
Integrating Golog and Planning: An Empirical Evaluation

Jens Claßen† and Viktor Engelmann† and Gerhard Lakemeyer† and Gabriele Röger‡
† Dept. of Computer Science, RWTH Aachen University, Germany

‡ Dept. of Computer Science, University of Freiburg, Germany

Abstract

The Golog family of action languages has proven to be
a useful means for the high-level control of autonomous
agents, such as mobile robots. In particular, the In-
diGolog variant, where programs are executed in an on-
line manner, is applicable in realistic scenarios where
agents possess only incomplete knowledge about the
state of the world, have to use sensors to gather nec-
essary information at runtime and need to react to spon-
taneous, exogenous events that happen unpredictably
due to a dynamic environment. Often, the specification
of such an agent’s program also involves that certain
subgoals have to be solved by means of planning. In-
diGolog supports this in principle by providing a va-
riety of lookahead mechanisms, but when it comes to
pure, sequential planning, these usually cannot compete
with modern state-of-the-art planning systems, most of
which being based on the Planning Domain Defini-
tion Language PDDL. Previous theoretical results pro-
vide insights on the semantical compatibility between
Golog and PDDL and how they compare in terms of ex-
pressiveness. In this paper, we complement these results
with an empirical evaluation that shows that equipping
IndiGolog with a PDDL planner (FF in our case) pays
off in terms of the runtime performance of the overall
system. For that matter, we study a number of example
application domains and compare the needed computa-
tion times for varying problem sizes and difficulties.

Introduction

The Golog (Levesque et al. 1997) family of action languages
has already proven to be a suitable means when it comes to
the high-level control of autonomous agents, such as mobile
robots (Burgard et al. 1998). It provides the programmer
with the flexibility to chose the right balance between de-
terministic, predefined behavior on the one hand and on the
other hand leave certain non-deterministic parts to be solved
by the system.

The IndiGolog (De Giacomo, Levesque, and Sardina
2001) variant, which is in turn based on ConGolog (De Gia-
como, Lespérance, and Levesque 2000), possesses a number
of features that makes it particularly suited for many practi-
cal scenarios. For one, it works in cases where agents only

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

have incomplete knowledge about the state of the world, and
where sensing actions can and most often have to be used in
order to gather further information that is required to fulfill
the task. Furthermore, so-called exogenous actions reflect
changes in a dynamic environment that are not caused by an
action of the agent.

For another, an important aspect about the language is
that programs are executed in an incremental, online man-
ner. Unlike in the original Golog, where the system searches
for an action sequence that constitutes a legal execution of
the entire input program, IndiGolog does not apply a general
lookahead, but leaves it to the programmer to explicitly state
which parts of the program ought to be solved by means of
search. This helps to keep program execution tractable, in
particular in the presence of incomplete knowledge and pos-
sible occurrences of exogenous actions.

However, in many application domains for which In-
diGolog is suited in principle, one often encounters sub-
problems that are rather combinatorial in nature. Typical
examples include scheduling currently pending requests to
the system, finding a route through a certain topology, or a
combination of these two. These are cases for classical plan-
ning, where the programmer only provides a list of available
actions and a description of the goal state, and it is up to the
system to search for an appropriate (and preferably short)
sequence of action instances that achieves the goal. While
Golog supports this in principle, it soon becomes infeasible
for all but the smallest problem sizes.

However, sequential planning has received a lot of atten-
tion in recent years. PDDL, the Planning Domain Defini-
tion Language (Ghallab et al. 1998) was introduced as the
common input language for the systems competing at the
biennial International Planning Competition. It extends the
well-known STRIPS language (Fikes and Nilsson 1971) by
features from Pednault’s (1989) ADL. Later extensions in-
clude (among other things) durative and concurrent actions
(Fox and Long 2003; Edelkamp and Hoffmann 2004) as well
as constraints on plan trajectories and preferences among
goals (Gerevini and Long 2005). The language has become
a de-facto standard for formulating planning benchmarks.
Many efficient planners that use it have been developed by
now, using a large variety of techniques and heuristics.

It suggests itself to benefit from these developments by
embedding such a planner into IndiGolog. The idea is that

whenever a planning subproblem arises during the execu-
tion of a Golog program, it is translated into PDDL and the
planner is called. The resulting plan is translated back and
Golog resumes executing that plan. For the ADL fragment
of PDDL, the theoretical foundations for such an embedding
have been laid in previous work. Claßen et al. (2007) show
that the state updates in PDDL can be understood as pro-
gression for a certain form of Golog action theories; Röger,
Helmert and Nebel (2008; 2007) identify a maximal class of
such theories that are equivalent to the ADL sub-language
in terms of expressiveness.

Based on these theoretical results, we extended the current
implementation of IndiGolog with the possibility of redi-
recting planning subgoals to a PDDL planner, in our case
the FF system. In this paper, we do an empirical study
that shows that such an extension is beneficial in terms of
the overall computation time needed by the system. For
this purpose we developed a number of example application
domains, ran them in simulations and measured the corre-
sponding runtimes for varying problem sizes.

The remainder of the paper is organized as follows. In
the following section, we present details concerning the In-
diGolog framework, the FF planning system, and our inte-
gration of the two. Next, we introduce the application do-
mains that we developed, after which we discuss our experi-
mental setup and the results obtained. We close with a brief
conclusion.

Integrating FF into IndiGolog

IndiGolog

The situation calculus (McCarthy and Hayes 1969; Reiter
2001) is a dialect of first-order logic (with some second-
order extensions) for reasoning about dynamic domains.
Changes in the world are assumed to be the result of prim-
itive actions, which are performed by some implicit agent
and modelled by terms like move(l1, l2). Properties that
are affected by performing such actions are called fluents,
which can be predicates like Holding(obj2, s) or func-
tions like position(robot, s). The last argument of a flu-
ent is a situation, which should be understood as the cur-
rent history of actions that have been executed. The con-
stant S0 is used to denote the initial situation, and when
a is an action and s a situation, then do(a, s) denotes the
situation that results from performing a in s. For exam-
ple Holding(letter, do(pickup(letter, S0))) means that the
agent is holding the letter after picking it up. A particular do-
main is described by a basic action theory, which is a set of
situation calculus formulas that define the fluents’ values in
the initial situation and preconditions and effects of actions.

Based on the situation calculus, the members of the
Golog (Levesque et al. 1997) family of languages allow the
definition of complex actions, also called programs. The
ConGolog (De Giacomo, Lespérance, and Levesque 2000)
variant supports the following constructs:

α primitive action
φ? test
δ1; δ2 sequence
δ1 | δ2 nondeterministic choice

πx.δ(x) nondeterministic choice of argument
δ∗ nondeterministic iteration
if φ then δ1 else δ2 endIf conditional
while φ do δ endWhile loop
δ1||δ2 concurrent execution
δ1〉〉δ2 prioritized concurrency

δ|| concurrent iteration
〈~x : φ(~x) → δ(~x)〉 interrupt

P (~t) procedure call

Apart from conditionals, loops and recursive procedures,
which are common to imperative programming languages,
an important aspect is that parts of a program can also be
nondeterministic. For instance, δ1 | δ2 means to do either
δ1 or δ2, and δ∗ performs δ zero or more times. The idea is
that a program does not represent a complete solution to the
problem, but only a sketch of it, where the nondeterministic
parts constitute gaps which have to be filled by the system.

ConGolog models concurrency as (nondeterministic) in-
terleavings of the involved processes, i.e. actions are always
performed one at a time. This includes so-called exogenous
actions, which are used to model spontaneous changes in the
dynamic environment that do not constitute (direct) effects
of the agent’s actions. Interrupts can be used to define reac-
tive responses that are triggered when such an event occurs
or some other condition is met; the normal program execu-
tion then continues afterwards.

Programs are executed off-line in ConGolog. This means
that the interpreter first analyzes the entire program to find
a conforming execution trace before the first action is actu-
ally executed in the real world. This soon becomes a prob-
lem when the program is large; furthermore in many sce-
narios, the agent has only incomplete knowledge about its
environment, making it necessary to gather information at
runtime. IndiGolog (De Giacomo, Levesque, and Sardina
2001) is an extension where these issues are tackled. Pro-
grams are executed on-line, which means that there is no
general lookahead; the interpreter simply executes the next
possible action in each step (treating nondeterminism like
random choices). A new operator Σ(δ) is introduced which
has to be used to explicitly mark subprograms which have
to be solved by means of search. This does not represent
a loss of generality since one might encapsulate the entire
program, but gives the programmer much more control over
where the system spends its computational effort. In ad-
dition, programs may contain sensing actions for acquiring
needed information at runtime. When such an action is ex-
ecuted, a sensing result is obtained (which normally is the
current value of some fluent) and used to update the agent’s
knowledge base. Thus, a subsequent choice in the program
that depends on this sensed value can be made on-line.

The features mentioned above make IndiGolog applica-
ble in many practical scenarios, where we often are con-
fronted with dynamically changing environments, where
sensing has to be used to fill gaps in the agent’s informa-
tion about the world, and where computational power usu-
ally is limited. A PROLOG-based implementation of an
IndiGolog agent architecture is available at Sourceforge1

1http://sourceforge.net/projects/indigolog/

and has already been successfully applied for controlling
robots of the LEGO MINDSTORMS system, the ER1 EVO-
LUTION robot and other software agents.

Golog is therefore an appropriate means for the overall
control of an agent in many application domains. How-
ever, the general task often involves certain combinatorial
subproblems, like finding a route through a certain topol-
ogy, scheduling currently pending requests or a combina-
tion of these two. When one is unable (or it is to tedious)
to specify some (partially nondeterministic) program to re-
strain the space of possible execution traces, these examples
correspond to classical planning tasks where only the cur-
rent state, a goal, and a set of available actions are provided,
and where it is the job of the system to search for an action
sequence that achieves that goal.

In principle, even classical planning can be done in Golog
with a completely nondeterministic program as follows:

while (¬Goal) do (πa) a endWhile.

A (successful) execution trace of this program corresponds
to a plan that reaches a situation where Goal holds. How-
ever, since the Golog interpreter uses the PROLOG back-
tracking mechanism to resolve nondeterminism, performing
planning like this basically amounts to do a blind search.
The IndiGolog system further contains a number of built-in
planning mechanisms, but these are merely proof of con-
cepts for different kinds of conditional planning (Sardina et
al. 2004), which use very basic, unguided search strategies.
In any of these cases, planning soon becomes infeasible for
all but the smallest problem sizes.

The FF Planning System

A large research community engaged in developing sophis-
ticated techniques and domain-independent heuristics for
solving classical planning problems has evolved in the last
decade, where the PDDL language has become a de-facto
standard for formalizing benchmarks that allow the compar-
ison of different approaches.

The FF Planning System developed by Hoffmann (2001)
is a fully automated system for classical planning. It sup-
ports the ADL fragment of PDDL which is sufficient for our
purposes. Furthermore, it has proven its quality by winning
the automated track of the planning competition in 2000 and
still being part of state-of-the-art planning systems that sup-
port a wider fragment of PDDL.

FF performs a forward search in the state space, guided by
a heuristic function that is automatically extracted from the
domain description. The heuristic gets derived from the cor-
responding relaxed planning task that results from the origi-
nal one by ignoring the delete effects of the actions. This re-
laxed task can be solved in polynomial time and the number
of actions in the resulting plan provides an estimate for the
goal distance in the original task. Furthermore, the relaxed
task is used to identify so-called helpful actions that are ex-
pected to be a good choice for the next action and which
hence are considered first during search.

The search method used by the FF system is a variant of
hill-climbing called enforced hill climbing. The main differ-
ence to the standard algorithm is that in the case of a plateau

it switches to best first search until a node with a strictly
better evaluation is found.

Integration

We embedded the FF planning system into the IndiGolog
framework to benefit from these developments. For
that purpose, we introduced a new program construct
achieve ff(G,A), where G is a goal formula and A is
a list of actions. Whenever an achieve ff statement is
encountered during the execution of a program, it causes the
current state, the goal and the available actions to be trans-
lated into a PDDL planning problem which is referred to FF.
The resulting plan is translated back and Golog continues
with executing that action sequence.

The semantical soundness of this proceeding has been laid
in previous work. In a first paper (Claßen et al. 2007) it
was shown that the state updates in PDDL’s ADL fragment
(i.e. the language we obtain when only the :adl require-
ment flag is set) can be understood as progression for a cer-
tain form of Golog action theories; in two further papers
(Röger and Nebel 2007; Röger, Helmert, and Nebel 2008)
a maximal class of such theories is identified that are equiv-
alent to the ADL sub-language in terms of expressiveness.
ADL extends basic STRIPS with conditional effects as well
as negated, disjunctive and quantified preconditions.

We will not discuss the theoretical details here, but pro-
vide an intuition by means of an example translation, taken
from one of our test applications. A PDDL planner requires
two files: a domain description, containing types, predicates
and operator definitions, and a problem description, which
specifies the objects in the domain, the initial values of pred-
icates and the goal formula.

Since in PDDL the closed world assumption holds, fluents
and action parameters can only take values from a finite set
of object constants. These may be divided into types and
subtypes that are used to restrict the possible values of pa-
rameters. We use unary PROLOG predicates with finite ex-
tensions to represent types and declare the subtypes of the
general supertype object as follows:

object(X) :- passenger(X) ; floor(X).

In general, subtypes can of course be further subdivided, us-
ing similar clauses. These Golog declarations are directly
mapped to type declarations in the PDDL domain file:

(:types passenger floor - object)

A relational fluent with type restrictions on its arguments is
in the following way declared in the Golog axiomatization:

rel_fluent(lift_at(F)) :- floor(F).

The compiled PDDL domain definition then contains:

(:predicates

(lift_at ?f - floor) ...

An action is given by a declaration (with type restrictions),
a precondition and a number of positive and negative effect
axioms:

action(move(F1,F2)) :-

floor(F1), floor(F2).

poss(move(F1,F2),

and(lift_at(F1),

or(above(F1,F2),above(F2,F1)))).

causes_false(move(F1,F2),

lift_at(F1),true).

causes_true(move(F1,F2),

lift_at(F2),true).

The last argument of an effect axiom may contain a condi-
tion that must hold for the effect to actually take place. In
case of true, the translation is straightforward:

(:action move

:parameters

(?f1 - floor ?f2 - floor)

:precondition

(and (lift_at ?f1)

(or (above ?f1 ?f2)

(above ?f2 ?f1)))

:effect

(and (lift_at ?f2)

(not (lift_at ?f1)))

)

The following example shows how an effect is translated that
involves a non-trivial condition and additional variables that
are not arguments of the action:

causes_true(stop(F),

boarded(P), origin(P,F)).

Such conditions result in conditional effects in the PDDL ac-
tion (the type of the quantified variable is determined on the
basis of the type definition of the arguments of origin):

(forall (?p - passenger)

(when (origin ?p ?f)(boarded ?p)))

To generate the actual planning instance, we need to col-
lect all objects of the involved types, e.g.

passenger(p1). passenger(p2).

floor(f1). floor(f2). floor(f3).

and declare them in the PDDL problem file:

(:objects p1 p2 - passenger

f1 f2 f3 - floor)

We then determine which fluent ground atoms F evaluate
to true given the current action history H, i.e. we collect
all solutions of has value(F,H,true). For instance, if
lift at(f2) is one such atom, then the :init section
of the problem file contains

(:init (lift_at f2)

...)

Finally, the problem description contains the translation
of the goal formula G. For example, a goal formula
all(p,passenger,served(p)) results in

(:goal (forall (?p - passenger)

(served ?p)))

We remark that of course the specific, restricted form of
clauses in the Golog action theory is only required for those
parts that are relevant for the planning problem. The axiom-
atization may contain additional parts that PDDL does not
understand, in particular exogenous and sensing actions.

Benchmark Domains
We designed three example application domains. The first
two examples are representatives of so-called transportation
domains (Helmert 2008). The characterizing property of
such problems is that there are portables that should be trans-
ported from their origin to their destination location using
mobiles that can move between some of the locations. This
type of problem is especially interesting because such tasks
arise very often in practice. This is probably also the reason
why a large fraction of the benchmarks used in the Interna-
tional Planning Competitions is among these domains. The
most interesting aspect of our last example domain is that it
in addition involves sensing. In the following we will briefly
introduce each of these domains.

A Logistics Domain

The first domain that we studied serves as a representative
for all kinds of logistics applications. The task is to trans-
port packages to their destination locations, using a number
of trucks which can only hold one package at a time. The
direct connections between locations form a (not necessar-
ily complete) graph structure.

The domain has the dynamic aspect that new packages
keep arriving at runtime, represented by exogenous actions,
and have to be picked up and delivered in turn.

An Elevator Domain

The second test domain has been inspired by the miconic
elevator domains of the International Planning Competition
in 2000. There is an elevator moving between the floors of a
building. At some floors passengers are waiting and should
be transported to their respective destination floor. During
the program execution new passengers arrive randomly.

There are three sorts of actions that can be used to serve
the passengers: Movement actions move the elevator from
one floor to an adjacent floor. Since an elevator can move
faster if it does not have to stop at each floor, there are also
actions for fast movements that overcome two floors within
one step. The third sort of actions are the stop actions which
cause all passengers waiting at the current floor to enter the
elevator and drop off all boarded passengers whose destina-
tion is the current floor.

A Mail Delivery Robot Domain

The third domain is a variant of a common application ex-
ample (Tam et al. 1997) of a mobile robot operating in
an office environment, where it has to deliver letters and
parcels between the workers’ mailboxes. Here, the struc-
ture of the building is assumed to consist of a number of
hallways, which are connected (e.g. by an elevator) to other
hallways, and where there is a certain number of offices at
each hallway. Each office may contain one or multiple dif-
ferent mailboxes, each of which serving for both incoming
and outgoing mails.

This domain involves sensing since the robot must look
into a mailbox in order to find out how many and which
letters it currently contains. Furthermore, before the agent
actually knows where to deliver a letter, it has to pick it up
and read off the addressee.

Experiments and Results

For our experiments, we further have extended the In-
diGolog framework by a simple simulator that plays the
role of the outside world. It runs in a separate instance of
PROLOG and communicates with Golog via TCP/IP sockets.
The basic idea is to keep track of the (relevant part of the)
world state using PROLOG’s assert and retract mech-
anism. When an exogenous actions occurs and what sensing
result is returned after the execution of an action can then be
defined as conditions wrt to the simulated state. All exper-
iments were performed on a PC with an Intel Core 2 Duo
E6750 CPU running at 2.66 GHz with 2 GB of memory.

Logistics

In the logistics domain, we defined a control program using
prioritized interrupts:

proc mainControl
〈 undeliveredPackages → deliverPackages 〉 〉〉
〈 ¬ finished → wait 〉

The program is to be understood as follows. In each cycle
of the (implicit) main loop, if there are packages that have
not been delivered yet, compute a plan to deliver them and
execute it. If this is not the case but execution is not yet
finished, do nothing for one cycle. Otherwise terminate.

Here, finished is a fluent that serves as a flag for sig-
nalling when program execution is supposed to halt. This
is necessary to be able to perform finite experiments for a
task that is indeed open-ended: While delivering the cur-
rently pending packages, new delivery requests keep arriv-
ing, each of which being modelled by an exogenous ac-
tion new package(p,l,d) that sets the current loca-
tion of package p to l and its destination to d. Since
the system does not know in advance when and how many
new package arrivals will occur, a special exogenous action
no more packages is used to set finished to TRUE after
the last new package event indicating that the experiment
ends at this point.

Testing whether there are still packages to be delivered is
done by procedure undeliveredPackages:

proc undeliveredPackages
∃p : package ∃l : location ∃d : location.

at(p, l) ∧ destination(p, d) ∧ (l 6= d)

The deliverPackages procedure is the part where planning
comes into play:

proc deliverPackages
solve(∀p : package ∀d : location.

destination(p, d) ⊃ at(p, d),
[load,unload,drive])

Here, the first argument of solve is the goal formula and the
second one the list of actions the planner has to consider. In
our experiments, we tested two different versions of solve:
one calling the external FF planner via achieve ff, the
other, achieve, being an internal, PROLOG-implemented
construct of the IndiGolog framework that basically per-
forms an iterative deepening search. The two planners were
in each case given the same amount of information: a list

Pack. Trucks Loc. iN eN iR eR

3 2 3 9 9 10 10
3 2 4 10 7 7 10
3 2 5 10 9 7 10
3 2 6 10 10 3 9
3 2 7 9 10 3 8
5 2 3 9 10 7 10
5 2 4 10 8 3 10
5 2 5 7 10 1 10
5 2 6 7 9 0 10
5 2 7 4 10 0 10
3 3 3 10 10 9 10
3 3 4 10 10 7 10
3 3 5 10 10 6 10
3 3 6 9 10 5 10
3 3 7 7 10 4 10
5 3 3 10 10 6 10
5 3 4 9 10 5 9
5 3 5 4 10 1 10
5 3 6 7 10 1 10
5 3 7 6 9 0 10

Table 1: Logistics: Number of instances solved

of available actions, the fluent predicates involved (includ-
ing their initial values) and objects’ as well as fluent and
action parameters’ types. Whereas the internal achieve
construct directly uses the appropriate part of the Golog do-
main axiomatization, FF is provided with the corresponding
PDDL translation as described earlier.

For both of the planners, we considered two variants. In
the first one, once a plan is found it gets executed entirely.
Packages arriving during that time are ignored until plan ex-
ecution finishes and the next call to the planner is made. In
the other variant, the system aborts the current plan and per-
forms a re-planning after each new package event.

We performed a series of experiments where the number
of locations varied between 3 to 7, the number of trucks
between 2 and 3 and the number of dynamically arriving
packages among 3 and 5. For each combination, we cre-
ated 10 different domain instances. The initial locations of
trucks and packages as well as the destinations of the pack-
ages are chosen randomly. Two locations are connected with
a probability of 50%; additional random edges ensure that
the roadmap graph forms a single connected component. In
each instance, there is one initial package, and the intervals
between the arrival times of new packages vary between 2
and 8 steps, where one step corresponds to the execution of
a primitive, non-exogenous action.

For each planner variant and domain instance we mea-
sured the overall runtime of the system and the number of
steps (minus the number of wait actions) that were taken
until termination. Runs that did not terminate within 300
seconds were aborted. The runtime includes a wait inter-
val of 0.5 seconds after each executed action which was re-
served to handle the communication with and the state up-
date of the simulator.

Pack. Trucks Loc. iN eN iR eR

3 2 3 14.0 14.0 16.5 15.0
3 2 4 15.0 14.5 35.0 14.0
3 2 5 16.0 13.0 23.5 15.0
3 2 6 30.5 14.5 300.0 16.5
3 2 7 25.0 14.5 300.0 17.0
5 2 3 20.0 18.0 82.5 19.0
5 2 4 35.5 20.5 300.0 21.0
5 2 5 47.5 19.0 300.0 21.0
5 2 6 75.5 19.0 300.0 21.0
5 2 7 300.0 19.5 300.0 22.5
3 3 3 17.0 14.0 28.5 15.0
3 3 4 21.0 14.0 35.5 15.0
3 3 5 27.5 14.5 174.5 15.0
3 3 6 42.5 14.0 225.0 15.0
3 3 7 127.0 14.0 300.0 15.5
5 3 3 27.5 19.0 95.5 19.5
5 3 4 58.5 21.0 298.0 23.0
5 3 5 300.0 19.5 300.0 21.5
5 3 6 216.0 20.5 300.0 22.0
5 3 7 235.5 20.5 300.0 21.0

Table 2: Logistics: Median runtimes in seconds

Table 1 summarizes how many of the 10 instances were
solved within the time limit by each method. Here, “e” refers
to the variant where FF was used for planning while “i”
means that the internal achieve was used. Further “R”
means the variant where instant re-planning was done af-
ter the arrival of a new request and “N” the one where the
current plan was not immediately aborted. The median run-
times for each combination are given in Table 2 and shown
graphically in Figure 1, using a logarithmic scale. In those
cases where the run did not finish within the timeout the
value is set to the maximal time of 300 seconds. Table 3
contains the median number of steps that were taken, con-
sidering only instances that were solved by all methods.

The results clearly show that using FF instead of the inter-
nal planner has a large impact on the necessary computation
time of the system, letting it solve instances within seconds
which otherwise would require several minutes. One might
object that our comparison is not equitable because we con-
trast FF which is a satisficing planner (i.e. which may return
suboptimal plans in terms of plan length) with the internal
planner that generates optimal plans (following an iterative
deepening search strategy). We argue that in many cases op-
timal planning is not expedient: in fact, in the presence of
unpredictable exogenous events or sensing it is not possible
to plan really optimal. Furthermore, the results in Table 3
show that the number of steps required by the internal sys-
tem is only slightly lower. Actually, our other benchmark
domains show that using the external planning system also
can result in a lower number of steps (Table 9). Neverthe-
less, there might be applications where optimal planning is
more suitable, e.g. because there are no exogenous events
and sensing is not required, or because the actual execution
of an action takes a lot of time. Since we use PDDL to com-
municate with the external planner, our approach can easily

 100

 1000

3
2
3

3
3
3

5
2
3

5
3
3

3
2
4

3
3
4

5
2
4

5
3
4

3
2
5

3
3
5

5
2
5

5
3
5

3
2
6

3
3
6

5
2
6

5
3
6

3
2
7

3
3
7

5
2
7

5
3
7

T
im

e
 (

m
e

d
ia

n
)

Tasks (each representing 10 random instances)

internal, no replanning
internal, replanning

external, no replanning
external, replanning

Pack.
Trucks

Loc.

Figure 1: Logistics: Median runtimes in seconds

Pack. Trucks Loc. Tasks iN eN iR eR

3 2 3 8 14.0 14.0 14.0 14.0
3 2 4 5 14.0 14.0 14.0 14.0
3 2 5 6 13.5 13.5 13.5 14.0
3 2 6 3 15.0 15.0 15.0 15.0
3 2 7 2 15.0 15.5 15.0 15.5
5 2 3 7 20.0 20.0 20.0 20.0
5 2 4 3 25.0 25.0 25.0 25.0
5 2 5 1 24.0 24.0 24.0 24.0
3 3 3 9 14.0 14.0 14.0 14.0
3 3 4 7 14.0 15.0 14.0 15.0
3 3 5 6 15.0 15.0 15.0 15.0
3 3 6 5 15.0 16.0 15.0 16.0
3 3 7 4 16.0 16.5 16.0 16.5
5 3 3 6 20.0 20.0 20.0 20.0
5 3 4 5 22.0 21.0 22.0 21.0
5 3 5 1 21.0 21.0 21.0 21.0
5 3 6 1 23.0 23.0 22.0 23.0

Table 3: Logistics: Median number of steps taken

be adapted to use any other planning system that handles
PDDL, including optimal ones. As these planning systems
are highly optimized, we would expect that they still would
produce better results than the internal routine.

Elevator

The experimental setting for the elevator domain is analo-
gous to the one of the logistics domain and uses the follow-
ing main program.

proc mainControl
〈 unservedPassengers → servePassengers 〉 〉〉
〈 ¬ finished → wait 〉

Planning is used to serve the passengers that have not
reached their destination yet:

proc servePassengers
solve(∀p : passenger. served(p),

[move fast,move,stop])

Pass.. Floors Tasks iN eN iR eR

3 5 10 10 10 10 10
3 6 10 8 10 8 10
3 7 10 10 9 4 10
3 8 10 6 10 3 10
5 5 10 10 9 7 9
5 6 10 8 10 1 9
5 7 10 4 9 0 9
5 8 10 5 7 0 10
7 5 10 7 10 1 10
7 6 10 1 10 0 10
7 7 10 0 9 0 8
7 8 10 0 10 0 10
9 5 10 4 9 0 10
9 6 10 0 9 1 10
9 7 10 0 7 0 10
9 8 10 0 8 0 9

Table 4: Elevator: Number of instances solved

Pass.. Floors iN eN iR eR

3 5 17.0 14.0 23.5 14.5
3 6 22.0 12.0 35.5 13.5
3 7 39.5 15.0 300.0 15.0
3 8 87.0 17.0 300.0 18.0
5 5 23.0 19.0 81.5 24.0
5 6 90.0 20.5 300.0 27.0
5 7 300.0 24.0 300.0 28.0
5 8 276.5 20.5 300.0 27.5
7 5 79.5 28.0 300.0 26.5
7 6 300.0 29.5 300.0 28.0
7 7 300.0 33.0 300.0 31.5
7 8 300.0 31.5 300.0 31.5
9 5 300.0 33.0 300.0 31.5
9 6 300.0 33.5 300.0 37.0
9 7 300.0 33.5 300.0 43.0
9 8 300.0 36.5 300.0 44.5

Table 5: Elevator: Median runtimes in seconds

Again, we tested two versions of solve, one calling the inter-
nal planner, the other calling the FF system, each with and
without re-planning on the arrival of a new passenger.

For the benchmark instances of this domain we let the
number of new passengers vary among 3, 5, 7 and 9 and the
number of floors between 5 and 8. As above, we created 10
different instances for each combination, choosing the pas-
sengers’ origins and destinations randomly. Initially there
is always one passenger request and the intervals between
newly arriving passengers lie between 2 and 8 steps.

In analogy to the previous domain, table 4 summarizes
how many of the 10 instances were solved within the time
limit by each method. The median runtimes for each combi-
nation are stated in Table 5 and shown graphically in Figure
2. Table 6 contains the median number of taken steps, con-
sidering only instances that were solved by all methods.

 100

 1000

3
5

3
6

3
7

3
8

5
5

5
6

5
7

5
8

7
5

7
6

7
7

7
8

9
5

9
6

9
7

9
8

T
im

e
 (

m
e

d
ia

n
)

Tasks (each representing 10 random instances)

internal, no replanning
internal, replanning

external, no replanning
external, replanning

Pass.
Floors

Figure 2: Elevator: Median runtimes in seconds

Pass.. Floors Tasks iN eN iR eR

3 5 10 16.5 16.5 15.5 16.5
3 6 7 19.0 19.0 16.0 18.0
3 7 3 19.0 19.0 16.0 19.0
3 8 3 19.0 19.0 19.0 19.0
5 5 5 25.0 25.0 29.0 30.0
5 6 1 37.0 38.0 32.0 33.0
7 5 1 34.0 34.0 32.0 32.0

Table 6: Elevator: Median number of steps taken

Again, the variants with the external planner performed
much better than the ones using the internal search method.
The fifth row in Table 6 shows also an interesting detail: The
re-planning strategy sometimes causes the overall number
of steps to increase. This happens when a current plan is
discarded to serve a new request, and when later another
new request is made it turns out that following the original
plan would have been less costly.

Mail Delivery

The mail delivery robot is controlled as follows:

proc mainControl
while(¬finished) do

(πr m : mailbox) getLettersFrom(m);
deliverLetters

Here, πr denotes a variant of the non-deterministic choice of
argument where the argument’s instantiation is picked ran-
domly. In case of the normal π construct, IndiGolog other-
wise instantiates the variable always with the first applica-
ble symbol, which would cause the program above to pick
the same mailbox in each cycle of the loop. Once the next
mailbox that should be visited is chosen, the path to it is
determined by means of planning:

proc getLettersFrom(m)
(π l : location)

at(m, l)?;
solve(robotAt(l),[move]);
takeAllLetters(m)

Taking letters out of a mailbox requires sensing:

proc takeAllLetters(m)
look into(m);
while(∃ l : letter. in(l,m))

π l : letter
in(l,m)?;
take out(l,m);
look at(l)

look into(m)

look into(m) is a sensing action whose outcome is a
constant l denoting one of the letters in the box (i.e. the
robot can always only “see” the topmost one). Thus, the
agent gets to know that fluent in(l,m) is currently true. In
case the mailbox is empty, the return value is instead sim-
ply the special constant “empty”. After picking up l, action
look at(l) is applicable and causes addressee(l,m′) to be-
come known to the agent for some mailbox m′, which is the
destination of letter l. For delivering the letters obtained like
this, another call to the planner is made:

proc deliverLetters
solve(∀ l : letter.

(∃ m : mailbox. addressee(l,m))
⊃ delivered(l),

[put in,move])

Again, we study the system’s behavior for the case in which
solve uses the internal planner and for the case where FF is
called instead. Since there are no exogenous actions in this
scenario, we do not consider dynamic re-planning.

In our benchmark scenarios the number of offices varies
among 4, 8 and 16, the number of hallways among 2, 4 and
8, and the number of letters among 2, 4, 8 and 16. As in the
other domains we created 10 instances for each combina-
tion, the offices being connected randomly to some hallway
and hallways being connected to one another in a tree-like
fashion. There are as many mailboxes as offices, but they
are placed randomly. Therefore, it is possible that an of-
fice contains multiple mailboxes, only one, or even none at
all. The origins and addressees of the letters are also chosen
randomly.

Table 7 once again summarizes how many of the 10 in-
stances were solved within the time limit by each method.
The median runtimes for each combination are given in Ta-
ble 8 and shown graphically in Figure 3. Table 9 contains the
median number of steps that were taken, considering only
instances that were solved by all methods.

The results for this domain are again quite conclusive.
The controller using FF was able to solve more tasks and
throughout required less computation time. In terms of
steps, the two methods are comparable, but the results are
somewhat erratic, which is mostly because of the random-
ized strategy that was used.

Conclusion

We empirically evaluated a system that integrates the FF
planning system into the IndiGolog agent framework. For
that purpose, we developed three example application do-
mains in which classical planning subproblems arise in the

Lett. Off. Hall. Tasks i e

10 4 2 10 6 10
10 4 4 10 6 10
10 4 8 10 4 10
10 8 2 10 4 10
10 8 4 10 5 10
10 8 8 10 5 10
10 16 2 10 5 10
10 16 4 10 6 10
10 16 8 10 7 10
15 4 2 10 1 10
15 4 4 10 1 10
15 4 8 10 0 10
15 8 2 10 1 10
15 8 4 10 0 10
15 8 8 10 2 10
15 16 2 10 2 10
15 16 4 10 2 10
15 16 8 10 0 10

Table 7: Mail Delivery: Number of instances solved

 100

 1000

10
4
2

10
4
4

10
4
8

10
8
2

10
8
4

10
8
8

10
16
2

10
16
4

10
16
8

15
4
2

15
4
4

15
4
8

15
8
2

15
8
4

15
8
8

15
16
2

15
16
4

15
16
8

T
im

e
 (

m
e

d
ia

n
)

Tasks (each representing 10 random instances)

internal
external

Lett.
Off.

Hall.

Figure 3: Mail Delivery: Median runtimes in seconds

course of the execution of a high-level program. A series
of experiments with different scenarios and problem sizes
shows that the integration of the external planner decreases
the required computation time a lot, keeping the number
of executed actions similar. We ran further experiments in
order to examine the effect of re-planning after exogenous
events. This strategy does not pay off if planning is done
by the internal mechanism because the additional computa-
tion time dominates the savings. Using the external planning
system, the results are more balanced but still not clearly in-
dicating that re-planning pays off. This may be due to the
relatively simple strategy that we used. A possible direction
for future work therefore is to study what effect it has on
our system to use a more sophisticated method for execu-
tion monitoring and re-planning.

Lett. Off. Hall. i e

10 4 2 133.0 29.5
10 4 4 105.5 30.0
10 4 8 300.0 30.0
10 8 2 300.0 39.0
10 8 4 193.0 38.5
10 8 8 210.5 35.0
10 16 2 227.0 59.0
10 16 4 268.0 52.0
10 16 8 148.5 57.0
15 4 2 300.0 40.5
15 4 4 300.0 41.0
15 4 8 300.0 37.5
15 8 2 300.0 50.0
15 8 4 300.0 49.5
15 8 8 300.0 48.0
15 16 2 300.0 66.0
15 16 4 300.0 69.5
15 16 8 300.0 70.5

Table 8: Mail Delivery: Median runtimes in seconds

Acknowledgments
This work was supported by the Deutsche Forschungsge-
meinschaft under grants La 747/14-1 and Ne 623/10-1. We
thank Sebastian Sardina and Stavros Vassos for their help
with the IndiGolog framework.

References
Burgard, W.; Cremers, A. B.; Fox, D.; Hähnel, D.; Lake-
meyer, G.; Schulz, D.; Steiner, W.; and Thrun, S. 1998.
The interactive museum tour-guide robot. In Proc. AAAI-
98, 11–18.

Claßen, J.; Eyerich, P.; Lakemeyer, G.; and Nebel, B. 2007.
Towards an integration of Golog and planning. In Proc.
IJCAI 2007, 1846–1851.

De Giacomo, G.; Lespérance, Y.; and Levesque, H. 2000.
ConGolog, a concurrent programming language based on
the situation calculus. Artif. Intell. 121(1–2):109–169.

De Giacomo, G.; Levesque, H. J.; and Sardina, S. 2001.
Incremental execution of guarded theories. Computational
Logic 2(4):495–525.

Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2: The lan-
guage for the classical part of the 4th international planning
competition. report 195, Inst. f. Informatik, Univ. Freiburg.

Fikes, R., and Nilsson, N. J. 1971. STRIPS: a new ap-
proach to the application of theorem proving to problem
solving. Artif. Intell. 2(3/4):189–208.

Fox, M., and Long, D. 2003. PDDL2.1: An extension
to PDDL for expressing temporal planning domains. JAIR
20:61–124.

Gerevini, A., and Long, D. 2005. Plan constraints and pref-
erences in PDDL3. Technical report, University of Brescia.

Ghallab, M.; Howe, A.; Knoblock, C.; McDermott, D.;
Ram, A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998.
PDDL—the planning domain definition language.

Lett. Off. Hall. Tasks i e

10 4 2 6 50.5 51.0
10 4 4 6 49.5 51.0
10 4 8 4 54.0 50.0
10 8 2 4 68.5 63.0
10 8 4 5 61.0 67.0
10 8 8 5 71.0 59.0
10 16 2 5 92.0 93.0
10 16 4 6 92.0 93.5
10 16 8 7 91.0 95.0
15 4 2 1 69.0 72.0
15 4 4 1 69.0 70.0
15 8 2 1 101.0 92.0
15 8 8 2 76.0 95.0
15 16 2 2 134.5 114.5
15 16 4 2 112.5 105.5

Table 9: Mail Delivery: Median number of steps taken

Helmert, M. 2008. Understanding Planning Tasks – Do-
main Complexity and Heuristic Decomposition, volume
4929 of LNAI. Springer-Verlag.

Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. JAIR
14:253–302.

Levesque, H.; Reiter, R.; Lespérance, Y.; Lin, F.; and
Scherl, R. B. 1997. GOLOG: A logic programming lan-
guage for dynamic domains. J. Log. Prog. 31:59–84.

McCarthy, J., and Hayes, P. 1969. Some philosophical
problems from the standpoint of artificial intelligence. In
Meltzer, B., and Michie, D., eds., Machine Intelligence 4.
New York: American Elsevier. 463–502.

Pednault, E. P. D. 1989. ADL: exploring the middle ground
between STRIPS and the situation calculus. In Proc. KR-
89, 324–332.

Reiter, R. 2001. Knowledge in Action: Logical Founda-
tions for Specifying and Implementing Dynamical Systems.
MIT Press.

Röger, G., and Nebel, B. 2007. Expressiveness of ADL
and Golog: Functions make a difference. In Proc. AAAI
2007.

Röger, G.; Helmert, M.; and Nebel, B. 2008. On the rel-
ative expressiveness of ADL and Golog: The last piece in
the puzzle. In Proc. KR 2008. to appear.

Sardina, S.; De Giacomo, G.; Lespérance, Y.; and
Levesque, H. J. 2004. On the semantics of deliberation
in Indigolog—from theory to implementation. Annals of
Mathematics and Artificial Intelligence 41(2-4):259–299.

Tam, K.; Lloyd, J.; Lespérance, Y.; Levesque, H. J.; Lin, F.;
Marcu, D.; Reiter, R.; and Jenkin, M. R. M. 1997. Control-
ling autonomous robots with GOLOG. In Proc. IJCAI-97,
1–12.

