, 1999.

Sebastian Kupferschmid, Klaus &yer, &rg Hoffmann, Bernd Finkbeiner,
Henning Dierks, Andreas Podelski, and Gerd BehrmannppAAL/DMC —
abstraction-based heuristics for directed model checkim@rna Grumberg and
Michael Huth, editors] 3th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS 200)me 4424 of_ecture
Notes in Computer Sciengeages 679-682. Springer-Verlag, 2007.

Sebastian Kupferschmiddry Hoffmann, Henning Dierks, and Gerd Behrmann.
Adapting an Al planning heuristic for directed model checkiln Antti Valmari,
editor,Proceedings of the 13th International SPIN Workshop (SB0¥3 volume
3925 ofLecture Notes in Computer Scienpages 35-52. Springer-Verlag, 2006.
Francois Laroussinie and Kim G. Larsen. CMC: A tool éempositional model-
checking of real-time systems. In Stanislaw Budkowski, Ra&avalli, and Elie
Najm, editorsProceedings of the Joint International Conference on FdrDex
scription Techniques for Distributed Systems and Commatioit Protocols and
Protocol Specification, Testing and Verification (FORTE/N3998) volume 135
of IFIP Conference Proceedingpages 439-456. Kluwer, 1998.

M. Oliver Moller, Harald Ruel3, and Maria Sorea. Predicate abstrafdiatense
real-time systemElectronic Notes in Theoretical Computer Scier®@®(6), 2002.
Ernst-Ridiger Olderog and Henning Dierks. Moby/RT: A tool for sgiegition
and verification of real-time systemslournal of Universal Computer Science
9(2):88-105, 2003.

Marc Segelken. Abstraction and counterexample-glinstruction of omega-
automata for model checking of step-discrete linear hybratlels. In Werner
Damm and Holger Hermanns, editoPspceedings of the 19th International Con-
ference on Computer Aided Verification (CAV 2Q0wlume 4590 ofLecture
Notes in Computer Sciencgpringer-Verlag, 2007.

Maria Sorea. Lazy approximation for dense real-timstems. In Yassine
Lakhnech and Sergio Yovine, editoRroceedings of the 2nd Joint International
Conferences on Formal Modelling and Analysis of Timed 8ysttFORMATS
2004) volume 3253 ofLecture Notes in Computer Sciengeages 363-378.
Springer-Verlag, 2004.

18 Henning Dierks, Sebastian Kupferschmid, and Kim G. Larsen

[23] Uffe Sgrensen and Claus Trane. Optimization for ttrphhL verification tool.
Technical report, Aalborg University, 2007.

	Introduction
	Preliminaries
	PLC Automata
	Uppaal and Timed Automata
	Timed Automata Semantics of PLC Automata

	Counterexample Analysis
	Abstraction Refinement
	Experiments
	Related Work
	Conclusion and Future Work

