
Playing Tetris Using Bandit-Based Monte-Carlo Planning

Zhongjie Cai and Dapeng Zhang and Bernhard Nebel1

Abstract.

Tetris is a stochastic, open-ended board game. Existing artificial

Tetris players often use different evaluation functions and plan for

only one or two pieces in advance. In this paper, we developed an ar-

tificial player for Tetris using the bandit-based Monte-Carlo planning

method (UCT).

In Tetris, game states are often revisited. However, UCT does not

keep the information of the game states explored in the previous plan-

ning episodes. We created a method to store such information for our

player in a specially designed database to guide its future planning

process. The planner for Tetris has a high branching factor. To im-

prove game performance, we created a method to prune the planning

tree and lower the branching factor.

The experiment results show that our player can successfully play

Tetris, and the performance of our player is improved as the number

of the played games increases. The player can defeat a benchmark

player with high probabilities.

1 INTRODUCTION

In 1985, Alexey Pajitnov et al. first invented the puzzle video game

Tetris. It has now spread to almost all game consoles and desktop

systems.

The standard Tetris is a stochastic, open-end board game. Players

control the falling pieces in the game field and try to build fully occu-

pied rows, which are removed in each turn. The standard Tetris field

contains 10 × 20 cells, and the pieces are randomly chosen from 7
pre-defined shapes of blocks. In addition to the current piece, the in-

formation of the next piece is provided to the player. Removing rows

in a single turn has certain rewards, which in our approach is given as

0.1 for a single row, and 0.3, 0.6, 1.0 for two to four removed rows.

This encourages the players to remove multiple rows instead of only

one row in one turn. The challenge of this game is that, the player

needs to place the pieces in the proper positions in the game field in

order to best accommodate the next pieces and remove as many rows

as possible. An inappropriate placement of one piece often results in

a bad situation of the game, and causes the player to spend more time

to deal with. The game is over if the top of the game field is occupied

by blocks and the next piece cannot be placed onto the field.

In the two or more players’ competitions, if one player has re-

moved n(n > 1) rows in one turn, all other players will receive an

attack of (n− 1) rows of blocks, adding to the bottom of their game

fields. Each attack row would contain (n− 1) empty cells in random

positions. Thus removing multiple rows in single turns brings even

more benefits than rewards. Highly skilled human players prefer to

plan and remove three or even four rows using a single falling piece,

while beginners and many of the existing Tetris artificial players tend

1 Universtiy of Freiburg, Germany, email: caiz, zhangd,
nebel@informatik.uni-freiburg.de

to remove rows as soon as possible in each turn to survive the game.

The game is over when only one player is still alive in the competi-

tion, and of course the last player is the winner.

Researchers have created many artificial players for the Tetris

game using various approaches[12]. To the best of our knowledge,

most of the existing players rely on evaluation functions, and the

search methods are usually given less focus. The Tetris player devel-

oped by Szita et al. in 2006[11] employed the noisy cross-entropy

method, but the player had a planner for only one piece. In 2003,

Fahey had developed an artificial player that declared to be able to

remove millions of rows in a single-player Tetris game using a two-

piece planner[6]. Later in 2005, genetic algorithms were introduced

to the Tetris players by Böhm et al.[3], in which a heuristic func-

tion was evolved by using an evolutionary algorithm. In our previous

work, we have developed an artificial player with a one-piece plan-

ner by using learning by imitation[14] that could successfully play

against Fahey’s player in the Tetris competitions.

Yet most of the existing artificial players known are based on a

planner for only one- or two-piece. This paper was motivated by cre-

ating an artificial player based on the planning of a long sequence of

pieces. We modeled our player in Tetris planning problem with the

Monte-Carlo planning method. In order to balance the exploration-

exploitation trade-offs in the planning process, we employed the ban-

dit algorithm to guide the planning process. As for state revisiting,

we created a method to store the visited game states in a specially

designed database. We also created a hash function to quickly locate

and operate the information of a given game state in the database.

In order to reduce the branching factor of Tetris planning, we cre-

ated an intuitive evaluation function and combined it with the UCT

algorithm.

The highlights of this paper can be summarized as follows:

• We modeled the artificial player of Tetris using the UCT algo-

rithm.

• Our method of the database of the visited states provided support

to UCT and improved the performance of the planner.

• By pruning the planning tree, the player can defeat the artificial

player developed by Fehey, which is regarded as the benchmark.

This paper is structured in the following manner. First in section

2, we present our solution on modeling the Tetris planning problem

with the bandit-based Monte-Carlo planning method. Our method

to design the knowledge database and store the information of the

visited game states is presented in section 3. The idea of combining

the evaluation function to the UCT algorithm is discussed in section

4. The experiments and the results are shown and analyzed in detail

in section 5. In the final section 6, we draw the conclusion and discuss

the future work.

1.1 Related Works

To create an artificial player for a board game, the general compo-

nents are the search method and the evaluation function. The board

games which are solvable by brute-force methods, such as Othello,

have already been dominated by game programs using various search

methods, such as LOGISTELLO [5]. Board games such as Checkers

are solvable using knowledge database combined with search meth-

ods, one such example is the program named CHINOOK [10]. Many

board games, e.g. Chess and Go, are currently unsolvable, thus are

still challenging tasks for artificial intelligence researchers. To im-

prove the performance of the artificial players for these board games,

one of the tasks for the researchers is to balance the trade-offs be-

tween the search depths and evaluation functions [2].

The Monte-Carlo planning method (MCP) has offered a new solu-

tion to artificial players of board games. In 1993, Bernd first modeled

the board game Go with the MCP algorithm [4], and his Go player

had a playing strength of about 25 kyu2 on a 9 × 9 board. Soon the

MCP method was successfully applied in other board games, such as

Backgammon[8]. In 2006, Levente Kocsis and Csaba Szepesvri de-

veloped a new search technique named UCT, which stands for Upper

Confidence Bound applied to Trees [7], and proved that UCT to be

more efficient than its alternatives in several domains. Instead of uni-

form sampling of the game actions, UCT uses the multi-armed bandit

algorithm to guide the action selection of the planning process. Later

applications using the technique, such as MoGo3, demonstrated that

this technique can be successfully applied to the game of Go.

Learning techniques have also been applied to improve the perfo-

mance of artificial players of board games. The first such approach

was the one by Samuelson in 1959 [9]. He was able to show how

a program can learn to play Checkers by playing against itself. In

2010, Takuma Toyoda and Yoshiyuki Kotani suggested the idea of

using previous simulated game results to improve the performance

of the original Monte-Carlo Go program [13], and their work an-

nounced positive results on the larger Go board. In Tetris, Böhm et

al. used genetic algorithms for the heuristic function, and our previ-

ous work had introduced learning by imitation to the artificial player

of multi-player Tetris games[3].

Yet to the best of our knowledge, UCT has not been applied in

artificial players for Tetris.

2 PLANNING TETRIS USING UCT

In this Section, we discuss how we model the Tetris planning prob-

lem using the UCT algorithm.

There are two possible values for every cell in the game field, e.g.

occupied and unoccupied, so the standard Tetris search space consists

of 2200 game states. The branching factor is 162 for a given game

state without the piece information, which is the sum of all possible

placements of actions from the 7 different pieces. The large branch-

ing factor brings us to the idea of using the Monte-Carlo planning

method in our solution to the artificial Tetris player. The core feature

of the Monte-Carlo planning is to sample as many future states as

possible from all actions of the given state of the game for a certain

period of time, and for each episode evaluate only the leaf state using

a fast evaluation function. In the end, the algorithm takes the action

with the best evaluated reward in the planning as the result of the

algorithm.

2 In Go, the rank of 30−−20 kyu refers to a Beginner level.
3 Website: http://www.lri.fr/ gelly/MoGo.htm

Figure 1: Node of game field state and piece in planning tree

A sample of the planning tree is shown in the Figure 1. In our

model of the Tetris planning, we consider each state of the game

field, together with a given piece, as a single node in the planning

tree. For instance, the root node consists of a game field, which is the

rectangular area with gray square blocks inside, and a piece, in this

case a ”Z” shaped piece displayed by four black square blocks. The

fields in the nodes are the so-called ”cleared fields”, which means

that no fully occupied, removable rows are contained in such fields.

Figure 2: Procedure of removing fully occupied rows

The paths through the planning tree represent the actions associ-

ated to the given piece. By following the path of one starting node,

the piece is added to the game field according to the index of the en-

coded action, and a target field is generated. The field will then be

checked for removable rows, and if there are rows removed in the

field, such rows are removed and a reward will be given according

to the predefined game rule. This procedure is described in Figure 2.

The fully occupied row is removed from the intermediate field, and

then the resulted field and the piece i form a new node in the planning

tree.

2.1 Planner Structure

The pseudo code describing our planner is displayed in Algorithm 1

and 2.

In the beginning of the planning episode, the state of the game

field and the sequence of pieces are the input parameters of the plan-

ner. The planner initiates the growth of planning tree and starts plan-

ning phases. The rank of the paths in the planning tree are calcu-

lated directly by using the rewards gained from performing the ac-

tion associated and removing the fully occupied rows in the field.

The rewards are based on the values given in Section 1.The planning

episode continues to run as many phases as possible until a certain

Input: state, list of pieces

Output: action

1 initialization;

2 while not time out do

3 search(state, first piece);

4 end

5 action←selectBest(state, pieces);

6 updateTree();

7 return action;

Algorithm 1: One Planning Episode : Function doPlanning

time out rule is reached, and returns the action with the highest re-

ward in the root node of the planning tree. The subtree of the node

following the path of the selected action is preserved for future plan-

ning, and other nodes are deleted at the end of each planning episode

to reduce memory consumption.

Input: state, piece

Output: reward

1 type←stateType(state, piece);

2 switch type do

3 case type == normal node

4 action←selectAction(state, piece);

5 state,reward←performAction(state, piece,

action);

6 updateTree(state, piece, action, reward);

7 return reward;

8 case type == leaf node

9 return 0;

10 case type == terminal node

11 return -1;

12

13 endsw

Algorithm 2: One Planning Phase : Function search

In each planning phase, the planner selects and performs one of

the actions for each piece in the given sequence. Each performed ac-

tion results in a child node in the planning tree, together with a reward

accordingly. Once all the pieces in the given sequence have been per-

formed with an action, and the leaf node is reached, the planner sums

up the total reward gained in the current search path, and updates the

reward information backwards from the leaf node to the root.

In Tetris, a common game state usually does not have any infor-

mation on the winning chance. To simplify the recursion on the leaf

node, we consider it to be with zero reward, which means such nodes

do not have any influence on their parent nodes in the search path.

One exception is that, if a node contains a state of the field which

is by Tetris rule a terminal state, the reward is always set to a big

negative value. Such behavior makes the actions leading to terminal

states less likely to be chosen by the planner.

The method for sampling the actions is the key feature of the

Monte-Carlo planning. Comparing to the traditional uniformed and

randomized sampling methods, the multi-armed bandit algorithm has

advantages in balancing the trade-offs between explorations and ex-

ploitations during the planning process, and is proved to be more

efficient than other methods in many domains[7].

2.2 Bandit Algorithm

In our method, we consider each state of the Tetris game field to-

gether with a given piece as a separate K-armed bandit machine,

where K is the number of possible actions for the piece given.

Starting from the beginning of one planning episode, the number s
of visits of a state in the search tree and the number t of visits of each

action of the state and the piece are constantly updated according to

each selection of the actions. According to the algorithm UCB1[1],

the action selection is based on the upper confidence bound in track

of the immediate reward and bandit score of every arm (action) of

the bandit machine (game state) as:

I = arg max
i∈1,...,K

{Ri + ci} (1)

where Ri is the immediate reward from performing the action i,
and ci is a bias sequence chosen as:

ci = λ

r

ln s

t
(2)

where λ is a constant factor manually chosen for balancing of the

exploration-exploitation trade-offs. Higher λ values result in higher

chances of randomized explorations based on the bandit scores, while

smaller λ values lead to greater possibilities of selective exploitations

according to the immediate rewards.

In the function of the action selection, first the bandit score of each

action of the given piece is calculated by using the visiting informa-

tion of the node in the search tree, then the immediate reward from

performing the action is returned. The sums of the bandit scores and

immediate rewards are used to rank all these actions. The action with

the highest sum is chosen to be the return of the function. If there

are multiple actions with the same highest sum, the result is chosen

randomly from the list of such actions. Notice that the Equation 2

will be invalid for the nodes of the search tree where some of the

actions are never visited before. For such nodes, an action is selected

randomly from all of the unvisited actions.

In the standard UCT algorithm, the search tree is updated and

pruned, and only the sub-tree of the state from the selected action

will be kept for the next planning episode. For board games where

game states are less likely to be revisited in the future steps of a single

game, such behavior would have little influence on the future plan-

ning process. But the state revisiting happens quite often in Tetris

because of its game rules. Therefore, the information of the explored

states in previous planning episodes would play an important role in

the Tetris planning. In the next Section, we will discuss Tetris state

revisiting.

3 STATE REVISITING

Before designing our database for the visited game states, we think of

the information that is useful for the future planning episodes. First,

we want to start each planning episode of a root node from scratch.

So the information of the number of visits to nodes and actions is not

to be stored, because such information is a bias to the given sequence

of pieces of the previous planning episodes. The immediate rewards

and targeting states of the actions associated to one node can be easily

and fast computed in the planning phases, thus the information can

also be ignored.

In our method of planning, a node in the planning tree is made of

a state of the game field and a given piece, and the information of the

node consists of the following components which is necessary to be

stored:

1. The highest reward over all the actions, and

2. The highest reward of each action.

The information of the item 1 is the key to our idea of storing

and reusing the information of the explored game states, because it

represents the summarized results of its associated previous planning

episodes, and can be easily combined with the results of any future

planning episodes. The information of the item 2 can be abstracted

to a list of actions that matches the highest reward, which can be

combined easily with the future planning results.

Considering the planner of the artificial player plays 100 pieces in

a single game, and for each planning episode, the planner explores

1, 000 phases. Then the total number of explored states of a single

game is approximately 100, 000. Assume that one quarter of these

explored states are revisited states, then in the end there are 75, 000
newly explored states in a single game. Rather than saving every sin-

gle node in the planning tree, we store only the root node in every

planning episode. This way, the size of the stored nodes is signifi-

cantly reduced, whilst the most useful information of each planning

episode is preserved. Since the root node would only be queried once

in each episode, the time cost for storing and retrieving nodes in the

database is ignorable.

Now that we have our information stored in a database, the final

task is to find a fast and easy way to load and save such information.

In the following Section, we will present our design of the database

using hash functions.

3.1 Hashing In Database

Although not all of the game states will be explored and stored in our

approach, locating a specific state in a huge amount of data is still not

an easy task. One of the possible options is to use an existing database

management systems. However, such systems are inappropriate for

our approach, as the data we want to store are small in the single size

and have little relation to each other.

In our early approach, we tried to store the data in a single file,

which is easy to implement. But locating the data of a certain game

state is not an easy task. One of the possible method is to use the

”sparse file” system for storage, and every state is stored to a certain

position in the ”sparse file”, where positions are calculated using a

hash function. Since there is an ”offset limit” in the size of a ”sparse

file”, it is difficult to create a perfect hash function to generate posi-

tions for the 2200 states in Tetris without collisions.

Another option is to use rather a simple file system with each state

hashed to a specific file. Like the ”sparse file” system, the simple file

system is also dependent on the operating system to locate the entry

of a certain file. The difference is that the hash function can easily

be created for the simple file system. Also because game states are

stored in separate files, there will be no ”offset limit” of a single file,

and thus the collisions of positions are easy to be avoided.

For any file system, the key issue is to balance the number of files,

the number and depth of folders, and the size of each file containing

the data. Too many files or subfolders in one folder could cause more

time for the operating system to locate the entry of the target in the

disk. The size of each file directly affects the computation time to

store and retrieve the data for the program.

In our approach, each state of the game field generates a file name

directly according to the value of the field encoded by a vector of

integers. In this way, every state would have a unique file name, and

the collision problem mentioned above is solved. Another advantage

is that, the data of the game field is hidden inside the name of the file.

And from another point of view, this method reduces the size of the

storage.

Then, all such files are separated into different folders in a folder

tree of 5-depth. In each depth of the folder, there are up to 16 subfold-

ers. This scattering method is used to avoid too many subfolders or

files in a single folder. Our later experiment on random sequences of

pieces showed that for the Linux operating system the computational

time had less than 1% differences in runtime from the beginning to

the end of the experiment, where the number of the saved states in

the database increased from zero to 100, 000.

Input: state, pieces

Output: action

1 initialization;

2 while not time out do

3 search(state, pieces, 0);

4 end

5 combineKnowledge(state, pieces);

6 action←selectBest(state, pieces);

7 updateTreeEx();

8 return action;

Algorithm 3: One Planning Episode : Modified Function do-

PlanningEx

In each planning episode, the planner starts planning from scratch,

using only the information of the game state and piece and current

planning tree. Then after the planning phases are completed, the

planner loads the information of the root node in the planning tree

from the database. Such information is combined with the newly ex-

plored information in the planning tree. The combination rule is sim-

ple. If the highest reward of the root node in the database is bigger

than in the planning tree, the information in the database will com-

pletely override the information in the planning tree, and vice-versa.

If the two rewards are the same, then the list of actions matching the

highest reward will be merged. Algorithm 3 shows a modification to

its previous version discussed in Section 2.1.

4 PRUNING THE PLANNING TREE

The previously introduced method is based on the sampling of all

possible actions of the given piece in the given game state. How-

ever, many of the actions are not worth exploring, because they often

lead to useless or even bad game states. In this section, we created

a method to prune the planning tree to reduce the number of actions

that need to be sampled, and thus to improve the performance of the

developed player.

From records of many Tetris games played by artificial and hu-

man players, we studied that one of the most important features of

the proper placement of a given piece in the game field is to avoid

creating holes in the field. A hole in the game field is defined as an

unoccupied cell that is covered by one or more occupied cells over its

top. A row in the game field containing any holes cannot be removed,

and would cause the player to spend more time to deal with.

Since many actions sampled by our method would create such

holes, we created a method to prune these actions from the planning

tree. The pruning is based on the increment of holes from the original

game state to the resulted game state by performing an action. In ad-

dition to the reward and the bandit score of each action discussed in

Section 2.2, the number of holes created by the action is considered

to be a negative effect on the sum of the former two parameters. The

Equation 1 is then modified as:

I = arg max
i∈1,...,K

{Ri + ci + Pi} (3)

where Pi is a negative value defined according to the number of

holes created, and is defined by the following equation:

Pi = γHi, (−1 ≤ γ ≤ 0) (4)

where Hi is the number of holes created by performing the action

i to the game field, and γ is a negative factor according to the number

of rows removed from the result game field. The reason for γ being

different is that, unlike the actions that can only create holes in the

field, the actions that can both remove multiple rows and create some

holes may still lead to a good game state, and thus should not be

totally ignored.

5 EXPERIMENTS

We have conducted three experiments for our artificial Tetris player.

The first experiment was meant to test the validity of our method.

In order to measure the performances of the developed player when

using the database of the visited game states to support the UCT

algorithm, we started the experiment on an empty database, and let

the player repeatedly play Tetris on a fixed piece sequence from the

start of the game till the end. Two of the game parameters are to

be evaluated: a) the final score of the game, and b) the ratio of the

roll-outs in one planning episode comparing to the standard UCT

algorithm. The former parameter stands directly for the performance

of the developed player, and the latter indicates the effectiveness of

using the database of the visited game states in the future planning

process.

 3

 4

 5

 6

 7

 8

 0 50 100 150 200

 10

 20

 30

 40

 50

 60

 70

F
in

a
l
g
a
m

e
 s

c
o
re

R
o
llo

u
t
ra

ti
o

Number of games played

Score on fixed piece sequence
Rollout ratio comparing to the standard UCT algorithm

Figure 3: Experiment on a fixed piece sequence

The results of the first experiment are shown in Figure 3. The

solid line in the figure displays the final score of each game. The

game score is based on the sum of the number of removed rows in

each turn. We use the same scoring rules for the rewards of removing

rows in the standard Tetris. We can see that the final score grows as

the number of played games increases. This shows that our method

to store the information of the visited game states and reuse it in

future planning process can successfully support the standard UCT

algorithm and improve the performance.

Comparing to the standard UCT algorithm as a basis for the num-

ber of roll-outs per planning episode, the roll-out ratio of each plan-

ning process with the support of the database of the visited game

states is shown in the figure with the thick dashed line. The number

of roll-outs is piled up when the state is revisited in the future plan-

ning episodes. The results show that the knowledge database helps

the standard UCT algorithm to do more roll-outs in the planning pro-

cess when the states are found revisited in the database, and the per-

formance is hence improved.

One observation in the experiment is that, although the trend of

the two results is going in a growing manner, there exist some falls

of scores and ratios at some point of the experiment. After analyz-

ing this phenomenon, we found out the reason is that at some point

of the game, some newly explored states produced some immedi-

ate rewards which are higher than those of the states of the previous

planning episodes. This resulted in the change of the choice of the

actions for the piece at the point of the game, and lead to some future

states which are brand new to the player’s knowledge database. We

can also see in the figure that after some more explorations of the

games, the final scores soon went up again.

The second experiment was designed to analyze the total size and

the revisiting state coverage percentage of the database of the visited

game states. Unlike the first experiment on a fixed piece sequence,

we let our player continually playing the Tetris games with randomly

generated piece sequences. The main idea is to let the player meet

and explore as many unvisited game states as possible, while exam-

ine the percentages of states revisited in games with completely dif-

ferent piece sequences.

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0 200 400 600 800 1000

 0

 20000

 40000

 60000

 80000

 100000

S
ta

te
 r

e
v
is

it
in

g
 p

e
rc

e
n
ta

g
e
 (

%
)

S
iz

e
 o

f
d
a
ta

b
a
s
e

Number of games played

Chance to revisit a stored game state
Total stored states

Figure 4: Experiment on random piece sequences

From the results of the second experiment displayed with the

dashed line in Figure 4, we can see that the total size of the stored

game states in the knowledge database is growing with a constant

factor in our case. We thus can conclude that given randomly gener-

ated piece sequences, the player is able to increase its knowledge of

the Tetris game.

Shown with the thick solid line in the figure, as more visited game

states are stored in the database, we can see that the percentage of

state revisiting is increasing. This means that is more likely to re-

visit a previously explored game state, even when the game has a

completely different piece sequence. On the other hand, the percent-

age of states revisited during games with different piece sequences is

still low, which means that currently the size of the database is not

big enough to cover many useful Tetris game states.

Combining the results of the first two experiments provides evi-

dence that our artificial Tetris player can successfully play the stan-

dard Tetris game using the UCT algorithm, and has the ability to

learn from the played games and improve its future performance with

the help of the knowledge database of the previously visited game

states. By repeatedly playing the Tetris games using randomly gener-

ated piece sequences, the performance of the player will improve, as

more useful game states will be covered by its knowledge database.

 0

 20

 40

 60

 80

 100

Player 1 Player 2 Player 3

W
in

s
 i
n
 c

o
m

p
e
ti
ti
o
n

Number of Wins Against the Benchmark Player

2

91

25

Figure 5: Competitions between players

The third experiment was the competitions against Fahey’s bench-

mark player[6] using different approaches. The winning percentages

are calculated on a basis of 100 rounds of games, and the results

are shown in Figure 5. The three columns represent the different ap-

proaches used to develop the player: 1) the UCT based player with

only the hashing database, 2) the UCT based player with both the

hashing database and the pruning method, and 3) the SVM based

pattern player in our previous work[14].

As we can see in the figure, with only the hashing database, the

player’s performance against the benchmark is very low. With the

support of the pruning method, the performance of the player is sig-

nificantly improved, as shown by the number of wins in Figure 5 in-

creasing from 2 to 91 over 100 games, and is competitive comparing

to our previous work of the SVM based pattern player.

There is a trade-off in including pruning in our approach. The

complexity of the included method affects the efficiency of the plan-

ner in both the action selection and the roll-out sampling. According

to the statistics of the experiments, the number of roll-outs per plan-

ning episode dropped by 1/2 when the pruning method is included,

while the number of pieces successfully played per game raised by

25 times. Conclusion can be drawn that such method is suitable in

our approach to improve the performance of the developed player.

6 CONCLUSIONS

In this paper, we have developed an artificial Tetris player using the

bandit-based Monte-Carlo planning method. Different from many

existing artificial Tetris players, our player is built on the ten-piece

planner. Our idea is to use the Monte-Carlo planning method to sam-

ple the possible actions of the given pieces in the game field, and use

the bandit algorithm to balance the exploration-exploitation trade-

offs and guide the planning process.

One of the key challenges of our work is to find a good solution to

make use of the information of the visited states during the planning

process, as such information is not kept and reused in the standard

UCT algorithm. We created a method to store the information of the

visited game states in a specially created database file system. The

information can be loaded and reused in the future planning episodes

when the states are revisited, and the scheme provides our artificial

player with the learning ability.

The high branching factor causes the planner to spend much of

its time exploring possible actions, while many of such actions are

useless and often lead to unwanted game states. We created a method

to prune the planning tree during the planning process to reduce the

number of actions to be explored, and eventually improve the game

performance of our player.

The experiment results show that our player can successfully play

the Tetris game. By using the stored information of the visited game

states as a support to the UCT algorithm, the results of the experi-

ments show that the performance of our player improves as the num-

ber of games played increases. The player could explore the unvisited

Tetris game states using randomly generated piece sequences and

improves its game performance. With the pruning method, the de-

veloped player has significantly higher chance to win a multi-player

Tetris game in competition against the benchmark of the Tetris play-

ers.

6.1 Future Work

The results of our second experiment on randomly generated piece

sequences showed that our database has not yet covered a high per-

centage of the useful game states. In the next step, we will continue

the experiment on exploring unvisited game states for the database,

and analyze the use of larger database in the Tetris games.

Currently we use an intuitive method to prune the planning tree.

Although the overall performance of the developed player is im-

proved, careful studies are needed to analyze the trade-offs between

more complex pruning methods and the changes in the player’s per-

formance. This is another interesting topic be in our future plans.

REFERENCES

[1] Peter Auer and Jyrki Kivinen, ‘Finite-time analysis of the multiarmed
bandit problem’, in Machine Learning, pp. 235–256, (2002).

[2] Hans J. Berliner, Gordon Goetsch, Murray Campbell, and Carl Ebeling,
‘Measuring the performance potential of Chess programs’, Artif. Intell.,
43(1), 7–20, (1990).

[3] Niko Böhm, Gabriella Kókai, and Stefan Mandl, ‘An evolutionary ap-
proach to Tetris’, (2005). In Proceedings of the sixth metaheuristics
international conference (MIC2005).

[4] Bernd Brügmann. Monte-Carlo go, 1993. Unpublished technical re-
port.

[5] Michael Buro, ‘From simple features to sophisticated evaluation func-
tions’, in Computers and Games, Proceedings of CG98, LNCS 1558,
pp. 126–145. Springer-Verlag, (1999).

[6] Colin Fehey. Tetris AI. http://www.colinfahey.com/

tetris/tetris_en.html, 2003. www accessed on 02-August-
2010.

[7] Levente Kocsis and Csaba Szepesvri, ‘Bandit based Monte-Carlo plan-
ning’, in In: ECML-06. Number 4212 in LNCS, pp. 282–293. Springer,
(2006).

[8] François Van Lishout, Guillaume Chaslot, and Jos W.H.M. Uiterwijk.
Monte-Carlo tree search in Backgammon, 2007.

[9] Arthur L. Samuel, ‘Some studies in machine learning using the game of
Checkers’, IBM Journal of Research and Development, 3(3), 210–229,
(1959).

[10] Jonathan Schaeffer and Robert Lake, ‘Solving the game of Checkers’,
in Games of No Chance, pp. 119–136. Cambridge University Press,
(1996).

[11] István Szita and András Lőrincz 2, ‘Learning Tetris using the noisy
cross-entropy method’, Neural Computation, 18, 2936–2941, (2006).

[12] Christophe Thiery and Bruno Scherrer, ‘Building controllers for Tetris’,
International Computer Games Association Journal, 32, 3–11, (2009).

[13] Takuma Toyoda and Yoshiyuki Kotani, ‘Monte Carlo Go using previous
simulation results’, Technologies and Applications of Artificial Intelli-

gence, International Conference on, 0, 182–186, (2010).
[14] Dapeng Zhang, Zhongjie Cai, and Bernhard Nebel, ‘Playing Tetris us-

ing learning by imitation’, in GAMEON, pp. 23–27. EUROSIS, (2010).

